target-arm: Add support for AArch64 PMU register PMXEVTYPER_EL0
[qemu/ar7.git] / util / hbitmap.c
blob35088e19c491811b77387c9a3fe324cd0cb6ed13
1 /*
2 * Hierarchical Bitmap Data Type
4 * Copyright Red Hat, Inc., 2012
6 * Author: Paolo Bonzini <pbonzini@redhat.com>
8 * This work is licensed under the terms of the GNU GPL, version 2 or
9 * later. See the COPYING file in the top-level directory.
12 #include "qemu/osdep.h"
13 #include "qemu/hbitmap.h"
14 #include "qemu/host-utils.h"
15 #include "trace.h"
17 /* HBitmaps provides an array of bits. The bits are stored as usual in an
18 * array of unsigned longs, but HBitmap is also optimized to provide fast
19 * iteration over set bits; going from one bit to the next is O(logB n)
20 * worst case, with B = sizeof(long) * CHAR_BIT: the result is low enough
21 * that the number of levels is in fact fixed.
23 * In order to do this, it stacks multiple bitmaps with progressively coarser
24 * granularity; in all levels except the last, bit N is set iff the N-th
25 * unsigned long is nonzero in the immediately next level. When iteration
26 * completes on the last level it can examine the 2nd-last level to quickly
27 * skip entire words, and even do so recursively to skip blocks of 64 words or
28 * powers thereof (32 on 32-bit machines).
30 * Given an index in the bitmap, it can be split in group of bits like
31 * this (for the 64-bit case):
33 * bits 0-57 => word in the last bitmap | bits 58-63 => bit in the word
34 * bits 0-51 => word in the 2nd-last bitmap | bits 52-57 => bit in the word
35 * bits 0-45 => word in the 3rd-last bitmap | bits 46-51 => bit in the word
37 * So it is easy to move up simply by shifting the index right by
38 * log2(BITS_PER_LONG) bits. To move down, you shift the index left
39 * similarly, and add the word index within the group. Iteration uses
40 * ffs (find first set bit) to find the next word to examine; this
41 * operation can be done in constant time in most current architectures.
43 * Setting or clearing a range of m bits on all levels, the work to perform
44 * is O(m + m/W + m/W^2 + ...), which is O(m) like on a regular bitmap.
46 * When iterating on a bitmap, each bit (on any level) is only visited
47 * once. Hence, The total cost of visiting a bitmap with m bits in it is
48 * the number of bits that are set in all bitmaps. Unless the bitmap is
49 * extremely sparse, this is also O(m + m/W + m/W^2 + ...), so the amortized
50 * cost of advancing from one bit to the next is usually constant (worst case
51 * O(logB n) as in the non-amortized complexity).
54 struct HBitmap {
55 /* Number of total bits in the bottom level. */
56 uint64_t size;
58 /* Number of set bits in the bottom level. */
59 uint64_t count;
61 /* A scaling factor. Given a granularity of G, each bit in the bitmap will
62 * will actually represent a group of 2^G elements. Each operation on a
63 * range of bits first rounds the bits to determine which group they land
64 * in, and then affect the entire page; iteration will only visit the first
65 * bit of each group. Here is an example of operations in a size-16,
66 * granularity-1 HBitmap:
68 * initial state 00000000
69 * set(start=0, count=9) 11111000 (iter: 0, 2, 4, 6, 8)
70 * reset(start=1, count=3) 00111000 (iter: 4, 6, 8)
71 * set(start=9, count=2) 00111100 (iter: 4, 6, 8, 10)
72 * reset(start=5, count=5) 00000000
74 * From an implementation point of view, when setting or resetting bits,
75 * the bitmap will scale bit numbers right by this amount of bits. When
76 * iterating, the bitmap will scale bit numbers left by this amount of
77 * bits.
79 int granularity;
81 /* A meta dirty bitmap to track the dirtiness of bits in this HBitmap. */
82 HBitmap *meta;
84 /* A number of progressively less coarse bitmaps (i.e. level 0 is the
85 * coarsest). Each bit in level N represents a word in level N+1 that
86 * has a set bit, except the last level where each bit represents the
87 * actual bitmap.
89 * Note that all bitmaps have the same number of levels. Even a 1-bit
90 * bitmap will still allocate HBITMAP_LEVELS arrays.
92 unsigned long *levels[HBITMAP_LEVELS];
94 /* The length of each levels[] array. */
95 uint64_t sizes[HBITMAP_LEVELS];
98 /* Advance hbi to the next nonzero word and return it. hbi->pos
99 * is updated. Returns zero if we reach the end of the bitmap.
101 unsigned long hbitmap_iter_skip_words(HBitmapIter *hbi)
103 size_t pos = hbi->pos;
104 const HBitmap *hb = hbi->hb;
105 unsigned i = HBITMAP_LEVELS - 1;
107 unsigned long cur;
108 do {
109 cur = hbi->cur[--i];
110 pos >>= BITS_PER_LEVEL;
111 } while (cur == 0);
113 /* Check for end of iteration. We always use fewer than BITS_PER_LONG
114 * bits in the level 0 bitmap; thus we can repurpose the most significant
115 * bit as a sentinel. The sentinel is set in hbitmap_alloc and ensures
116 * that the above loop ends even without an explicit check on i.
119 if (i == 0 && cur == (1UL << (BITS_PER_LONG - 1))) {
120 return 0;
122 for (; i < HBITMAP_LEVELS - 1; i++) {
123 /* Shift back pos to the left, matching the right shifts above.
124 * The index of this word's least significant set bit provides
125 * the low-order bits.
127 assert(cur);
128 pos = (pos << BITS_PER_LEVEL) + ctzl(cur);
129 hbi->cur[i] = cur & (cur - 1);
131 /* Set up next level for iteration. */
132 cur = hb->levels[i + 1][pos];
135 hbi->pos = pos;
136 trace_hbitmap_iter_skip_words(hbi->hb, hbi, pos, cur);
138 assert(cur);
139 return cur;
142 void hbitmap_iter_init(HBitmapIter *hbi, const HBitmap *hb, uint64_t first)
144 unsigned i, bit;
145 uint64_t pos;
147 hbi->hb = hb;
148 pos = first >> hb->granularity;
149 assert(pos < hb->size);
150 hbi->pos = pos >> BITS_PER_LEVEL;
151 hbi->granularity = hb->granularity;
153 for (i = HBITMAP_LEVELS; i-- > 0; ) {
154 bit = pos & (BITS_PER_LONG - 1);
155 pos >>= BITS_PER_LEVEL;
157 /* Drop bits representing items before first. */
158 hbi->cur[i] = hb->levels[i][pos] & ~((1UL << bit) - 1);
160 /* We have already added level i+1, so the lowest set bit has
161 * been processed. Clear it.
163 if (i != HBITMAP_LEVELS - 1) {
164 hbi->cur[i] &= ~(1UL << bit);
169 bool hbitmap_empty(const HBitmap *hb)
171 return hb->count == 0;
174 int hbitmap_granularity(const HBitmap *hb)
176 return hb->granularity;
179 uint64_t hbitmap_count(const HBitmap *hb)
181 return hb->count << hb->granularity;
184 /* Count the number of set bits between start and end, not accounting for
185 * the granularity. Also an example of how to use hbitmap_iter_next_word.
187 static uint64_t hb_count_between(HBitmap *hb, uint64_t start, uint64_t last)
189 HBitmapIter hbi;
190 uint64_t count = 0;
191 uint64_t end = last + 1;
192 unsigned long cur;
193 size_t pos;
195 hbitmap_iter_init(&hbi, hb, start << hb->granularity);
196 for (;;) {
197 pos = hbitmap_iter_next_word(&hbi, &cur);
198 if (pos >= (end >> BITS_PER_LEVEL)) {
199 break;
201 count += ctpopl(cur);
204 if (pos == (end >> BITS_PER_LEVEL)) {
205 /* Drop bits representing the END-th and subsequent items. */
206 int bit = end & (BITS_PER_LONG - 1);
207 cur &= (1UL << bit) - 1;
208 count += ctpopl(cur);
211 return count;
214 /* Setting starts at the last layer and propagates up if an element
215 * changes.
217 static inline bool hb_set_elem(unsigned long *elem, uint64_t start, uint64_t last)
219 unsigned long mask;
220 unsigned long old;
222 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
223 assert(start <= last);
225 mask = 2UL << (last & (BITS_PER_LONG - 1));
226 mask -= 1UL << (start & (BITS_PER_LONG - 1));
227 old = *elem;
228 *elem |= mask;
229 return old != *elem;
232 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
233 * Returns true if at least one bit is changed. */
234 static bool hb_set_between(HBitmap *hb, int level, uint64_t start,
235 uint64_t last)
237 size_t pos = start >> BITS_PER_LEVEL;
238 size_t lastpos = last >> BITS_PER_LEVEL;
239 bool changed = false;
240 size_t i;
242 i = pos;
243 if (i < lastpos) {
244 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
245 changed |= hb_set_elem(&hb->levels[level][i], start, next - 1);
246 for (;;) {
247 start = next;
248 next += BITS_PER_LONG;
249 if (++i == lastpos) {
250 break;
252 changed |= (hb->levels[level][i] == 0);
253 hb->levels[level][i] = ~0UL;
256 changed |= hb_set_elem(&hb->levels[level][i], start, last);
258 /* If there was any change in this layer, we may have to update
259 * the one above.
261 if (level > 0 && changed) {
262 hb_set_between(hb, level - 1, pos, lastpos);
264 return changed;
267 void hbitmap_set(HBitmap *hb, uint64_t start, uint64_t count)
269 /* Compute range in the last layer. */
270 uint64_t first, n;
271 uint64_t last = start + count - 1;
273 trace_hbitmap_set(hb, start, count,
274 start >> hb->granularity, last >> hb->granularity);
276 first = start >> hb->granularity;
277 last >>= hb->granularity;
278 assert(last < hb->size);
279 n = last - first + 1;
281 hb->count += n - hb_count_between(hb, first, last);
282 if (hb_set_between(hb, HBITMAP_LEVELS - 1, first, last) &&
283 hb->meta) {
284 hbitmap_set(hb->meta, start, count);
288 /* Resetting works the other way round: propagate up if the new
289 * value is zero.
291 static inline bool hb_reset_elem(unsigned long *elem, uint64_t start, uint64_t last)
293 unsigned long mask;
294 bool blanked;
296 assert((last >> BITS_PER_LEVEL) == (start >> BITS_PER_LEVEL));
297 assert(start <= last);
299 mask = 2UL << (last & (BITS_PER_LONG - 1));
300 mask -= 1UL << (start & (BITS_PER_LONG - 1));
301 blanked = *elem != 0 && ((*elem & ~mask) == 0);
302 *elem &= ~mask;
303 return blanked;
306 /* The recursive workhorse (the depth is limited to HBITMAP_LEVELS)...
307 * Returns true if at least one bit is changed. */
308 static bool hb_reset_between(HBitmap *hb, int level, uint64_t start,
309 uint64_t last)
311 size_t pos = start >> BITS_PER_LEVEL;
312 size_t lastpos = last >> BITS_PER_LEVEL;
313 bool changed = false;
314 size_t i;
316 i = pos;
317 if (i < lastpos) {
318 uint64_t next = (start | (BITS_PER_LONG - 1)) + 1;
320 /* Here we need a more complex test than when setting bits. Even if
321 * something was changed, we must not blank bits in the upper level
322 * unless the lower-level word became entirely zero. So, remove pos
323 * from the upper-level range if bits remain set.
325 if (hb_reset_elem(&hb->levels[level][i], start, next - 1)) {
326 changed = true;
327 } else {
328 pos++;
331 for (;;) {
332 start = next;
333 next += BITS_PER_LONG;
334 if (++i == lastpos) {
335 break;
337 changed |= (hb->levels[level][i] != 0);
338 hb->levels[level][i] = 0UL;
342 /* Same as above, this time for lastpos. */
343 if (hb_reset_elem(&hb->levels[level][i], start, last)) {
344 changed = true;
345 } else {
346 lastpos--;
349 if (level > 0 && changed) {
350 hb_reset_between(hb, level - 1, pos, lastpos);
353 return changed;
357 void hbitmap_reset(HBitmap *hb, uint64_t start, uint64_t count)
359 /* Compute range in the last layer. */
360 uint64_t first;
361 uint64_t last = start + count - 1;
363 trace_hbitmap_reset(hb, start, count,
364 start >> hb->granularity, last >> hb->granularity);
366 first = start >> hb->granularity;
367 last >>= hb->granularity;
368 assert(last < hb->size);
370 hb->count -= hb_count_between(hb, first, last);
371 if (hb_reset_between(hb, HBITMAP_LEVELS - 1, first, last) &&
372 hb->meta) {
373 hbitmap_set(hb->meta, start, count);
377 void hbitmap_reset_all(HBitmap *hb)
379 unsigned int i;
381 /* Same as hbitmap_alloc() except for memset() instead of malloc() */
382 for (i = HBITMAP_LEVELS; --i >= 1; ) {
383 memset(hb->levels[i], 0, hb->sizes[i] * sizeof(unsigned long));
386 hb->levels[0][0] = 1UL << (BITS_PER_LONG - 1);
387 hb->count = 0;
390 bool hbitmap_is_serializable(const HBitmap *hb)
392 /* Every serialized chunk must be aligned to 64 bits so that endianness
393 * requirements can be fulfilled on both 64 bit and 32 bit hosts.
394 * We have hbitmap_serialization_granularity() which converts this
395 * alignment requirement from bitmap bits to items covered (e.g. sectors).
396 * That value is:
397 * 64 << hb->granularity
398 * Since this value must not exceed UINT64_MAX, hb->granularity must be
399 * less than 58 (== 64 - 6, where 6 is ld(64), i.e. 1 << 6 == 64).
401 * In order for hbitmap_serialization_granularity() to always return a
402 * meaningful value, bitmaps that are to be serialized must have a
403 * granularity of less than 58. */
405 return hb->granularity < 58;
408 bool hbitmap_get(const HBitmap *hb, uint64_t item)
410 /* Compute position and bit in the last layer. */
411 uint64_t pos = item >> hb->granularity;
412 unsigned long bit = 1UL << (pos & (BITS_PER_LONG - 1));
413 assert(pos < hb->size);
415 return (hb->levels[HBITMAP_LEVELS - 1][pos >> BITS_PER_LEVEL] & bit) != 0;
418 uint64_t hbitmap_serialization_granularity(const HBitmap *hb)
420 assert(hbitmap_is_serializable(hb));
422 /* Require at least 64 bit granularity to be safe on both 64 bit and 32 bit
423 * hosts. */
424 return UINT64_C(64) << hb->granularity;
427 /* Start should be aligned to serialization granularity, chunk size should be
428 * aligned to serialization granularity too, except for last chunk.
430 static void serialization_chunk(const HBitmap *hb,
431 uint64_t start, uint64_t count,
432 unsigned long **first_el, uint64_t *el_count)
434 uint64_t last = start + count - 1;
435 uint64_t gran = hbitmap_serialization_granularity(hb);
437 assert((start & (gran - 1)) == 0);
438 assert((last >> hb->granularity) < hb->size);
439 if ((last >> hb->granularity) != hb->size - 1) {
440 assert((count & (gran - 1)) == 0);
443 start = (start >> hb->granularity) >> BITS_PER_LEVEL;
444 last = (last >> hb->granularity) >> BITS_PER_LEVEL;
446 *first_el = &hb->levels[HBITMAP_LEVELS - 1][start];
447 *el_count = last - start + 1;
450 uint64_t hbitmap_serialization_size(const HBitmap *hb,
451 uint64_t start, uint64_t count)
453 uint64_t el_count;
454 unsigned long *cur;
456 if (!count) {
457 return 0;
459 serialization_chunk(hb, start, count, &cur, &el_count);
461 return el_count * sizeof(unsigned long);
464 void hbitmap_serialize_part(const HBitmap *hb, uint8_t *buf,
465 uint64_t start, uint64_t count)
467 uint64_t el_count;
468 unsigned long *cur, *end;
470 if (!count) {
471 return;
473 serialization_chunk(hb, start, count, &cur, &el_count);
474 end = cur + el_count;
476 while (cur != end) {
477 unsigned long el =
478 (BITS_PER_LONG == 32 ? cpu_to_le32(*cur) : cpu_to_le64(*cur));
480 memcpy(buf, &el, sizeof(el));
481 buf += sizeof(el);
482 cur++;
486 void hbitmap_deserialize_part(HBitmap *hb, uint8_t *buf,
487 uint64_t start, uint64_t count,
488 bool finish)
490 uint64_t el_count;
491 unsigned long *cur, *end;
493 if (!count) {
494 return;
496 serialization_chunk(hb, start, count, &cur, &el_count);
497 end = cur + el_count;
499 while (cur != end) {
500 memcpy(cur, buf, sizeof(*cur));
502 if (BITS_PER_LONG == 32) {
503 le32_to_cpus((uint32_t *)cur);
504 } else {
505 le64_to_cpus((uint64_t *)cur);
508 buf += sizeof(unsigned long);
509 cur++;
511 if (finish) {
512 hbitmap_deserialize_finish(hb);
516 void hbitmap_deserialize_zeroes(HBitmap *hb, uint64_t start, uint64_t count,
517 bool finish)
519 uint64_t el_count;
520 unsigned long *first;
522 if (!count) {
523 return;
525 serialization_chunk(hb, start, count, &first, &el_count);
527 memset(first, 0, el_count * sizeof(unsigned long));
528 if (finish) {
529 hbitmap_deserialize_finish(hb);
533 void hbitmap_deserialize_finish(HBitmap *bitmap)
535 int64_t i, size, prev_size;
536 int lev;
538 /* restore levels starting from penultimate to zero level, assuming
539 * that the last level is ok */
540 size = MAX((bitmap->size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
541 for (lev = HBITMAP_LEVELS - 1; lev-- > 0; ) {
542 prev_size = size;
543 size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
544 memset(bitmap->levels[lev], 0, size * sizeof(unsigned long));
546 for (i = 0; i < prev_size; ++i) {
547 if (bitmap->levels[lev + 1][i]) {
548 bitmap->levels[lev][i >> BITS_PER_LEVEL] |=
549 1UL << (i & (BITS_PER_LONG - 1));
554 bitmap->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
557 void hbitmap_free(HBitmap *hb)
559 unsigned i;
560 assert(!hb->meta);
561 for (i = HBITMAP_LEVELS; i-- > 0; ) {
562 g_free(hb->levels[i]);
564 g_free(hb);
567 HBitmap *hbitmap_alloc(uint64_t size, int granularity)
569 HBitmap *hb = g_new0(struct HBitmap, 1);
570 unsigned i;
572 assert(granularity >= 0 && granularity < 64);
573 size = (size + (1ULL << granularity) - 1) >> granularity;
574 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
576 hb->size = size;
577 hb->granularity = granularity;
578 for (i = HBITMAP_LEVELS; i-- > 0; ) {
579 size = MAX((size + BITS_PER_LONG - 1) >> BITS_PER_LEVEL, 1);
580 hb->sizes[i] = size;
581 hb->levels[i] = g_new0(unsigned long, size);
584 /* We necessarily have free bits in level 0 due to the definition
585 * of HBITMAP_LEVELS, so use one for a sentinel. This speeds up
586 * hbitmap_iter_skip_words.
588 assert(size == 1);
589 hb->levels[0][0] |= 1UL << (BITS_PER_LONG - 1);
590 return hb;
593 void hbitmap_truncate(HBitmap *hb, uint64_t size)
595 bool shrink;
596 unsigned i;
597 uint64_t num_elements = size;
598 uint64_t old;
600 /* Size comes in as logical elements, adjust for granularity. */
601 size = (size + (1ULL << hb->granularity) - 1) >> hb->granularity;
602 assert(size <= ((uint64_t)1 << HBITMAP_LOG_MAX_SIZE));
603 shrink = size < hb->size;
605 /* bit sizes are identical; nothing to do. */
606 if (size == hb->size) {
607 return;
610 /* If we're losing bits, let's clear those bits before we invalidate all of
611 * our invariants. This helps keep the bitcount consistent, and will prevent
612 * us from carrying around garbage bits beyond the end of the map.
614 if (shrink) {
615 /* Don't clear partial granularity groups;
616 * start at the first full one. */
617 uint64_t start = ROUND_UP(num_elements, UINT64_C(1) << hb->granularity);
618 uint64_t fix_count = (hb->size << hb->granularity) - start;
620 assert(fix_count);
621 hbitmap_reset(hb, start, fix_count);
624 hb->size = size;
625 for (i = HBITMAP_LEVELS; i-- > 0; ) {
626 size = MAX(BITS_TO_LONGS(size), 1);
627 if (hb->sizes[i] == size) {
628 break;
630 old = hb->sizes[i];
631 hb->sizes[i] = size;
632 hb->levels[i] = g_realloc(hb->levels[i], size * sizeof(unsigned long));
633 if (!shrink) {
634 memset(&hb->levels[i][old], 0x00,
635 (size - old) * sizeof(*hb->levels[i]));
638 if (hb->meta) {
639 hbitmap_truncate(hb->meta, hb->size << hb->granularity);
645 * Given HBitmaps A and B, let A := A (BITOR) B.
646 * Bitmap B will not be modified.
648 * @return true if the merge was successful,
649 * false if it was not attempted.
651 bool hbitmap_merge(HBitmap *a, const HBitmap *b)
653 int i;
654 uint64_t j;
656 if ((a->size != b->size) || (a->granularity != b->granularity)) {
657 return false;
660 if (hbitmap_count(b) == 0) {
661 return true;
664 /* This merge is O(size), as BITS_PER_LONG and HBITMAP_LEVELS are constant.
665 * It may be possible to improve running times for sparsely populated maps
666 * by using hbitmap_iter_next, but this is suboptimal for dense maps.
668 for (i = HBITMAP_LEVELS - 1; i >= 0; i--) {
669 for (j = 0; j < a->sizes[i]; j++) {
670 a->levels[i][j] |= b->levels[i][j];
674 return true;
677 HBitmap *hbitmap_create_meta(HBitmap *hb, int chunk_size)
679 assert(!(chunk_size & (chunk_size - 1)));
680 assert(!hb->meta);
681 hb->meta = hbitmap_alloc(hb->size << hb->granularity,
682 hb->granularity + ctz32(chunk_size));
683 return hb->meta;
686 void hbitmap_free_meta(HBitmap *hb)
688 assert(hb->meta);
689 hbitmap_free(hb->meta);
690 hb->meta = NULL;