4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu-version.h"
21 #include <sys/syscall.h>
22 #include <sys/resource.h>
24 #include "qapi/error.h"
26 #include "qemu/path.h"
27 #include "qemu/config-file.h"
28 #include "qemu/cutils.h"
29 #include "qemu/help_option.h"
31 #include "exec/exec-all.h"
33 #include "qemu/timer.h"
34 #include "qemu/envlist.h"
37 #include "trace/control.h"
38 #include "glib-compat.h"
43 static const char *filename
;
44 static const char *argv0
;
45 static int gdbstub_port
;
46 static envlist_t
*envlist
;
47 static const char *cpu_model
;
48 unsigned long mmap_min_addr
;
49 unsigned long guest_base
;
52 #define EXCP_DUMP(env, fmt, ...) \
54 CPUState *cs = ENV_GET_CPU(env); \
55 fprintf(stderr, fmt , ## __VA_ARGS__); \
56 cpu_dump_state(cs, stderr, fprintf, 0); \
57 if (qemu_log_separate()) { \
58 qemu_log(fmt, ## __VA_ARGS__); \
59 log_cpu_state(cs, 0); \
63 #if (TARGET_LONG_BITS == 32) && (HOST_LONG_BITS == 64)
65 * When running 32-on-64 we should make sure we can fit all of the possible
66 * guest address space into a contiguous chunk of virtual host memory.
68 * This way we will never overlap with our own libraries or binaries or stack
69 * or anything else that QEMU maps.
72 /* MIPS only supports 31 bits of virtual address space for user space */
73 unsigned long reserved_va
= 0x77000000;
75 unsigned long reserved_va
= 0xf7000000;
78 unsigned long reserved_va
;
81 static void usage(int exitcode
);
83 static const char *interp_prefix
= CONFIG_QEMU_INTERP_PREFIX
;
84 const char *qemu_uname_release
;
86 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
87 we allocate a bigger stack. Need a better solution, for example
88 by remapping the process stack directly at the right place */
89 unsigned long guest_stack_size
= 8 * 1024 * 1024UL;
91 void gemu_log(const char *fmt
, ...)
96 vfprintf(stderr
, fmt
, ap
);
100 #if defined(TARGET_I386)
101 int cpu_get_pic_interrupt(CPUX86State
*env
)
107 /***********************************************************/
108 /* Helper routines for implementing atomic operations. */
110 /* Make sure everything is in a consistent state for calling fork(). */
111 void fork_start(void)
114 qemu_mutex_lock(&tcg_ctx
.tb_ctx
.tb_lock
);
118 void fork_end(int child
)
120 mmap_fork_end(child
);
122 CPUState
*cpu
, *next_cpu
;
123 /* Child processes created by fork() only have a single thread.
124 Discard information about the parent threads. */
125 CPU_FOREACH_SAFE(cpu
, next_cpu
) {
126 if (cpu
!= thread_cpu
) {
127 QTAILQ_REMOVE(&cpus
, cpu
, node
);
130 qemu_mutex_init(&tcg_ctx
.tb_ctx
.tb_lock
);
131 qemu_init_cpu_list();
132 gdbserver_fork(thread_cpu
);
134 qemu_mutex_unlock(&tcg_ctx
.tb_ctx
.tb_lock
);
140 /***********************************************************/
141 /* CPUX86 core interface */
143 uint64_t cpu_get_tsc(CPUX86State
*env
)
145 return cpu_get_host_ticks();
148 static void write_dt(void *ptr
, unsigned long addr
, unsigned long limit
,
153 e1
= (addr
<< 16) | (limit
& 0xffff);
154 e2
= ((addr
>> 16) & 0xff) | (addr
& 0xff000000) | (limit
& 0x000f0000);
161 static uint64_t *idt_table
;
163 static void set_gate64(void *ptr
, unsigned int type
, unsigned int dpl
,
164 uint64_t addr
, unsigned int sel
)
167 e1
= (addr
& 0xffff) | (sel
<< 16);
168 e2
= (addr
& 0xffff0000) | 0x8000 | (dpl
<< 13) | (type
<< 8);
172 p
[2] = tswap32(addr
>> 32);
175 /* only dpl matters as we do only user space emulation */
176 static void set_idt(int n
, unsigned int dpl
)
178 set_gate64(idt_table
+ n
* 2, 0, dpl
, 0, 0);
181 static void set_gate(void *ptr
, unsigned int type
, unsigned int dpl
,
182 uint32_t addr
, unsigned int sel
)
185 e1
= (addr
& 0xffff) | (sel
<< 16);
186 e2
= (addr
& 0xffff0000) | 0x8000 | (dpl
<< 13) | (type
<< 8);
192 /* only dpl matters as we do only user space emulation */
193 static void set_idt(int n
, unsigned int dpl
)
195 set_gate(idt_table
+ n
, 0, dpl
, 0, 0);
199 void cpu_loop(CPUX86State
*env
)
201 CPUState
*cs
= CPU(x86_env_get_cpu(env
));
205 target_siginfo_t info
;
209 trapnr
= cpu_exec(cs
);
211 process_queued_cpu_work(cs
);
215 /* linux syscall from int $0x80 */
216 ret
= do_syscall(env
,
225 if (ret
== -TARGET_ERESTARTSYS
) {
227 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
228 env
->regs
[R_EAX
] = ret
;
233 /* linux syscall from syscall instruction */
234 ret
= do_syscall(env
,
243 if (ret
== -TARGET_ERESTARTSYS
) {
245 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
246 env
->regs
[R_EAX
] = ret
;
252 info
.si_signo
= TARGET_SIGBUS
;
254 info
.si_code
= TARGET_SI_KERNEL
;
255 info
._sifields
._sigfault
._addr
= 0;
256 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
259 /* XXX: potential problem if ABI32 */
260 #ifndef TARGET_X86_64
261 if (env
->eflags
& VM_MASK
) {
262 handle_vm86_fault(env
);
266 info
.si_signo
= TARGET_SIGSEGV
;
268 info
.si_code
= TARGET_SI_KERNEL
;
269 info
._sifields
._sigfault
._addr
= 0;
270 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
274 info
.si_signo
= TARGET_SIGSEGV
;
276 if (!(env
->error_code
& 1))
277 info
.si_code
= TARGET_SEGV_MAPERR
;
279 info
.si_code
= TARGET_SEGV_ACCERR
;
280 info
._sifields
._sigfault
._addr
= env
->cr
[2];
281 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
284 #ifndef TARGET_X86_64
285 if (env
->eflags
& VM_MASK
) {
286 handle_vm86_trap(env
, trapnr
);
290 /* division by zero */
291 info
.si_signo
= TARGET_SIGFPE
;
293 info
.si_code
= TARGET_FPE_INTDIV
;
294 info
._sifields
._sigfault
._addr
= env
->eip
;
295 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
300 #ifndef TARGET_X86_64
301 if (env
->eflags
& VM_MASK
) {
302 handle_vm86_trap(env
, trapnr
);
306 info
.si_signo
= TARGET_SIGTRAP
;
308 if (trapnr
== EXCP01_DB
) {
309 info
.si_code
= TARGET_TRAP_BRKPT
;
310 info
._sifields
._sigfault
._addr
= env
->eip
;
312 info
.si_code
= TARGET_SI_KERNEL
;
313 info
._sifields
._sigfault
._addr
= 0;
315 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
320 #ifndef TARGET_X86_64
321 if (env
->eflags
& VM_MASK
) {
322 handle_vm86_trap(env
, trapnr
);
326 info
.si_signo
= TARGET_SIGSEGV
;
328 info
.si_code
= TARGET_SI_KERNEL
;
329 info
._sifields
._sigfault
._addr
= 0;
330 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
334 info
.si_signo
= TARGET_SIGILL
;
336 info
.si_code
= TARGET_ILL_ILLOPN
;
337 info
._sifields
._sigfault
._addr
= env
->eip
;
338 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
341 /* just indicate that signals should be handled asap */
347 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
352 info
.si_code
= TARGET_TRAP_BRKPT
;
353 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
358 pc
= env
->segs
[R_CS
].base
+ env
->eip
;
359 EXCP_DUMP(env
, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
363 process_pending_signals(env
);
370 #define get_user_code_u32(x, gaddr, env) \
371 ({ abi_long __r = get_user_u32((x), (gaddr)); \
372 if (!__r && bswap_code(arm_sctlr_b(env))) { \
378 #define get_user_code_u16(x, gaddr, env) \
379 ({ abi_long __r = get_user_u16((x), (gaddr)); \
380 if (!__r && bswap_code(arm_sctlr_b(env))) { \
386 #define get_user_data_u32(x, gaddr, env) \
387 ({ abi_long __r = get_user_u32((x), (gaddr)); \
388 if (!__r && arm_cpu_bswap_data(env)) { \
394 #define get_user_data_u16(x, gaddr, env) \
395 ({ abi_long __r = get_user_u16((x), (gaddr)); \
396 if (!__r && arm_cpu_bswap_data(env)) { \
402 #define put_user_data_u32(x, gaddr, env) \
403 ({ typeof(x) __x = (x); \
404 if (arm_cpu_bswap_data(env)) { \
405 __x = bswap32(__x); \
407 put_user_u32(__x, (gaddr)); \
410 #define put_user_data_u16(x, gaddr, env) \
411 ({ typeof(x) __x = (x); \
412 if (arm_cpu_bswap_data(env)) { \
413 __x = bswap16(__x); \
415 put_user_u16(__x, (gaddr)); \
419 /* Commpage handling -- there is no commpage for AArch64 */
422 * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt
424 * r0 = pointer to oldval
425 * r1 = pointer to newval
426 * r2 = pointer to target value
429 * r0 = 0 if *ptr was changed, non-0 if no exchange happened
430 * C set if *ptr was changed, clear if no exchange happened
432 * Note segv's in kernel helpers are a bit tricky, we can set the
433 * data address sensibly but the PC address is just the entry point.
435 static void arm_kernel_cmpxchg64_helper(CPUARMState
*env
)
437 uint64_t oldval
, newval
, val
;
439 target_siginfo_t info
;
441 /* Based on the 32 bit code in do_kernel_trap */
443 /* XXX: This only works between threads, not between processes.
444 It's probably possible to implement this with native host
445 operations. However things like ldrex/strex are much harder so
446 there's not much point trying. */
448 cpsr
= cpsr_read(env
);
451 if (get_user_u64(oldval
, env
->regs
[0])) {
452 env
->exception
.vaddress
= env
->regs
[0];
456 if (get_user_u64(newval
, env
->regs
[1])) {
457 env
->exception
.vaddress
= env
->regs
[1];
461 if (get_user_u64(val
, addr
)) {
462 env
->exception
.vaddress
= addr
;
469 if (put_user_u64(val
, addr
)) {
470 env
->exception
.vaddress
= addr
;
480 cpsr_write(env
, cpsr
, CPSR_C
, CPSRWriteByInstr
);
486 /* We get the PC of the entry address - which is as good as anything,
487 on a real kernel what you get depends on which mode it uses. */
488 info
.si_signo
= TARGET_SIGSEGV
;
490 /* XXX: check env->error_code */
491 info
.si_code
= TARGET_SEGV_MAPERR
;
492 info
._sifields
._sigfault
._addr
= env
->exception
.vaddress
;
493 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
496 /* Handle a jump to the kernel code page. */
498 do_kernel_trap(CPUARMState
*env
)
504 switch (env
->regs
[15]) {
505 case 0xffff0fa0: /* __kernel_memory_barrier */
506 /* ??? No-op. Will need to do better for SMP. */
508 case 0xffff0fc0: /* __kernel_cmpxchg */
509 /* XXX: This only works between threads, not between processes.
510 It's probably possible to implement this with native host
511 operations. However things like ldrex/strex are much harder so
512 there's not much point trying. */
514 cpsr
= cpsr_read(env
);
516 /* FIXME: This should SEGV if the access fails. */
517 if (get_user_u32(val
, addr
))
519 if (val
== env
->regs
[0]) {
521 /* FIXME: Check for segfaults. */
522 put_user_u32(val
, addr
);
529 cpsr_write(env
, cpsr
, CPSR_C
, CPSRWriteByInstr
);
532 case 0xffff0fe0: /* __kernel_get_tls */
533 env
->regs
[0] = cpu_get_tls(env
);
535 case 0xffff0f60: /* __kernel_cmpxchg64 */
536 arm_kernel_cmpxchg64_helper(env
);
542 /* Jump back to the caller. */
543 addr
= env
->regs
[14];
548 env
->regs
[15] = addr
;
553 /* Store exclusive handling for AArch32 */
554 static int do_strex(CPUARMState
*env
)
562 if (env
->exclusive_addr
!= env
->exclusive_test
) {
565 /* We know we're always AArch32 so the address is in uint32_t range
566 * unless it was the -1 exclusive-monitor-lost value (which won't
567 * match exclusive_test above).
569 assert(extract64(env
->exclusive_addr
, 32, 32) == 0);
570 addr
= env
->exclusive_addr
;
571 size
= env
->exclusive_info
& 0xf;
574 segv
= get_user_u8(val
, addr
);
577 segv
= get_user_data_u16(val
, addr
, env
);
581 segv
= get_user_data_u32(val
, addr
, env
);
587 env
->exception
.vaddress
= addr
;
592 segv
= get_user_data_u32(valhi
, addr
+ 4, env
);
594 env
->exception
.vaddress
= addr
+ 4;
597 if (arm_cpu_bswap_data(env
)) {
598 val
= deposit64((uint64_t)valhi
, 32, 32, val
);
600 val
= deposit64(val
, 32, 32, valhi
);
603 if (val
!= env
->exclusive_val
) {
607 val
= env
->regs
[(env
->exclusive_info
>> 8) & 0xf];
610 segv
= put_user_u8(val
, addr
);
613 segv
= put_user_data_u16(val
, addr
, env
);
617 segv
= put_user_data_u32(val
, addr
, env
);
621 env
->exception
.vaddress
= addr
;
625 val
= env
->regs
[(env
->exclusive_info
>> 12) & 0xf];
626 segv
= put_user_data_u32(val
, addr
+ 4, env
);
628 env
->exception
.vaddress
= addr
+ 4;
635 env
->regs
[(env
->exclusive_info
>> 4) & 0xf] = rc
;
641 void cpu_loop(CPUARMState
*env
)
643 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
645 unsigned int n
, insn
;
646 target_siginfo_t info
;
652 trapnr
= cpu_exec(cs
);
654 process_queued_cpu_work(cs
);
659 TaskState
*ts
= cs
->opaque
;
663 /* we handle the FPU emulation here, as Linux */
664 /* we get the opcode */
665 /* FIXME - what to do if get_user() fails? */
666 get_user_code_u32(opcode
, env
->regs
[15], env
);
668 rc
= EmulateAll(opcode
, &ts
->fpa
, env
);
669 if (rc
== 0) { /* illegal instruction */
670 info
.si_signo
= TARGET_SIGILL
;
672 info
.si_code
= TARGET_ILL_ILLOPN
;
673 info
._sifields
._sigfault
._addr
= env
->regs
[15];
674 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
675 } else if (rc
< 0) { /* FP exception */
678 /* translate softfloat flags to FPSR flags */
679 if (-rc
& float_flag_invalid
)
681 if (-rc
& float_flag_divbyzero
)
683 if (-rc
& float_flag_overflow
)
685 if (-rc
& float_flag_underflow
)
687 if (-rc
& float_flag_inexact
)
690 FPSR fpsr
= ts
->fpa
.fpsr
;
691 //printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe);
693 if (fpsr
& (arm_fpe
<< 16)) { /* exception enabled? */
694 info
.si_signo
= TARGET_SIGFPE
;
697 /* ordered by priority, least first */
698 if (arm_fpe
& BIT_IXC
) info
.si_code
= TARGET_FPE_FLTRES
;
699 if (arm_fpe
& BIT_UFC
) info
.si_code
= TARGET_FPE_FLTUND
;
700 if (arm_fpe
& BIT_OFC
) info
.si_code
= TARGET_FPE_FLTOVF
;
701 if (arm_fpe
& BIT_DZC
) info
.si_code
= TARGET_FPE_FLTDIV
;
702 if (arm_fpe
& BIT_IOC
) info
.si_code
= TARGET_FPE_FLTINV
;
704 info
._sifields
._sigfault
._addr
= env
->regs
[15];
705 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
710 /* accumulate unenabled exceptions */
711 if ((!(fpsr
& BIT_IXE
)) && (arm_fpe
& BIT_IXC
))
713 if ((!(fpsr
& BIT_UFE
)) && (arm_fpe
& BIT_UFC
))
715 if ((!(fpsr
& BIT_OFE
)) && (arm_fpe
& BIT_OFC
))
717 if ((!(fpsr
& BIT_DZE
)) && (arm_fpe
& BIT_DZC
))
719 if ((!(fpsr
& BIT_IOE
)) && (arm_fpe
& BIT_IOC
))
722 } else { /* everything OK */
733 if (trapnr
== EXCP_BKPT
) {
735 /* FIXME - what to do if get_user() fails? */
736 get_user_code_u16(insn
, env
->regs
[15], env
);
740 /* FIXME - what to do if get_user() fails? */
741 get_user_code_u32(insn
, env
->regs
[15], env
);
742 n
= (insn
& 0xf) | ((insn
>> 4) & 0xff0);
747 /* FIXME - what to do if get_user() fails? */
748 get_user_code_u16(insn
, env
->regs
[15] - 2, env
);
751 /* FIXME - what to do if get_user() fails? */
752 get_user_code_u32(insn
, env
->regs
[15] - 4, env
);
757 if (n
== ARM_NR_cacheflush
) {
759 } else if (n
== ARM_NR_semihosting
760 || n
== ARM_NR_thumb_semihosting
) {
761 env
->regs
[0] = do_arm_semihosting (env
);
762 } else if (n
== 0 || n
>= ARM_SYSCALL_BASE
|| env
->thumb
) {
764 if (env
->thumb
|| n
== 0) {
767 n
-= ARM_SYSCALL_BASE
;
770 if ( n
> ARM_NR_BASE
) {
772 case ARM_NR_cacheflush
:
776 cpu_set_tls(env
, env
->regs
[0]);
779 case ARM_NR_breakpoint
:
780 env
->regs
[15] -= env
->thumb
? 2 : 4;
783 gemu_log("qemu: Unsupported ARM syscall: 0x%x\n",
785 env
->regs
[0] = -TARGET_ENOSYS
;
789 ret
= do_syscall(env
,
798 if (ret
== -TARGET_ERESTARTSYS
) {
799 env
->regs
[15] -= env
->thumb
? 2 : 4;
800 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
810 /* just indicate that signals should be handled asap */
813 if (!do_strex(env
)) {
816 /* fall through for segv */
817 case EXCP_PREFETCH_ABORT
:
818 case EXCP_DATA_ABORT
:
819 addr
= env
->exception
.vaddress
;
821 info
.si_signo
= TARGET_SIGSEGV
;
823 /* XXX: check env->error_code */
824 info
.si_code
= TARGET_SEGV_MAPERR
;
825 info
._sifields
._sigfault
._addr
= addr
;
826 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
834 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
839 info
.si_code
= TARGET_TRAP_BRKPT
;
840 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
844 case EXCP_KERNEL_TRAP
:
845 if (do_kernel_trap(env
))
849 /* nothing to do here for user-mode, just resume guest code */
853 EXCP_DUMP(env
, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr
);
856 process_pending_signals(env
);
863 * Handle AArch64 store-release exclusive
865 * rs = gets the status result of store exclusive
866 * rt = is the register that is stored
867 * rt2 = is the second register store (in STP)
870 static int do_strex_a64(CPUARMState
*env
)
881 /* size | is_pair << 2 | (rs << 4) | (rt << 9) | (rt2 << 14)); */
882 size
= extract32(env
->exclusive_info
, 0, 2);
883 is_pair
= extract32(env
->exclusive_info
, 2, 1);
884 rs
= extract32(env
->exclusive_info
, 4, 5);
885 rt
= extract32(env
->exclusive_info
, 9, 5);
886 rt2
= extract32(env
->exclusive_info
, 14, 5);
888 addr
= env
->exclusive_addr
;
890 if (addr
!= env
->exclusive_test
) {
896 segv
= get_user_u8(val
, addr
);
899 segv
= get_user_u16(val
, addr
);
902 segv
= get_user_u32(val
, addr
);
905 segv
= get_user_u64(val
, addr
);
911 env
->exception
.vaddress
= addr
;
914 if (val
!= env
->exclusive_val
) {
919 segv
= get_user_u32(val
, addr
+ 4);
921 segv
= get_user_u64(val
, addr
+ 8);
924 env
->exception
.vaddress
= addr
+ (size
== 2 ? 4 : 8);
927 if (val
!= env
->exclusive_high
) {
931 /* handle the zero register */
932 val
= rt
== 31 ? 0 : env
->xregs
[rt
];
935 segv
= put_user_u8(val
, addr
);
938 segv
= put_user_u16(val
, addr
);
941 segv
= put_user_u32(val
, addr
);
944 segv
= put_user_u64(val
, addr
);
951 /* handle the zero register */
952 val
= rt2
== 31 ? 0 : env
->xregs
[rt2
];
954 segv
= put_user_u32(val
, addr
+ 4);
956 segv
= put_user_u64(val
, addr
+ 8);
959 env
->exception
.vaddress
= addr
+ (size
== 2 ? 4 : 8);
966 /* rs == 31 encodes a write to the ZR, thus throwing away
967 * the status return. This is rather silly but valid.
973 /* instruction faulted, PC does not advance */
974 /* either way a strex releases any exclusive lock we have */
975 env
->exclusive_addr
= -1;
980 /* AArch64 main loop */
981 void cpu_loop(CPUARMState
*env
)
983 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
986 target_siginfo_t info
;
990 trapnr
= cpu_exec(cs
);
992 process_queued_cpu_work(cs
);
996 ret
= do_syscall(env
,
1005 if (ret
== -TARGET_ERESTARTSYS
) {
1007 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
1008 env
->xregs
[0] = ret
;
1011 case EXCP_INTERRUPT
:
1012 /* just indicate that signals should be handled asap */
1015 info
.si_signo
= TARGET_SIGILL
;
1017 info
.si_code
= TARGET_ILL_ILLOPN
;
1018 info
._sifields
._sigfault
._addr
= env
->pc
;
1019 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1022 if (!do_strex_a64(env
)) {
1025 /* fall through for segv */
1026 case EXCP_PREFETCH_ABORT
:
1027 case EXCP_DATA_ABORT
:
1028 info
.si_signo
= TARGET_SIGSEGV
;
1030 /* XXX: check env->error_code */
1031 info
.si_code
= TARGET_SEGV_MAPERR
;
1032 info
._sifields
._sigfault
._addr
= env
->exception
.vaddress
;
1033 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1037 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
1039 info
.si_signo
= sig
;
1041 info
.si_code
= TARGET_TRAP_BRKPT
;
1042 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1046 env
->xregs
[0] = do_arm_semihosting(env
);
1049 /* nothing to do here for user-mode, just resume guest code */
1052 EXCP_DUMP(env
, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr
);
1055 process_pending_signals(env
);
1056 /* Exception return on AArch64 always clears the exclusive monitor,
1057 * so any return to running guest code implies this.
1058 * A strex (successful or otherwise) also clears the monitor, so
1059 * we don't need to specialcase EXCP_STREX.
1061 env
->exclusive_addr
= -1;
1064 #endif /* ndef TARGET_ABI32 */
1068 #ifdef TARGET_UNICORE32
1070 void cpu_loop(CPUUniCore32State
*env
)
1072 CPUState
*cs
= CPU(uc32_env_get_cpu(env
));
1074 unsigned int n
, insn
;
1075 target_siginfo_t info
;
1079 trapnr
= cpu_exec(cs
);
1081 process_queued_cpu_work(cs
);
1084 case UC32_EXCP_PRIV
:
1087 get_user_u32(insn
, env
->regs
[31] - 4);
1088 n
= insn
& 0xffffff;
1090 if (n
>= UC32_SYSCALL_BASE
) {
1092 n
-= UC32_SYSCALL_BASE
;
1093 if (n
== UC32_SYSCALL_NR_set_tls
) {
1094 cpu_set_tls(env
, env
->regs
[0]);
1097 abi_long ret
= do_syscall(env
,
1106 if (ret
== -TARGET_ERESTARTSYS
) {
1108 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
1117 case UC32_EXCP_DTRAP
:
1118 case UC32_EXCP_ITRAP
:
1119 info
.si_signo
= TARGET_SIGSEGV
;
1121 /* XXX: check env->error_code */
1122 info
.si_code
= TARGET_SEGV_MAPERR
;
1123 info
._sifields
._sigfault
._addr
= env
->cp0
.c4_faultaddr
;
1124 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1126 case EXCP_INTERRUPT
:
1127 /* just indicate that signals should be handled asap */
1133 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
1135 info
.si_signo
= sig
;
1137 info
.si_code
= TARGET_TRAP_BRKPT
;
1138 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1145 process_pending_signals(env
);
1149 EXCP_DUMP(env
, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr
);
1155 #define SPARC64_STACK_BIAS 2047
1159 /* WARNING: dealing with register windows _is_ complicated. More info
1160 can be found at http://www.sics.se/~psm/sparcstack.html */
1161 static inline int get_reg_index(CPUSPARCState
*env
, int cwp
, int index
)
1163 index
= (index
+ cwp
* 16) % (16 * env
->nwindows
);
1164 /* wrap handling : if cwp is on the last window, then we use the
1165 registers 'after' the end */
1166 if (index
< 8 && env
->cwp
== env
->nwindows
- 1)
1167 index
+= 16 * env
->nwindows
;
1171 /* save the register window 'cwp1' */
1172 static inline void save_window_offset(CPUSPARCState
*env
, int cwp1
)
1177 sp_ptr
= env
->regbase
[get_reg_index(env
, cwp1
, 6)];
1178 #ifdef TARGET_SPARC64
1180 sp_ptr
+= SPARC64_STACK_BIAS
;
1182 #if defined(DEBUG_WIN)
1183 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx
" save_cwp=%d\n",
1186 for(i
= 0; i
< 16; i
++) {
1187 /* FIXME - what to do if put_user() fails? */
1188 put_user_ual(env
->regbase
[get_reg_index(env
, cwp1
, 8 + i
)], sp_ptr
);
1189 sp_ptr
+= sizeof(abi_ulong
);
1193 static void save_window(CPUSPARCState
*env
)
1195 #ifndef TARGET_SPARC64
1196 unsigned int new_wim
;
1197 new_wim
= ((env
->wim
>> 1) | (env
->wim
<< (env
->nwindows
- 1))) &
1198 ((1LL << env
->nwindows
) - 1);
1199 save_window_offset(env
, cpu_cwp_dec(env
, env
->cwp
- 2));
1202 save_window_offset(env
, cpu_cwp_dec(env
, env
->cwp
- 2));
1208 static void restore_window(CPUSPARCState
*env
)
1210 #ifndef TARGET_SPARC64
1211 unsigned int new_wim
;
1213 unsigned int i
, cwp1
;
1216 #ifndef TARGET_SPARC64
1217 new_wim
= ((env
->wim
<< 1) | (env
->wim
>> (env
->nwindows
- 1))) &
1218 ((1LL << env
->nwindows
) - 1);
1221 /* restore the invalid window */
1222 cwp1
= cpu_cwp_inc(env
, env
->cwp
+ 1);
1223 sp_ptr
= env
->regbase
[get_reg_index(env
, cwp1
, 6)];
1224 #ifdef TARGET_SPARC64
1226 sp_ptr
+= SPARC64_STACK_BIAS
;
1228 #if defined(DEBUG_WIN)
1229 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx
" load_cwp=%d\n",
1232 for(i
= 0; i
< 16; i
++) {
1233 /* FIXME - what to do if get_user() fails? */
1234 get_user_ual(env
->regbase
[get_reg_index(env
, cwp1
, 8 + i
)], sp_ptr
);
1235 sp_ptr
+= sizeof(abi_ulong
);
1237 #ifdef TARGET_SPARC64
1239 if (env
->cleanwin
< env
->nwindows
- 1)
1247 static void flush_windows(CPUSPARCState
*env
)
1253 /* if restore would invoke restore_window(), then we can stop */
1254 cwp1
= cpu_cwp_inc(env
, env
->cwp
+ offset
);
1255 #ifndef TARGET_SPARC64
1256 if (env
->wim
& (1 << cwp1
))
1259 if (env
->canrestore
== 0)
1264 save_window_offset(env
, cwp1
);
1267 cwp1
= cpu_cwp_inc(env
, env
->cwp
+ 1);
1268 #ifndef TARGET_SPARC64
1269 /* set wim so that restore will reload the registers */
1270 env
->wim
= 1 << cwp1
;
1272 #if defined(DEBUG_WIN)
1273 printf("flush_windows: nb=%d\n", offset
- 1);
1277 void cpu_loop (CPUSPARCState
*env
)
1279 CPUState
*cs
= CPU(sparc_env_get_cpu(env
));
1282 target_siginfo_t info
;
1286 trapnr
= cpu_exec(cs
);
1288 process_queued_cpu_work(cs
);
1290 /* Compute PSR before exposing state. */
1291 if (env
->cc_op
!= CC_OP_FLAGS
) {
1296 #ifndef TARGET_SPARC64
1303 ret
= do_syscall (env
, env
->gregs
[1],
1304 env
->regwptr
[0], env
->regwptr
[1],
1305 env
->regwptr
[2], env
->regwptr
[3],
1306 env
->regwptr
[4], env
->regwptr
[5],
1308 if (ret
== -TARGET_ERESTARTSYS
|| ret
== -TARGET_QEMU_ESIGRETURN
) {
1311 if ((abi_ulong
)ret
>= (abi_ulong
)(-515)) {
1312 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1313 env
->xcc
|= PSR_CARRY
;
1315 env
->psr
|= PSR_CARRY
;
1319 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1320 env
->xcc
&= ~PSR_CARRY
;
1322 env
->psr
&= ~PSR_CARRY
;
1325 env
->regwptr
[0] = ret
;
1326 /* next instruction */
1328 env
->npc
= env
->npc
+ 4;
1330 case 0x83: /* flush windows */
1335 /* next instruction */
1337 env
->npc
= env
->npc
+ 4;
1339 #ifndef TARGET_SPARC64
1340 case TT_WIN_OVF
: /* window overflow */
1343 case TT_WIN_UNF
: /* window underflow */
1344 restore_window(env
);
1349 info
.si_signo
= TARGET_SIGSEGV
;
1351 /* XXX: check env->error_code */
1352 info
.si_code
= TARGET_SEGV_MAPERR
;
1353 info
._sifields
._sigfault
._addr
= env
->mmuregs
[4];
1354 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1358 case TT_SPILL
: /* window overflow */
1361 case TT_FILL
: /* window underflow */
1362 restore_window(env
);
1367 info
.si_signo
= TARGET_SIGSEGV
;
1369 /* XXX: check env->error_code */
1370 info
.si_code
= TARGET_SEGV_MAPERR
;
1371 if (trapnr
== TT_DFAULT
)
1372 info
._sifields
._sigfault
._addr
= env
->dmmuregs
[4];
1374 info
._sifields
._sigfault
._addr
= cpu_tsptr(env
)->tpc
;
1375 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1378 #ifndef TARGET_ABI32
1381 sparc64_get_context(env
);
1385 sparc64_set_context(env
);
1389 case EXCP_INTERRUPT
:
1390 /* just indicate that signals should be handled asap */
1394 info
.si_signo
= TARGET_SIGILL
;
1396 info
.si_code
= TARGET_ILL_ILLOPC
;
1397 info
._sifields
._sigfault
._addr
= env
->pc
;
1398 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1405 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
1408 info
.si_signo
= sig
;
1410 info
.si_code
= TARGET_TRAP_BRKPT
;
1411 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1416 printf ("Unhandled trap: 0x%x\n", trapnr
);
1417 cpu_dump_state(cs
, stderr
, fprintf
, 0);
1420 process_pending_signals (env
);
1427 static inline uint64_t cpu_ppc_get_tb(CPUPPCState
*env
)
1429 return cpu_get_host_ticks();
1432 uint64_t cpu_ppc_load_tbl(CPUPPCState
*env
)
1434 return cpu_ppc_get_tb(env
);
1437 uint32_t cpu_ppc_load_tbu(CPUPPCState
*env
)
1439 return cpu_ppc_get_tb(env
) >> 32;
1442 uint64_t cpu_ppc_load_atbl(CPUPPCState
*env
)
1444 return cpu_ppc_get_tb(env
);
1447 uint32_t cpu_ppc_load_atbu(CPUPPCState
*env
)
1449 return cpu_ppc_get_tb(env
) >> 32;
1452 uint32_t cpu_ppc601_load_rtcu(CPUPPCState
*env
)
1453 __attribute__ (( alias ("cpu_ppc_load_tbu") ));
1455 uint32_t cpu_ppc601_load_rtcl(CPUPPCState
*env
)
1457 return cpu_ppc_load_tbl(env
) & 0x3FFFFF80;
1460 /* XXX: to be fixed */
1461 int ppc_dcr_read (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t *valp
)
1466 int ppc_dcr_write (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t val
)
1471 static int do_store_exclusive(CPUPPCState
*env
)
1474 target_ulong page_addr
;
1475 target_ulong val
, val2
__attribute__((unused
)) = 0;
1479 addr
= env
->reserve_ea
;
1480 page_addr
= addr
& TARGET_PAGE_MASK
;
1483 flags
= page_get_flags(page_addr
);
1484 if ((flags
& PAGE_READ
) == 0) {
1487 int reg
= env
->reserve_info
& 0x1f;
1488 int size
= env
->reserve_info
>> 5;
1491 if (addr
== env
->reserve_addr
) {
1493 case 1: segv
= get_user_u8(val
, addr
); break;
1494 case 2: segv
= get_user_u16(val
, addr
); break;
1495 case 4: segv
= get_user_u32(val
, addr
); break;
1496 #if defined(TARGET_PPC64)
1497 case 8: segv
= get_user_u64(val
, addr
); break;
1499 segv
= get_user_u64(val
, addr
);
1501 segv
= get_user_u64(val2
, addr
+ 8);
1508 if (!segv
&& val
== env
->reserve_val
) {
1509 val
= env
->gpr
[reg
];
1511 case 1: segv
= put_user_u8(val
, addr
); break;
1512 case 2: segv
= put_user_u16(val
, addr
); break;
1513 case 4: segv
= put_user_u32(val
, addr
); break;
1514 #if defined(TARGET_PPC64)
1515 case 8: segv
= put_user_u64(val
, addr
); break;
1517 if (val2
== env
->reserve_val2
) {
1520 val
= env
->gpr
[reg
+1];
1522 val2
= env
->gpr
[reg
+1];
1524 segv
= put_user_u64(val
, addr
);
1526 segv
= put_user_u64(val2
, addr
+ 8);
1539 env
->crf
[0] = (stored
<< 1) | xer_so
;
1540 env
->reserve_addr
= (target_ulong
)-1;
1550 void cpu_loop(CPUPPCState
*env
)
1552 CPUState
*cs
= CPU(ppc_env_get_cpu(env
));
1553 target_siginfo_t info
;
1559 trapnr
= cpu_exec(cs
);
1561 process_queued_cpu_work(cs
);
1564 case POWERPC_EXCP_NONE
:
1567 case POWERPC_EXCP_CRITICAL
: /* Critical input */
1568 cpu_abort(cs
, "Critical interrupt while in user mode. "
1571 case POWERPC_EXCP_MCHECK
: /* Machine check exception */
1572 cpu_abort(cs
, "Machine check exception while in user mode. "
1575 case POWERPC_EXCP_DSI
: /* Data storage exception */
1576 /* XXX: check this. Seems bugged */
1577 switch (env
->error_code
& 0xFF000000) {
1580 info
.si_signo
= TARGET_SIGSEGV
;
1582 info
.si_code
= TARGET_SEGV_MAPERR
;
1585 info
.si_signo
= TARGET_SIGILL
;
1587 info
.si_code
= TARGET_ILL_ILLADR
;
1590 info
.si_signo
= TARGET_SIGSEGV
;
1592 info
.si_code
= TARGET_SEGV_ACCERR
;
1595 /* Let's send a regular segfault... */
1596 EXCP_DUMP(env
, "Invalid segfault errno (%02x)\n",
1598 info
.si_signo
= TARGET_SIGSEGV
;
1600 info
.si_code
= TARGET_SEGV_MAPERR
;
1603 info
._sifields
._sigfault
._addr
= env
->nip
;
1604 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1606 case POWERPC_EXCP_ISI
: /* Instruction storage exception */
1607 /* XXX: check this */
1608 switch (env
->error_code
& 0xFF000000) {
1610 info
.si_signo
= TARGET_SIGSEGV
;
1612 info
.si_code
= TARGET_SEGV_MAPERR
;
1616 info
.si_signo
= TARGET_SIGSEGV
;
1618 info
.si_code
= TARGET_SEGV_ACCERR
;
1621 /* Let's send a regular segfault... */
1622 EXCP_DUMP(env
, "Invalid segfault errno (%02x)\n",
1624 info
.si_signo
= TARGET_SIGSEGV
;
1626 info
.si_code
= TARGET_SEGV_MAPERR
;
1629 info
._sifields
._sigfault
._addr
= env
->nip
- 4;
1630 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1632 case POWERPC_EXCP_EXTERNAL
: /* External input */
1633 cpu_abort(cs
, "External interrupt while in user mode. "
1636 case POWERPC_EXCP_ALIGN
: /* Alignment exception */
1637 /* XXX: check this */
1638 info
.si_signo
= TARGET_SIGBUS
;
1640 info
.si_code
= TARGET_BUS_ADRALN
;
1641 info
._sifields
._sigfault
._addr
= env
->nip
;
1642 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1644 case POWERPC_EXCP_PROGRAM
: /* Program exception */
1645 case POWERPC_EXCP_HV_EMU
: /* HV emulation */
1646 /* XXX: check this */
1647 switch (env
->error_code
& ~0xF) {
1648 case POWERPC_EXCP_FP
:
1649 info
.si_signo
= TARGET_SIGFPE
;
1651 switch (env
->error_code
& 0xF) {
1652 case POWERPC_EXCP_FP_OX
:
1653 info
.si_code
= TARGET_FPE_FLTOVF
;
1655 case POWERPC_EXCP_FP_UX
:
1656 info
.si_code
= TARGET_FPE_FLTUND
;
1658 case POWERPC_EXCP_FP_ZX
:
1659 case POWERPC_EXCP_FP_VXZDZ
:
1660 info
.si_code
= TARGET_FPE_FLTDIV
;
1662 case POWERPC_EXCP_FP_XX
:
1663 info
.si_code
= TARGET_FPE_FLTRES
;
1665 case POWERPC_EXCP_FP_VXSOFT
:
1666 info
.si_code
= TARGET_FPE_FLTINV
;
1668 case POWERPC_EXCP_FP_VXSNAN
:
1669 case POWERPC_EXCP_FP_VXISI
:
1670 case POWERPC_EXCP_FP_VXIDI
:
1671 case POWERPC_EXCP_FP_VXIMZ
:
1672 case POWERPC_EXCP_FP_VXVC
:
1673 case POWERPC_EXCP_FP_VXSQRT
:
1674 case POWERPC_EXCP_FP_VXCVI
:
1675 info
.si_code
= TARGET_FPE_FLTSUB
;
1678 EXCP_DUMP(env
, "Unknown floating point exception (%02x)\n",
1683 case POWERPC_EXCP_INVAL
:
1684 info
.si_signo
= TARGET_SIGILL
;
1686 switch (env
->error_code
& 0xF) {
1687 case POWERPC_EXCP_INVAL_INVAL
:
1688 info
.si_code
= TARGET_ILL_ILLOPC
;
1690 case POWERPC_EXCP_INVAL_LSWX
:
1691 info
.si_code
= TARGET_ILL_ILLOPN
;
1693 case POWERPC_EXCP_INVAL_SPR
:
1694 info
.si_code
= TARGET_ILL_PRVREG
;
1696 case POWERPC_EXCP_INVAL_FP
:
1697 info
.si_code
= TARGET_ILL_COPROC
;
1700 EXCP_DUMP(env
, "Unknown invalid operation (%02x)\n",
1701 env
->error_code
& 0xF);
1702 info
.si_code
= TARGET_ILL_ILLADR
;
1706 case POWERPC_EXCP_PRIV
:
1707 info
.si_signo
= TARGET_SIGILL
;
1709 switch (env
->error_code
& 0xF) {
1710 case POWERPC_EXCP_PRIV_OPC
:
1711 info
.si_code
= TARGET_ILL_PRVOPC
;
1713 case POWERPC_EXCP_PRIV_REG
:
1714 info
.si_code
= TARGET_ILL_PRVREG
;
1717 EXCP_DUMP(env
, "Unknown privilege violation (%02x)\n",
1718 env
->error_code
& 0xF);
1719 info
.si_code
= TARGET_ILL_PRVOPC
;
1723 case POWERPC_EXCP_TRAP
:
1724 cpu_abort(cs
, "Tried to call a TRAP\n");
1727 /* Should not happen ! */
1728 cpu_abort(cs
, "Unknown program exception (%02x)\n",
1732 info
._sifields
._sigfault
._addr
= env
->nip
;
1733 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1735 case POWERPC_EXCP_FPU
: /* Floating-point unavailable exception */
1736 info
.si_signo
= TARGET_SIGILL
;
1738 info
.si_code
= TARGET_ILL_COPROC
;
1739 info
._sifields
._sigfault
._addr
= env
->nip
;
1740 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1742 case POWERPC_EXCP_SYSCALL
: /* System call exception */
1743 cpu_abort(cs
, "Syscall exception while in user mode. "
1746 case POWERPC_EXCP_APU
: /* Auxiliary processor unavailable */
1747 info
.si_signo
= TARGET_SIGILL
;
1749 info
.si_code
= TARGET_ILL_COPROC
;
1750 info
._sifields
._sigfault
._addr
= env
->nip
;
1751 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1753 case POWERPC_EXCP_DECR
: /* Decrementer exception */
1754 cpu_abort(cs
, "Decrementer interrupt while in user mode. "
1757 case POWERPC_EXCP_FIT
: /* Fixed-interval timer interrupt */
1758 cpu_abort(cs
, "Fix interval timer interrupt while in user mode. "
1761 case POWERPC_EXCP_WDT
: /* Watchdog timer interrupt */
1762 cpu_abort(cs
, "Watchdog timer interrupt while in user mode. "
1765 case POWERPC_EXCP_DTLB
: /* Data TLB error */
1766 cpu_abort(cs
, "Data TLB exception while in user mode. "
1769 case POWERPC_EXCP_ITLB
: /* Instruction TLB error */
1770 cpu_abort(cs
, "Instruction TLB exception while in user mode. "
1773 case POWERPC_EXCP_SPEU
: /* SPE/embedded floating-point unavail. */
1774 info
.si_signo
= TARGET_SIGILL
;
1776 info
.si_code
= TARGET_ILL_COPROC
;
1777 info
._sifields
._sigfault
._addr
= env
->nip
;
1778 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1780 case POWERPC_EXCP_EFPDI
: /* Embedded floating-point data IRQ */
1781 cpu_abort(cs
, "Embedded floating-point data IRQ not handled\n");
1783 case POWERPC_EXCP_EFPRI
: /* Embedded floating-point round IRQ */
1784 cpu_abort(cs
, "Embedded floating-point round IRQ not handled\n");
1786 case POWERPC_EXCP_EPERFM
: /* Embedded performance monitor IRQ */
1787 cpu_abort(cs
, "Performance monitor exception not handled\n");
1789 case POWERPC_EXCP_DOORI
: /* Embedded doorbell interrupt */
1790 cpu_abort(cs
, "Doorbell interrupt while in user mode. "
1793 case POWERPC_EXCP_DOORCI
: /* Embedded doorbell critical interrupt */
1794 cpu_abort(cs
, "Doorbell critical interrupt while in user mode. "
1797 case POWERPC_EXCP_RESET
: /* System reset exception */
1798 cpu_abort(cs
, "Reset interrupt while in user mode. "
1801 case POWERPC_EXCP_DSEG
: /* Data segment exception */
1802 cpu_abort(cs
, "Data segment exception while in user mode. "
1805 case POWERPC_EXCP_ISEG
: /* Instruction segment exception */
1806 cpu_abort(cs
, "Instruction segment exception "
1807 "while in user mode. Aborting\n");
1809 /* PowerPC 64 with hypervisor mode support */
1810 case POWERPC_EXCP_HDECR
: /* Hypervisor decrementer exception */
1811 cpu_abort(cs
, "Hypervisor decrementer interrupt "
1812 "while in user mode. Aborting\n");
1814 case POWERPC_EXCP_TRACE
: /* Trace exception */
1816 * we use this exception to emulate step-by-step execution mode.
1819 /* PowerPC 64 with hypervisor mode support */
1820 case POWERPC_EXCP_HDSI
: /* Hypervisor data storage exception */
1821 cpu_abort(cs
, "Hypervisor data storage exception "
1822 "while in user mode. Aborting\n");
1824 case POWERPC_EXCP_HISI
: /* Hypervisor instruction storage excp */
1825 cpu_abort(cs
, "Hypervisor instruction storage exception "
1826 "while in user mode. Aborting\n");
1828 case POWERPC_EXCP_HDSEG
: /* Hypervisor data segment exception */
1829 cpu_abort(cs
, "Hypervisor data segment exception "
1830 "while in user mode. Aborting\n");
1832 case POWERPC_EXCP_HISEG
: /* Hypervisor instruction segment excp */
1833 cpu_abort(cs
, "Hypervisor instruction segment exception "
1834 "while in user mode. Aborting\n");
1836 case POWERPC_EXCP_VPU
: /* Vector unavailable exception */
1837 info
.si_signo
= TARGET_SIGILL
;
1839 info
.si_code
= TARGET_ILL_COPROC
;
1840 info
._sifields
._sigfault
._addr
= env
->nip
;
1841 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1843 case POWERPC_EXCP_PIT
: /* Programmable interval timer IRQ */
1844 cpu_abort(cs
, "Programmable interval timer interrupt "
1845 "while in user mode. Aborting\n");
1847 case POWERPC_EXCP_IO
: /* IO error exception */
1848 cpu_abort(cs
, "IO error exception while in user mode. "
1851 case POWERPC_EXCP_RUNM
: /* Run mode exception */
1852 cpu_abort(cs
, "Run mode exception while in user mode. "
1855 case POWERPC_EXCP_EMUL
: /* Emulation trap exception */
1856 cpu_abort(cs
, "Emulation trap exception not handled\n");
1858 case POWERPC_EXCP_IFTLB
: /* Instruction fetch TLB error */
1859 cpu_abort(cs
, "Instruction fetch TLB exception "
1860 "while in user-mode. Aborting");
1862 case POWERPC_EXCP_DLTLB
: /* Data load TLB miss */
1863 cpu_abort(cs
, "Data load TLB exception while in user-mode. "
1866 case POWERPC_EXCP_DSTLB
: /* Data store TLB miss */
1867 cpu_abort(cs
, "Data store TLB exception while in user-mode. "
1870 case POWERPC_EXCP_FPA
: /* Floating-point assist exception */
1871 cpu_abort(cs
, "Floating-point assist exception not handled\n");
1873 case POWERPC_EXCP_IABR
: /* Instruction address breakpoint */
1874 cpu_abort(cs
, "Instruction address breakpoint exception "
1877 case POWERPC_EXCP_SMI
: /* System management interrupt */
1878 cpu_abort(cs
, "System management interrupt while in user mode. "
1881 case POWERPC_EXCP_THERM
: /* Thermal interrupt */
1882 cpu_abort(cs
, "Thermal interrupt interrupt while in user mode. "
1885 case POWERPC_EXCP_PERFM
: /* Embedded performance monitor IRQ */
1886 cpu_abort(cs
, "Performance monitor exception not handled\n");
1888 case POWERPC_EXCP_VPUA
: /* Vector assist exception */
1889 cpu_abort(cs
, "Vector assist exception not handled\n");
1891 case POWERPC_EXCP_SOFTP
: /* Soft patch exception */
1892 cpu_abort(cs
, "Soft patch exception not handled\n");
1894 case POWERPC_EXCP_MAINT
: /* Maintenance exception */
1895 cpu_abort(cs
, "Maintenance exception while in user mode. "
1898 case POWERPC_EXCP_STOP
: /* stop translation */
1899 /* We did invalidate the instruction cache. Go on */
1901 case POWERPC_EXCP_BRANCH
: /* branch instruction: */
1902 /* We just stopped because of a branch. Go on */
1904 case POWERPC_EXCP_SYSCALL_USER
:
1905 /* system call in user-mode emulation */
1907 * PPC ABI uses overflow flag in cr0 to signal an error
1910 env
->crf
[0] &= ~0x1;
1911 ret
= do_syscall(env
, env
->gpr
[0], env
->gpr
[3], env
->gpr
[4],
1912 env
->gpr
[5], env
->gpr
[6], env
->gpr
[7],
1914 if (ret
== -TARGET_ERESTARTSYS
) {
1917 if (ret
== (target_ulong
)(-TARGET_QEMU_ESIGRETURN
)) {
1918 /* Returning from a successful sigreturn syscall.
1919 Avoid corrupting register state. */
1923 if (ret
> (target_ulong
)(-515)) {
1929 case POWERPC_EXCP_STCX
:
1930 if (do_store_exclusive(env
)) {
1931 info
.si_signo
= TARGET_SIGSEGV
;
1933 info
.si_code
= TARGET_SEGV_MAPERR
;
1934 info
._sifields
._sigfault
._addr
= env
->nip
;
1935 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1942 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
1944 info
.si_signo
= sig
;
1946 info
.si_code
= TARGET_TRAP_BRKPT
;
1947 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
1951 case EXCP_INTERRUPT
:
1952 /* just indicate that signals should be handled asap */
1955 cpu_abort(cs
, "Unknown exception 0x%x. Aborting\n", trapnr
);
1958 process_pending_signals(env
);
1965 # ifdef TARGET_ABI_MIPSO32
1966 # define MIPS_SYS(name, args) args,
1967 static const uint8_t mips_syscall_args
[] = {
1968 MIPS_SYS(sys_syscall
, 8) /* 4000 */
1969 MIPS_SYS(sys_exit
, 1)
1970 MIPS_SYS(sys_fork
, 0)
1971 MIPS_SYS(sys_read
, 3)
1972 MIPS_SYS(sys_write
, 3)
1973 MIPS_SYS(sys_open
, 3) /* 4005 */
1974 MIPS_SYS(sys_close
, 1)
1975 MIPS_SYS(sys_waitpid
, 3)
1976 MIPS_SYS(sys_creat
, 2)
1977 MIPS_SYS(sys_link
, 2)
1978 MIPS_SYS(sys_unlink
, 1) /* 4010 */
1979 MIPS_SYS(sys_execve
, 0)
1980 MIPS_SYS(sys_chdir
, 1)
1981 MIPS_SYS(sys_time
, 1)
1982 MIPS_SYS(sys_mknod
, 3)
1983 MIPS_SYS(sys_chmod
, 2) /* 4015 */
1984 MIPS_SYS(sys_lchown
, 3)
1985 MIPS_SYS(sys_ni_syscall
, 0)
1986 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_stat */
1987 MIPS_SYS(sys_lseek
, 3)
1988 MIPS_SYS(sys_getpid
, 0) /* 4020 */
1989 MIPS_SYS(sys_mount
, 5)
1990 MIPS_SYS(sys_umount
, 1)
1991 MIPS_SYS(sys_setuid
, 1)
1992 MIPS_SYS(sys_getuid
, 0)
1993 MIPS_SYS(sys_stime
, 1) /* 4025 */
1994 MIPS_SYS(sys_ptrace
, 4)
1995 MIPS_SYS(sys_alarm
, 1)
1996 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_fstat */
1997 MIPS_SYS(sys_pause
, 0)
1998 MIPS_SYS(sys_utime
, 2) /* 4030 */
1999 MIPS_SYS(sys_ni_syscall
, 0)
2000 MIPS_SYS(sys_ni_syscall
, 0)
2001 MIPS_SYS(sys_access
, 2)
2002 MIPS_SYS(sys_nice
, 1)
2003 MIPS_SYS(sys_ni_syscall
, 0) /* 4035 */
2004 MIPS_SYS(sys_sync
, 0)
2005 MIPS_SYS(sys_kill
, 2)
2006 MIPS_SYS(sys_rename
, 2)
2007 MIPS_SYS(sys_mkdir
, 2)
2008 MIPS_SYS(sys_rmdir
, 1) /* 4040 */
2009 MIPS_SYS(sys_dup
, 1)
2010 MIPS_SYS(sys_pipe
, 0)
2011 MIPS_SYS(sys_times
, 1)
2012 MIPS_SYS(sys_ni_syscall
, 0)
2013 MIPS_SYS(sys_brk
, 1) /* 4045 */
2014 MIPS_SYS(sys_setgid
, 1)
2015 MIPS_SYS(sys_getgid
, 0)
2016 MIPS_SYS(sys_ni_syscall
, 0) /* was signal(2) */
2017 MIPS_SYS(sys_geteuid
, 0)
2018 MIPS_SYS(sys_getegid
, 0) /* 4050 */
2019 MIPS_SYS(sys_acct
, 0)
2020 MIPS_SYS(sys_umount2
, 2)
2021 MIPS_SYS(sys_ni_syscall
, 0)
2022 MIPS_SYS(sys_ioctl
, 3)
2023 MIPS_SYS(sys_fcntl
, 3) /* 4055 */
2024 MIPS_SYS(sys_ni_syscall
, 2)
2025 MIPS_SYS(sys_setpgid
, 2)
2026 MIPS_SYS(sys_ni_syscall
, 0)
2027 MIPS_SYS(sys_olduname
, 1)
2028 MIPS_SYS(sys_umask
, 1) /* 4060 */
2029 MIPS_SYS(sys_chroot
, 1)
2030 MIPS_SYS(sys_ustat
, 2)
2031 MIPS_SYS(sys_dup2
, 2)
2032 MIPS_SYS(sys_getppid
, 0)
2033 MIPS_SYS(sys_getpgrp
, 0) /* 4065 */
2034 MIPS_SYS(sys_setsid
, 0)
2035 MIPS_SYS(sys_sigaction
, 3)
2036 MIPS_SYS(sys_sgetmask
, 0)
2037 MIPS_SYS(sys_ssetmask
, 1)
2038 MIPS_SYS(sys_setreuid
, 2) /* 4070 */
2039 MIPS_SYS(sys_setregid
, 2)
2040 MIPS_SYS(sys_sigsuspend
, 0)
2041 MIPS_SYS(sys_sigpending
, 1)
2042 MIPS_SYS(sys_sethostname
, 2)
2043 MIPS_SYS(sys_setrlimit
, 2) /* 4075 */
2044 MIPS_SYS(sys_getrlimit
, 2)
2045 MIPS_SYS(sys_getrusage
, 2)
2046 MIPS_SYS(sys_gettimeofday
, 2)
2047 MIPS_SYS(sys_settimeofday
, 2)
2048 MIPS_SYS(sys_getgroups
, 2) /* 4080 */
2049 MIPS_SYS(sys_setgroups
, 2)
2050 MIPS_SYS(sys_ni_syscall
, 0) /* old_select */
2051 MIPS_SYS(sys_symlink
, 2)
2052 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_lstat */
2053 MIPS_SYS(sys_readlink
, 3) /* 4085 */
2054 MIPS_SYS(sys_uselib
, 1)
2055 MIPS_SYS(sys_swapon
, 2)
2056 MIPS_SYS(sys_reboot
, 3)
2057 MIPS_SYS(old_readdir
, 3)
2058 MIPS_SYS(old_mmap
, 6) /* 4090 */
2059 MIPS_SYS(sys_munmap
, 2)
2060 MIPS_SYS(sys_truncate
, 2)
2061 MIPS_SYS(sys_ftruncate
, 2)
2062 MIPS_SYS(sys_fchmod
, 2)
2063 MIPS_SYS(sys_fchown
, 3) /* 4095 */
2064 MIPS_SYS(sys_getpriority
, 2)
2065 MIPS_SYS(sys_setpriority
, 3)
2066 MIPS_SYS(sys_ni_syscall
, 0)
2067 MIPS_SYS(sys_statfs
, 2)
2068 MIPS_SYS(sys_fstatfs
, 2) /* 4100 */
2069 MIPS_SYS(sys_ni_syscall
, 0) /* was ioperm(2) */
2070 MIPS_SYS(sys_socketcall
, 2)
2071 MIPS_SYS(sys_syslog
, 3)
2072 MIPS_SYS(sys_setitimer
, 3)
2073 MIPS_SYS(sys_getitimer
, 2) /* 4105 */
2074 MIPS_SYS(sys_newstat
, 2)
2075 MIPS_SYS(sys_newlstat
, 2)
2076 MIPS_SYS(sys_newfstat
, 2)
2077 MIPS_SYS(sys_uname
, 1)
2078 MIPS_SYS(sys_ni_syscall
, 0) /* 4110 was iopl(2) */
2079 MIPS_SYS(sys_vhangup
, 0)
2080 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_idle() */
2081 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_vm86 */
2082 MIPS_SYS(sys_wait4
, 4)
2083 MIPS_SYS(sys_swapoff
, 1) /* 4115 */
2084 MIPS_SYS(sys_sysinfo
, 1)
2085 MIPS_SYS(sys_ipc
, 6)
2086 MIPS_SYS(sys_fsync
, 1)
2087 MIPS_SYS(sys_sigreturn
, 0)
2088 MIPS_SYS(sys_clone
, 6) /* 4120 */
2089 MIPS_SYS(sys_setdomainname
, 2)
2090 MIPS_SYS(sys_newuname
, 1)
2091 MIPS_SYS(sys_ni_syscall
, 0) /* sys_modify_ldt */
2092 MIPS_SYS(sys_adjtimex
, 1)
2093 MIPS_SYS(sys_mprotect
, 3) /* 4125 */
2094 MIPS_SYS(sys_sigprocmask
, 3)
2095 MIPS_SYS(sys_ni_syscall
, 0) /* was create_module */
2096 MIPS_SYS(sys_init_module
, 5)
2097 MIPS_SYS(sys_delete_module
, 1)
2098 MIPS_SYS(sys_ni_syscall
, 0) /* 4130 was get_kernel_syms */
2099 MIPS_SYS(sys_quotactl
, 0)
2100 MIPS_SYS(sys_getpgid
, 1)
2101 MIPS_SYS(sys_fchdir
, 1)
2102 MIPS_SYS(sys_bdflush
, 2)
2103 MIPS_SYS(sys_sysfs
, 3) /* 4135 */
2104 MIPS_SYS(sys_personality
, 1)
2105 MIPS_SYS(sys_ni_syscall
, 0) /* for afs_syscall */
2106 MIPS_SYS(sys_setfsuid
, 1)
2107 MIPS_SYS(sys_setfsgid
, 1)
2108 MIPS_SYS(sys_llseek
, 5) /* 4140 */
2109 MIPS_SYS(sys_getdents
, 3)
2110 MIPS_SYS(sys_select
, 5)
2111 MIPS_SYS(sys_flock
, 2)
2112 MIPS_SYS(sys_msync
, 3)
2113 MIPS_SYS(sys_readv
, 3) /* 4145 */
2114 MIPS_SYS(sys_writev
, 3)
2115 MIPS_SYS(sys_cacheflush
, 3)
2116 MIPS_SYS(sys_cachectl
, 3)
2117 MIPS_SYS(sys_sysmips
, 4)
2118 MIPS_SYS(sys_ni_syscall
, 0) /* 4150 */
2119 MIPS_SYS(sys_getsid
, 1)
2120 MIPS_SYS(sys_fdatasync
, 0)
2121 MIPS_SYS(sys_sysctl
, 1)
2122 MIPS_SYS(sys_mlock
, 2)
2123 MIPS_SYS(sys_munlock
, 2) /* 4155 */
2124 MIPS_SYS(sys_mlockall
, 1)
2125 MIPS_SYS(sys_munlockall
, 0)
2126 MIPS_SYS(sys_sched_setparam
, 2)
2127 MIPS_SYS(sys_sched_getparam
, 2)
2128 MIPS_SYS(sys_sched_setscheduler
, 3) /* 4160 */
2129 MIPS_SYS(sys_sched_getscheduler
, 1)
2130 MIPS_SYS(sys_sched_yield
, 0)
2131 MIPS_SYS(sys_sched_get_priority_max
, 1)
2132 MIPS_SYS(sys_sched_get_priority_min
, 1)
2133 MIPS_SYS(sys_sched_rr_get_interval
, 2) /* 4165 */
2134 MIPS_SYS(sys_nanosleep
, 2)
2135 MIPS_SYS(sys_mremap
, 5)
2136 MIPS_SYS(sys_accept
, 3)
2137 MIPS_SYS(sys_bind
, 3)
2138 MIPS_SYS(sys_connect
, 3) /* 4170 */
2139 MIPS_SYS(sys_getpeername
, 3)
2140 MIPS_SYS(sys_getsockname
, 3)
2141 MIPS_SYS(sys_getsockopt
, 5)
2142 MIPS_SYS(sys_listen
, 2)
2143 MIPS_SYS(sys_recv
, 4) /* 4175 */
2144 MIPS_SYS(sys_recvfrom
, 6)
2145 MIPS_SYS(sys_recvmsg
, 3)
2146 MIPS_SYS(sys_send
, 4)
2147 MIPS_SYS(sys_sendmsg
, 3)
2148 MIPS_SYS(sys_sendto
, 6) /* 4180 */
2149 MIPS_SYS(sys_setsockopt
, 5)
2150 MIPS_SYS(sys_shutdown
, 2)
2151 MIPS_SYS(sys_socket
, 3)
2152 MIPS_SYS(sys_socketpair
, 4)
2153 MIPS_SYS(sys_setresuid
, 3) /* 4185 */
2154 MIPS_SYS(sys_getresuid
, 3)
2155 MIPS_SYS(sys_ni_syscall
, 0) /* was sys_query_module */
2156 MIPS_SYS(sys_poll
, 3)
2157 MIPS_SYS(sys_nfsservctl
, 3)
2158 MIPS_SYS(sys_setresgid
, 3) /* 4190 */
2159 MIPS_SYS(sys_getresgid
, 3)
2160 MIPS_SYS(sys_prctl
, 5)
2161 MIPS_SYS(sys_rt_sigreturn
, 0)
2162 MIPS_SYS(sys_rt_sigaction
, 4)
2163 MIPS_SYS(sys_rt_sigprocmask
, 4) /* 4195 */
2164 MIPS_SYS(sys_rt_sigpending
, 2)
2165 MIPS_SYS(sys_rt_sigtimedwait
, 4)
2166 MIPS_SYS(sys_rt_sigqueueinfo
, 3)
2167 MIPS_SYS(sys_rt_sigsuspend
, 0)
2168 MIPS_SYS(sys_pread64
, 6) /* 4200 */
2169 MIPS_SYS(sys_pwrite64
, 6)
2170 MIPS_SYS(sys_chown
, 3)
2171 MIPS_SYS(sys_getcwd
, 2)
2172 MIPS_SYS(sys_capget
, 2)
2173 MIPS_SYS(sys_capset
, 2) /* 4205 */
2174 MIPS_SYS(sys_sigaltstack
, 2)
2175 MIPS_SYS(sys_sendfile
, 4)
2176 MIPS_SYS(sys_ni_syscall
, 0)
2177 MIPS_SYS(sys_ni_syscall
, 0)
2178 MIPS_SYS(sys_mmap2
, 6) /* 4210 */
2179 MIPS_SYS(sys_truncate64
, 4)
2180 MIPS_SYS(sys_ftruncate64
, 4)
2181 MIPS_SYS(sys_stat64
, 2)
2182 MIPS_SYS(sys_lstat64
, 2)
2183 MIPS_SYS(sys_fstat64
, 2) /* 4215 */
2184 MIPS_SYS(sys_pivot_root
, 2)
2185 MIPS_SYS(sys_mincore
, 3)
2186 MIPS_SYS(sys_madvise
, 3)
2187 MIPS_SYS(sys_getdents64
, 3)
2188 MIPS_SYS(sys_fcntl64
, 3) /* 4220 */
2189 MIPS_SYS(sys_ni_syscall
, 0)
2190 MIPS_SYS(sys_gettid
, 0)
2191 MIPS_SYS(sys_readahead
, 5)
2192 MIPS_SYS(sys_setxattr
, 5)
2193 MIPS_SYS(sys_lsetxattr
, 5) /* 4225 */
2194 MIPS_SYS(sys_fsetxattr
, 5)
2195 MIPS_SYS(sys_getxattr
, 4)
2196 MIPS_SYS(sys_lgetxattr
, 4)
2197 MIPS_SYS(sys_fgetxattr
, 4)
2198 MIPS_SYS(sys_listxattr
, 3) /* 4230 */
2199 MIPS_SYS(sys_llistxattr
, 3)
2200 MIPS_SYS(sys_flistxattr
, 3)
2201 MIPS_SYS(sys_removexattr
, 2)
2202 MIPS_SYS(sys_lremovexattr
, 2)
2203 MIPS_SYS(sys_fremovexattr
, 2) /* 4235 */
2204 MIPS_SYS(sys_tkill
, 2)
2205 MIPS_SYS(sys_sendfile64
, 5)
2206 MIPS_SYS(sys_futex
, 6)
2207 MIPS_SYS(sys_sched_setaffinity
, 3)
2208 MIPS_SYS(sys_sched_getaffinity
, 3) /* 4240 */
2209 MIPS_SYS(sys_io_setup
, 2)
2210 MIPS_SYS(sys_io_destroy
, 1)
2211 MIPS_SYS(sys_io_getevents
, 5)
2212 MIPS_SYS(sys_io_submit
, 3)
2213 MIPS_SYS(sys_io_cancel
, 3) /* 4245 */
2214 MIPS_SYS(sys_exit_group
, 1)
2215 MIPS_SYS(sys_lookup_dcookie
, 3)
2216 MIPS_SYS(sys_epoll_create
, 1)
2217 MIPS_SYS(sys_epoll_ctl
, 4)
2218 MIPS_SYS(sys_epoll_wait
, 3) /* 4250 */
2219 MIPS_SYS(sys_remap_file_pages
, 5)
2220 MIPS_SYS(sys_set_tid_address
, 1)
2221 MIPS_SYS(sys_restart_syscall
, 0)
2222 MIPS_SYS(sys_fadvise64_64
, 7)
2223 MIPS_SYS(sys_statfs64
, 3) /* 4255 */
2224 MIPS_SYS(sys_fstatfs64
, 2)
2225 MIPS_SYS(sys_timer_create
, 3)
2226 MIPS_SYS(sys_timer_settime
, 4)
2227 MIPS_SYS(sys_timer_gettime
, 2)
2228 MIPS_SYS(sys_timer_getoverrun
, 1) /* 4260 */
2229 MIPS_SYS(sys_timer_delete
, 1)
2230 MIPS_SYS(sys_clock_settime
, 2)
2231 MIPS_SYS(sys_clock_gettime
, 2)
2232 MIPS_SYS(sys_clock_getres
, 2)
2233 MIPS_SYS(sys_clock_nanosleep
, 4) /* 4265 */
2234 MIPS_SYS(sys_tgkill
, 3)
2235 MIPS_SYS(sys_utimes
, 2)
2236 MIPS_SYS(sys_mbind
, 4)
2237 MIPS_SYS(sys_ni_syscall
, 0) /* sys_get_mempolicy */
2238 MIPS_SYS(sys_ni_syscall
, 0) /* 4270 sys_set_mempolicy */
2239 MIPS_SYS(sys_mq_open
, 4)
2240 MIPS_SYS(sys_mq_unlink
, 1)
2241 MIPS_SYS(sys_mq_timedsend
, 5)
2242 MIPS_SYS(sys_mq_timedreceive
, 5)
2243 MIPS_SYS(sys_mq_notify
, 2) /* 4275 */
2244 MIPS_SYS(sys_mq_getsetattr
, 3)
2245 MIPS_SYS(sys_ni_syscall
, 0) /* sys_vserver */
2246 MIPS_SYS(sys_waitid
, 4)
2247 MIPS_SYS(sys_ni_syscall
, 0) /* available, was setaltroot */
2248 MIPS_SYS(sys_add_key
, 5)
2249 MIPS_SYS(sys_request_key
, 4)
2250 MIPS_SYS(sys_keyctl
, 5)
2251 MIPS_SYS(sys_set_thread_area
, 1)
2252 MIPS_SYS(sys_inotify_init
, 0)
2253 MIPS_SYS(sys_inotify_add_watch
, 3) /* 4285 */
2254 MIPS_SYS(sys_inotify_rm_watch
, 2)
2255 MIPS_SYS(sys_migrate_pages
, 4)
2256 MIPS_SYS(sys_openat
, 4)
2257 MIPS_SYS(sys_mkdirat
, 3)
2258 MIPS_SYS(sys_mknodat
, 4) /* 4290 */
2259 MIPS_SYS(sys_fchownat
, 5)
2260 MIPS_SYS(sys_futimesat
, 3)
2261 MIPS_SYS(sys_fstatat64
, 4)
2262 MIPS_SYS(sys_unlinkat
, 3)
2263 MIPS_SYS(sys_renameat
, 4) /* 4295 */
2264 MIPS_SYS(sys_linkat
, 5)
2265 MIPS_SYS(sys_symlinkat
, 3)
2266 MIPS_SYS(sys_readlinkat
, 4)
2267 MIPS_SYS(sys_fchmodat
, 3)
2268 MIPS_SYS(sys_faccessat
, 3) /* 4300 */
2269 MIPS_SYS(sys_pselect6
, 6)
2270 MIPS_SYS(sys_ppoll
, 5)
2271 MIPS_SYS(sys_unshare
, 1)
2272 MIPS_SYS(sys_splice
, 6)
2273 MIPS_SYS(sys_sync_file_range
, 7) /* 4305 */
2274 MIPS_SYS(sys_tee
, 4)
2275 MIPS_SYS(sys_vmsplice
, 4)
2276 MIPS_SYS(sys_move_pages
, 6)
2277 MIPS_SYS(sys_set_robust_list
, 2)
2278 MIPS_SYS(sys_get_robust_list
, 3) /* 4310 */
2279 MIPS_SYS(sys_kexec_load
, 4)
2280 MIPS_SYS(sys_getcpu
, 3)
2281 MIPS_SYS(sys_epoll_pwait
, 6)
2282 MIPS_SYS(sys_ioprio_set
, 3)
2283 MIPS_SYS(sys_ioprio_get
, 2)
2284 MIPS_SYS(sys_utimensat
, 4)
2285 MIPS_SYS(sys_signalfd
, 3)
2286 MIPS_SYS(sys_ni_syscall
, 0) /* was timerfd */
2287 MIPS_SYS(sys_eventfd
, 1)
2288 MIPS_SYS(sys_fallocate
, 6) /* 4320 */
2289 MIPS_SYS(sys_timerfd_create
, 2)
2290 MIPS_SYS(sys_timerfd_gettime
, 2)
2291 MIPS_SYS(sys_timerfd_settime
, 4)
2292 MIPS_SYS(sys_signalfd4
, 4)
2293 MIPS_SYS(sys_eventfd2
, 2) /* 4325 */
2294 MIPS_SYS(sys_epoll_create1
, 1)
2295 MIPS_SYS(sys_dup3
, 3)
2296 MIPS_SYS(sys_pipe2
, 2)
2297 MIPS_SYS(sys_inotify_init1
, 1)
2298 MIPS_SYS(sys_preadv
, 6) /* 4330 */
2299 MIPS_SYS(sys_pwritev
, 6)
2300 MIPS_SYS(sys_rt_tgsigqueueinfo
, 4)
2301 MIPS_SYS(sys_perf_event_open
, 5)
2302 MIPS_SYS(sys_accept4
, 4)
2303 MIPS_SYS(sys_recvmmsg
, 5) /* 4335 */
2304 MIPS_SYS(sys_fanotify_init
, 2)
2305 MIPS_SYS(sys_fanotify_mark
, 6)
2306 MIPS_SYS(sys_prlimit64
, 4)
2307 MIPS_SYS(sys_name_to_handle_at
, 5)
2308 MIPS_SYS(sys_open_by_handle_at
, 3) /* 4340 */
2309 MIPS_SYS(sys_clock_adjtime
, 2)
2310 MIPS_SYS(sys_syncfs
, 1)
2315 static int do_store_exclusive(CPUMIPSState
*env
)
2318 target_ulong page_addr
;
2326 page_addr
= addr
& TARGET_PAGE_MASK
;
2329 flags
= page_get_flags(page_addr
);
2330 if ((flags
& PAGE_READ
) == 0) {
2333 reg
= env
->llreg
& 0x1f;
2334 d
= (env
->llreg
& 0x20) != 0;
2336 segv
= get_user_s64(val
, addr
);
2338 segv
= get_user_s32(val
, addr
);
2341 if (val
!= env
->llval
) {
2342 env
->active_tc
.gpr
[reg
] = 0;
2345 segv
= put_user_u64(env
->llnewval
, addr
);
2347 segv
= put_user_u32(env
->llnewval
, addr
);
2350 env
->active_tc
.gpr
[reg
] = 1;
2357 env
->active_tc
.PC
+= 4;
2370 static int do_break(CPUMIPSState
*env
, target_siginfo_t
*info
,
2378 info
->si_signo
= TARGET_SIGFPE
;
2380 info
->si_code
= (code
== BRK_OVERFLOW
) ? FPE_INTOVF
: FPE_INTDIV
;
2381 queue_signal(env
, info
->si_signo
, QEMU_SI_FAULT
, &*info
);
2385 info
->si_signo
= TARGET_SIGTRAP
;
2387 queue_signal(env
, info
->si_signo
, QEMU_SI_FAULT
, &*info
);
2395 void cpu_loop(CPUMIPSState
*env
)
2397 CPUState
*cs
= CPU(mips_env_get_cpu(env
));
2398 target_siginfo_t info
;
2401 # ifdef TARGET_ABI_MIPSO32
2402 unsigned int syscall_num
;
2407 trapnr
= cpu_exec(cs
);
2409 process_queued_cpu_work(cs
);
2413 env
->active_tc
.PC
+= 4;
2414 # ifdef TARGET_ABI_MIPSO32
2415 syscall_num
= env
->active_tc
.gpr
[2] - 4000;
2416 if (syscall_num
>= sizeof(mips_syscall_args
)) {
2417 ret
= -TARGET_ENOSYS
;
2421 abi_ulong arg5
= 0, arg6
= 0, arg7
= 0, arg8
= 0;
2423 nb_args
= mips_syscall_args
[syscall_num
];
2424 sp_reg
= env
->active_tc
.gpr
[29];
2426 /* these arguments are taken from the stack */
2428 if ((ret
= get_user_ual(arg8
, sp_reg
+ 28)) != 0) {
2432 if ((ret
= get_user_ual(arg7
, sp_reg
+ 24)) != 0) {
2436 if ((ret
= get_user_ual(arg6
, sp_reg
+ 20)) != 0) {
2440 if ((ret
= get_user_ual(arg5
, sp_reg
+ 16)) != 0) {
2446 ret
= do_syscall(env
, env
->active_tc
.gpr
[2],
2447 env
->active_tc
.gpr
[4],
2448 env
->active_tc
.gpr
[5],
2449 env
->active_tc
.gpr
[6],
2450 env
->active_tc
.gpr
[7],
2451 arg5
, arg6
, arg7
, arg8
);
2455 ret
= do_syscall(env
, env
->active_tc
.gpr
[2],
2456 env
->active_tc
.gpr
[4], env
->active_tc
.gpr
[5],
2457 env
->active_tc
.gpr
[6], env
->active_tc
.gpr
[7],
2458 env
->active_tc
.gpr
[8], env
->active_tc
.gpr
[9],
2459 env
->active_tc
.gpr
[10], env
->active_tc
.gpr
[11]);
2461 if (ret
== -TARGET_ERESTARTSYS
) {
2462 env
->active_tc
.PC
-= 4;
2465 if (ret
== -TARGET_QEMU_ESIGRETURN
) {
2466 /* Returning from a successful sigreturn syscall.
2467 Avoid clobbering register state. */
2470 if ((abi_ulong
)ret
>= (abi_ulong
)-1133) {
2471 env
->active_tc
.gpr
[7] = 1; /* error flag */
2474 env
->active_tc
.gpr
[7] = 0; /* error flag */
2476 env
->active_tc
.gpr
[2] = ret
;
2482 info
.si_signo
= TARGET_SIGSEGV
;
2484 /* XXX: check env->error_code */
2485 info
.si_code
= TARGET_SEGV_MAPERR
;
2486 info
._sifields
._sigfault
._addr
= env
->CP0_BadVAddr
;
2487 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2491 info
.si_signo
= TARGET_SIGILL
;
2494 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2496 case EXCP_INTERRUPT
:
2497 /* just indicate that signals should be handled asap */
2503 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
2506 info
.si_signo
= sig
;
2508 info
.si_code
= TARGET_TRAP_BRKPT
;
2509 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2514 if (do_store_exclusive(env
)) {
2515 info
.si_signo
= TARGET_SIGSEGV
;
2517 info
.si_code
= TARGET_SEGV_MAPERR
;
2518 info
._sifields
._sigfault
._addr
= env
->active_tc
.PC
;
2519 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2523 info
.si_signo
= TARGET_SIGILL
;
2525 info
.si_code
= TARGET_ILL_ILLOPC
;
2526 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2528 /* The code below was inspired by the MIPS Linux kernel trap
2529 * handling code in arch/mips/kernel/traps.c.
2533 abi_ulong trap_instr
;
2536 if (env
->hflags
& MIPS_HFLAG_M16
) {
2537 if (env
->insn_flags
& ASE_MICROMIPS
) {
2538 /* microMIPS mode */
2539 ret
= get_user_u16(trap_instr
, env
->active_tc
.PC
);
2544 if ((trap_instr
>> 10) == 0x11) {
2545 /* 16-bit instruction */
2546 code
= trap_instr
& 0xf;
2548 /* 32-bit instruction */
2551 ret
= get_user_u16(instr_lo
,
2552 env
->active_tc
.PC
+ 2);
2556 trap_instr
= (trap_instr
<< 16) | instr_lo
;
2557 code
= ((trap_instr
>> 6) & ((1 << 20) - 1));
2558 /* Unfortunately, microMIPS also suffers from
2559 the old assembler bug... */
2560 if (code
>= (1 << 10)) {
2566 ret
= get_user_u16(trap_instr
, env
->active_tc
.PC
);
2570 code
= (trap_instr
>> 6) & 0x3f;
2573 ret
= get_user_u32(trap_instr
, env
->active_tc
.PC
);
2578 /* As described in the original Linux kernel code, the
2579 * below checks on 'code' are to work around an old
2582 code
= ((trap_instr
>> 6) & ((1 << 20) - 1));
2583 if (code
>= (1 << 10)) {
2588 if (do_break(env
, &info
, code
) != 0) {
2595 abi_ulong trap_instr
;
2596 unsigned int code
= 0;
2598 if (env
->hflags
& MIPS_HFLAG_M16
) {
2599 /* microMIPS mode */
2602 ret
= get_user_u16(instr
[0], env
->active_tc
.PC
) ||
2603 get_user_u16(instr
[1], env
->active_tc
.PC
+ 2);
2605 trap_instr
= (instr
[0] << 16) | instr
[1];
2607 ret
= get_user_u32(trap_instr
, env
->active_tc
.PC
);
2614 /* The immediate versions don't provide a code. */
2615 if (!(trap_instr
& 0xFC000000)) {
2616 if (env
->hflags
& MIPS_HFLAG_M16
) {
2617 /* microMIPS mode */
2618 code
= ((trap_instr
>> 12) & ((1 << 4) - 1));
2620 code
= ((trap_instr
>> 6) & ((1 << 10) - 1));
2624 if (do_break(env
, &info
, code
) != 0) {
2631 EXCP_DUMP(env
, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr
);
2634 process_pending_signals(env
);
2639 #ifdef TARGET_OPENRISC
2641 void cpu_loop(CPUOpenRISCState
*env
)
2643 CPUState
*cs
= CPU(openrisc_env_get_cpu(env
));
2649 trapnr
= cpu_exec(cs
);
2651 process_queued_cpu_work(cs
);
2656 qemu_log_mask(CPU_LOG_INT
, "\nReset request, exit, pc is %#x\n", env
->pc
);
2660 qemu_log_mask(CPU_LOG_INT
, "\nBus error, exit, pc is %#x\n", env
->pc
);
2661 gdbsig
= TARGET_SIGBUS
;
2665 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2666 gdbsig
= TARGET_SIGSEGV
;
2669 qemu_log_mask(CPU_LOG_INT
, "\nTick time interrupt pc is %#x\n", env
->pc
);
2672 qemu_log_mask(CPU_LOG_INT
, "\nAlignment pc is %#x\n", env
->pc
);
2673 gdbsig
= TARGET_SIGBUS
;
2676 qemu_log_mask(CPU_LOG_INT
, "\nIllegal instructionpc is %#x\n", env
->pc
);
2677 gdbsig
= TARGET_SIGILL
;
2680 qemu_log_mask(CPU_LOG_INT
, "\nExternal interruptpc is %#x\n", env
->pc
);
2684 qemu_log_mask(CPU_LOG_INT
, "\nTLB miss\n");
2687 qemu_log_mask(CPU_LOG_INT
, "\nRange\n");
2688 gdbsig
= TARGET_SIGSEGV
;
2691 env
->pc
+= 4; /* 0xc00; */
2692 ret
= do_syscall(env
,
2693 env
->gpr
[11], /* return value */
2694 env
->gpr
[3], /* r3 - r7 are params */
2700 if (ret
== -TARGET_ERESTARTSYS
) {
2702 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
2707 qemu_log_mask(CPU_LOG_INT
, "\nFloating point error\n");
2710 qemu_log_mask(CPU_LOG_INT
, "\nTrap\n");
2711 gdbsig
= TARGET_SIGTRAP
;
2714 qemu_log_mask(CPU_LOG_INT
, "\nNR\n");
2717 EXCP_DUMP(env
, "\nqemu: unhandled CPU exception %#x - aborting\n",
2719 gdbsig
= TARGET_SIGILL
;
2723 gdb_handlesig(cs
, gdbsig
);
2724 if (gdbsig
!= TARGET_SIGTRAP
) {
2729 process_pending_signals(env
);
2733 #endif /* TARGET_OPENRISC */
2736 void cpu_loop(CPUSH4State
*env
)
2738 CPUState
*cs
= CPU(sh_env_get_cpu(env
));
2740 target_siginfo_t info
;
2744 trapnr
= cpu_exec(cs
);
2746 process_queued_cpu_work(cs
);
2751 ret
= do_syscall(env
,
2760 if (ret
== -TARGET_ERESTARTSYS
) {
2762 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
2763 env
->gregs
[0] = ret
;
2766 case EXCP_INTERRUPT
:
2767 /* just indicate that signals should be handled asap */
2773 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
2776 info
.si_signo
= sig
;
2778 info
.si_code
= TARGET_TRAP_BRKPT
;
2779 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2785 info
.si_signo
= TARGET_SIGSEGV
;
2787 info
.si_code
= TARGET_SEGV_MAPERR
;
2788 info
._sifields
._sigfault
._addr
= env
->tea
;
2789 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2793 printf ("Unhandled trap: 0x%x\n", trapnr
);
2794 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2797 process_pending_signals (env
);
2803 void cpu_loop(CPUCRISState
*env
)
2805 CPUState
*cs
= CPU(cris_env_get_cpu(env
));
2807 target_siginfo_t info
;
2811 trapnr
= cpu_exec(cs
);
2813 process_queued_cpu_work(cs
);
2818 info
.si_signo
= TARGET_SIGSEGV
;
2820 /* XXX: check env->error_code */
2821 info
.si_code
= TARGET_SEGV_MAPERR
;
2822 info
._sifields
._sigfault
._addr
= env
->pregs
[PR_EDA
];
2823 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2826 case EXCP_INTERRUPT
:
2827 /* just indicate that signals should be handled asap */
2830 ret
= do_syscall(env
,
2839 if (ret
== -TARGET_ERESTARTSYS
) {
2841 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
2842 env
->regs
[10] = ret
;
2849 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
2852 info
.si_signo
= sig
;
2854 info
.si_code
= TARGET_TRAP_BRKPT
;
2855 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2860 printf ("Unhandled trap: 0x%x\n", trapnr
);
2861 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2864 process_pending_signals (env
);
2869 #ifdef TARGET_MICROBLAZE
2870 void cpu_loop(CPUMBState
*env
)
2872 CPUState
*cs
= CPU(mb_env_get_cpu(env
));
2874 target_siginfo_t info
;
2878 trapnr
= cpu_exec(cs
);
2880 process_queued_cpu_work(cs
);
2885 info
.si_signo
= TARGET_SIGSEGV
;
2887 /* XXX: check env->error_code */
2888 info
.si_code
= TARGET_SEGV_MAPERR
;
2889 info
._sifields
._sigfault
._addr
= 0;
2890 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2893 case EXCP_INTERRUPT
:
2894 /* just indicate that signals should be handled asap */
2897 /* Return address is 4 bytes after the call. */
2899 env
->sregs
[SR_PC
] = env
->regs
[14];
2900 ret
= do_syscall(env
,
2909 if (ret
== -TARGET_ERESTARTSYS
) {
2910 /* Wind back to before the syscall. */
2911 env
->sregs
[SR_PC
] -= 4;
2912 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
2915 /* All syscall exits result in guest r14 being equal to the
2916 * PC we return to, because the kernel syscall exit "rtbd" does
2917 * this. (This is true even for sigreturn(); note that r14 is
2918 * not a userspace-usable register, as the kernel may clobber it
2921 env
->regs
[14] = env
->sregs
[SR_PC
];
2924 env
->regs
[17] = env
->sregs
[SR_PC
] + 4;
2925 if (env
->iflags
& D_FLAG
) {
2926 env
->sregs
[SR_ESR
] |= 1 << 12;
2927 env
->sregs
[SR_PC
] -= 4;
2928 /* FIXME: if branch was immed, replay the imm as well. */
2931 env
->iflags
&= ~(IMM_FLAG
| D_FLAG
);
2933 switch (env
->sregs
[SR_ESR
] & 31) {
2934 case ESR_EC_DIVZERO
:
2935 info
.si_signo
= TARGET_SIGFPE
;
2937 info
.si_code
= TARGET_FPE_FLTDIV
;
2938 info
._sifields
._sigfault
._addr
= 0;
2939 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2942 info
.si_signo
= TARGET_SIGFPE
;
2944 if (env
->sregs
[SR_FSR
] & FSR_IO
) {
2945 info
.si_code
= TARGET_FPE_FLTINV
;
2947 if (env
->sregs
[SR_FSR
] & FSR_DZ
) {
2948 info
.si_code
= TARGET_FPE_FLTDIV
;
2950 info
._sifields
._sigfault
._addr
= 0;
2951 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2954 printf ("Unhandled hw-exception: 0x%x\n",
2955 env
->sregs
[SR_ESR
] & ESR_EC_MASK
);
2956 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2965 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
2968 info
.si_signo
= sig
;
2970 info
.si_code
= TARGET_TRAP_BRKPT
;
2971 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
2976 printf ("Unhandled trap: 0x%x\n", trapnr
);
2977 cpu_dump_state(cs
, stderr
, fprintf
, 0);
2980 process_pending_signals (env
);
2987 void cpu_loop(CPUM68KState
*env
)
2989 CPUState
*cs
= CPU(m68k_env_get_cpu(env
));
2992 target_siginfo_t info
;
2993 TaskState
*ts
= cs
->opaque
;
2997 trapnr
= cpu_exec(cs
);
2999 process_queued_cpu_work(cs
);
3004 if (ts
->sim_syscalls
) {
3006 get_user_u16(nr
, env
->pc
+ 2);
3008 do_m68k_simcall(env
, nr
);
3014 case EXCP_HALT_INSN
:
3015 /* Semihosing syscall. */
3017 do_m68k_semihosting(env
, env
->dregs
[0]);
3021 case EXCP_UNSUPPORTED
:
3023 info
.si_signo
= TARGET_SIGILL
;
3025 info
.si_code
= TARGET_ILL_ILLOPN
;
3026 info
._sifields
._sigfault
._addr
= env
->pc
;
3027 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3032 ts
->sim_syscalls
= 0;
3035 ret
= do_syscall(env
,
3044 if (ret
== -TARGET_ERESTARTSYS
) {
3046 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
3047 env
->dregs
[0] = ret
;
3051 case EXCP_INTERRUPT
:
3052 /* just indicate that signals should be handled asap */
3056 info
.si_signo
= TARGET_SIGSEGV
;
3058 /* XXX: check env->error_code */
3059 info
.si_code
= TARGET_SEGV_MAPERR
;
3060 info
._sifields
._sigfault
._addr
= env
->mmu
.ar
;
3061 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3068 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
3071 info
.si_signo
= sig
;
3073 info
.si_code
= TARGET_TRAP_BRKPT
;
3074 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3079 EXCP_DUMP(env
, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr
);
3082 process_pending_signals(env
);
3085 #endif /* TARGET_M68K */
3088 static void do_store_exclusive(CPUAlphaState
*env
, int reg
, int quad
)
3090 target_ulong addr
, val
, tmp
;
3091 target_siginfo_t info
;
3094 addr
= env
->lock_addr
;
3095 tmp
= env
->lock_st_addr
;
3096 env
->lock_addr
= -1;
3097 env
->lock_st_addr
= 0;
3103 if (quad
? get_user_s64(val
, addr
) : get_user_s32(val
, addr
)) {
3107 if (val
== env
->lock_value
) {
3109 if (quad
? put_user_u64(tmp
, addr
) : put_user_u32(tmp
, addr
)) {
3126 info
.si_signo
= TARGET_SIGSEGV
;
3128 info
.si_code
= TARGET_SEGV_MAPERR
;
3129 info
._sifields
._sigfault
._addr
= addr
;
3130 queue_signal(env
, TARGET_SIGSEGV
, QEMU_SI_FAULT
, &info
);
3133 void cpu_loop(CPUAlphaState
*env
)
3135 CPUState
*cs
= CPU(alpha_env_get_cpu(env
));
3137 target_siginfo_t info
;
3142 trapnr
= cpu_exec(cs
);
3144 process_queued_cpu_work(cs
);
3146 /* All of the traps imply a transition through PALcode, which
3147 implies an REI instruction has been executed. Which means
3148 that the intr_flag should be cleared. */
3153 fprintf(stderr
, "Reset requested. Exit\n");
3157 fprintf(stderr
, "Machine check exception. Exit\n");
3160 case EXCP_SMP_INTERRUPT
:
3161 case EXCP_CLK_INTERRUPT
:
3162 case EXCP_DEV_INTERRUPT
:
3163 fprintf(stderr
, "External interrupt. Exit\n");
3167 env
->lock_addr
= -1;
3168 info
.si_signo
= TARGET_SIGSEGV
;
3170 info
.si_code
= (page_get_flags(env
->trap_arg0
) & PAGE_VALID
3171 ? TARGET_SEGV_ACCERR
: TARGET_SEGV_MAPERR
);
3172 info
._sifields
._sigfault
._addr
= env
->trap_arg0
;
3173 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3176 env
->lock_addr
= -1;
3177 info
.si_signo
= TARGET_SIGBUS
;
3179 info
.si_code
= TARGET_BUS_ADRALN
;
3180 info
._sifields
._sigfault
._addr
= env
->trap_arg0
;
3181 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3185 env
->lock_addr
= -1;
3186 info
.si_signo
= TARGET_SIGILL
;
3188 info
.si_code
= TARGET_ILL_ILLOPC
;
3189 info
._sifields
._sigfault
._addr
= env
->pc
;
3190 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3193 env
->lock_addr
= -1;
3194 info
.si_signo
= TARGET_SIGFPE
;
3196 info
.si_code
= TARGET_FPE_FLTINV
;
3197 info
._sifields
._sigfault
._addr
= env
->pc
;
3198 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3201 /* No-op. Linux simply re-enables the FPU. */
3204 env
->lock_addr
= -1;
3205 switch (env
->error_code
) {
3208 info
.si_signo
= TARGET_SIGTRAP
;
3210 info
.si_code
= TARGET_TRAP_BRKPT
;
3211 info
._sifields
._sigfault
._addr
= env
->pc
;
3212 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3216 info
.si_signo
= TARGET_SIGTRAP
;
3219 info
._sifields
._sigfault
._addr
= env
->pc
;
3220 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3224 trapnr
= env
->ir
[IR_V0
];
3225 sysret
= do_syscall(env
, trapnr
,
3226 env
->ir
[IR_A0
], env
->ir
[IR_A1
],
3227 env
->ir
[IR_A2
], env
->ir
[IR_A3
],
3228 env
->ir
[IR_A4
], env
->ir
[IR_A5
],
3230 if (sysret
== -TARGET_ERESTARTSYS
) {
3234 if (sysret
== -TARGET_QEMU_ESIGRETURN
) {
3237 /* Syscall writes 0 to V0 to bypass error check, similar
3238 to how this is handled internal to Linux kernel.
3239 (Ab)use trapnr temporarily as boolean indicating error. */
3240 trapnr
= (env
->ir
[IR_V0
] != 0 && sysret
< 0);
3241 env
->ir
[IR_V0
] = (trapnr
? -sysret
: sysret
);
3242 env
->ir
[IR_A3
] = trapnr
;
3246 /* ??? We can probably elide the code using page_unprotect
3247 that is checking for self-modifying code. Instead we
3248 could simply call tb_flush here. Until we work out the
3249 changes required to turn off the extra write protection,
3250 this can be a no-op. */
3254 /* Handled in the translator for usermode. */
3258 /* Handled in the translator for usermode. */
3262 info
.si_signo
= TARGET_SIGFPE
;
3263 switch (env
->ir
[IR_A0
]) {
3264 case TARGET_GEN_INTOVF
:
3265 info
.si_code
= TARGET_FPE_INTOVF
;
3267 case TARGET_GEN_INTDIV
:
3268 info
.si_code
= TARGET_FPE_INTDIV
;
3270 case TARGET_GEN_FLTOVF
:
3271 info
.si_code
= TARGET_FPE_FLTOVF
;
3273 case TARGET_GEN_FLTUND
:
3274 info
.si_code
= TARGET_FPE_FLTUND
;
3276 case TARGET_GEN_FLTINV
:
3277 info
.si_code
= TARGET_FPE_FLTINV
;
3279 case TARGET_GEN_FLTINE
:
3280 info
.si_code
= TARGET_FPE_FLTRES
;
3282 case TARGET_GEN_ROPRAND
:
3286 info
.si_signo
= TARGET_SIGTRAP
;
3291 info
._sifields
._sigfault
._addr
= env
->pc
;
3292 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3299 info
.si_signo
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
3300 if (info
.si_signo
) {
3301 env
->lock_addr
= -1;
3303 info
.si_code
= TARGET_TRAP_BRKPT
;
3304 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3309 do_store_exclusive(env
, env
->error_code
, trapnr
- EXCP_STL_C
);
3311 case EXCP_INTERRUPT
:
3312 /* Just indicate that signals should be handled asap. */
3315 printf ("Unhandled trap: 0x%x\n", trapnr
);
3316 cpu_dump_state(cs
, stderr
, fprintf
, 0);
3319 process_pending_signals (env
);
3322 #endif /* TARGET_ALPHA */
3325 void cpu_loop(CPUS390XState
*env
)
3327 CPUState
*cs
= CPU(s390_env_get_cpu(env
));
3329 target_siginfo_t info
;
3335 trapnr
= cpu_exec(cs
);
3337 process_queued_cpu_work(cs
);
3340 case EXCP_INTERRUPT
:
3341 /* Just indicate that signals should be handled asap. */
3345 n
= env
->int_svc_code
;
3347 /* syscalls > 255 */
3350 env
->psw
.addr
+= env
->int_svc_ilen
;
3351 ret
= do_syscall(env
, n
, env
->regs
[2], env
->regs
[3],
3352 env
->regs
[4], env
->regs
[5],
3353 env
->regs
[6], env
->regs
[7], 0, 0);
3354 if (ret
== -TARGET_ERESTARTSYS
) {
3355 env
->psw
.addr
-= env
->int_svc_ilen
;
3356 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
3362 sig
= gdb_handlesig(cs
, TARGET_SIGTRAP
);
3364 n
= TARGET_TRAP_BRKPT
;
3369 n
= env
->int_pgm_code
;
3372 case PGM_PRIVILEGED
:
3373 sig
= TARGET_SIGILL
;
3374 n
= TARGET_ILL_ILLOPC
;
3376 case PGM_PROTECTION
:
3377 case PGM_ADDRESSING
:
3378 sig
= TARGET_SIGSEGV
;
3379 /* XXX: check env->error_code */
3380 n
= TARGET_SEGV_MAPERR
;
3381 addr
= env
->__excp_addr
;
3384 case PGM_SPECIFICATION
:
3385 case PGM_SPECIAL_OP
:
3388 sig
= TARGET_SIGILL
;
3389 n
= TARGET_ILL_ILLOPN
;
3392 case PGM_FIXPT_OVERFLOW
:
3393 sig
= TARGET_SIGFPE
;
3394 n
= TARGET_FPE_INTOVF
;
3396 case PGM_FIXPT_DIVIDE
:
3397 sig
= TARGET_SIGFPE
;
3398 n
= TARGET_FPE_INTDIV
;
3402 n
= (env
->fpc
>> 8) & 0xff;
3404 /* compare-and-trap */
3407 /* An IEEE exception, simulated or otherwise. */
3409 n
= TARGET_FPE_FLTINV
;
3410 } else if (n
& 0x40) {
3411 n
= TARGET_FPE_FLTDIV
;
3412 } else if (n
& 0x20) {
3413 n
= TARGET_FPE_FLTOVF
;
3414 } else if (n
& 0x10) {
3415 n
= TARGET_FPE_FLTUND
;
3416 } else if (n
& 0x08) {
3417 n
= TARGET_FPE_FLTRES
;
3419 /* ??? Quantum exception; BFP, DFP error. */
3422 sig
= TARGET_SIGFPE
;
3427 fprintf(stderr
, "Unhandled program exception: %#x\n", n
);
3428 cpu_dump_state(cs
, stderr
, fprintf
, 0);
3434 addr
= env
->psw
.addr
;
3436 info
.si_signo
= sig
;
3439 info
._sifields
._sigfault
._addr
= addr
;
3440 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3444 fprintf(stderr
, "Unhandled trap: 0x%x\n", trapnr
);
3445 cpu_dump_state(cs
, stderr
, fprintf
, 0);
3448 process_pending_signals (env
);
3452 #endif /* TARGET_S390X */
3454 #ifdef TARGET_TILEGX
3456 static void gen_sigill_reg(CPUTLGState
*env
)
3458 target_siginfo_t info
;
3460 info
.si_signo
= TARGET_SIGILL
;
3462 info
.si_code
= TARGET_ILL_PRVREG
;
3463 info
._sifields
._sigfault
._addr
= env
->pc
;
3464 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3467 static void do_signal(CPUTLGState
*env
, int signo
, int sigcode
)
3469 target_siginfo_t info
;
3471 info
.si_signo
= signo
;
3473 info
._sifields
._sigfault
._addr
= env
->pc
;
3475 if (signo
== TARGET_SIGSEGV
) {
3476 /* The passed in sigcode is a dummy; check for a page mapping
3477 and pass either MAPERR or ACCERR. */
3478 target_ulong addr
= env
->excaddr
;
3479 info
._sifields
._sigfault
._addr
= addr
;
3480 if (page_check_range(addr
, 1, PAGE_VALID
) < 0) {
3481 sigcode
= TARGET_SEGV_MAPERR
;
3483 sigcode
= TARGET_SEGV_ACCERR
;
3486 info
.si_code
= sigcode
;
3488 queue_signal(env
, info
.si_signo
, QEMU_SI_FAULT
, &info
);
3491 static void gen_sigsegv_maperr(CPUTLGState
*env
, target_ulong addr
)
3493 env
->excaddr
= addr
;
3494 do_signal(env
, TARGET_SIGSEGV
, 0);
3497 static void set_regval(CPUTLGState
*env
, uint8_t reg
, uint64_t val
)
3499 if (unlikely(reg
>= TILEGX_R_COUNT
)) {
3510 gen_sigill_reg(env
);
3513 g_assert_not_reached();
3516 env
->regs
[reg
] = val
;
3520 * Compare the 8-byte contents of the CmpValue SPR with the 8-byte value in
3521 * memory at the address held in the first source register. If the values are
3522 * not equal, then no memory operation is performed. If the values are equal,
3523 * the 8-byte quantity from the second source register is written into memory
3524 * at the address held in the first source register. In either case, the result
3525 * of the instruction is the value read from memory. The compare and write to
3526 * memory are atomic and thus can be used for synchronization purposes. This
3527 * instruction only operates for addresses aligned to a 8-byte boundary.
3528 * Unaligned memory access causes an Unaligned Data Reference interrupt.
3530 * Functional Description (64-bit)
3531 * uint64_t memVal = memoryReadDoubleWord (rf[SrcA]);
3532 * rf[Dest] = memVal;
3533 * if (memVal == SPR[CmpValueSPR])
3534 * memoryWriteDoubleWord (rf[SrcA], rf[SrcB]);
3536 * Functional Description (32-bit)
3537 * uint64_t memVal = signExtend32 (memoryReadWord (rf[SrcA]));
3538 * rf[Dest] = memVal;
3539 * if (memVal == signExtend32 (SPR[CmpValueSPR]))
3540 * memoryWriteWord (rf[SrcA], rf[SrcB]);
3543 * This function also processes exch and exch4 which need not process SPR.
3545 static void do_exch(CPUTLGState
*env
, bool quad
, bool cmp
)
3548 target_long val
, sprval
;
3552 addr
= env
->atomic_srca
;
3553 if (quad
? get_user_s64(val
, addr
) : get_user_s32(val
, addr
)) {
3554 goto sigsegv_maperr
;
3559 sprval
= env
->spregs
[TILEGX_SPR_CMPEXCH
];
3561 sprval
= sextract64(env
->spregs
[TILEGX_SPR_CMPEXCH
], 0, 32);
3565 if (!cmp
|| val
== sprval
) {
3566 target_long valb
= env
->atomic_srcb
;
3567 if (quad
? put_user_u64(valb
, addr
) : put_user_u32(valb
, addr
)) {
3568 goto sigsegv_maperr
;
3572 set_regval(env
, env
->atomic_dstr
, val
);
3578 gen_sigsegv_maperr(env
, addr
);
3581 static void do_fetch(CPUTLGState
*env
, int trapnr
, bool quad
)
3585 target_long val
, valb
;
3589 addr
= env
->atomic_srca
;
3590 valb
= env
->atomic_srcb
;
3591 if (quad
? get_user_s64(val
, addr
) : get_user_s32(val
, addr
)) {
3592 goto sigsegv_maperr
;
3596 case TILEGX_EXCP_OPCODE_FETCHADD
:
3597 case TILEGX_EXCP_OPCODE_FETCHADD4
:
3600 case TILEGX_EXCP_OPCODE_FETCHADDGEZ
:
3606 case TILEGX_EXCP_OPCODE_FETCHADDGEZ4
:
3608 if ((int32_t)valb
< 0) {
3612 case TILEGX_EXCP_OPCODE_FETCHAND
:
3613 case TILEGX_EXCP_OPCODE_FETCHAND4
:
3616 case TILEGX_EXCP_OPCODE_FETCHOR
:
3617 case TILEGX_EXCP_OPCODE_FETCHOR4
:
3621 g_assert_not_reached();
3625 if (quad
? put_user_u64(valb
, addr
) : put_user_u32(valb
, addr
)) {
3626 goto sigsegv_maperr
;
3630 set_regval(env
, env
->atomic_dstr
, val
);
3636 gen_sigsegv_maperr(env
, addr
);
3639 void cpu_loop(CPUTLGState
*env
)
3641 CPUState
*cs
= CPU(tilegx_env_get_cpu(env
));
3646 trapnr
= cpu_exec(cs
);
3648 process_queued_cpu_work(cs
);
3651 case TILEGX_EXCP_SYSCALL
:
3653 abi_ulong ret
= do_syscall(env
, env
->regs
[TILEGX_R_NR
],
3654 env
->regs
[0], env
->regs
[1],
3655 env
->regs
[2], env
->regs
[3],
3656 env
->regs
[4], env
->regs
[5],
3657 env
->regs
[6], env
->regs
[7]);
3658 if (ret
== -TARGET_ERESTARTSYS
) {
3660 } else if (ret
!= -TARGET_QEMU_ESIGRETURN
) {
3661 env
->regs
[TILEGX_R_RE
] = ret
;
3662 env
->regs
[TILEGX_R_ERR
] = TILEGX_IS_ERRNO(ret
) ? -ret
: 0;
3666 case TILEGX_EXCP_OPCODE_EXCH
:
3667 do_exch(env
, true, false);
3669 case TILEGX_EXCP_OPCODE_EXCH4
:
3670 do_exch(env
, false, false);
3672 case TILEGX_EXCP_OPCODE_CMPEXCH
:
3673 do_exch(env
, true, true);
3675 case TILEGX_EXCP_OPCODE_CMPEXCH4
:
3676 do_exch(env
, false, true);
3678 case TILEGX_EXCP_OPCODE_FETCHADD
:
3679 case TILEGX_EXCP_OPCODE_FETCHADDGEZ
:
3680 case TILEGX_EXCP_OPCODE_FETCHAND
:
3681 case TILEGX_EXCP_OPCODE_FETCHOR
:
3682 do_fetch(env
, trapnr
, true);
3684 case TILEGX_EXCP_OPCODE_FETCHADD4
:
3685 case TILEGX_EXCP_OPCODE_FETCHADDGEZ4
:
3686 case TILEGX_EXCP_OPCODE_FETCHAND4
:
3687 case TILEGX_EXCP_OPCODE_FETCHOR4
:
3688 do_fetch(env
, trapnr
, false);
3690 case TILEGX_EXCP_SIGNAL
:
3691 do_signal(env
, env
->signo
, env
->sigcode
);
3693 case TILEGX_EXCP_REG_IDN_ACCESS
:
3694 case TILEGX_EXCP_REG_UDN_ACCESS
:
3695 gen_sigill_reg(env
);
3698 fprintf(stderr
, "trapnr is %d[0x%x].\n", trapnr
, trapnr
);
3699 g_assert_not_reached();
3701 process_pending_signals(env
);
3707 THREAD CPUState
*thread_cpu
;
3709 bool qemu_cpu_is_self(CPUState
*cpu
)
3711 return thread_cpu
== cpu
;
3714 void qemu_cpu_kick(CPUState
*cpu
)
3719 void task_settid(TaskState
*ts
)
3721 if (ts
->ts_tid
== 0) {
3722 ts
->ts_tid
= (pid_t
)syscall(SYS_gettid
);
3726 void stop_all_tasks(void)
3729 * We trust that when using NPTL, start_exclusive()
3730 * handles thread stopping correctly.
3735 /* Assumes contents are already zeroed. */
3736 void init_task_state(TaskState
*ts
)
3741 CPUArchState
*cpu_copy(CPUArchState
*env
)
3743 CPUState
*cpu
= ENV_GET_CPU(env
);
3744 CPUState
*new_cpu
= cpu_init(cpu_model
);
3745 CPUArchState
*new_env
= new_cpu
->env_ptr
;
3749 /* Reset non arch specific state */
3752 memcpy(new_env
, env
, sizeof(CPUArchState
));
3754 /* Clone all break/watchpoints.
3755 Note: Once we support ptrace with hw-debug register access, make sure
3756 BP_CPU break/watchpoints are handled correctly on clone. */
3757 QTAILQ_INIT(&new_cpu
->breakpoints
);
3758 QTAILQ_INIT(&new_cpu
->watchpoints
);
3759 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
3760 cpu_breakpoint_insert(new_cpu
, bp
->pc
, bp
->flags
, NULL
);
3762 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
3763 cpu_watchpoint_insert(new_cpu
, wp
->vaddr
, wp
->len
, wp
->flags
, NULL
);
3769 static void handle_arg_help(const char *arg
)
3771 usage(EXIT_SUCCESS
);
3774 static void handle_arg_log(const char *arg
)
3778 mask
= qemu_str_to_log_mask(arg
);
3780 qemu_print_log_usage(stdout
);
3783 qemu_log_needs_buffers();
3787 static void handle_arg_log_filename(const char *arg
)
3789 qemu_set_log_filename(arg
, &error_fatal
);
3792 static void handle_arg_set_env(const char *arg
)
3794 char *r
, *p
, *token
;
3795 r
= p
= strdup(arg
);
3796 while ((token
= strsep(&p
, ",")) != NULL
) {
3797 if (envlist_setenv(envlist
, token
) != 0) {
3798 usage(EXIT_FAILURE
);
3804 static void handle_arg_unset_env(const char *arg
)
3806 char *r
, *p
, *token
;
3807 r
= p
= strdup(arg
);
3808 while ((token
= strsep(&p
, ",")) != NULL
) {
3809 if (envlist_unsetenv(envlist
, token
) != 0) {
3810 usage(EXIT_FAILURE
);
3816 static void handle_arg_argv0(const char *arg
)
3818 argv0
= strdup(arg
);
3821 static void handle_arg_stack_size(const char *arg
)
3824 guest_stack_size
= strtoul(arg
, &p
, 0);
3825 if (guest_stack_size
== 0) {
3826 usage(EXIT_FAILURE
);
3830 guest_stack_size
*= 1024 * 1024;
3831 } else if (*p
== 'k' || *p
== 'K') {
3832 guest_stack_size
*= 1024;
3836 static void handle_arg_ld_prefix(const char *arg
)
3838 interp_prefix
= strdup(arg
);
3841 static void handle_arg_pagesize(const char *arg
)
3843 qemu_host_page_size
= atoi(arg
);
3844 if (qemu_host_page_size
== 0 ||
3845 (qemu_host_page_size
& (qemu_host_page_size
- 1)) != 0) {
3846 fprintf(stderr
, "page size must be a power of two\n");
3851 static void handle_arg_randseed(const char *arg
)
3853 unsigned long long seed
;
3855 if (parse_uint_full(arg
, &seed
, 0) != 0 || seed
> UINT_MAX
) {
3856 fprintf(stderr
, "Invalid seed number: %s\n", arg
);
3862 static void handle_arg_gdb(const char *arg
)
3864 gdbstub_port
= atoi(arg
);
3867 static void handle_arg_uname(const char *arg
)
3869 qemu_uname_release
= strdup(arg
);
3872 static void handle_arg_cpu(const char *arg
)
3874 cpu_model
= strdup(arg
);
3875 if (cpu_model
== NULL
|| is_help_option(cpu_model
)) {
3876 /* XXX: implement xxx_cpu_list for targets that still miss it */
3877 #if defined(cpu_list)
3878 cpu_list(stdout
, &fprintf
);
3884 static void handle_arg_guest_base(const char *arg
)
3886 guest_base
= strtol(arg
, NULL
, 0);
3887 have_guest_base
= 1;
3890 static void handle_arg_reserved_va(const char *arg
)
3894 reserved_va
= strtoul(arg
, &p
, 0);
3908 unsigned long unshifted
= reserved_va
;
3910 reserved_va
<<= shift
;
3911 if (((reserved_va
>> shift
) != unshifted
)
3912 #if HOST_LONG_BITS > TARGET_VIRT_ADDR_SPACE_BITS
3913 || (reserved_va
> (1ul << TARGET_VIRT_ADDR_SPACE_BITS
))
3916 fprintf(stderr
, "Reserved virtual address too big\n");
3921 fprintf(stderr
, "Unrecognised -R size suffix '%s'\n", p
);
3926 static void handle_arg_singlestep(const char *arg
)
3931 static void handle_arg_strace(const char *arg
)
3936 static void handle_arg_version(const char *arg
)
3938 printf("qemu-" TARGET_NAME
" version " QEMU_VERSION QEMU_PKGVERSION
3939 ", " QEMU_COPYRIGHT
"\n");
3943 static char *trace_file
;
3944 static void handle_arg_trace(const char *arg
)
3947 trace_file
= trace_opt_parse(arg
);
3950 struct qemu_argument
{
3954 void (*handle_opt
)(const char *arg
);
3955 const char *example
;
3959 static const struct qemu_argument arg_table
[] = {
3960 {"h", "", false, handle_arg_help
,
3961 "", "print this help"},
3962 {"help", "", false, handle_arg_help
,
3964 {"g", "QEMU_GDB", true, handle_arg_gdb
,
3965 "port", "wait gdb connection to 'port'"},
3966 {"L", "QEMU_LD_PREFIX", true, handle_arg_ld_prefix
,
3967 "path", "set the elf interpreter prefix to 'path'"},
3968 {"s", "QEMU_STACK_SIZE", true, handle_arg_stack_size
,
3969 "size", "set the stack size to 'size' bytes"},
3970 {"cpu", "QEMU_CPU", true, handle_arg_cpu
,
3971 "model", "select CPU (-cpu help for list)"},
3972 {"E", "QEMU_SET_ENV", true, handle_arg_set_env
,
3973 "var=value", "sets targets environment variable (see below)"},
3974 {"U", "QEMU_UNSET_ENV", true, handle_arg_unset_env
,
3975 "var", "unsets targets environment variable (see below)"},
3976 {"0", "QEMU_ARGV0", true, handle_arg_argv0
,
3977 "argv0", "forces target process argv[0] to be 'argv0'"},
3978 {"r", "QEMU_UNAME", true, handle_arg_uname
,
3979 "uname", "set qemu uname release string to 'uname'"},
3980 {"B", "QEMU_GUEST_BASE", true, handle_arg_guest_base
,
3981 "address", "set guest_base address to 'address'"},
3982 {"R", "QEMU_RESERVED_VA", true, handle_arg_reserved_va
,
3983 "size", "reserve 'size' bytes for guest virtual address space"},
3984 {"d", "QEMU_LOG", true, handle_arg_log
,
3985 "item[,...]", "enable logging of specified items "
3986 "(use '-d help' for a list of items)"},
3987 {"D", "QEMU_LOG_FILENAME", true, handle_arg_log_filename
,
3988 "logfile", "write logs to 'logfile' (default stderr)"},
3989 {"p", "QEMU_PAGESIZE", true, handle_arg_pagesize
,
3990 "pagesize", "set the host page size to 'pagesize'"},
3991 {"singlestep", "QEMU_SINGLESTEP", false, handle_arg_singlestep
,
3992 "", "run in singlestep mode"},
3993 {"strace", "QEMU_STRACE", false, handle_arg_strace
,
3994 "", "log system calls"},
3995 {"seed", "QEMU_RAND_SEED", true, handle_arg_randseed
,
3996 "", "Seed for pseudo-random number generator"},
3997 {"trace", "QEMU_TRACE", true, handle_arg_trace
,
3998 "", "[[enable=]<pattern>][,events=<file>][,file=<file>]"},
3999 {"version", "QEMU_VERSION", false, handle_arg_version
,
4000 "", "display version information and exit"},
4001 {NULL
, NULL
, false, NULL
, NULL
, NULL
}
4004 static void usage(int exitcode
)
4006 const struct qemu_argument
*arginfo
;
4010 printf("usage: qemu-" TARGET_NAME
" [options] program [arguments...]\n"
4011 "Linux CPU emulator (compiled for " TARGET_NAME
" emulation)\n"
4013 "Options and associated environment variables:\n"
4016 /* Calculate column widths. We must always have at least enough space
4017 * for the column header.
4019 maxarglen
= strlen("Argument");
4020 maxenvlen
= strlen("Env-variable");
4022 for (arginfo
= arg_table
; arginfo
->handle_opt
!= NULL
; arginfo
++) {
4023 int arglen
= strlen(arginfo
->argv
);
4024 if (arginfo
->has_arg
) {
4025 arglen
+= strlen(arginfo
->example
) + 1;
4027 if (strlen(arginfo
->env
) > maxenvlen
) {
4028 maxenvlen
= strlen(arginfo
->env
);
4030 if (arglen
> maxarglen
) {
4035 printf("%-*s %-*s Description\n", maxarglen
+1, "Argument",
4036 maxenvlen
, "Env-variable");
4038 for (arginfo
= arg_table
; arginfo
->handle_opt
!= NULL
; arginfo
++) {
4039 if (arginfo
->has_arg
) {
4040 printf("-%s %-*s %-*s %s\n", arginfo
->argv
,
4041 (int)(maxarglen
- strlen(arginfo
->argv
) - 1),
4042 arginfo
->example
, maxenvlen
, arginfo
->env
, arginfo
->help
);
4044 printf("-%-*s %-*s %s\n", maxarglen
, arginfo
->argv
,
4045 maxenvlen
, arginfo
->env
,
4052 "QEMU_LD_PREFIX = %s\n"
4053 "QEMU_STACK_SIZE = %ld byte\n",
4058 "You can use -E and -U options or the QEMU_SET_ENV and\n"
4059 "QEMU_UNSET_ENV environment variables to set and unset\n"
4060 "environment variables for the target process.\n"
4061 "It is possible to provide several variables by separating them\n"
4062 "by commas in getsubopt(3) style. Additionally it is possible to\n"
4063 "provide the -E and -U options multiple times.\n"
4064 "The following lines are equivalent:\n"
4065 " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n"
4066 " -E var1=val2,var2=val2 -U LD_PRELOAD,LD_DEBUG\n"
4067 " QEMU_SET_ENV=var1=val2,var2=val2 QEMU_UNSET_ENV=LD_PRELOAD,LD_DEBUG\n"
4068 "Note that if you provide several changes to a single variable\n"
4069 "the last change will stay in effect.\n");
4074 static int parse_args(int argc
, char **argv
)
4078 const struct qemu_argument
*arginfo
;
4080 for (arginfo
= arg_table
; arginfo
->handle_opt
!= NULL
; arginfo
++) {
4081 if (arginfo
->env
== NULL
) {
4085 r
= getenv(arginfo
->env
);
4087 arginfo
->handle_opt(r
);
4093 if (optind
>= argc
) {
4102 if (!strcmp(r
, "-")) {
4105 /* Treat --foo the same as -foo. */
4110 for (arginfo
= arg_table
; arginfo
->handle_opt
!= NULL
; arginfo
++) {
4111 if (!strcmp(r
, arginfo
->argv
)) {
4112 if (arginfo
->has_arg
) {
4113 if (optind
>= argc
) {
4114 (void) fprintf(stderr
,
4115 "qemu: missing argument for option '%s'\n", r
);
4118 arginfo
->handle_opt(argv
[optind
]);
4121 arginfo
->handle_opt(NULL
);
4127 /* no option matched the current argv */
4128 if (arginfo
->handle_opt
== NULL
) {
4129 (void) fprintf(stderr
, "qemu: unknown option '%s'\n", r
);
4134 if (optind
>= argc
) {
4135 (void) fprintf(stderr
, "qemu: no user program specified\n");
4139 filename
= argv
[optind
];
4140 exec_path
= argv
[optind
];
4145 int main(int argc
, char **argv
, char **envp
)
4147 struct target_pt_regs regs1
, *regs
= ®s1
;
4148 struct image_info info1
, *info
= &info1
;
4149 struct linux_binprm bprm
;
4154 char **target_environ
, **wrk
;
4161 qemu_init_cpu_list();
4162 module_call_init(MODULE_INIT_QOM
);
4164 if ((envlist
= envlist_create()) == NULL
) {
4165 (void) fprintf(stderr
, "Unable to allocate envlist\n");
4169 /* add current environment into the list */
4170 for (wrk
= environ
; *wrk
!= NULL
; wrk
++) {
4171 (void) envlist_setenv(envlist
, *wrk
);
4174 /* Read the stack limit from the kernel. If it's "unlimited",
4175 then we can do little else besides use the default. */
4178 if (getrlimit(RLIMIT_STACK
, &lim
) == 0
4179 && lim
.rlim_cur
!= RLIM_INFINITY
4180 && lim
.rlim_cur
== (target_long
)lim
.rlim_cur
) {
4181 guest_stack_size
= lim
.rlim_cur
;
4189 qemu_add_opts(&qemu_trace_opts
);
4191 optind
= parse_args(argc
, argv
);
4193 if (!trace_init_backends()) {
4196 trace_init_file(trace_file
);
4199 memset(regs
, 0, sizeof(struct target_pt_regs
));
4201 /* Zero out image_info */
4202 memset(info
, 0, sizeof(struct image_info
));
4204 memset(&bprm
, 0, sizeof (bprm
));
4206 /* Scan interp_prefix dir for replacement files. */
4207 init_paths(interp_prefix
);
4209 init_qemu_uname_release();
4211 if (cpu_model
== NULL
) {
4212 #if defined(TARGET_I386)
4213 #ifdef TARGET_X86_64
4214 cpu_model
= "qemu64";
4216 cpu_model
= "qemu32";
4218 #elif defined(TARGET_ARM)
4220 #elif defined(TARGET_UNICORE32)
4222 #elif defined(TARGET_M68K)
4224 #elif defined(TARGET_SPARC)
4225 #ifdef TARGET_SPARC64
4226 cpu_model
= "TI UltraSparc II";
4228 cpu_model
= "Fujitsu MB86904";
4230 #elif defined(TARGET_MIPS)
4231 #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64)
4236 #elif defined TARGET_OPENRISC
4237 cpu_model
= "or1200";
4238 #elif defined(TARGET_PPC)
4239 # ifdef TARGET_PPC64
4240 cpu_model
= "POWER8";
4244 #elif defined TARGET_SH4
4245 cpu_model
= TYPE_SH7785_CPU
;
4251 /* NOTE: we need to init the CPU at this stage to get
4252 qemu_host_page_size */
4253 cpu
= cpu_init(cpu_model
);
4255 fprintf(stderr
, "Unable to find CPU definition\n");
4263 if (getenv("QEMU_STRACE")) {
4267 if (getenv("QEMU_RAND_SEED")) {
4268 handle_arg_randseed(getenv("QEMU_RAND_SEED"));
4271 target_environ
= envlist_to_environ(envlist
, NULL
);
4272 envlist_free(envlist
);
4275 * Now that page sizes are configured in cpu_init() we can do
4276 * proper page alignment for guest_base.
4278 guest_base
= HOST_PAGE_ALIGN(guest_base
);
4280 if (reserved_va
|| have_guest_base
) {
4281 guest_base
= init_guest_space(guest_base
, reserved_va
, 0,
4283 if (guest_base
== (unsigned long)-1) {
4284 fprintf(stderr
, "Unable to reserve 0x%lx bytes of virtual address "
4285 "space for use as guest address space (check your virtual "
4286 "memory ulimit setting or reserve less using -R option)\n",
4292 mmap_next_start
= reserved_va
;
4297 * Read in mmap_min_addr kernel parameter. This value is used
4298 * When loading the ELF image to determine whether guest_base
4299 * is needed. It is also used in mmap_find_vma.
4304 if ((fp
= fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL
) {
4306 if (fscanf(fp
, "%lu", &tmp
) == 1) {
4307 mmap_min_addr
= tmp
;
4308 qemu_log_mask(CPU_LOG_PAGE
, "host mmap_min_addr=0x%lx\n", mmap_min_addr
);
4315 * Prepare copy of argv vector for target.
4317 target_argc
= argc
- optind
;
4318 target_argv
= calloc(target_argc
+ 1, sizeof (char *));
4319 if (target_argv
== NULL
) {
4320 (void) fprintf(stderr
, "Unable to allocate memory for target_argv\n");
4325 * If argv0 is specified (using '-0' switch) we replace
4326 * argv[0] pointer with the given one.
4329 if (argv0
!= NULL
) {
4330 target_argv
[i
++] = strdup(argv0
);
4332 for (; i
< target_argc
; i
++) {
4333 target_argv
[i
] = strdup(argv
[optind
+ i
]);
4335 target_argv
[target_argc
] = NULL
;
4337 ts
= g_new0(TaskState
, 1);
4338 init_task_state(ts
);
4339 /* build Task State */
4345 execfd
= qemu_getauxval(AT_EXECFD
);
4347 execfd
= open(filename
, O_RDONLY
);
4349 printf("Error while loading %s: %s\n", filename
, strerror(errno
));
4350 _exit(EXIT_FAILURE
);
4354 ret
= loader_exec(execfd
, filename
, target_argv
, target_environ
, regs
,
4357 printf("Error while loading %s: %s\n", filename
, strerror(-ret
));
4358 _exit(EXIT_FAILURE
);
4361 for (wrk
= target_environ
; *wrk
; wrk
++) {
4365 free(target_environ
);
4367 if (qemu_loglevel_mask(CPU_LOG_PAGE
)) {
4368 qemu_log("guest_base 0x%lx\n", guest_base
);
4371 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx
"\n", info
->start_brk
);
4372 qemu_log("end_code 0x" TARGET_ABI_FMT_lx
"\n", info
->end_code
);
4373 qemu_log("start_code 0x" TARGET_ABI_FMT_lx
"\n",
4375 qemu_log("start_data 0x" TARGET_ABI_FMT_lx
"\n",
4377 qemu_log("end_data 0x" TARGET_ABI_FMT_lx
"\n", info
->end_data
);
4378 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx
"\n",
4380 qemu_log("brk 0x" TARGET_ABI_FMT_lx
"\n", info
->brk
);
4381 qemu_log("entry 0x" TARGET_ABI_FMT_lx
"\n", info
->entry
);
4384 target_set_brk(info
->brk
);
4388 /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay
4389 generating the prologue until now so that the prologue can take
4390 the real value of GUEST_BASE into account. */
4391 tcg_prologue_init(&tcg_ctx
);
4393 #if defined(TARGET_I386)
4394 env
->cr
[0] = CR0_PG_MASK
| CR0_WP_MASK
| CR0_PE_MASK
;
4395 env
->hflags
|= HF_PE_MASK
| HF_CPL_MASK
;
4396 if (env
->features
[FEAT_1_EDX
] & CPUID_SSE
) {
4397 env
->cr
[4] |= CR4_OSFXSR_MASK
;
4398 env
->hflags
|= HF_OSFXSR_MASK
;
4400 #ifndef TARGET_ABI32
4401 /* enable 64 bit mode if possible */
4402 if (!(env
->features
[FEAT_8000_0001_EDX
] & CPUID_EXT2_LM
)) {
4403 fprintf(stderr
, "The selected x86 CPU does not support 64 bit mode\n");
4406 env
->cr
[4] |= CR4_PAE_MASK
;
4407 env
->efer
|= MSR_EFER_LMA
| MSR_EFER_LME
;
4408 env
->hflags
|= HF_LMA_MASK
;
4411 /* flags setup : we activate the IRQs by default as in user mode */
4412 env
->eflags
|= IF_MASK
;
4414 /* linux register setup */
4415 #ifndef TARGET_ABI32
4416 env
->regs
[R_EAX
] = regs
->rax
;
4417 env
->regs
[R_EBX
] = regs
->rbx
;
4418 env
->regs
[R_ECX
] = regs
->rcx
;
4419 env
->regs
[R_EDX
] = regs
->rdx
;
4420 env
->regs
[R_ESI
] = regs
->rsi
;
4421 env
->regs
[R_EDI
] = regs
->rdi
;
4422 env
->regs
[R_EBP
] = regs
->rbp
;
4423 env
->regs
[R_ESP
] = regs
->rsp
;
4424 env
->eip
= regs
->rip
;
4426 env
->regs
[R_EAX
] = regs
->eax
;
4427 env
->regs
[R_EBX
] = regs
->ebx
;
4428 env
->regs
[R_ECX
] = regs
->ecx
;
4429 env
->regs
[R_EDX
] = regs
->edx
;
4430 env
->regs
[R_ESI
] = regs
->esi
;
4431 env
->regs
[R_EDI
] = regs
->edi
;
4432 env
->regs
[R_EBP
] = regs
->ebp
;
4433 env
->regs
[R_ESP
] = regs
->esp
;
4434 env
->eip
= regs
->eip
;
4437 /* linux interrupt setup */
4438 #ifndef TARGET_ABI32
4439 env
->idt
.limit
= 511;
4441 env
->idt
.limit
= 255;
4443 env
->idt
.base
= target_mmap(0, sizeof(uint64_t) * (env
->idt
.limit
+ 1),
4444 PROT_READ
|PROT_WRITE
,
4445 MAP_ANONYMOUS
|MAP_PRIVATE
, -1, 0);
4446 idt_table
= g2h(env
->idt
.base
);
4469 /* linux segment setup */
4471 uint64_t *gdt_table
;
4472 env
->gdt
.base
= target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES
,
4473 PROT_READ
|PROT_WRITE
,
4474 MAP_ANONYMOUS
|MAP_PRIVATE
, -1, 0);
4475 env
->gdt
.limit
= sizeof(uint64_t) * TARGET_GDT_ENTRIES
- 1;
4476 gdt_table
= g2h(env
->gdt
.base
);
4478 write_dt(&gdt_table
[__USER_CS
>> 3], 0, 0xfffff,
4479 DESC_G_MASK
| DESC_B_MASK
| DESC_P_MASK
| DESC_S_MASK
|
4480 (3 << DESC_DPL_SHIFT
) | (0xa << DESC_TYPE_SHIFT
));
4482 /* 64 bit code segment */
4483 write_dt(&gdt_table
[__USER_CS
>> 3], 0, 0xfffff,
4484 DESC_G_MASK
| DESC_B_MASK
| DESC_P_MASK
| DESC_S_MASK
|
4486 (3 << DESC_DPL_SHIFT
) | (0xa << DESC_TYPE_SHIFT
));
4488 write_dt(&gdt_table
[__USER_DS
>> 3], 0, 0xfffff,
4489 DESC_G_MASK
| DESC_B_MASK
| DESC_P_MASK
| DESC_S_MASK
|
4490 (3 << DESC_DPL_SHIFT
) | (0x2 << DESC_TYPE_SHIFT
));
4492 cpu_x86_load_seg(env
, R_CS
, __USER_CS
);
4493 cpu_x86_load_seg(env
, R_SS
, __USER_DS
);
4495 cpu_x86_load_seg(env
, R_DS
, __USER_DS
);
4496 cpu_x86_load_seg(env
, R_ES
, __USER_DS
);
4497 cpu_x86_load_seg(env
, R_FS
, __USER_DS
);
4498 cpu_x86_load_seg(env
, R_GS
, __USER_DS
);
4499 /* This hack makes Wine work... */
4500 env
->segs
[R_FS
].selector
= 0;
4502 cpu_x86_load_seg(env
, R_DS
, 0);
4503 cpu_x86_load_seg(env
, R_ES
, 0);
4504 cpu_x86_load_seg(env
, R_FS
, 0);
4505 cpu_x86_load_seg(env
, R_GS
, 0);
4507 #elif defined(TARGET_AARCH64)
4511 if (!(arm_feature(env
, ARM_FEATURE_AARCH64
))) {
4513 "The selected ARM CPU does not support 64 bit mode\n");
4517 for (i
= 0; i
< 31; i
++) {
4518 env
->xregs
[i
] = regs
->regs
[i
];
4521 env
->xregs
[31] = regs
->sp
;
4523 #elif defined(TARGET_ARM)
4526 cpsr_write(env
, regs
->uregs
[16], CPSR_USER
| CPSR_EXEC
,
4528 for(i
= 0; i
< 16; i
++) {
4529 env
->regs
[i
] = regs
->uregs
[i
];
4531 #ifdef TARGET_WORDS_BIGENDIAN
4533 if (EF_ARM_EABI_VERSION(info
->elf_flags
) >= EF_ARM_EABI_VER4
4534 && (info
->elf_flags
& EF_ARM_BE8
)) {
4535 env
->uncached_cpsr
|= CPSR_E
;
4536 env
->cp15
.sctlr_el
[1] |= SCTLR_E0E
;
4538 env
->cp15
.sctlr_el
[1] |= SCTLR_B
;
4542 #elif defined(TARGET_UNICORE32)
4545 cpu_asr_write(env
, regs
->uregs
[32], 0xffffffff);
4546 for (i
= 0; i
< 32; i
++) {
4547 env
->regs
[i
] = regs
->uregs
[i
];
4550 #elif defined(TARGET_SPARC)
4554 env
->npc
= regs
->npc
;
4556 for(i
= 0; i
< 8; i
++)
4557 env
->gregs
[i
] = regs
->u_regs
[i
];
4558 for(i
= 0; i
< 8; i
++)
4559 env
->regwptr
[i
] = regs
->u_regs
[i
+ 8];
4561 #elif defined(TARGET_PPC)
4565 #if defined(TARGET_PPC64)
4566 int flag
= (env
->insns_flags2
& PPC2_BOOKE206
) ? MSR_CM
: MSR_SF
;
4567 #if defined(TARGET_ABI32)
4568 env
->msr
&= ~((target_ulong
)1 << flag
);
4570 env
->msr
|= (target_ulong
)1 << flag
;
4573 env
->nip
= regs
->nip
;
4574 for(i
= 0; i
< 32; i
++) {
4575 env
->gpr
[i
] = regs
->gpr
[i
];
4578 #elif defined(TARGET_M68K)
4581 env
->dregs
[0] = regs
->d0
;
4582 env
->dregs
[1] = regs
->d1
;
4583 env
->dregs
[2] = regs
->d2
;
4584 env
->dregs
[3] = regs
->d3
;
4585 env
->dregs
[4] = regs
->d4
;
4586 env
->dregs
[5] = regs
->d5
;
4587 env
->dregs
[6] = regs
->d6
;
4588 env
->dregs
[7] = regs
->d7
;
4589 env
->aregs
[0] = regs
->a0
;
4590 env
->aregs
[1] = regs
->a1
;
4591 env
->aregs
[2] = regs
->a2
;
4592 env
->aregs
[3] = regs
->a3
;
4593 env
->aregs
[4] = regs
->a4
;
4594 env
->aregs
[5] = regs
->a5
;
4595 env
->aregs
[6] = regs
->a6
;
4596 env
->aregs
[7] = regs
->usp
;
4598 ts
->sim_syscalls
= 1;
4600 #elif defined(TARGET_MICROBLAZE)
4602 env
->regs
[0] = regs
->r0
;
4603 env
->regs
[1] = regs
->r1
;
4604 env
->regs
[2] = regs
->r2
;
4605 env
->regs
[3] = regs
->r3
;
4606 env
->regs
[4] = regs
->r4
;
4607 env
->regs
[5] = regs
->r5
;
4608 env
->regs
[6] = regs
->r6
;
4609 env
->regs
[7] = regs
->r7
;
4610 env
->regs
[8] = regs
->r8
;
4611 env
->regs
[9] = regs
->r9
;
4612 env
->regs
[10] = regs
->r10
;
4613 env
->regs
[11] = regs
->r11
;
4614 env
->regs
[12] = regs
->r12
;
4615 env
->regs
[13] = regs
->r13
;
4616 env
->regs
[14] = regs
->r14
;
4617 env
->regs
[15] = regs
->r15
;
4618 env
->regs
[16] = regs
->r16
;
4619 env
->regs
[17] = regs
->r17
;
4620 env
->regs
[18] = regs
->r18
;
4621 env
->regs
[19] = regs
->r19
;
4622 env
->regs
[20] = regs
->r20
;
4623 env
->regs
[21] = regs
->r21
;
4624 env
->regs
[22] = regs
->r22
;
4625 env
->regs
[23] = regs
->r23
;
4626 env
->regs
[24] = regs
->r24
;
4627 env
->regs
[25] = regs
->r25
;
4628 env
->regs
[26] = regs
->r26
;
4629 env
->regs
[27] = regs
->r27
;
4630 env
->regs
[28] = regs
->r28
;
4631 env
->regs
[29] = regs
->r29
;
4632 env
->regs
[30] = regs
->r30
;
4633 env
->regs
[31] = regs
->r31
;
4634 env
->sregs
[SR_PC
] = regs
->pc
;
4636 #elif defined(TARGET_MIPS)
4640 for(i
= 0; i
< 32; i
++) {
4641 env
->active_tc
.gpr
[i
] = regs
->regs
[i
];
4643 env
->active_tc
.PC
= regs
->cp0_epc
& ~(target_ulong
)1;
4644 if (regs
->cp0_epc
& 1) {
4645 env
->hflags
|= MIPS_HFLAG_M16
;
4647 if (((info
->elf_flags
& EF_MIPS_NAN2008
) != 0) !=
4648 ((env
->active_fpu
.fcr31
& (1 << FCR31_NAN2008
)) != 0)) {
4649 if ((env
->active_fpu
.fcr31_rw_bitmask
&
4650 (1 << FCR31_NAN2008
)) == 0) {
4651 fprintf(stderr
, "ELF binary's NaN mode not supported by CPU\n");
4654 if ((info
->elf_flags
& EF_MIPS_NAN2008
) != 0) {
4655 env
->active_fpu
.fcr31
|= (1 << FCR31_NAN2008
);
4657 env
->active_fpu
.fcr31
&= ~(1 << FCR31_NAN2008
);
4659 restore_snan_bit_mode(env
);
4662 #elif defined(TARGET_OPENRISC)
4666 for (i
= 0; i
< 32; i
++) {
4667 env
->gpr
[i
] = regs
->gpr
[i
];
4673 #elif defined(TARGET_SH4)
4677 for(i
= 0; i
< 16; i
++) {
4678 env
->gregs
[i
] = regs
->regs
[i
];
4682 #elif defined(TARGET_ALPHA)
4686 for(i
= 0; i
< 28; i
++) {
4687 env
->ir
[i
] = ((abi_ulong
*)regs
)[i
];
4689 env
->ir
[IR_SP
] = regs
->usp
;
4692 #elif defined(TARGET_CRIS)
4694 env
->regs
[0] = regs
->r0
;
4695 env
->regs
[1] = regs
->r1
;
4696 env
->regs
[2] = regs
->r2
;
4697 env
->regs
[3] = regs
->r3
;
4698 env
->regs
[4] = regs
->r4
;
4699 env
->regs
[5] = regs
->r5
;
4700 env
->regs
[6] = regs
->r6
;
4701 env
->regs
[7] = regs
->r7
;
4702 env
->regs
[8] = regs
->r8
;
4703 env
->regs
[9] = regs
->r9
;
4704 env
->regs
[10] = regs
->r10
;
4705 env
->regs
[11] = regs
->r11
;
4706 env
->regs
[12] = regs
->r12
;
4707 env
->regs
[13] = regs
->r13
;
4708 env
->regs
[14] = info
->start_stack
;
4709 env
->regs
[15] = regs
->acr
;
4710 env
->pc
= regs
->erp
;
4712 #elif defined(TARGET_S390X)
4715 for (i
= 0; i
< 16; i
++) {
4716 env
->regs
[i
] = regs
->gprs
[i
];
4718 env
->psw
.mask
= regs
->psw
.mask
;
4719 env
->psw
.addr
= regs
->psw
.addr
;
4721 #elif defined(TARGET_TILEGX)
4724 for (i
= 0; i
< TILEGX_R_COUNT
; i
++) {
4725 env
->regs
[i
] = regs
->regs
[i
];
4727 for (i
= 0; i
< TILEGX_SPR_COUNT
; i
++) {
4733 #error unsupported target CPU
4736 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
4737 ts
->stack_base
= info
->start_stack
;
4738 ts
->heap_base
= info
->brk
;
4739 /* This will be filled in on the first SYS_HEAPINFO call. */
4744 if (gdbserver_start(gdbstub_port
) < 0) {
4745 fprintf(stderr
, "qemu: could not open gdbserver on port %d\n",
4749 gdb_handlesig(cpu
, 0);