acpi: cpuhp: document CPHP_GET_CPU_ID_CMD command
[qemu/ar7.git] / exec.c
blobc930040f839c74d2ffbff46aeedc86e37e1319ac
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qapi/error.h"
24 #include "qemu/cutils.h"
25 #include "cpu.h"
26 #include "exec/exec-all.h"
27 #include "exec/target_page.h"
28 #include "tcg/tcg.h"
29 #include "hw/qdev-core.h"
30 #include "hw/qdev-properties.h"
31 #if !defined(CONFIG_USER_ONLY)
32 #include "hw/boards.h"
33 #include "hw/xen/xen.h"
34 #endif
35 #include "sysemu/kvm.h"
36 #include "sysemu/sysemu.h"
37 #include "sysemu/tcg.h"
38 #include "sysemu/qtest.h"
39 #include "qemu/timer.h"
40 #include "qemu/config-file.h"
41 #include "qemu/error-report.h"
42 #include "qemu/qemu-print.h"
43 #if defined(CONFIG_USER_ONLY)
44 #include "qemu.h"
45 #else /* !CONFIG_USER_ONLY */
46 #include "exec/memory.h"
47 #include "exec/ioport.h"
48 #include "sysemu/dma.h"
49 #include "sysemu/hostmem.h"
50 #include "sysemu/hw_accel.h"
51 #include "exec/address-spaces.h"
52 #include "sysemu/xen-mapcache.h"
53 #include "trace-root.h"
55 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
56 #include <linux/falloc.h>
57 #endif
59 #endif
60 #include "qemu/rcu_queue.h"
61 #include "qemu/main-loop.h"
62 #include "translate-all.h"
63 #include "sysemu/replay.h"
65 #include "exec/memory-internal.h"
66 #include "exec/ram_addr.h"
67 #include "exec/log.h"
69 #include "qemu/pmem.h"
71 #include "migration/vmstate.h"
73 #include "qemu/range.h"
74 #ifndef _WIN32
75 #include "qemu/mmap-alloc.h"
76 #endif
78 #include "monitor/monitor.h"
80 //#define DEBUG_SUBPAGE
82 #if !defined(CONFIG_USER_ONLY)
83 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
84 * are protected by the ramlist lock.
86 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
88 static MemoryRegion *system_memory;
89 static MemoryRegion *system_io;
91 AddressSpace address_space_io;
92 AddressSpace address_space_memory;
94 static MemoryRegion io_mem_unassigned;
95 #endif
97 CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
99 /* current CPU in the current thread. It is only valid inside
100 cpu_exec() */
101 __thread CPUState *current_cpu;
103 uintptr_t qemu_host_page_size;
104 intptr_t qemu_host_page_mask;
106 #if !defined(CONFIG_USER_ONLY)
107 /* 0 = Do not count executed instructions.
108 1 = Precise instruction counting.
109 2 = Adaptive rate instruction counting. */
110 int use_icount;
112 typedef struct PhysPageEntry PhysPageEntry;
114 struct PhysPageEntry {
115 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
116 uint32_t skip : 6;
117 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
118 uint32_t ptr : 26;
121 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
123 /* Size of the L2 (and L3, etc) page tables. */
124 #define ADDR_SPACE_BITS 64
126 #define P_L2_BITS 9
127 #define P_L2_SIZE (1 << P_L2_BITS)
129 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
131 typedef PhysPageEntry Node[P_L2_SIZE];
133 typedef struct PhysPageMap {
134 struct rcu_head rcu;
136 unsigned sections_nb;
137 unsigned sections_nb_alloc;
138 unsigned nodes_nb;
139 unsigned nodes_nb_alloc;
140 Node *nodes;
141 MemoryRegionSection *sections;
142 } PhysPageMap;
144 struct AddressSpaceDispatch {
145 MemoryRegionSection *mru_section;
146 /* This is a multi-level map on the physical address space.
147 * The bottom level has pointers to MemoryRegionSections.
149 PhysPageEntry phys_map;
150 PhysPageMap map;
153 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
154 typedef struct subpage_t {
155 MemoryRegion iomem;
156 FlatView *fv;
157 hwaddr base;
158 uint16_t sub_section[];
159 } subpage_t;
161 #define PHYS_SECTION_UNASSIGNED 0
163 static void io_mem_init(void);
164 static void memory_map_init(void);
165 static void tcg_log_global_after_sync(MemoryListener *listener);
166 static void tcg_commit(MemoryListener *listener);
169 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
170 * @cpu: the CPU whose AddressSpace this is
171 * @as: the AddressSpace itself
172 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
173 * @tcg_as_listener: listener for tracking changes to the AddressSpace
175 struct CPUAddressSpace {
176 CPUState *cpu;
177 AddressSpace *as;
178 struct AddressSpaceDispatch *memory_dispatch;
179 MemoryListener tcg_as_listener;
182 struct DirtyBitmapSnapshot {
183 ram_addr_t start;
184 ram_addr_t end;
185 unsigned long dirty[];
188 #endif
190 #if !defined(CONFIG_USER_ONLY)
192 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
194 static unsigned alloc_hint = 16;
195 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
196 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
197 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
198 alloc_hint = map->nodes_nb_alloc;
202 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
204 unsigned i;
205 uint32_t ret;
206 PhysPageEntry e;
207 PhysPageEntry *p;
209 ret = map->nodes_nb++;
210 p = map->nodes[ret];
211 assert(ret != PHYS_MAP_NODE_NIL);
212 assert(ret != map->nodes_nb_alloc);
214 e.skip = leaf ? 0 : 1;
215 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
216 for (i = 0; i < P_L2_SIZE; ++i) {
217 memcpy(&p[i], &e, sizeof(e));
219 return ret;
222 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
223 hwaddr *index, uint64_t *nb, uint16_t leaf,
224 int level)
226 PhysPageEntry *p;
227 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
229 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
230 lp->ptr = phys_map_node_alloc(map, level == 0);
232 p = map->nodes[lp->ptr];
233 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
235 while (*nb && lp < &p[P_L2_SIZE]) {
236 if ((*index & (step - 1)) == 0 && *nb >= step) {
237 lp->skip = 0;
238 lp->ptr = leaf;
239 *index += step;
240 *nb -= step;
241 } else {
242 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
244 ++lp;
248 static void phys_page_set(AddressSpaceDispatch *d,
249 hwaddr index, uint64_t nb,
250 uint16_t leaf)
252 /* Wildly overreserve - it doesn't matter much. */
253 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
255 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
258 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
259 * and update our entry so we can skip it and go directly to the destination.
261 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
263 unsigned valid_ptr = P_L2_SIZE;
264 int valid = 0;
265 PhysPageEntry *p;
266 int i;
268 if (lp->ptr == PHYS_MAP_NODE_NIL) {
269 return;
272 p = nodes[lp->ptr];
273 for (i = 0; i < P_L2_SIZE; i++) {
274 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
275 continue;
278 valid_ptr = i;
279 valid++;
280 if (p[i].skip) {
281 phys_page_compact(&p[i], nodes);
285 /* We can only compress if there's only one child. */
286 if (valid != 1) {
287 return;
290 assert(valid_ptr < P_L2_SIZE);
292 /* Don't compress if it won't fit in the # of bits we have. */
293 if (P_L2_LEVELS >= (1 << 6) &&
294 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
295 return;
298 lp->ptr = p[valid_ptr].ptr;
299 if (!p[valid_ptr].skip) {
300 /* If our only child is a leaf, make this a leaf. */
301 /* By design, we should have made this node a leaf to begin with so we
302 * should never reach here.
303 * But since it's so simple to handle this, let's do it just in case we
304 * change this rule.
306 lp->skip = 0;
307 } else {
308 lp->skip += p[valid_ptr].skip;
312 void address_space_dispatch_compact(AddressSpaceDispatch *d)
314 if (d->phys_map.skip) {
315 phys_page_compact(&d->phys_map, d->map.nodes);
319 static inline bool section_covers_addr(const MemoryRegionSection *section,
320 hwaddr addr)
322 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
323 * the section must cover the entire address space.
325 return int128_gethi(section->size) ||
326 range_covers_byte(section->offset_within_address_space,
327 int128_getlo(section->size), addr);
330 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
332 PhysPageEntry lp = d->phys_map, *p;
333 Node *nodes = d->map.nodes;
334 MemoryRegionSection *sections = d->map.sections;
335 hwaddr index = addr >> TARGET_PAGE_BITS;
336 int i;
338 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
339 if (lp.ptr == PHYS_MAP_NODE_NIL) {
340 return &sections[PHYS_SECTION_UNASSIGNED];
342 p = nodes[lp.ptr];
343 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
346 if (section_covers_addr(&sections[lp.ptr], addr)) {
347 return &sections[lp.ptr];
348 } else {
349 return &sections[PHYS_SECTION_UNASSIGNED];
353 /* Called from RCU critical section */
354 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
355 hwaddr addr,
356 bool resolve_subpage)
358 MemoryRegionSection *section = atomic_read(&d->mru_section);
359 subpage_t *subpage;
361 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
362 !section_covers_addr(section, addr)) {
363 section = phys_page_find(d, addr);
364 atomic_set(&d->mru_section, section);
366 if (resolve_subpage && section->mr->subpage) {
367 subpage = container_of(section->mr, subpage_t, iomem);
368 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
370 return section;
373 /* Called from RCU critical section */
374 static MemoryRegionSection *
375 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
376 hwaddr *plen, bool resolve_subpage)
378 MemoryRegionSection *section;
379 MemoryRegion *mr;
380 Int128 diff;
382 section = address_space_lookup_region(d, addr, resolve_subpage);
383 /* Compute offset within MemoryRegionSection */
384 addr -= section->offset_within_address_space;
386 /* Compute offset within MemoryRegion */
387 *xlat = addr + section->offset_within_region;
389 mr = section->mr;
391 /* MMIO registers can be expected to perform full-width accesses based only
392 * on their address, without considering adjacent registers that could
393 * decode to completely different MemoryRegions. When such registers
394 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
395 * regions overlap wildly. For this reason we cannot clamp the accesses
396 * here.
398 * If the length is small (as is the case for address_space_ldl/stl),
399 * everything works fine. If the incoming length is large, however,
400 * the caller really has to do the clamping through memory_access_size.
402 if (memory_region_is_ram(mr)) {
403 diff = int128_sub(section->size, int128_make64(addr));
404 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
406 return section;
410 * address_space_translate_iommu - translate an address through an IOMMU
411 * memory region and then through the target address space.
413 * @iommu_mr: the IOMMU memory region that we start the translation from
414 * @addr: the address to be translated through the MMU
415 * @xlat: the translated address offset within the destination memory region.
416 * It cannot be %NULL.
417 * @plen_out: valid read/write length of the translated address. It
418 * cannot be %NULL.
419 * @page_mask_out: page mask for the translated address. This
420 * should only be meaningful for IOMMU translated
421 * addresses, since there may be huge pages that this bit
422 * would tell. It can be %NULL if we don't care about it.
423 * @is_write: whether the translation operation is for write
424 * @is_mmio: whether this can be MMIO, set true if it can
425 * @target_as: the address space targeted by the IOMMU
426 * @attrs: transaction attributes
428 * This function is called from RCU critical section. It is the common
429 * part of flatview_do_translate and address_space_translate_cached.
431 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
432 hwaddr *xlat,
433 hwaddr *plen_out,
434 hwaddr *page_mask_out,
435 bool is_write,
436 bool is_mmio,
437 AddressSpace **target_as,
438 MemTxAttrs attrs)
440 MemoryRegionSection *section;
441 hwaddr page_mask = (hwaddr)-1;
443 do {
444 hwaddr addr = *xlat;
445 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
446 int iommu_idx = 0;
447 IOMMUTLBEntry iotlb;
449 if (imrc->attrs_to_index) {
450 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
453 iotlb = imrc->translate(iommu_mr, addr, is_write ?
454 IOMMU_WO : IOMMU_RO, iommu_idx);
456 if (!(iotlb.perm & (1 << is_write))) {
457 goto unassigned;
460 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
461 | (addr & iotlb.addr_mask));
462 page_mask &= iotlb.addr_mask;
463 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
464 *target_as = iotlb.target_as;
466 section = address_space_translate_internal(
467 address_space_to_dispatch(iotlb.target_as), addr, xlat,
468 plen_out, is_mmio);
470 iommu_mr = memory_region_get_iommu(section->mr);
471 } while (unlikely(iommu_mr));
473 if (page_mask_out) {
474 *page_mask_out = page_mask;
476 return *section;
478 unassigned:
479 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
483 * flatview_do_translate - translate an address in FlatView
485 * @fv: the flat view that we want to translate on
486 * @addr: the address to be translated in above address space
487 * @xlat: the translated address offset within memory region. It
488 * cannot be @NULL.
489 * @plen_out: valid read/write length of the translated address. It
490 * can be @NULL when we don't care about it.
491 * @page_mask_out: page mask for the translated address. This
492 * should only be meaningful for IOMMU translated
493 * addresses, since there may be huge pages that this bit
494 * would tell. It can be @NULL if we don't care about it.
495 * @is_write: whether the translation operation is for write
496 * @is_mmio: whether this can be MMIO, set true if it can
497 * @target_as: the address space targeted by the IOMMU
498 * @attrs: memory transaction attributes
500 * This function is called from RCU critical section
502 static MemoryRegionSection flatview_do_translate(FlatView *fv,
503 hwaddr addr,
504 hwaddr *xlat,
505 hwaddr *plen_out,
506 hwaddr *page_mask_out,
507 bool is_write,
508 bool is_mmio,
509 AddressSpace **target_as,
510 MemTxAttrs attrs)
512 MemoryRegionSection *section;
513 IOMMUMemoryRegion *iommu_mr;
514 hwaddr plen = (hwaddr)(-1);
516 if (!plen_out) {
517 plen_out = &plen;
520 section = address_space_translate_internal(
521 flatview_to_dispatch(fv), addr, xlat,
522 plen_out, is_mmio);
524 iommu_mr = memory_region_get_iommu(section->mr);
525 if (unlikely(iommu_mr)) {
526 return address_space_translate_iommu(iommu_mr, xlat,
527 plen_out, page_mask_out,
528 is_write, is_mmio,
529 target_as, attrs);
531 if (page_mask_out) {
532 /* Not behind an IOMMU, use default page size. */
533 *page_mask_out = ~TARGET_PAGE_MASK;
536 return *section;
539 /* Called from RCU critical section */
540 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
541 bool is_write, MemTxAttrs attrs)
543 MemoryRegionSection section;
544 hwaddr xlat, page_mask;
547 * This can never be MMIO, and we don't really care about plen,
548 * but page mask.
550 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
551 NULL, &page_mask, is_write, false, &as,
552 attrs);
554 /* Illegal translation */
555 if (section.mr == &io_mem_unassigned) {
556 goto iotlb_fail;
559 /* Convert memory region offset into address space offset */
560 xlat += section.offset_within_address_space -
561 section.offset_within_region;
563 return (IOMMUTLBEntry) {
564 .target_as = as,
565 .iova = addr & ~page_mask,
566 .translated_addr = xlat & ~page_mask,
567 .addr_mask = page_mask,
568 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
569 .perm = IOMMU_RW,
572 iotlb_fail:
573 return (IOMMUTLBEntry) {0};
576 /* Called from RCU critical section */
577 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
578 hwaddr *plen, bool is_write,
579 MemTxAttrs attrs)
581 MemoryRegion *mr;
582 MemoryRegionSection section;
583 AddressSpace *as = NULL;
585 /* This can be MMIO, so setup MMIO bit. */
586 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
587 is_write, true, &as, attrs);
588 mr = section.mr;
590 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
591 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
592 *plen = MIN(page, *plen);
595 return mr;
598 typedef struct TCGIOMMUNotifier {
599 IOMMUNotifier n;
600 MemoryRegion *mr;
601 CPUState *cpu;
602 int iommu_idx;
603 bool active;
604 } TCGIOMMUNotifier;
606 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
608 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
610 if (!notifier->active) {
611 return;
613 tlb_flush(notifier->cpu);
614 notifier->active = false;
615 /* We leave the notifier struct on the list to avoid reallocating it later.
616 * Generally the number of IOMMUs a CPU deals with will be small.
617 * In any case we can't unregister the iommu notifier from a notify
618 * callback.
622 static void tcg_register_iommu_notifier(CPUState *cpu,
623 IOMMUMemoryRegion *iommu_mr,
624 int iommu_idx)
626 /* Make sure this CPU has an IOMMU notifier registered for this
627 * IOMMU/IOMMU index combination, so that we can flush its TLB
628 * when the IOMMU tells us the mappings we've cached have changed.
630 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
631 TCGIOMMUNotifier *notifier;
632 Error *err = NULL;
633 int i, ret;
635 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
636 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
637 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
638 break;
641 if (i == cpu->iommu_notifiers->len) {
642 /* Not found, add a new entry at the end of the array */
643 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
644 notifier = g_new0(TCGIOMMUNotifier, 1);
645 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
647 notifier->mr = mr;
648 notifier->iommu_idx = iommu_idx;
649 notifier->cpu = cpu;
650 /* Rather than trying to register interest in the specific part
651 * of the iommu's address space that we've accessed and then
652 * expand it later as subsequent accesses touch more of it, we
653 * just register interest in the whole thing, on the assumption
654 * that iommu reconfiguration will be rare.
656 iommu_notifier_init(&notifier->n,
657 tcg_iommu_unmap_notify,
658 IOMMU_NOTIFIER_UNMAP,
660 HWADDR_MAX,
661 iommu_idx);
662 ret = memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
663 &err);
664 if (ret) {
665 error_report_err(err);
666 exit(1);
670 if (!notifier->active) {
671 notifier->active = true;
675 static void tcg_iommu_free_notifier_list(CPUState *cpu)
677 /* Destroy the CPU's notifier list */
678 int i;
679 TCGIOMMUNotifier *notifier;
681 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
682 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
683 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
684 g_free(notifier);
686 g_array_free(cpu->iommu_notifiers, true);
689 /* Called from RCU critical section */
690 MemoryRegionSection *
691 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
692 hwaddr *xlat, hwaddr *plen,
693 MemTxAttrs attrs, int *prot)
695 MemoryRegionSection *section;
696 IOMMUMemoryRegion *iommu_mr;
697 IOMMUMemoryRegionClass *imrc;
698 IOMMUTLBEntry iotlb;
699 int iommu_idx;
700 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
702 for (;;) {
703 section = address_space_translate_internal(d, addr, &addr, plen, false);
705 iommu_mr = memory_region_get_iommu(section->mr);
706 if (!iommu_mr) {
707 break;
710 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
712 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
713 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
714 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
715 * doesn't short-cut its translation table walk.
717 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
718 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
719 | (addr & iotlb.addr_mask));
720 /* Update the caller's prot bits to remove permissions the IOMMU
721 * is giving us a failure response for. If we get down to no
722 * permissions left at all we can give up now.
724 if (!(iotlb.perm & IOMMU_RO)) {
725 *prot &= ~(PAGE_READ | PAGE_EXEC);
727 if (!(iotlb.perm & IOMMU_WO)) {
728 *prot &= ~PAGE_WRITE;
731 if (!*prot) {
732 goto translate_fail;
735 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
738 assert(!memory_region_is_iommu(section->mr));
739 *xlat = addr;
740 return section;
742 translate_fail:
743 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
745 #endif
747 #if !defined(CONFIG_USER_ONLY)
749 static int cpu_common_post_load(void *opaque, int version_id)
751 CPUState *cpu = opaque;
753 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
754 version_id is increased. */
755 cpu->interrupt_request &= ~0x01;
756 tlb_flush(cpu);
758 /* loadvm has just updated the content of RAM, bypassing the
759 * usual mechanisms that ensure we flush TBs for writes to
760 * memory we've translated code from. So we must flush all TBs,
761 * which will now be stale.
763 tb_flush(cpu);
765 return 0;
768 static int cpu_common_pre_load(void *opaque)
770 CPUState *cpu = opaque;
772 cpu->exception_index = -1;
774 return 0;
777 static bool cpu_common_exception_index_needed(void *opaque)
779 CPUState *cpu = opaque;
781 return tcg_enabled() && cpu->exception_index != -1;
784 static const VMStateDescription vmstate_cpu_common_exception_index = {
785 .name = "cpu_common/exception_index",
786 .version_id = 1,
787 .minimum_version_id = 1,
788 .needed = cpu_common_exception_index_needed,
789 .fields = (VMStateField[]) {
790 VMSTATE_INT32(exception_index, CPUState),
791 VMSTATE_END_OF_LIST()
795 static bool cpu_common_crash_occurred_needed(void *opaque)
797 CPUState *cpu = opaque;
799 return cpu->crash_occurred;
802 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
803 .name = "cpu_common/crash_occurred",
804 .version_id = 1,
805 .minimum_version_id = 1,
806 .needed = cpu_common_crash_occurred_needed,
807 .fields = (VMStateField[]) {
808 VMSTATE_BOOL(crash_occurred, CPUState),
809 VMSTATE_END_OF_LIST()
813 const VMStateDescription vmstate_cpu_common = {
814 .name = "cpu_common",
815 .version_id = 1,
816 .minimum_version_id = 1,
817 .pre_load = cpu_common_pre_load,
818 .post_load = cpu_common_post_load,
819 .fields = (VMStateField[]) {
820 VMSTATE_UINT32(halted, CPUState),
821 VMSTATE_UINT32(interrupt_request, CPUState),
822 VMSTATE_END_OF_LIST()
824 .subsections = (const VMStateDescription*[]) {
825 &vmstate_cpu_common_exception_index,
826 &vmstate_cpu_common_crash_occurred,
827 NULL
831 #endif
833 CPUState *qemu_get_cpu(int index)
835 CPUState *cpu;
837 CPU_FOREACH(cpu) {
838 if (cpu->cpu_index == index) {
839 return cpu;
843 return NULL;
846 #if !defined(CONFIG_USER_ONLY)
847 void cpu_address_space_init(CPUState *cpu, int asidx,
848 const char *prefix, MemoryRegion *mr)
850 CPUAddressSpace *newas;
851 AddressSpace *as = g_new0(AddressSpace, 1);
852 char *as_name;
854 assert(mr);
855 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
856 address_space_init(as, mr, as_name);
857 g_free(as_name);
859 /* Target code should have set num_ases before calling us */
860 assert(asidx < cpu->num_ases);
862 if (asidx == 0) {
863 /* address space 0 gets the convenience alias */
864 cpu->as = as;
867 /* KVM cannot currently support multiple address spaces. */
868 assert(asidx == 0 || !kvm_enabled());
870 if (!cpu->cpu_ases) {
871 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
874 newas = &cpu->cpu_ases[asidx];
875 newas->cpu = cpu;
876 newas->as = as;
877 if (tcg_enabled()) {
878 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
879 newas->tcg_as_listener.commit = tcg_commit;
880 memory_listener_register(&newas->tcg_as_listener, as);
884 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
886 /* Return the AddressSpace corresponding to the specified index */
887 return cpu->cpu_ases[asidx].as;
889 #endif
891 void cpu_exec_unrealizefn(CPUState *cpu)
893 CPUClass *cc = CPU_GET_CLASS(cpu);
895 cpu_list_remove(cpu);
897 if (cc->vmsd != NULL) {
898 vmstate_unregister(NULL, cc->vmsd, cpu);
900 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
901 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
903 #ifndef CONFIG_USER_ONLY
904 tcg_iommu_free_notifier_list(cpu);
905 #endif
908 Property cpu_common_props[] = {
909 #ifndef CONFIG_USER_ONLY
910 /* Create a memory property for softmmu CPU object,
911 * so users can wire up its memory. (This can't go in hw/core/cpu.c
912 * because that file is compiled only once for both user-mode
913 * and system builds.) The default if no link is set up is to use
914 * the system address space.
916 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
917 MemoryRegion *),
918 #endif
919 DEFINE_PROP_END_OF_LIST(),
922 void cpu_exec_initfn(CPUState *cpu)
924 cpu->as = NULL;
925 cpu->num_ases = 0;
927 #ifndef CONFIG_USER_ONLY
928 cpu->thread_id = qemu_get_thread_id();
929 cpu->memory = system_memory;
930 object_ref(OBJECT(cpu->memory));
931 #endif
934 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
936 CPUClass *cc = CPU_GET_CLASS(cpu);
937 static bool tcg_target_initialized;
939 cpu_list_add(cpu);
941 if (tcg_enabled() && !tcg_target_initialized) {
942 tcg_target_initialized = true;
943 cc->tcg_initialize();
945 tlb_init(cpu);
947 qemu_plugin_vcpu_init_hook(cpu);
949 #ifndef CONFIG_USER_ONLY
950 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
951 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
953 if (cc->vmsd != NULL) {
954 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
957 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
958 #endif
961 const char *parse_cpu_option(const char *cpu_option)
963 ObjectClass *oc;
964 CPUClass *cc;
965 gchar **model_pieces;
966 const char *cpu_type;
968 model_pieces = g_strsplit(cpu_option, ",", 2);
969 if (!model_pieces[0]) {
970 error_report("-cpu option cannot be empty");
971 exit(1);
974 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
975 if (oc == NULL) {
976 error_report("unable to find CPU model '%s'", model_pieces[0]);
977 g_strfreev(model_pieces);
978 exit(EXIT_FAILURE);
981 cpu_type = object_class_get_name(oc);
982 cc = CPU_CLASS(oc);
983 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
984 g_strfreev(model_pieces);
985 return cpu_type;
988 #if defined(CONFIG_USER_ONLY)
989 void tb_invalidate_phys_addr(target_ulong addr)
991 mmap_lock();
992 tb_invalidate_phys_page_range(addr, addr + 1);
993 mmap_unlock();
996 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
998 tb_invalidate_phys_addr(pc);
1000 #else
1001 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1003 ram_addr_t ram_addr;
1004 MemoryRegion *mr;
1005 hwaddr l = 1;
1007 if (!tcg_enabled()) {
1008 return;
1011 RCU_READ_LOCK_GUARD();
1012 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1013 if (!(memory_region_is_ram(mr)
1014 || memory_region_is_romd(mr))) {
1015 return;
1017 ram_addr = memory_region_get_ram_addr(mr) + addr;
1018 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1);
1021 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1024 * There may not be a virtual to physical translation for the pc
1025 * right now, but there may exist cached TB for this pc.
1026 * Flush the whole TB cache to force re-translation of such TBs.
1027 * This is heavyweight, but we're debugging anyway.
1029 tb_flush(cpu);
1031 #endif
1033 #ifndef CONFIG_USER_ONLY
1034 /* Add a watchpoint. */
1035 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1036 int flags, CPUWatchpoint **watchpoint)
1038 CPUWatchpoint *wp;
1040 /* forbid ranges which are empty or run off the end of the address space */
1041 if (len == 0 || (addr + len - 1) < addr) {
1042 error_report("tried to set invalid watchpoint at %"
1043 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1044 return -EINVAL;
1046 wp = g_malloc(sizeof(*wp));
1048 wp->vaddr = addr;
1049 wp->len = len;
1050 wp->flags = flags;
1052 /* keep all GDB-injected watchpoints in front */
1053 if (flags & BP_GDB) {
1054 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1055 } else {
1056 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1059 tlb_flush_page(cpu, addr);
1061 if (watchpoint)
1062 *watchpoint = wp;
1063 return 0;
1066 /* Remove a specific watchpoint. */
1067 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1068 int flags)
1070 CPUWatchpoint *wp;
1072 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1073 if (addr == wp->vaddr && len == wp->len
1074 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1075 cpu_watchpoint_remove_by_ref(cpu, wp);
1076 return 0;
1079 return -ENOENT;
1082 /* Remove a specific watchpoint by reference. */
1083 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1085 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1087 tlb_flush_page(cpu, watchpoint->vaddr);
1089 g_free(watchpoint);
1092 /* Remove all matching watchpoints. */
1093 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1095 CPUWatchpoint *wp, *next;
1097 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1098 if (wp->flags & mask) {
1099 cpu_watchpoint_remove_by_ref(cpu, wp);
1104 /* Return true if this watchpoint address matches the specified
1105 * access (ie the address range covered by the watchpoint overlaps
1106 * partially or completely with the address range covered by the
1107 * access).
1109 static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
1110 vaddr addr, vaddr len)
1112 /* We know the lengths are non-zero, but a little caution is
1113 * required to avoid errors in the case where the range ends
1114 * exactly at the top of the address space and so addr + len
1115 * wraps round to zero.
1117 vaddr wpend = wp->vaddr + wp->len - 1;
1118 vaddr addrend = addr + len - 1;
1120 return !(addr > wpend || wp->vaddr > addrend);
1123 /* Return flags for watchpoints that match addr + prot. */
1124 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
1126 CPUWatchpoint *wp;
1127 int ret = 0;
1129 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1130 if (watchpoint_address_matches(wp, addr, TARGET_PAGE_SIZE)) {
1131 ret |= wp->flags;
1134 return ret;
1136 #endif /* !CONFIG_USER_ONLY */
1138 /* Add a breakpoint. */
1139 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1140 CPUBreakpoint **breakpoint)
1142 CPUBreakpoint *bp;
1144 bp = g_malloc(sizeof(*bp));
1146 bp->pc = pc;
1147 bp->flags = flags;
1149 /* keep all GDB-injected breakpoints in front */
1150 if (flags & BP_GDB) {
1151 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1152 } else {
1153 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1156 breakpoint_invalidate(cpu, pc);
1158 if (breakpoint) {
1159 *breakpoint = bp;
1161 return 0;
1164 /* Remove a specific breakpoint. */
1165 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1167 CPUBreakpoint *bp;
1169 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1170 if (bp->pc == pc && bp->flags == flags) {
1171 cpu_breakpoint_remove_by_ref(cpu, bp);
1172 return 0;
1175 return -ENOENT;
1178 /* Remove a specific breakpoint by reference. */
1179 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1181 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1183 breakpoint_invalidate(cpu, breakpoint->pc);
1185 g_free(breakpoint);
1188 /* Remove all matching breakpoints. */
1189 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1191 CPUBreakpoint *bp, *next;
1193 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1194 if (bp->flags & mask) {
1195 cpu_breakpoint_remove_by_ref(cpu, bp);
1200 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1201 CPU loop after each instruction */
1202 void cpu_single_step(CPUState *cpu, int enabled)
1204 if (cpu->singlestep_enabled != enabled) {
1205 cpu->singlestep_enabled = enabled;
1206 if (kvm_enabled()) {
1207 kvm_update_guest_debug(cpu, 0);
1208 } else {
1209 /* must flush all the translated code to avoid inconsistencies */
1210 /* XXX: only flush what is necessary */
1211 tb_flush(cpu);
1216 void cpu_abort(CPUState *cpu, const char *fmt, ...)
1218 va_list ap;
1219 va_list ap2;
1221 va_start(ap, fmt);
1222 va_copy(ap2, ap);
1223 fprintf(stderr, "qemu: fatal: ");
1224 vfprintf(stderr, fmt, ap);
1225 fprintf(stderr, "\n");
1226 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1227 if (qemu_log_separate()) {
1228 FILE *logfile = qemu_log_lock();
1229 qemu_log("qemu: fatal: ");
1230 qemu_log_vprintf(fmt, ap2);
1231 qemu_log("\n");
1232 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1233 qemu_log_flush();
1234 qemu_log_unlock(logfile);
1235 qemu_log_close();
1237 va_end(ap2);
1238 va_end(ap);
1239 replay_finish();
1240 #if defined(CONFIG_USER_ONLY)
1242 struct sigaction act;
1243 sigfillset(&act.sa_mask);
1244 act.sa_handler = SIG_DFL;
1245 act.sa_flags = 0;
1246 sigaction(SIGABRT, &act, NULL);
1248 #endif
1249 abort();
1252 #if !defined(CONFIG_USER_ONLY)
1253 /* Called from RCU critical section */
1254 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1256 RAMBlock *block;
1258 block = atomic_rcu_read(&ram_list.mru_block);
1259 if (block && addr - block->offset < block->max_length) {
1260 return block;
1262 RAMBLOCK_FOREACH(block) {
1263 if (addr - block->offset < block->max_length) {
1264 goto found;
1268 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1269 abort();
1271 found:
1272 /* It is safe to write mru_block outside the iothread lock. This
1273 * is what happens:
1275 * mru_block = xxx
1276 * rcu_read_unlock()
1277 * xxx removed from list
1278 * rcu_read_lock()
1279 * read mru_block
1280 * mru_block = NULL;
1281 * call_rcu(reclaim_ramblock, xxx);
1282 * rcu_read_unlock()
1284 * atomic_rcu_set is not needed here. The block was already published
1285 * when it was placed into the list. Here we're just making an extra
1286 * copy of the pointer.
1288 ram_list.mru_block = block;
1289 return block;
1292 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1294 CPUState *cpu;
1295 ram_addr_t start1;
1296 RAMBlock *block;
1297 ram_addr_t end;
1299 assert(tcg_enabled());
1300 end = TARGET_PAGE_ALIGN(start + length);
1301 start &= TARGET_PAGE_MASK;
1303 RCU_READ_LOCK_GUARD();
1304 block = qemu_get_ram_block(start);
1305 assert(block == qemu_get_ram_block(end - 1));
1306 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1307 CPU_FOREACH(cpu) {
1308 tlb_reset_dirty(cpu, start1, length);
1312 /* Note: start and end must be within the same ram block. */
1313 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1314 ram_addr_t length,
1315 unsigned client)
1317 DirtyMemoryBlocks *blocks;
1318 unsigned long end, page;
1319 bool dirty = false;
1320 RAMBlock *ramblock;
1321 uint64_t mr_offset, mr_size;
1323 if (length == 0) {
1324 return false;
1327 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1328 page = start >> TARGET_PAGE_BITS;
1330 WITH_RCU_READ_LOCK_GUARD() {
1331 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1332 ramblock = qemu_get_ram_block(start);
1333 /* Range sanity check on the ramblock */
1334 assert(start >= ramblock->offset &&
1335 start + length <= ramblock->offset + ramblock->used_length);
1337 while (page < end) {
1338 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1339 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1340 unsigned long num = MIN(end - page,
1341 DIRTY_MEMORY_BLOCK_SIZE - offset);
1343 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1344 offset, num);
1345 page += num;
1348 mr_offset = (ram_addr_t)(page << TARGET_PAGE_BITS) - ramblock->offset;
1349 mr_size = (end - page) << TARGET_PAGE_BITS;
1350 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1353 if (dirty && tcg_enabled()) {
1354 tlb_reset_dirty_range_all(start, length);
1357 return dirty;
1360 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1361 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
1363 DirtyMemoryBlocks *blocks;
1364 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
1365 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1366 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1367 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1368 DirtyBitmapSnapshot *snap;
1369 unsigned long page, end, dest;
1371 snap = g_malloc0(sizeof(*snap) +
1372 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1373 snap->start = first;
1374 snap->end = last;
1376 page = first >> TARGET_PAGE_BITS;
1377 end = last >> TARGET_PAGE_BITS;
1378 dest = 0;
1380 WITH_RCU_READ_LOCK_GUARD() {
1381 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1383 while (page < end) {
1384 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1385 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1386 unsigned long num = MIN(end - page,
1387 DIRTY_MEMORY_BLOCK_SIZE - offset);
1389 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1390 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1391 offset >>= BITS_PER_LEVEL;
1393 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1394 blocks->blocks[idx] + offset,
1395 num);
1396 page += num;
1397 dest += num >> BITS_PER_LEVEL;
1401 if (tcg_enabled()) {
1402 tlb_reset_dirty_range_all(start, length);
1405 memory_region_clear_dirty_bitmap(mr, offset, length);
1407 return snap;
1410 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1411 ram_addr_t start,
1412 ram_addr_t length)
1414 unsigned long page, end;
1416 assert(start >= snap->start);
1417 assert(start + length <= snap->end);
1419 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1420 page = (start - snap->start) >> TARGET_PAGE_BITS;
1422 while (page < end) {
1423 if (test_bit(page, snap->dirty)) {
1424 return true;
1426 page++;
1428 return false;
1431 /* Called from RCU critical section */
1432 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1433 MemoryRegionSection *section)
1435 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1436 return section - d->map.sections;
1438 #endif /* defined(CONFIG_USER_ONLY) */
1440 #if !defined(CONFIG_USER_ONLY)
1442 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1443 uint16_t section);
1444 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1446 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1447 qemu_anon_ram_alloc;
1450 * Set a custom physical guest memory alloator.
1451 * Accelerators with unusual needs may need this. Hopefully, we can
1452 * get rid of it eventually.
1454 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1456 phys_mem_alloc = alloc;
1459 static uint16_t phys_section_add(PhysPageMap *map,
1460 MemoryRegionSection *section)
1462 /* The physical section number is ORed with a page-aligned
1463 * pointer to produce the iotlb entries. Thus it should
1464 * never overflow into the page-aligned value.
1466 assert(map->sections_nb < TARGET_PAGE_SIZE);
1468 if (map->sections_nb == map->sections_nb_alloc) {
1469 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1470 map->sections = g_renew(MemoryRegionSection, map->sections,
1471 map->sections_nb_alloc);
1473 map->sections[map->sections_nb] = *section;
1474 memory_region_ref(section->mr);
1475 return map->sections_nb++;
1478 static void phys_section_destroy(MemoryRegion *mr)
1480 bool have_sub_page = mr->subpage;
1482 memory_region_unref(mr);
1484 if (have_sub_page) {
1485 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1486 object_unref(OBJECT(&subpage->iomem));
1487 g_free(subpage);
1491 static void phys_sections_free(PhysPageMap *map)
1493 while (map->sections_nb > 0) {
1494 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1495 phys_section_destroy(section->mr);
1497 g_free(map->sections);
1498 g_free(map->nodes);
1501 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1503 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1504 subpage_t *subpage;
1505 hwaddr base = section->offset_within_address_space
1506 & TARGET_PAGE_MASK;
1507 MemoryRegionSection *existing = phys_page_find(d, base);
1508 MemoryRegionSection subsection = {
1509 .offset_within_address_space = base,
1510 .size = int128_make64(TARGET_PAGE_SIZE),
1512 hwaddr start, end;
1514 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1516 if (!(existing->mr->subpage)) {
1517 subpage = subpage_init(fv, base);
1518 subsection.fv = fv;
1519 subsection.mr = &subpage->iomem;
1520 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1521 phys_section_add(&d->map, &subsection));
1522 } else {
1523 subpage = container_of(existing->mr, subpage_t, iomem);
1525 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1526 end = start + int128_get64(section->size) - 1;
1527 subpage_register(subpage, start, end,
1528 phys_section_add(&d->map, section));
1532 static void register_multipage(FlatView *fv,
1533 MemoryRegionSection *section)
1535 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1536 hwaddr start_addr = section->offset_within_address_space;
1537 uint16_t section_index = phys_section_add(&d->map, section);
1538 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1539 TARGET_PAGE_BITS));
1541 assert(num_pages);
1542 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1546 * The range in *section* may look like this:
1548 * |s|PPPPPPP|s|
1550 * where s stands for subpage and P for page.
1552 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1554 MemoryRegionSection remain = *section;
1555 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1557 /* register first subpage */
1558 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1559 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1560 - remain.offset_within_address_space;
1562 MemoryRegionSection now = remain;
1563 now.size = int128_min(int128_make64(left), now.size);
1564 register_subpage(fv, &now);
1565 if (int128_eq(remain.size, now.size)) {
1566 return;
1568 remain.size = int128_sub(remain.size, now.size);
1569 remain.offset_within_address_space += int128_get64(now.size);
1570 remain.offset_within_region += int128_get64(now.size);
1573 /* register whole pages */
1574 if (int128_ge(remain.size, page_size)) {
1575 MemoryRegionSection now = remain;
1576 now.size = int128_and(now.size, int128_neg(page_size));
1577 register_multipage(fv, &now);
1578 if (int128_eq(remain.size, now.size)) {
1579 return;
1581 remain.size = int128_sub(remain.size, now.size);
1582 remain.offset_within_address_space += int128_get64(now.size);
1583 remain.offset_within_region += int128_get64(now.size);
1586 /* register last subpage */
1587 register_subpage(fv, &remain);
1590 void qemu_flush_coalesced_mmio_buffer(void)
1592 if (kvm_enabled())
1593 kvm_flush_coalesced_mmio_buffer();
1596 void qemu_mutex_lock_ramlist(void)
1598 qemu_mutex_lock(&ram_list.mutex);
1601 void qemu_mutex_unlock_ramlist(void)
1603 qemu_mutex_unlock(&ram_list.mutex);
1606 void ram_block_dump(Monitor *mon)
1608 RAMBlock *block;
1609 char *psize;
1611 RCU_READ_LOCK_GUARD();
1612 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1613 "Block Name", "PSize", "Offset", "Used", "Total");
1614 RAMBLOCK_FOREACH(block) {
1615 psize = size_to_str(block->page_size);
1616 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1617 " 0x%016" PRIx64 "\n", block->idstr, psize,
1618 (uint64_t)block->offset,
1619 (uint64_t)block->used_length,
1620 (uint64_t)block->max_length);
1621 g_free(psize);
1625 #ifdef __linux__
1627 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1628 * may or may not name the same files / on the same filesystem now as
1629 * when we actually open and map them. Iterate over the file
1630 * descriptors instead, and use qemu_fd_getpagesize().
1632 static int find_min_backend_pagesize(Object *obj, void *opaque)
1634 long *hpsize_min = opaque;
1636 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1637 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1638 long hpsize = host_memory_backend_pagesize(backend);
1640 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
1641 *hpsize_min = hpsize;
1645 return 0;
1648 static int find_max_backend_pagesize(Object *obj, void *opaque)
1650 long *hpsize_max = opaque;
1652 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1653 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1654 long hpsize = host_memory_backend_pagesize(backend);
1656 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1657 *hpsize_max = hpsize;
1661 return 0;
1665 * TODO: We assume right now that all mapped host memory backends are
1666 * used as RAM, however some might be used for different purposes.
1668 long qemu_minrampagesize(void)
1670 long hpsize = LONG_MAX;
1671 long mainrampagesize;
1672 Object *memdev_root;
1673 MachineState *ms = MACHINE(qdev_get_machine());
1675 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1677 /* it's possible we have memory-backend objects with
1678 * hugepage-backed RAM. these may get mapped into system
1679 * address space via -numa parameters or memory hotplug
1680 * hooks. we want to take these into account, but we
1681 * also want to make sure these supported hugepage
1682 * sizes are applicable across the entire range of memory
1683 * we may boot from, so we take the min across all
1684 * backends, and assume normal pages in cases where a
1685 * backend isn't backed by hugepages.
1687 memdev_root = object_resolve_path("/objects", NULL);
1688 if (memdev_root) {
1689 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
1691 if (hpsize == LONG_MAX) {
1692 /* No additional memory regions found ==> Report main RAM page size */
1693 return mainrampagesize;
1696 /* If NUMA is disabled or the NUMA nodes are not backed with a
1697 * memory-backend, then there is at least one node using "normal" RAM,
1698 * so if its page size is smaller we have got to report that size instead.
1700 if (hpsize > mainrampagesize &&
1701 (ms->numa_state == NULL ||
1702 ms->numa_state->num_nodes == 0 ||
1703 ms->numa_state->nodes[0].node_memdev == NULL)) {
1704 static bool warned;
1705 if (!warned) {
1706 error_report("Huge page support disabled (n/a for main memory).");
1707 warned = true;
1709 return mainrampagesize;
1712 return hpsize;
1715 long qemu_maxrampagesize(void)
1717 long pagesize = qemu_mempath_getpagesize(mem_path);
1718 Object *memdev_root = object_resolve_path("/objects", NULL);
1720 if (memdev_root) {
1721 object_child_foreach(memdev_root, find_max_backend_pagesize,
1722 &pagesize);
1724 return pagesize;
1726 #else
1727 long qemu_minrampagesize(void)
1729 return qemu_real_host_page_size;
1731 long qemu_maxrampagesize(void)
1733 return qemu_real_host_page_size;
1735 #endif
1737 #ifdef CONFIG_POSIX
1738 static int64_t get_file_size(int fd)
1740 int64_t size;
1741 #if defined(__linux__)
1742 struct stat st;
1744 if (fstat(fd, &st) < 0) {
1745 return -errno;
1748 /* Special handling for devdax character devices */
1749 if (S_ISCHR(st.st_mode)) {
1750 g_autofree char *subsystem_path = NULL;
1751 g_autofree char *subsystem = NULL;
1753 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1754 major(st.st_rdev), minor(st.st_rdev));
1755 subsystem = g_file_read_link(subsystem_path, NULL);
1757 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1758 g_autofree char *size_path = NULL;
1759 g_autofree char *size_str = NULL;
1761 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1762 major(st.st_rdev), minor(st.st_rdev));
1764 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1765 return g_ascii_strtoll(size_str, NULL, 0);
1769 #endif /* defined(__linux__) */
1771 /* st.st_size may be zero for special files yet lseek(2) works */
1772 size = lseek(fd, 0, SEEK_END);
1773 if (size < 0) {
1774 return -errno;
1776 return size;
1779 static int file_ram_open(const char *path,
1780 const char *region_name,
1781 bool *created,
1782 Error **errp)
1784 char *filename;
1785 char *sanitized_name;
1786 char *c;
1787 int fd = -1;
1789 *created = false;
1790 for (;;) {
1791 fd = open(path, O_RDWR);
1792 if (fd >= 0) {
1793 /* @path names an existing file, use it */
1794 break;
1796 if (errno == ENOENT) {
1797 /* @path names a file that doesn't exist, create it */
1798 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1799 if (fd >= 0) {
1800 *created = true;
1801 break;
1803 } else if (errno == EISDIR) {
1804 /* @path names a directory, create a file there */
1805 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1806 sanitized_name = g_strdup(region_name);
1807 for (c = sanitized_name; *c != '\0'; c++) {
1808 if (*c == '/') {
1809 *c = '_';
1813 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1814 sanitized_name);
1815 g_free(sanitized_name);
1817 fd = mkstemp(filename);
1818 if (fd >= 0) {
1819 unlink(filename);
1820 g_free(filename);
1821 break;
1823 g_free(filename);
1825 if (errno != EEXIST && errno != EINTR) {
1826 error_setg_errno(errp, errno,
1827 "can't open backing store %s for guest RAM",
1828 path);
1829 return -1;
1832 * Try again on EINTR and EEXIST. The latter happens when
1833 * something else creates the file between our two open().
1837 return fd;
1840 static void *file_ram_alloc(RAMBlock *block,
1841 ram_addr_t memory,
1842 int fd,
1843 bool truncate,
1844 Error **errp)
1846 Error *err = NULL;
1847 MachineState *ms = MACHINE(qdev_get_machine());
1848 void *area;
1850 block->page_size = qemu_fd_getpagesize(fd);
1851 if (block->mr->align % block->page_size) {
1852 error_setg(errp, "alignment 0x%" PRIx64
1853 " must be multiples of page size 0x%zx",
1854 block->mr->align, block->page_size);
1855 return NULL;
1856 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1857 error_setg(errp, "alignment 0x%" PRIx64
1858 " must be a power of two", block->mr->align);
1859 return NULL;
1861 block->mr->align = MAX(block->page_size, block->mr->align);
1862 #if defined(__s390x__)
1863 if (kvm_enabled()) {
1864 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1866 #endif
1868 if (memory < block->page_size) {
1869 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1870 "or larger than page size 0x%zx",
1871 memory, block->page_size);
1872 return NULL;
1875 memory = ROUND_UP(memory, block->page_size);
1878 * ftruncate is not supported by hugetlbfs in older
1879 * hosts, so don't bother bailing out on errors.
1880 * If anything goes wrong with it under other filesystems,
1881 * mmap will fail.
1883 * Do not truncate the non-empty backend file to avoid corrupting
1884 * the existing data in the file. Disabling shrinking is not
1885 * enough. For example, the current vNVDIMM implementation stores
1886 * the guest NVDIMM labels at the end of the backend file. If the
1887 * backend file is later extended, QEMU will not be able to find
1888 * those labels. Therefore, extending the non-empty backend file
1889 * is disabled as well.
1891 if (truncate && ftruncate(fd, memory)) {
1892 perror("ftruncate");
1895 area = qemu_ram_mmap(fd, memory, block->mr->align,
1896 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
1897 if (area == MAP_FAILED) {
1898 error_setg_errno(errp, errno,
1899 "unable to map backing store for guest RAM");
1900 return NULL;
1903 if (mem_prealloc) {
1904 os_mem_prealloc(fd, area, memory, ms->smp.cpus, &err);
1905 if (err) {
1906 error_propagate(errp, err);
1907 qemu_ram_munmap(fd, area, memory);
1908 return NULL;
1912 block->fd = fd;
1913 return area;
1915 #endif
1917 /* Allocate space within the ram_addr_t space that governs the
1918 * dirty bitmaps.
1919 * Called with the ramlist lock held.
1921 static ram_addr_t find_ram_offset(ram_addr_t size)
1923 RAMBlock *block, *next_block;
1924 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1926 assert(size != 0); /* it would hand out same offset multiple times */
1928 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1929 return 0;
1932 RAMBLOCK_FOREACH(block) {
1933 ram_addr_t candidate, next = RAM_ADDR_MAX;
1935 /* Align blocks to start on a 'long' in the bitmap
1936 * which makes the bitmap sync'ing take the fast path.
1938 candidate = block->offset + block->max_length;
1939 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1941 /* Search for the closest following block
1942 * and find the gap.
1944 RAMBLOCK_FOREACH(next_block) {
1945 if (next_block->offset >= candidate) {
1946 next = MIN(next, next_block->offset);
1950 /* If it fits remember our place and remember the size
1951 * of gap, but keep going so that we might find a smaller
1952 * gap to fill so avoiding fragmentation.
1954 if (next - candidate >= size && next - candidate < mingap) {
1955 offset = candidate;
1956 mingap = next - candidate;
1959 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1962 if (offset == RAM_ADDR_MAX) {
1963 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1964 (uint64_t)size);
1965 abort();
1968 trace_find_ram_offset(size, offset);
1970 return offset;
1973 static unsigned long last_ram_page(void)
1975 RAMBlock *block;
1976 ram_addr_t last = 0;
1978 RCU_READ_LOCK_GUARD();
1979 RAMBLOCK_FOREACH(block) {
1980 last = MAX(last, block->offset + block->max_length);
1982 return last >> TARGET_PAGE_BITS;
1985 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1987 int ret;
1989 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1990 if (!machine_dump_guest_core(current_machine)) {
1991 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1992 if (ret) {
1993 perror("qemu_madvise");
1994 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1995 "but dump_guest_core=off specified\n");
2000 const char *qemu_ram_get_idstr(RAMBlock *rb)
2002 return rb->idstr;
2005 void *qemu_ram_get_host_addr(RAMBlock *rb)
2007 return rb->host;
2010 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
2012 return rb->offset;
2015 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
2017 return rb->used_length;
2020 bool qemu_ram_is_shared(RAMBlock *rb)
2022 return rb->flags & RAM_SHARED;
2025 /* Note: Only set at the start of postcopy */
2026 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2028 return rb->flags & RAM_UF_ZEROPAGE;
2031 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2033 rb->flags |= RAM_UF_ZEROPAGE;
2036 bool qemu_ram_is_migratable(RAMBlock *rb)
2038 return rb->flags & RAM_MIGRATABLE;
2041 void qemu_ram_set_migratable(RAMBlock *rb)
2043 rb->flags |= RAM_MIGRATABLE;
2046 void qemu_ram_unset_migratable(RAMBlock *rb)
2048 rb->flags &= ~RAM_MIGRATABLE;
2051 /* Called with iothread lock held. */
2052 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2054 RAMBlock *block;
2056 assert(new_block);
2057 assert(!new_block->idstr[0]);
2059 if (dev) {
2060 char *id = qdev_get_dev_path(dev);
2061 if (id) {
2062 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2063 g_free(id);
2066 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2068 RCU_READ_LOCK_GUARD();
2069 RAMBLOCK_FOREACH(block) {
2070 if (block != new_block &&
2071 !strcmp(block->idstr, new_block->idstr)) {
2072 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2073 new_block->idstr);
2074 abort();
2079 /* Called with iothread lock held. */
2080 void qemu_ram_unset_idstr(RAMBlock *block)
2082 /* FIXME: arch_init.c assumes that this is not called throughout
2083 * migration. Ignore the problem since hot-unplug during migration
2084 * does not work anyway.
2086 if (block) {
2087 memset(block->idstr, 0, sizeof(block->idstr));
2091 size_t qemu_ram_pagesize(RAMBlock *rb)
2093 return rb->page_size;
2096 /* Returns the largest size of page in use */
2097 size_t qemu_ram_pagesize_largest(void)
2099 RAMBlock *block;
2100 size_t largest = 0;
2102 RAMBLOCK_FOREACH(block) {
2103 largest = MAX(largest, qemu_ram_pagesize(block));
2106 return largest;
2109 static int memory_try_enable_merging(void *addr, size_t len)
2111 if (!machine_mem_merge(current_machine)) {
2112 /* disabled by the user */
2113 return 0;
2116 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2119 /* Only legal before guest might have detected the memory size: e.g. on
2120 * incoming migration, or right after reset.
2122 * As memory core doesn't know how is memory accessed, it is up to
2123 * resize callback to update device state and/or add assertions to detect
2124 * misuse, if necessary.
2126 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2128 assert(block);
2130 newsize = HOST_PAGE_ALIGN(newsize);
2132 if (block->used_length == newsize) {
2133 return 0;
2136 if (!(block->flags & RAM_RESIZEABLE)) {
2137 error_setg_errno(errp, EINVAL,
2138 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2139 " in != 0x" RAM_ADDR_FMT, block->idstr,
2140 newsize, block->used_length);
2141 return -EINVAL;
2144 if (block->max_length < newsize) {
2145 error_setg_errno(errp, EINVAL,
2146 "Length too large: %s: 0x" RAM_ADDR_FMT
2147 " > 0x" RAM_ADDR_FMT, block->idstr,
2148 newsize, block->max_length);
2149 return -EINVAL;
2152 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2153 block->used_length = newsize;
2154 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2155 DIRTY_CLIENTS_ALL);
2156 memory_region_set_size(block->mr, newsize);
2157 if (block->resized) {
2158 block->resized(block->idstr, newsize, block->host);
2160 return 0;
2164 * Trigger sync on the given ram block for range [start, start + length]
2165 * with the backing store if one is available.
2166 * Otherwise no-op.
2167 * @Note: this is supposed to be a synchronous op.
2169 void qemu_ram_writeback(RAMBlock *block, ram_addr_t start, ram_addr_t length)
2171 void *addr = ramblock_ptr(block, start);
2173 /* The requested range should fit in within the block range */
2174 g_assert((start + length) <= block->used_length);
2176 #ifdef CONFIG_LIBPMEM
2177 /* The lack of support for pmem should not block the sync */
2178 if (ramblock_is_pmem(block)) {
2179 pmem_persist(addr, length);
2180 return;
2182 #endif
2183 if (block->fd >= 0) {
2185 * Case there is no support for PMEM or the memory has not been
2186 * specified as persistent (or is not one) - use the msync.
2187 * Less optimal but still achieves the same goal
2189 if (qemu_msync(addr, length, block->fd)) {
2190 warn_report("%s: failed to sync memory range: start: "
2191 RAM_ADDR_FMT " length: " RAM_ADDR_FMT,
2192 __func__, start, length);
2197 /* Called with ram_list.mutex held */
2198 static void dirty_memory_extend(ram_addr_t old_ram_size,
2199 ram_addr_t new_ram_size)
2201 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2202 DIRTY_MEMORY_BLOCK_SIZE);
2203 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2204 DIRTY_MEMORY_BLOCK_SIZE);
2205 int i;
2207 /* Only need to extend if block count increased */
2208 if (new_num_blocks <= old_num_blocks) {
2209 return;
2212 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2213 DirtyMemoryBlocks *old_blocks;
2214 DirtyMemoryBlocks *new_blocks;
2215 int j;
2217 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2218 new_blocks = g_malloc(sizeof(*new_blocks) +
2219 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2221 if (old_num_blocks) {
2222 memcpy(new_blocks->blocks, old_blocks->blocks,
2223 old_num_blocks * sizeof(old_blocks->blocks[0]));
2226 for (j = old_num_blocks; j < new_num_blocks; j++) {
2227 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2230 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2232 if (old_blocks) {
2233 g_free_rcu(old_blocks, rcu);
2238 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2240 RAMBlock *block;
2241 RAMBlock *last_block = NULL;
2242 ram_addr_t old_ram_size, new_ram_size;
2243 Error *err = NULL;
2245 old_ram_size = last_ram_page();
2247 qemu_mutex_lock_ramlist();
2248 new_block->offset = find_ram_offset(new_block->max_length);
2250 if (!new_block->host) {
2251 if (xen_enabled()) {
2252 xen_ram_alloc(new_block->offset, new_block->max_length,
2253 new_block->mr, &err);
2254 if (err) {
2255 error_propagate(errp, err);
2256 qemu_mutex_unlock_ramlist();
2257 return;
2259 } else {
2260 new_block->host = phys_mem_alloc(new_block->max_length,
2261 &new_block->mr->align, shared);
2262 if (!new_block->host) {
2263 error_setg_errno(errp, errno,
2264 "cannot set up guest memory '%s'",
2265 memory_region_name(new_block->mr));
2266 qemu_mutex_unlock_ramlist();
2267 return;
2269 memory_try_enable_merging(new_block->host, new_block->max_length);
2273 new_ram_size = MAX(old_ram_size,
2274 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2275 if (new_ram_size > old_ram_size) {
2276 dirty_memory_extend(old_ram_size, new_ram_size);
2278 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2279 * QLIST (which has an RCU-friendly variant) does not have insertion at
2280 * tail, so save the last element in last_block.
2282 RAMBLOCK_FOREACH(block) {
2283 last_block = block;
2284 if (block->max_length < new_block->max_length) {
2285 break;
2288 if (block) {
2289 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2290 } else if (last_block) {
2291 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2292 } else { /* list is empty */
2293 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2295 ram_list.mru_block = NULL;
2297 /* Write list before version */
2298 smp_wmb();
2299 ram_list.version++;
2300 qemu_mutex_unlock_ramlist();
2302 cpu_physical_memory_set_dirty_range(new_block->offset,
2303 new_block->used_length,
2304 DIRTY_CLIENTS_ALL);
2306 if (new_block->host) {
2307 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2308 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2310 * MADV_DONTFORK is also needed by KVM in absence of synchronous MMU
2311 * Configure it unless the machine is a qtest server, in which case
2312 * KVM is not used and it may be forked (eg for fuzzing purposes).
2314 if (!qtest_enabled()) {
2315 qemu_madvise(new_block->host, new_block->max_length,
2316 QEMU_MADV_DONTFORK);
2318 ram_block_notify_add(new_block->host, new_block->max_length);
2322 #ifdef CONFIG_POSIX
2323 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2324 uint32_t ram_flags, int fd,
2325 Error **errp)
2327 RAMBlock *new_block;
2328 Error *local_err = NULL;
2329 int64_t file_size;
2331 /* Just support these ram flags by now. */
2332 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2334 if (xen_enabled()) {
2335 error_setg(errp, "-mem-path not supported with Xen");
2336 return NULL;
2339 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2340 error_setg(errp,
2341 "host lacks kvm mmu notifiers, -mem-path unsupported");
2342 return NULL;
2345 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2347 * file_ram_alloc() needs to allocate just like
2348 * phys_mem_alloc, but we haven't bothered to provide
2349 * a hook there.
2351 error_setg(errp,
2352 "-mem-path not supported with this accelerator");
2353 return NULL;
2356 size = HOST_PAGE_ALIGN(size);
2357 file_size = get_file_size(fd);
2358 if (file_size > 0 && file_size < size) {
2359 error_setg(errp, "backing store %s size 0x%" PRIx64
2360 " does not match 'size' option 0x" RAM_ADDR_FMT,
2361 mem_path, file_size, size);
2362 return NULL;
2365 new_block = g_malloc0(sizeof(*new_block));
2366 new_block->mr = mr;
2367 new_block->used_length = size;
2368 new_block->max_length = size;
2369 new_block->flags = ram_flags;
2370 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2371 if (!new_block->host) {
2372 g_free(new_block);
2373 return NULL;
2376 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2377 if (local_err) {
2378 g_free(new_block);
2379 error_propagate(errp, local_err);
2380 return NULL;
2382 return new_block;
2387 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2388 uint32_t ram_flags, const char *mem_path,
2389 Error **errp)
2391 int fd;
2392 bool created;
2393 RAMBlock *block;
2395 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2396 if (fd < 0) {
2397 return NULL;
2400 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2401 if (!block) {
2402 if (created) {
2403 unlink(mem_path);
2405 close(fd);
2406 return NULL;
2409 return block;
2411 #endif
2413 static
2414 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2415 void (*resized)(const char*,
2416 uint64_t length,
2417 void *host),
2418 void *host, bool resizeable, bool share,
2419 MemoryRegion *mr, Error **errp)
2421 RAMBlock *new_block;
2422 Error *local_err = NULL;
2424 size = HOST_PAGE_ALIGN(size);
2425 max_size = HOST_PAGE_ALIGN(max_size);
2426 new_block = g_malloc0(sizeof(*new_block));
2427 new_block->mr = mr;
2428 new_block->resized = resized;
2429 new_block->used_length = size;
2430 new_block->max_length = max_size;
2431 assert(max_size >= size);
2432 new_block->fd = -1;
2433 new_block->page_size = qemu_real_host_page_size;
2434 new_block->host = host;
2435 if (host) {
2436 new_block->flags |= RAM_PREALLOC;
2438 if (resizeable) {
2439 new_block->flags |= RAM_RESIZEABLE;
2441 ram_block_add(new_block, &local_err, share);
2442 if (local_err) {
2443 g_free(new_block);
2444 error_propagate(errp, local_err);
2445 return NULL;
2447 return new_block;
2450 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2451 MemoryRegion *mr, Error **errp)
2453 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2454 false, mr, errp);
2457 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2458 MemoryRegion *mr, Error **errp)
2460 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2461 share, mr, errp);
2464 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2465 void (*resized)(const char*,
2466 uint64_t length,
2467 void *host),
2468 MemoryRegion *mr, Error **errp)
2470 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2471 false, mr, errp);
2474 static void reclaim_ramblock(RAMBlock *block)
2476 if (block->flags & RAM_PREALLOC) {
2478 } else if (xen_enabled()) {
2479 xen_invalidate_map_cache_entry(block->host);
2480 #ifndef _WIN32
2481 } else if (block->fd >= 0) {
2482 qemu_ram_munmap(block->fd, block->host, block->max_length);
2483 close(block->fd);
2484 #endif
2485 } else {
2486 qemu_anon_ram_free(block->host, block->max_length);
2488 g_free(block);
2491 void qemu_ram_free(RAMBlock *block)
2493 if (!block) {
2494 return;
2497 if (block->host) {
2498 ram_block_notify_remove(block->host, block->max_length);
2501 qemu_mutex_lock_ramlist();
2502 QLIST_REMOVE_RCU(block, next);
2503 ram_list.mru_block = NULL;
2504 /* Write list before version */
2505 smp_wmb();
2506 ram_list.version++;
2507 call_rcu(block, reclaim_ramblock, rcu);
2508 qemu_mutex_unlock_ramlist();
2511 #ifndef _WIN32
2512 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2514 RAMBlock *block;
2515 ram_addr_t offset;
2516 int flags;
2517 void *area, *vaddr;
2519 RAMBLOCK_FOREACH(block) {
2520 offset = addr - block->offset;
2521 if (offset < block->max_length) {
2522 vaddr = ramblock_ptr(block, offset);
2523 if (block->flags & RAM_PREALLOC) {
2525 } else if (xen_enabled()) {
2526 abort();
2527 } else {
2528 flags = MAP_FIXED;
2529 if (block->fd >= 0) {
2530 flags |= (block->flags & RAM_SHARED ?
2531 MAP_SHARED : MAP_PRIVATE);
2532 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2533 flags, block->fd, offset);
2534 } else {
2536 * Remap needs to match alloc. Accelerators that
2537 * set phys_mem_alloc never remap. If they did,
2538 * we'd need a remap hook here.
2540 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2542 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2543 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2544 flags, -1, 0);
2546 if (area != vaddr) {
2547 error_report("Could not remap addr: "
2548 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2549 length, addr);
2550 exit(1);
2552 memory_try_enable_merging(vaddr, length);
2553 qemu_ram_setup_dump(vaddr, length);
2558 #endif /* !_WIN32 */
2560 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2561 * This should not be used for general purpose DMA. Use address_space_map
2562 * or address_space_rw instead. For local memory (e.g. video ram) that the
2563 * device owns, use memory_region_get_ram_ptr.
2565 * Called within RCU critical section.
2567 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2569 RAMBlock *block = ram_block;
2571 if (block == NULL) {
2572 block = qemu_get_ram_block(addr);
2573 addr -= block->offset;
2576 if (xen_enabled() && block->host == NULL) {
2577 /* We need to check if the requested address is in the RAM
2578 * because we don't want to map the entire memory in QEMU.
2579 * In that case just map until the end of the page.
2581 if (block->offset == 0) {
2582 return xen_map_cache(addr, 0, 0, false);
2585 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2587 return ramblock_ptr(block, addr);
2590 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2591 * but takes a size argument.
2593 * Called within RCU critical section.
2595 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2596 hwaddr *size, bool lock)
2598 RAMBlock *block = ram_block;
2599 if (*size == 0) {
2600 return NULL;
2603 if (block == NULL) {
2604 block = qemu_get_ram_block(addr);
2605 addr -= block->offset;
2607 *size = MIN(*size, block->max_length - addr);
2609 if (xen_enabled() && block->host == NULL) {
2610 /* We need to check if the requested address is in the RAM
2611 * because we don't want to map the entire memory in QEMU.
2612 * In that case just map the requested area.
2614 if (block->offset == 0) {
2615 return xen_map_cache(addr, *size, lock, lock);
2618 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2621 return ramblock_ptr(block, addr);
2624 /* Return the offset of a hostpointer within a ramblock */
2625 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2627 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2628 assert((uintptr_t)host >= (uintptr_t)rb->host);
2629 assert(res < rb->max_length);
2631 return res;
2635 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2636 * in that RAMBlock.
2638 * ptr: Host pointer to look up
2639 * round_offset: If true round the result offset down to a page boundary
2640 * *ram_addr: set to result ram_addr
2641 * *offset: set to result offset within the RAMBlock
2643 * Returns: RAMBlock (or NULL if not found)
2645 * By the time this function returns, the returned pointer is not protected
2646 * by RCU anymore. If the caller is not within an RCU critical section and
2647 * does not hold the iothread lock, it must have other means of protecting the
2648 * pointer, such as a reference to the region that includes the incoming
2649 * ram_addr_t.
2651 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2652 ram_addr_t *offset)
2654 RAMBlock *block;
2655 uint8_t *host = ptr;
2657 if (xen_enabled()) {
2658 ram_addr_t ram_addr;
2659 RCU_READ_LOCK_GUARD();
2660 ram_addr = xen_ram_addr_from_mapcache(ptr);
2661 block = qemu_get_ram_block(ram_addr);
2662 if (block) {
2663 *offset = ram_addr - block->offset;
2665 return block;
2668 RCU_READ_LOCK_GUARD();
2669 block = atomic_rcu_read(&ram_list.mru_block);
2670 if (block && block->host && host - block->host < block->max_length) {
2671 goto found;
2674 RAMBLOCK_FOREACH(block) {
2675 /* This case append when the block is not mapped. */
2676 if (block->host == NULL) {
2677 continue;
2679 if (host - block->host < block->max_length) {
2680 goto found;
2684 return NULL;
2686 found:
2687 *offset = (host - block->host);
2688 if (round_offset) {
2689 *offset &= TARGET_PAGE_MASK;
2691 return block;
2695 * Finds the named RAMBlock
2697 * name: The name of RAMBlock to find
2699 * Returns: RAMBlock (or NULL if not found)
2701 RAMBlock *qemu_ram_block_by_name(const char *name)
2703 RAMBlock *block;
2705 RAMBLOCK_FOREACH(block) {
2706 if (!strcmp(name, block->idstr)) {
2707 return block;
2711 return NULL;
2714 /* Some of the softmmu routines need to translate from a host pointer
2715 (typically a TLB entry) back to a ram offset. */
2716 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2718 RAMBlock *block;
2719 ram_addr_t offset;
2721 block = qemu_ram_block_from_host(ptr, false, &offset);
2722 if (!block) {
2723 return RAM_ADDR_INVALID;
2726 return block->offset + offset;
2729 /* Generate a debug exception if a watchpoint has been hit. */
2730 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
2731 MemTxAttrs attrs, int flags, uintptr_t ra)
2733 CPUClass *cc = CPU_GET_CLASS(cpu);
2734 CPUWatchpoint *wp;
2736 assert(tcg_enabled());
2737 if (cpu->watchpoint_hit) {
2739 * We re-entered the check after replacing the TB.
2740 * Now raise the debug interrupt so that it will
2741 * trigger after the current instruction.
2743 qemu_mutex_lock_iothread();
2744 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2745 qemu_mutex_unlock_iothread();
2746 return;
2749 addr = cc->adjust_watchpoint_address(cpu, addr, len);
2750 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2751 if (watchpoint_address_matches(wp, addr, len)
2752 && (wp->flags & flags)) {
2753 if (flags == BP_MEM_READ) {
2754 wp->flags |= BP_WATCHPOINT_HIT_READ;
2755 } else {
2756 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2758 wp->hitaddr = MAX(addr, wp->vaddr);
2759 wp->hitattrs = attrs;
2760 if (!cpu->watchpoint_hit) {
2761 if (wp->flags & BP_CPU &&
2762 !cc->debug_check_watchpoint(cpu, wp)) {
2763 wp->flags &= ~BP_WATCHPOINT_HIT;
2764 continue;
2766 cpu->watchpoint_hit = wp;
2768 mmap_lock();
2769 tb_check_watchpoint(cpu, ra);
2770 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2771 cpu->exception_index = EXCP_DEBUG;
2772 mmap_unlock();
2773 cpu_loop_exit_restore(cpu, ra);
2774 } else {
2775 /* Force execution of one insn next time. */
2776 cpu->cflags_next_tb = 1 | curr_cflags();
2777 mmap_unlock();
2778 if (ra) {
2779 cpu_restore_state(cpu, ra, true);
2781 cpu_loop_exit_noexc(cpu);
2784 } else {
2785 wp->flags &= ~BP_WATCHPOINT_HIT;
2790 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2791 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2792 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2793 const uint8_t *buf, hwaddr len);
2794 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2795 bool is_write, MemTxAttrs attrs);
2797 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2798 unsigned len, MemTxAttrs attrs)
2800 subpage_t *subpage = opaque;
2801 uint8_t buf[8];
2802 MemTxResult res;
2804 #if defined(DEBUG_SUBPAGE)
2805 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2806 subpage, len, addr);
2807 #endif
2808 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2809 if (res) {
2810 return res;
2812 *data = ldn_p(buf, len);
2813 return MEMTX_OK;
2816 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2817 uint64_t value, unsigned len, MemTxAttrs attrs)
2819 subpage_t *subpage = opaque;
2820 uint8_t buf[8];
2822 #if defined(DEBUG_SUBPAGE)
2823 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2824 " value %"PRIx64"\n",
2825 __func__, subpage, len, addr, value);
2826 #endif
2827 stn_p(buf, len, value);
2828 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2831 static bool subpage_accepts(void *opaque, hwaddr addr,
2832 unsigned len, bool is_write,
2833 MemTxAttrs attrs)
2835 subpage_t *subpage = opaque;
2836 #if defined(DEBUG_SUBPAGE)
2837 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2838 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2839 #endif
2841 return flatview_access_valid(subpage->fv, addr + subpage->base,
2842 len, is_write, attrs);
2845 static const MemoryRegionOps subpage_ops = {
2846 .read_with_attrs = subpage_read,
2847 .write_with_attrs = subpage_write,
2848 .impl.min_access_size = 1,
2849 .impl.max_access_size = 8,
2850 .valid.min_access_size = 1,
2851 .valid.max_access_size = 8,
2852 .valid.accepts = subpage_accepts,
2853 .endianness = DEVICE_NATIVE_ENDIAN,
2856 static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2857 uint16_t section)
2859 int idx, eidx;
2861 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2862 return -1;
2863 idx = SUBPAGE_IDX(start);
2864 eidx = SUBPAGE_IDX(end);
2865 #if defined(DEBUG_SUBPAGE)
2866 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2867 __func__, mmio, start, end, idx, eidx, section);
2868 #endif
2869 for (; idx <= eidx; idx++) {
2870 mmio->sub_section[idx] = section;
2873 return 0;
2876 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2878 subpage_t *mmio;
2880 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2881 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2882 mmio->fv = fv;
2883 mmio->base = base;
2884 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2885 NULL, TARGET_PAGE_SIZE);
2886 mmio->iomem.subpage = true;
2887 #if defined(DEBUG_SUBPAGE)
2888 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2889 mmio, base, TARGET_PAGE_SIZE);
2890 #endif
2892 return mmio;
2895 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2897 assert(fv);
2898 MemoryRegionSection section = {
2899 .fv = fv,
2900 .mr = mr,
2901 .offset_within_address_space = 0,
2902 .offset_within_region = 0,
2903 .size = int128_2_64(),
2906 return phys_section_add(map, &section);
2909 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2910 hwaddr index, MemTxAttrs attrs)
2912 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2913 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
2914 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
2915 MemoryRegionSection *sections = d->map.sections;
2917 return &sections[index & ~TARGET_PAGE_MASK];
2920 static void io_mem_init(void)
2922 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
2923 NULL, UINT64_MAX);
2926 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
2928 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2929 uint16_t n;
2931 n = dummy_section(&d->map, fv, &io_mem_unassigned);
2932 assert(n == PHYS_SECTION_UNASSIGNED);
2934 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
2936 return d;
2939 void address_space_dispatch_free(AddressSpaceDispatch *d)
2941 phys_sections_free(&d->map);
2942 g_free(d);
2945 static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2949 static void tcg_log_global_after_sync(MemoryListener *listener)
2951 CPUAddressSpace *cpuas;
2953 /* Wait for the CPU to end the current TB. This avoids the following
2954 * incorrect race:
2956 * vCPU migration
2957 * ---------------------- -------------------------
2958 * TLB check -> slow path
2959 * notdirty_mem_write
2960 * write to RAM
2961 * mark dirty
2962 * clear dirty flag
2963 * TLB check -> fast path
2964 * read memory
2965 * write to RAM
2967 * by pushing the migration thread's memory read after the vCPU thread has
2968 * written the memory.
2970 if (replay_mode == REPLAY_MODE_NONE) {
2972 * VGA can make calls to this function while updating the screen.
2973 * In record/replay mode this causes a deadlock, because
2974 * run_on_cpu waits for rr mutex. Therefore no races are possible
2975 * in this case and no need for making run_on_cpu when
2976 * record/replay is not enabled.
2978 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2979 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2983 static void tcg_commit(MemoryListener *listener)
2985 CPUAddressSpace *cpuas;
2986 AddressSpaceDispatch *d;
2988 assert(tcg_enabled());
2989 /* since each CPU stores ram addresses in its TLB cache, we must
2990 reset the modified entries */
2991 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2992 cpu_reloading_memory_map();
2993 /* The CPU and TLB are protected by the iothread lock.
2994 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2995 * may have split the RCU critical section.
2997 d = address_space_to_dispatch(cpuas->as);
2998 atomic_rcu_set(&cpuas->memory_dispatch, d);
2999 tlb_flush(cpuas->cpu);
3002 static void memory_map_init(void)
3004 system_memory = g_malloc(sizeof(*system_memory));
3006 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3007 address_space_init(&address_space_memory, system_memory, "memory");
3009 system_io = g_malloc(sizeof(*system_io));
3010 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3011 65536);
3012 address_space_init(&address_space_io, system_io, "I/O");
3015 MemoryRegion *get_system_memory(void)
3017 return system_memory;
3020 MemoryRegion *get_system_io(void)
3022 return system_io;
3025 #endif /* !defined(CONFIG_USER_ONLY) */
3027 /* physical memory access (slow version, mainly for debug) */
3028 #if defined(CONFIG_USER_ONLY)
3029 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3030 uint8_t *buf, target_ulong len, int is_write)
3032 int flags;
3033 target_ulong l, page;
3034 void * p;
3036 while (len > 0) {
3037 page = addr & TARGET_PAGE_MASK;
3038 l = (page + TARGET_PAGE_SIZE) - addr;
3039 if (l > len)
3040 l = len;
3041 flags = page_get_flags(page);
3042 if (!(flags & PAGE_VALID))
3043 return -1;
3044 if (is_write) {
3045 if (!(flags & PAGE_WRITE))
3046 return -1;
3047 /* XXX: this code should not depend on lock_user */
3048 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3049 return -1;
3050 memcpy(p, buf, l);
3051 unlock_user(p, addr, l);
3052 } else {
3053 if (!(flags & PAGE_READ))
3054 return -1;
3055 /* XXX: this code should not depend on lock_user */
3056 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3057 return -1;
3058 memcpy(buf, p, l);
3059 unlock_user(p, addr, 0);
3061 len -= l;
3062 buf += l;
3063 addr += l;
3065 return 0;
3068 #else
3070 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3071 hwaddr length)
3073 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3074 addr += memory_region_get_ram_addr(mr);
3076 /* No early return if dirty_log_mask is or becomes 0, because
3077 * cpu_physical_memory_set_dirty_range will still call
3078 * xen_modified_memory.
3080 if (dirty_log_mask) {
3081 dirty_log_mask =
3082 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3084 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3085 assert(tcg_enabled());
3086 tb_invalidate_phys_range(addr, addr + length);
3087 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3089 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3092 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3095 * In principle this function would work on other memory region types too,
3096 * but the ROM device use case is the only one where this operation is
3097 * necessary. Other memory regions should use the
3098 * address_space_read/write() APIs.
3100 assert(memory_region_is_romd(mr));
3102 invalidate_and_set_dirty(mr, addr, size);
3105 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3107 unsigned access_size_max = mr->ops->valid.max_access_size;
3109 /* Regions are assumed to support 1-4 byte accesses unless
3110 otherwise specified. */
3111 if (access_size_max == 0) {
3112 access_size_max = 4;
3115 /* Bound the maximum access by the alignment of the address. */
3116 if (!mr->ops->impl.unaligned) {
3117 unsigned align_size_max = addr & -addr;
3118 if (align_size_max != 0 && align_size_max < access_size_max) {
3119 access_size_max = align_size_max;
3123 /* Don't attempt accesses larger than the maximum. */
3124 if (l > access_size_max) {
3125 l = access_size_max;
3127 l = pow2floor(l);
3129 return l;
3132 static bool prepare_mmio_access(MemoryRegion *mr)
3134 bool unlocked = !qemu_mutex_iothread_locked();
3135 bool release_lock = false;
3137 if (unlocked && mr->global_locking) {
3138 qemu_mutex_lock_iothread();
3139 unlocked = false;
3140 release_lock = true;
3142 if (mr->flush_coalesced_mmio) {
3143 if (unlocked) {
3144 qemu_mutex_lock_iothread();
3146 qemu_flush_coalesced_mmio_buffer();
3147 if (unlocked) {
3148 qemu_mutex_unlock_iothread();
3152 return release_lock;
3155 /* Called within RCU critical section. */
3156 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3157 MemTxAttrs attrs,
3158 const uint8_t *buf,
3159 hwaddr len, hwaddr addr1,
3160 hwaddr l, MemoryRegion *mr)
3162 uint8_t *ptr;
3163 uint64_t val;
3164 MemTxResult result = MEMTX_OK;
3165 bool release_lock = false;
3167 for (;;) {
3168 if (!memory_access_is_direct(mr, true)) {
3169 release_lock |= prepare_mmio_access(mr);
3170 l = memory_access_size(mr, l, addr1);
3171 /* XXX: could force current_cpu to NULL to avoid
3172 potential bugs */
3173 val = ldn_he_p(buf, l);
3174 result |= memory_region_dispatch_write(mr, addr1, val,
3175 size_memop(l), attrs);
3176 } else {
3177 /* RAM case */
3178 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3179 memcpy(ptr, buf, l);
3180 invalidate_and_set_dirty(mr, addr1, l);
3183 if (release_lock) {
3184 qemu_mutex_unlock_iothread();
3185 release_lock = false;
3188 len -= l;
3189 buf += l;
3190 addr += l;
3192 if (!len) {
3193 break;
3196 l = len;
3197 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3200 return result;
3203 /* Called from RCU critical section. */
3204 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3205 const uint8_t *buf, hwaddr len)
3207 hwaddr l;
3208 hwaddr addr1;
3209 MemoryRegion *mr;
3210 MemTxResult result = MEMTX_OK;
3212 l = len;
3213 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3214 result = flatview_write_continue(fv, addr, attrs, buf, len,
3215 addr1, l, mr);
3217 return result;
3220 /* Called within RCU critical section. */
3221 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3222 MemTxAttrs attrs, uint8_t *buf,
3223 hwaddr len, hwaddr addr1, hwaddr l,
3224 MemoryRegion *mr)
3226 uint8_t *ptr;
3227 uint64_t val;
3228 MemTxResult result = MEMTX_OK;
3229 bool release_lock = false;
3231 for (;;) {
3232 if (!memory_access_is_direct(mr, false)) {
3233 /* I/O case */
3234 release_lock |= prepare_mmio_access(mr);
3235 l = memory_access_size(mr, l, addr1);
3236 result |= memory_region_dispatch_read(mr, addr1, &val,
3237 size_memop(l), attrs);
3238 stn_he_p(buf, l, val);
3239 } else {
3240 /* RAM case */
3241 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3242 memcpy(buf, ptr, l);
3245 if (release_lock) {
3246 qemu_mutex_unlock_iothread();
3247 release_lock = false;
3250 len -= l;
3251 buf += l;
3252 addr += l;
3254 if (!len) {
3255 break;
3258 l = len;
3259 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3262 return result;
3265 /* Called from RCU critical section. */
3266 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3267 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3269 hwaddr l;
3270 hwaddr addr1;
3271 MemoryRegion *mr;
3273 l = len;
3274 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3275 return flatview_read_continue(fv, addr, attrs, buf, len,
3276 addr1, l, mr);
3279 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3280 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3282 MemTxResult result = MEMTX_OK;
3283 FlatView *fv;
3285 if (len > 0) {
3286 RCU_READ_LOCK_GUARD();
3287 fv = address_space_to_flatview(as);
3288 result = flatview_read(fv, addr, attrs, buf, len);
3291 return result;
3294 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3295 MemTxAttrs attrs,
3296 const uint8_t *buf, hwaddr len)
3298 MemTxResult result = MEMTX_OK;
3299 FlatView *fv;
3301 if (len > 0) {
3302 RCU_READ_LOCK_GUARD();
3303 fv = address_space_to_flatview(as);
3304 result = flatview_write(fv, addr, attrs, buf, len);
3307 return result;
3310 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3311 uint8_t *buf, hwaddr len, bool is_write)
3313 if (is_write) {
3314 return address_space_write(as, addr, attrs, buf, len);
3315 } else {
3316 return address_space_read_full(as, addr, attrs, buf, len);
3320 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3321 hwaddr len, int is_write)
3323 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3324 buf, len, is_write);
3327 enum write_rom_type {
3328 WRITE_DATA,
3329 FLUSH_CACHE,
3332 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3333 hwaddr addr,
3334 MemTxAttrs attrs,
3335 const uint8_t *buf,
3336 hwaddr len,
3337 enum write_rom_type type)
3339 hwaddr l;
3340 uint8_t *ptr;
3341 hwaddr addr1;
3342 MemoryRegion *mr;
3344 RCU_READ_LOCK_GUARD();
3345 while (len > 0) {
3346 l = len;
3347 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3349 if (!(memory_region_is_ram(mr) ||
3350 memory_region_is_romd(mr))) {
3351 l = memory_access_size(mr, l, addr1);
3352 } else {
3353 /* ROM/RAM case */
3354 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3355 switch (type) {
3356 case WRITE_DATA:
3357 memcpy(ptr, buf, l);
3358 invalidate_and_set_dirty(mr, addr1, l);
3359 break;
3360 case FLUSH_CACHE:
3361 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3362 break;
3365 len -= l;
3366 buf += l;
3367 addr += l;
3369 return MEMTX_OK;
3372 /* used for ROM loading : can write in RAM and ROM */
3373 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3374 MemTxAttrs attrs,
3375 const uint8_t *buf, hwaddr len)
3377 return address_space_write_rom_internal(as, addr, attrs,
3378 buf, len, WRITE_DATA);
3381 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3384 * This function should do the same thing as an icache flush that was
3385 * triggered from within the guest. For TCG we are always cache coherent,
3386 * so there is no need to flush anything. For KVM / Xen we need to flush
3387 * the host's instruction cache at least.
3389 if (tcg_enabled()) {
3390 return;
3393 address_space_write_rom_internal(&address_space_memory,
3394 start, MEMTXATTRS_UNSPECIFIED,
3395 NULL, len, FLUSH_CACHE);
3398 typedef struct {
3399 MemoryRegion *mr;
3400 void *buffer;
3401 hwaddr addr;
3402 hwaddr len;
3403 bool in_use;
3404 } BounceBuffer;
3406 static BounceBuffer bounce;
3408 typedef struct MapClient {
3409 QEMUBH *bh;
3410 QLIST_ENTRY(MapClient) link;
3411 } MapClient;
3413 QemuMutex map_client_list_lock;
3414 static QLIST_HEAD(, MapClient) map_client_list
3415 = QLIST_HEAD_INITIALIZER(map_client_list);
3417 static void cpu_unregister_map_client_do(MapClient *client)
3419 QLIST_REMOVE(client, link);
3420 g_free(client);
3423 static void cpu_notify_map_clients_locked(void)
3425 MapClient *client;
3427 while (!QLIST_EMPTY(&map_client_list)) {
3428 client = QLIST_FIRST(&map_client_list);
3429 qemu_bh_schedule(client->bh);
3430 cpu_unregister_map_client_do(client);
3434 void cpu_register_map_client(QEMUBH *bh)
3436 MapClient *client = g_malloc(sizeof(*client));
3438 qemu_mutex_lock(&map_client_list_lock);
3439 client->bh = bh;
3440 QLIST_INSERT_HEAD(&map_client_list, client, link);
3441 if (!atomic_read(&bounce.in_use)) {
3442 cpu_notify_map_clients_locked();
3444 qemu_mutex_unlock(&map_client_list_lock);
3447 void cpu_exec_init_all(void)
3449 qemu_mutex_init(&ram_list.mutex);
3450 /* The data structures we set up here depend on knowing the page size,
3451 * so no more changes can be made after this point.
3452 * In an ideal world, nothing we did before we had finished the
3453 * machine setup would care about the target page size, and we could
3454 * do this much later, rather than requiring board models to state
3455 * up front what their requirements are.
3457 finalize_target_page_bits();
3458 io_mem_init();
3459 memory_map_init();
3460 qemu_mutex_init(&map_client_list_lock);
3463 void cpu_unregister_map_client(QEMUBH *bh)
3465 MapClient *client;
3467 qemu_mutex_lock(&map_client_list_lock);
3468 QLIST_FOREACH(client, &map_client_list, link) {
3469 if (client->bh == bh) {
3470 cpu_unregister_map_client_do(client);
3471 break;
3474 qemu_mutex_unlock(&map_client_list_lock);
3477 static void cpu_notify_map_clients(void)
3479 qemu_mutex_lock(&map_client_list_lock);
3480 cpu_notify_map_clients_locked();
3481 qemu_mutex_unlock(&map_client_list_lock);
3484 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3485 bool is_write, MemTxAttrs attrs)
3487 MemoryRegion *mr;
3488 hwaddr l, xlat;
3490 while (len > 0) {
3491 l = len;
3492 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3493 if (!memory_access_is_direct(mr, is_write)) {
3494 l = memory_access_size(mr, l, addr);
3495 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3496 return false;
3500 len -= l;
3501 addr += l;
3503 return true;
3506 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3507 hwaddr len, bool is_write,
3508 MemTxAttrs attrs)
3510 FlatView *fv;
3511 bool result;
3513 RCU_READ_LOCK_GUARD();
3514 fv = address_space_to_flatview(as);
3515 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3516 return result;
3519 static hwaddr
3520 flatview_extend_translation(FlatView *fv, hwaddr addr,
3521 hwaddr target_len,
3522 MemoryRegion *mr, hwaddr base, hwaddr len,
3523 bool is_write, MemTxAttrs attrs)
3525 hwaddr done = 0;
3526 hwaddr xlat;
3527 MemoryRegion *this_mr;
3529 for (;;) {
3530 target_len -= len;
3531 addr += len;
3532 done += len;
3533 if (target_len == 0) {
3534 return done;
3537 len = target_len;
3538 this_mr = flatview_translate(fv, addr, &xlat,
3539 &len, is_write, attrs);
3540 if (this_mr != mr || xlat != base + done) {
3541 return done;
3546 /* Map a physical memory region into a host virtual address.
3547 * May map a subset of the requested range, given by and returned in *plen.
3548 * May return NULL if resources needed to perform the mapping are exhausted.
3549 * Use only for reads OR writes - not for read-modify-write operations.
3550 * Use cpu_register_map_client() to know when retrying the map operation is
3551 * likely to succeed.
3553 void *address_space_map(AddressSpace *as,
3554 hwaddr addr,
3555 hwaddr *plen,
3556 bool is_write,
3557 MemTxAttrs attrs)
3559 hwaddr len = *plen;
3560 hwaddr l, xlat;
3561 MemoryRegion *mr;
3562 void *ptr;
3563 FlatView *fv;
3565 if (len == 0) {
3566 return NULL;
3569 l = len;
3570 RCU_READ_LOCK_GUARD();
3571 fv = address_space_to_flatview(as);
3572 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3574 if (!memory_access_is_direct(mr, is_write)) {
3575 if (atomic_xchg(&bounce.in_use, true)) {
3576 return NULL;
3578 /* Avoid unbounded allocations */
3579 l = MIN(l, TARGET_PAGE_SIZE);
3580 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3581 bounce.addr = addr;
3582 bounce.len = l;
3584 memory_region_ref(mr);
3585 bounce.mr = mr;
3586 if (!is_write) {
3587 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3588 bounce.buffer, l);
3591 *plen = l;
3592 return bounce.buffer;
3596 memory_region_ref(mr);
3597 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3598 l, is_write, attrs);
3599 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3601 return ptr;
3604 /* Unmaps a memory region previously mapped by address_space_map().
3605 * Will also mark the memory as dirty if is_write == 1. access_len gives
3606 * the amount of memory that was actually read or written by the caller.
3608 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3609 int is_write, hwaddr access_len)
3611 if (buffer != bounce.buffer) {
3612 MemoryRegion *mr;
3613 ram_addr_t addr1;
3615 mr = memory_region_from_host(buffer, &addr1);
3616 assert(mr != NULL);
3617 if (is_write) {
3618 invalidate_and_set_dirty(mr, addr1, access_len);
3620 if (xen_enabled()) {
3621 xen_invalidate_map_cache_entry(buffer);
3623 memory_region_unref(mr);
3624 return;
3626 if (is_write) {
3627 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3628 bounce.buffer, access_len);
3630 qemu_vfree(bounce.buffer);
3631 bounce.buffer = NULL;
3632 memory_region_unref(bounce.mr);
3633 atomic_mb_set(&bounce.in_use, false);
3634 cpu_notify_map_clients();
3637 void *cpu_physical_memory_map(hwaddr addr,
3638 hwaddr *plen,
3639 int is_write)
3641 return address_space_map(&address_space_memory, addr, plen, is_write,
3642 MEMTXATTRS_UNSPECIFIED);
3645 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3646 int is_write, hwaddr access_len)
3648 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3651 #define ARG1_DECL AddressSpace *as
3652 #define ARG1 as
3653 #define SUFFIX
3654 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3655 #define RCU_READ_LOCK(...) rcu_read_lock()
3656 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3657 #include "memory_ldst.inc.c"
3659 int64_t address_space_cache_init(MemoryRegionCache *cache,
3660 AddressSpace *as,
3661 hwaddr addr,
3662 hwaddr len,
3663 bool is_write)
3665 AddressSpaceDispatch *d;
3666 hwaddr l;
3667 MemoryRegion *mr;
3669 assert(len > 0);
3671 l = len;
3672 cache->fv = address_space_get_flatview(as);
3673 d = flatview_to_dispatch(cache->fv);
3674 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3676 mr = cache->mrs.mr;
3677 memory_region_ref(mr);
3678 if (memory_access_is_direct(mr, is_write)) {
3679 /* We don't care about the memory attributes here as we're only
3680 * doing this if we found actual RAM, which behaves the same
3681 * regardless of attributes; so UNSPECIFIED is fine.
3683 l = flatview_extend_translation(cache->fv, addr, len, mr,
3684 cache->xlat, l, is_write,
3685 MEMTXATTRS_UNSPECIFIED);
3686 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3687 } else {
3688 cache->ptr = NULL;
3691 cache->len = l;
3692 cache->is_write = is_write;
3693 return l;
3696 void address_space_cache_invalidate(MemoryRegionCache *cache,
3697 hwaddr addr,
3698 hwaddr access_len)
3700 assert(cache->is_write);
3701 if (likely(cache->ptr)) {
3702 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3706 void address_space_cache_destroy(MemoryRegionCache *cache)
3708 if (!cache->mrs.mr) {
3709 return;
3712 if (xen_enabled()) {
3713 xen_invalidate_map_cache_entry(cache->ptr);
3715 memory_region_unref(cache->mrs.mr);
3716 flatview_unref(cache->fv);
3717 cache->mrs.mr = NULL;
3718 cache->fv = NULL;
3721 /* Called from RCU critical section. This function has the same
3722 * semantics as address_space_translate, but it only works on a
3723 * predefined range of a MemoryRegion that was mapped with
3724 * address_space_cache_init.
3726 static inline MemoryRegion *address_space_translate_cached(
3727 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3728 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3730 MemoryRegionSection section;
3731 MemoryRegion *mr;
3732 IOMMUMemoryRegion *iommu_mr;
3733 AddressSpace *target_as;
3735 assert(!cache->ptr);
3736 *xlat = addr + cache->xlat;
3738 mr = cache->mrs.mr;
3739 iommu_mr = memory_region_get_iommu(mr);
3740 if (!iommu_mr) {
3741 /* MMIO region. */
3742 return mr;
3745 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3746 NULL, is_write, true,
3747 &target_as, attrs);
3748 return section.mr;
3751 /* Called from RCU critical section. address_space_read_cached uses this
3752 * out of line function when the target is an MMIO or IOMMU region.
3754 void
3755 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3756 void *buf, hwaddr len)
3758 hwaddr addr1, l;
3759 MemoryRegion *mr;
3761 l = len;
3762 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3763 MEMTXATTRS_UNSPECIFIED);
3764 flatview_read_continue(cache->fv,
3765 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3766 addr1, l, mr);
3769 /* Called from RCU critical section. address_space_write_cached uses this
3770 * out of line function when the target is an MMIO or IOMMU region.
3772 void
3773 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3774 const void *buf, hwaddr len)
3776 hwaddr addr1, l;
3777 MemoryRegion *mr;
3779 l = len;
3780 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3781 MEMTXATTRS_UNSPECIFIED);
3782 flatview_write_continue(cache->fv,
3783 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3784 addr1, l, mr);
3787 #define ARG1_DECL MemoryRegionCache *cache
3788 #define ARG1 cache
3789 #define SUFFIX _cached_slow
3790 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3791 #define RCU_READ_LOCK() ((void)0)
3792 #define RCU_READ_UNLOCK() ((void)0)
3793 #include "memory_ldst.inc.c"
3795 /* virtual memory access for debug (includes writing to ROM) */
3796 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3797 uint8_t *buf, target_ulong len, int is_write)
3799 hwaddr phys_addr;
3800 target_ulong l, page;
3802 cpu_synchronize_state(cpu);
3803 while (len > 0) {
3804 int asidx;
3805 MemTxAttrs attrs;
3807 page = addr & TARGET_PAGE_MASK;
3808 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3809 asidx = cpu_asidx_from_attrs(cpu, attrs);
3810 /* if no physical page mapped, return an error */
3811 if (phys_addr == -1)
3812 return -1;
3813 l = (page + TARGET_PAGE_SIZE) - addr;
3814 if (l > len)
3815 l = len;
3816 phys_addr += (addr & ~TARGET_PAGE_MASK);
3817 if (is_write) {
3818 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3819 attrs, buf, l);
3820 } else {
3821 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3822 attrs, buf, l, 0);
3824 len -= l;
3825 buf += l;
3826 addr += l;
3828 return 0;
3832 * Allows code that needs to deal with migration bitmaps etc to still be built
3833 * target independent.
3835 size_t qemu_target_page_size(void)
3837 return TARGET_PAGE_SIZE;
3840 int qemu_target_page_bits(void)
3842 return TARGET_PAGE_BITS;
3845 int qemu_target_page_bits_min(void)
3847 return TARGET_PAGE_BITS_MIN;
3849 #endif
3851 bool target_words_bigendian(void)
3853 #if defined(TARGET_WORDS_BIGENDIAN)
3854 return true;
3855 #else
3856 return false;
3857 #endif
3860 #ifndef CONFIG_USER_ONLY
3861 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3863 MemoryRegion*mr;
3864 hwaddr l = 1;
3865 bool res;
3867 RCU_READ_LOCK_GUARD();
3868 mr = address_space_translate(&address_space_memory,
3869 phys_addr, &phys_addr, &l, false,
3870 MEMTXATTRS_UNSPECIFIED);
3872 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3873 return res;
3876 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3878 RAMBlock *block;
3879 int ret = 0;
3881 RCU_READ_LOCK_GUARD();
3882 RAMBLOCK_FOREACH(block) {
3883 ret = func(block, opaque);
3884 if (ret) {
3885 break;
3888 return ret;
3892 * Unmap pages of memory from start to start+length such that
3893 * they a) read as 0, b) Trigger whatever fault mechanism
3894 * the OS provides for postcopy.
3895 * The pages must be unmapped by the end of the function.
3896 * Returns: 0 on success, none-0 on failure
3899 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3901 int ret = -1;
3903 uint8_t *host_startaddr = rb->host + start;
3905 if (!QEMU_PTR_IS_ALIGNED(host_startaddr, rb->page_size)) {
3906 error_report("ram_block_discard_range: Unaligned start address: %p",
3907 host_startaddr);
3908 goto err;
3911 if ((start + length) <= rb->used_length) {
3912 bool need_madvise, need_fallocate;
3913 if (!QEMU_IS_ALIGNED(length, rb->page_size)) {
3914 error_report("ram_block_discard_range: Unaligned length: %zx",
3915 length);
3916 goto err;
3919 errno = ENOTSUP; /* If we are missing MADVISE etc */
3921 /* The logic here is messy;
3922 * madvise DONTNEED fails for hugepages
3923 * fallocate works on hugepages and shmem
3925 need_madvise = (rb->page_size == qemu_host_page_size);
3926 need_fallocate = rb->fd != -1;
3927 if (need_fallocate) {
3928 /* For a file, this causes the area of the file to be zero'd
3929 * if read, and for hugetlbfs also causes it to be unmapped
3930 * so a userfault will trigger.
3932 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3933 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3934 start, length);
3935 if (ret) {
3936 ret = -errno;
3937 error_report("ram_block_discard_range: Failed to fallocate "
3938 "%s:%" PRIx64 " +%zx (%d)",
3939 rb->idstr, start, length, ret);
3940 goto err;
3942 #else
3943 ret = -ENOSYS;
3944 error_report("ram_block_discard_range: fallocate not available/file"
3945 "%s:%" PRIx64 " +%zx (%d)",
3946 rb->idstr, start, length, ret);
3947 goto err;
3948 #endif
3950 if (need_madvise) {
3951 /* For normal RAM this causes it to be unmapped,
3952 * for shared memory it causes the local mapping to disappear
3953 * and to fall back on the file contents (which we just
3954 * fallocate'd away).
3956 #if defined(CONFIG_MADVISE)
3957 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3958 if (ret) {
3959 ret = -errno;
3960 error_report("ram_block_discard_range: Failed to discard range "
3961 "%s:%" PRIx64 " +%zx (%d)",
3962 rb->idstr, start, length, ret);
3963 goto err;
3965 #else
3966 ret = -ENOSYS;
3967 error_report("ram_block_discard_range: MADVISE not available"
3968 "%s:%" PRIx64 " +%zx (%d)",
3969 rb->idstr, start, length, ret);
3970 goto err;
3971 #endif
3973 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3974 need_madvise, need_fallocate, ret);
3975 } else {
3976 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3977 "/%zx/" RAM_ADDR_FMT")",
3978 rb->idstr, start, length, rb->used_length);
3981 err:
3982 return ret;
3985 bool ramblock_is_pmem(RAMBlock *rb)
3987 return rb->flags & RAM_PMEM;
3990 #endif
3992 void page_size_init(void)
3994 /* NOTE: we can always suppose that qemu_host_page_size >=
3995 TARGET_PAGE_SIZE */
3996 if (qemu_host_page_size == 0) {
3997 qemu_host_page_size = qemu_real_host_page_size;
3999 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4000 qemu_host_page_size = TARGET_PAGE_SIZE;
4002 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4005 #if !defined(CONFIG_USER_ONLY)
4007 static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
4009 if (start == end - 1) {
4010 qemu_printf("\t%3d ", start);
4011 } else {
4012 qemu_printf("\t%3d..%-3d ", start, end - 1);
4014 qemu_printf(" skip=%d ", skip);
4015 if (ptr == PHYS_MAP_NODE_NIL) {
4016 qemu_printf(" ptr=NIL");
4017 } else if (!skip) {
4018 qemu_printf(" ptr=#%d", ptr);
4019 } else {
4020 qemu_printf(" ptr=[%d]", ptr);
4022 qemu_printf("\n");
4025 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4026 int128_sub((size), int128_one())) : 0)
4028 void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
4030 int i;
4032 qemu_printf(" Dispatch\n");
4033 qemu_printf(" Physical sections\n");
4035 for (i = 0; i < d->map.sections_nb; ++i) {
4036 MemoryRegionSection *s = d->map.sections + i;
4037 const char *names[] = { " [unassigned]", " [not dirty]",
4038 " [ROM]", " [watch]" };
4040 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4041 " %s%s%s%s%s",
4043 s->offset_within_address_space,
4044 s->offset_within_address_space + MR_SIZE(s->mr->size),
4045 s->mr->name ? s->mr->name : "(noname)",
4046 i < ARRAY_SIZE(names) ? names[i] : "",
4047 s->mr == root ? " [ROOT]" : "",
4048 s == d->mru_section ? " [MRU]" : "",
4049 s->mr->is_iommu ? " [iommu]" : "");
4051 if (s->mr->alias) {
4052 qemu_printf(" alias=%s", s->mr->alias->name ?
4053 s->mr->alias->name : "noname");
4055 qemu_printf("\n");
4058 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4059 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4060 for (i = 0; i < d->map.nodes_nb; ++i) {
4061 int j, jprev;
4062 PhysPageEntry prev;
4063 Node *n = d->map.nodes + i;
4065 qemu_printf(" [%d]\n", i);
4067 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4068 PhysPageEntry *pe = *n + j;
4070 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4071 continue;
4074 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4076 jprev = j;
4077 prev = *pe;
4080 if (jprev != ARRAY_SIZE(*n)) {
4081 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
4086 #endif