2 * Physical memory management
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
19 #include "exec/memory.h"
20 #include "exec/address-spaces.h"
21 #include "qapi/visitor.h"
22 #include "qemu/bitops.h"
23 #include "qemu/error-report.h"
24 #include "qemu/qemu-print.h"
25 #include "qom/object.h"
26 #include "trace-root.h"
28 #include "exec/memory-internal.h"
29 #include "exec/ram_addr.h"
30 #include "sysemu/kvm.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/tcg.h"
33 #include "hw/qdev-properties.h"
34 #include "migration/vmstate.h"
36 //#define DEBUG_UNASSIGNED
38 static unsigned memory_region_transaction_depth
;
39 static bool memory_region_update_pending
;
40 static bool ioeventfd_update_pending
;
41 static bool global_dirty_log
= false;
43 static QTAILQ_HEAD(, MemoryListener
) memory_listeners
44 = QTAILQ_HEAD_INITIALIZER(memory_listeners
);
46 static QTAILQ_HEAD(, AddressSpace
) address_spaces
47 = QTAILQ_HEAD_INITIALIZER(address_spaces
);
49 static GHashTable
*flat_views
;
51 typedef struct AddrRange AddrRange
;
54 * Note that signed integers are needed for negative offsetting in aliases
55 * (large MemoryRegion::alias_offset).
62 static AddrRange
addrrange_make(Int128 start
, Int128 size
)
64 return (AddrRange
) { start
, size
};
67 static bool addrrange_equal(AddrRange r1
, AddrRange r2
)
69 return int128_eq(r1
.start
, r2
.start
) && int128_eq(r1
.size
, r2
.size
);
72 static Int128
addrrange_end(AddrRange r
)
74 return int128_add(r
.start
, r
.size
);
77 static AddrRange
addrrange_shift(AddrRange range
, Int128 delta
)
79 int128_addto(&range
.start
, delta
);
83 static bool addrrange_contains(AddrRange range
, Int128 addr
)
85 return int128_ge(addr
, range
.start
)
86 && int128_lt(addr
, addrrange_end(range
));
89 static bool addrrange_intersects(AddrRange r1
, AddrRange r2
)
91 return addrrange_contains(r1
, r2
.start
)
92 || addrrange_contains(r2
, r1
.start
);
95 static AddrRange
addrrange_intersection(AddrRange r1
, AddrRange r2
)
97 Int128 start
= int128_max(r1
.start
, r2
.start
);
98 Int128 end
= int128_min(addrrange_end(r1
), addrrange_end(r2
));
99 return addrrange_make(start
, int128_sub(end
, start
));
102 enum ListenerDirection
{ Forward
, Reverse
};
104 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
106 MemoryListener *_listener; \
108 switch (_direction) { \
110 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
111 if (_listener->_callback) { \
112 _listener->_callback(_listener, ##_args); \
117 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
118 if (_listener->_callback) { \
119 _listener->_callback(_listener, ##_args); \
128 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
130 MemoryListener *_listener; \
132 switch (_direction) { \
134 QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) { \
135 if (_listener->_callback) { \
136 _listener->_callback(_listener, _section, ##_args); \
141 QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
142 if (_listener->_callback) { \
143 _listener->_callback(_listener, _section, ##_args); \
152 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
153 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
155 MemoryRegionSection mrs = section_from_flat_range(fr, \
156 address_space_to_flatview(as)); \
157 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
160 struct CoalescedMemoryRange
{
162 QTAILQ_ENTRY(CoalescedMemoryRange
) link
;
165 struct MemoryRegionIoeventfd
{
172 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd
*a
,
173 MemoryRegionIoeventfd
*b
)
175 if (int128_lt(a
->addr
.start
, b
->addr
.start
)) {
177 } else if (int128_gt(a
->addr
.start
, b
->addr
.start
)) {
179 } else if (int128_lt(a
->addr
.size
, b
->addr
.size
)) {
181 } else if (int128_gt(a
->addr
.size
, b
->addr
.size
)) {
183 } else if (a
->match_data
< b
->match_data
) {
185 } else if (a
->match_data
> b
->match_data
) {
187 } else if (a
->match_data
) {
188 if (a
->data
< b
->data
) {
190 } else if (a
->data
> b
->data
) {
196 } else if (a
->e
> b
->e
) {
202 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd
*a
,
203 MemoryRegionIoeventfd
*b
)
205 return !memory_region_ioeventfd_before(a
, b
)
206 && !memory_region_ioeventfd_before(b
, a
);
209 /* Range of memory in the global map. Addresses are absolute. */
212 hwaddr offset_in_region
;
214 uint8_t dirty_log_mask
;
218 int has_coalesced_range
;
221 #define FOR_EACH_FLAT_RANGE(var, view) \
222 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
224 static inline MemoryRegionSection
225 section_from_flat_range(FlatRange
*fr
, FlatView
*fv
)
227 return (MemoryRegionSection
) {
230 .offset_within_region
= fr
->offset_in_region
,
231 .size
= fr
->addr
.size
,
232 .offset_within_address_space
= int128_get64(fr
->addr
.start
),
233 .readonly
= fr
->readonly
,
234 .nonvolatile
= fr
->nonvolatile
,
238 static bool flatrange_equal(FlatRange
*a
, FlatRange
*b
)
240 return a
->mr
== b
->mr
241 && addrrange_equal(a
->addr
, b
->addr
)
242 && a
->offset_in_region
== b
->offset_in_region
243 && a
->romd_mode
== b
->romd_mode
244 && a
->readonly
== b
->readonly
245 && a
->nonvolatile
== b
->nonvolatile
;
248 static FlatView
*flatview_new(MemoryRegion
*mr_root
)
252 view
= g_new0(FlatView
, 1);
254 view
->root
= mr_root
;
255 memory_region_ref(mr_root
);
256 trace_flatview_new(view
, mr_root
);
261 /* Insert a range into a given position. Caller is responsible for maintaining
264 static void flatview_insert(FlatView
*view
, unsigned pos
, FlatRange
*range
)
266 if (view
->nr
== view
->nr_allocated
) {
267 view
->nr_allocated
= MAX(2 * view
->nr
, 10);
268 view
->ranges
= g_realloc(view
->ranges
,
269 view
->nr_allocated
* sizeof(*view
->ranges
));
271 memmove(view
->ranges
+ pos
+ 1, view
->ranges
+ pos
,
272 (view
->nr
- pos
) * sizeof(FlatRange
));
273 view
->ranges
[pos
] = *range
;
274 memory_region_ref(range
->mr
);
278 static void flatview_destroy(FlatView
*view
)
282 trace_flatview_destroy(view
, view
->root
);
283 if (view
->dispatch
) {
284 address_space_dispatch_free(view
->dispatch
);
286 for (i
= 0; i
< view
->nr
; i
++) {
287 memory_region_unref(view
->ranges
[i
].mr
);
289 g_free(view
->ranges
);
290 memory_region_unref(view
->root
);
294 static bool flatview_ref(FlatView
*view
)
296 return atomic_fetch_inc_nonzero(&view
->ref
) > 0;
299 void flatview_unref(FlatView
*view
)
301 if (atomic_fetch_dec(&view
->ref
) == 1) {
302 trace_flatview_destroy_rcu(view
, view
->root
);
304 call_rcu(view
, flatview_destroy
, rcu
);
308 static bool can_merge(FlatRange
*r1
, FlatRange
*r2
)
310 return int128_eq(addrrange_end(r1
->addr
), r2
->addr
.start
)
312 && int128_eq(int128_add(int128_make64(r1
->offset_in_region
),
314 int128_make64(r2
->offset_in_region
))
315 && r1
->dirty_log_mask
== r2
->dirty_log_mask
316 && r1
->romd_mode
== r2
->romd_mode
317 && r1
->readonly
== r2
->readonly
318 && r1
->nonvolatile
== r2
->nonvolatile
;
321 /* Attempt to simplify a view by merging adjacent ranges */
322 static void flatview_simplify(FlatView
*view
)
327 while (i
< view
->nr
) {
330 && can_merge(&view
->ranges
[j
-1], &view
->ranges
[j
])) {
331 int128_addto(&view
->ranges
[i
].addr
.size
, view
->ranges
[j
].addr
.size
);
335 memmove(&view
->ranges
[i
], &view
->ranges
[j
],
336 (view
->nr
- j
) * sizeof(view
->ranges
[j
]));
341 static bool memory_region_big_endian(MemoryRegion
*mr
)
343 #ifdef TARGET_WORDS_BIGENDIAN
344 return mr
->ops
->endianness
!= DEVICE_LITTLE_ENDIAN
;
346 return mr
->ops
->endianness
== DEVICE_BIG_ENDIAN
;
350 static bool memory_region_wrong_endianness(MemoryRegion
*mr
)
352 #ifdef TARGET_WORDS_BIGENDIAN
353 return mr
->ops
->endianness
== DEVICE_LITTLE_ENDIAN
;
355 return mr
->ops
->endianness
== DEVICE_BIG_ENDIAN
;
359 static void adjust_endianness(MemoryRegion
*mr
, uint64_t *data
, unsigned size
)
361 if (memory_region_wrong_endianness(mr
)) {
366 *data
= bswap16(*data
);
369 *data
= bswap32(*data
);
372 *data
= bswap64(*data
);
380 static inline void memory_region_shift_read_access(uint64_t *value
,
386 *value
|= (tmp
& mask
) << shift
;
388 *value
|= (tmp
& mask
) >> -shift
;
392 static inline uint64_t memory_region_shift_write_access(uint64_t *value
,
399 tmp
= (*value
>> shift
) & mask
;
401 tmp
= (*value
<< -shift
) & mask
;
407 static hwaddr
memory_region_to_absolute_addr(MemoryRegion
*mr
, hwaddr offset
)
410 hwaddr abs_addr
= offset
;
412 abs_addr
+= mr
->addr
;
413 for (root
= mr
; root
->container
; ) {
414 root
= root
->container
;
415 abs_addr
+= root
->addr
;
421 static int get_cpu_index(void)
424 return current_cpu
->cpu_index
;
429 static MemTxResult
memory_region_read_accessor(MemoryRegion
*mr
,
439 tmp
= mr
->ops
->read(mr
->opaque
, addr
, size
);
441 trace_memory_region_subpage_read(get_cpu_index(), mr
, addr
, tmp
, size
);
442 } else if (mr
== &io_mem_notdirty
) {
443 /* Accesses to code which has previously been translated into a TB show
444 * up in the MMIO path, as accesses to the io_mem_notdirty
446 trace_memory_region_tb_read(get_cpu_index(), addr
, tmp
, size
);
447 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED
) {
448 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
449 trace_memory_region_ops_read(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
451 memory_region_shift_read_access(value
, shift
, mask
, tmp
);
455 static MemTxResult
memory_region_read_with_attrs_accessor(MemoryRegion
*mr
,
466 r
= mr
->ops
->read_with_attrs(mr
->opaque
, addr
, &tmp
, size
, attrs
);
468 trace_memory_region_subpage_read(get_cpu_index(), mr
, addr
, tmp
, size
);
469 } else if (mr
== &io_mem_notdirty
) {
470 /* Accesses to code which has previously been translated into a TB show
471 * up in the MMIO path, as accesses to the io_mem_notdirty
473 trace_memory_region_tb_read(get_cpu_index(), addr
, tmp
, size
);
474 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED
) {
475 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
476 trace_memory_region_ops_read(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
478 memory_region_shift_read_access(value
, shift
, mask
, tmp
);
482 static MemTxResult
memory_region_write_accessor(MemoryRegion
*mr
,
490 uint64_t tmp
= memory_region_shift_write_access(value
, shift
, mask
);
493 trace_memory_region_subpage_write(get_cpu_index(), mr
, addr
, tmp
, size
);
494 } else if (mr
== &io_mem_notdirty
) {
495 /* Accesses to code which has previously been translated into a TB show
496 * up in the MMIO path, as accesses to the io_mem_notdirty
498 trace_memory_region_tb_write(get_cpu_index(), addr
, tmp
, size
);
499 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED
) {
500 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
501 trace_memory_region_ops_write(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
503 mr
->ops
->write(mr
->opaque
, addr
, tmp
, size
);
507 static MemTxResult
memory_region_write_with_attrs_accessor(MemoryRegion
*mr
,
515 uint64_t tmp
= memory_region_shift_write_access(value
, shift
, mask
);
518 trace_memory_region_subpage_write(get_cpu_index(), mr
, addr
, tmp
, size
);
519 } else if (mr
== &io_mem_notdirty
) {
520 /* Accesses to code which has previously been translated into a TB show
521 * up in the MMIO path, as accesses to the io_mem_notdirty
523 trace_memory_region_tb_write(get_cpu_index(), addr
, tmp
, size
);
524 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED
) {
525 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
526 trace_memory_region_ops_write(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
528 return mr
->ops
->write_with_attrs(mr
->opaque
, addr
, tmp
, size
, attrs
);
531 static MemTxResult
access_with_adjusted_size(hwaddr addr
,
534 unsigned access_size_min
,
535 unsigned access_size_max
,
536 MemTxResult (*access_fn
)
547 uint64_t access_mask
;
548 unsigned access_size
;
550 MemTxResult r
= MEMTX_OK
;
552 if (!access_size_min
) {
555 if (!access_size_max
) {
559 /* FIXME: support unaligned access? */
560 access_size
= MAX(MIN(size
, access_size_max
), access_size_min
);
561 access_mask
= MAKE_64BIT_MASK(0, access_size
* 8);
562 if (memory_region_big_endian(mr
)) {
563 for (i
= 0; i
< size
; i
+= access_size
) {
564 r
|= access_fn(mr
, addr
+ i
, value
, access_size
,
565 (size
- access_size
- i
) * 8, access_mask
, attrs
);
568 for (i
= 0; i
< size
; i
+= access_size
) {
569 r
|= access_fn(mr
, addr
+ i
, value
, access_size
, i
* 8,
576 static AddressSpace
*memory_region_to_address_space(MemoryRegion
*mr
)
580 while (mr
->container
) {
583 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
584 if (mr
== as
->root
) {
591 /* Render a memory region into the global view. Ranges in @view obscure
594 static void render_memory_region(FlatView
*view
,
601 MemoryRegion
*subregion
;
603 hwaddr offset_in_region
;
613 int128_addto(&base
, int128_make64(mr
->addr
));
614 readonly
|= mr
->readonly
;
615 nonvolatile
|= mr
->nonvolatile
;
617 tmp
= addrrange_make(base
, mr
->size
);
619 if (!addrrange_intersects(tmp
, clip
)) {
623 clip
= addrrange_intersection(tmp
, clip
);
626 int128_subfrom(&base
, int128_make64(mr
->alias
->addr
));
627 int128_subfrom(&base
, int128_make64(mr
->alias_offset
));
628 render_memory_region(view
, mr
->alias
, base
, clip
,
629 readonly
, nonvolatile
);
633 /* Render subregions in priority order. */
634 QTAILQ_FOREACH(subregion
, &mr
->subregions
, subregions_link
) {
635 render_memory_region(view
, subregion
, base
, clip
,
636 readonly
, nonvolatile
);
639 if (!mr
->terminates
) {
643 offset_in_region
= int128_get64(int128_sub(clip
.start
, base
));
648 fr
.dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
649 fr
.romd_mode
= mr
->romd_mode
;
650 fr
.readonly
= readonly
;
651 fr
.nonvolatile
= nonvolatile
;
652 fr
.has_coalesced_range
= 0;
654 /* Render the region itself into any gaps left by the current view. */
655 for (i
= 0; i
< view
->nr
&& int128_nz(remain
); ++i
) {
656 if (int128_ge(base
, addrrange_end(view
->ranges
[i
].addr
))) {
659 if (int128_lt(base
, view
->ranges
[i
].addr
.start
)) {
660 now
= int128_min(remain
,
661 int128_sub(view
->ranges
[i
].addr
.start
, base
));
662 fr
.offset_in_region
= offset_in_region
;
663 fr
.addr
= addrrange_make(base
, now
);
664 flatview_insert(view
, i
, &fr
);
666 int128_addto(&base
, now
);
667 offset_in_region
+= int128_get64(now
);
668 int128_subfrom(&remain
, now
);
670 now
= int128_sub(int128_min(int128_add(base
, remain
),
671 addrrange_end(view
->ranges
[i
].addr
)),
673 int128_addto(&base
, now
);
674 offset_in_region
+= int128_get64(now
);
675 int128_subfrom(&remain
, now
);
677 if (int128_nz(remain
)) {
678 fr
.offset_in_region
= offset_in_region
;
679 fr
.addr
= addrrange_make(base
, remain
);
680 flatview_insert(view
, i
, &fr
);
684 static MemoryRegion
*memory_region_get_flatview_root(MemoryRegion
*mr
)
686 while (mr
->enabled
) {
688 if (!mr
->alias_offset
&& int128_ge(mr
->size
, mr
->alias
->size
)) {
689 /* The alias is included in its entirety. Use it as
690 * the "real" root, so that we can share more FlatViews.
695 } else if (!mr
->terminates
) {
696 unsigned int found
= 0;
697 MemoryRegion
*child
, *next
= NULL
;
698 QTAILQ_FOREACH(child
, &mr
->subregions
, subregions_link
) {
699 if (child
->enabled
) {
704 if (!child
->addr
&& int128_ge(mr
->size
, child
->size
)) {
705 /* A child is included in its entirety. If it's the only
706 * enabled one, use it in the hope of finding an alias down the
707 * way. This will also let us share FlatViews.
728 /* Render a memory topology into a list of disjoint absolute ranges. */
729 static FlatView
*generate_memory_topology(MemoryRegion
*mr
)
734 view
= flatview_new(mr
);
737 render_memory_region(view
, mr
, int128_zero(),
738 addrrange_make(int128_zero(), int128_2_64()),
741 flatview_simplify(view
);
743 view
->dispatch
= address_space_dispatch_new(view
);
744 for (i
= 0; i
< view
->nr
; i
++) {
745 MemoryRegionSection mrs
=
746 section_from_flat_range(&view
->ranges
[i
], view
);
747 flatview_add_to_dispatch(view
, &mrs
);
749 address_space_dispatch_compact(view
->dispatch
);
750 g_hash_table_replace(flat_views
, mr
, view
);
755 static void address_space_add_del_ioeventfds(AddressSpace
*as
,
756 MemoryRegionIoeventfd
*fds_new
,
758 MemoryRegionIoeventfd
*fds_old
,
762 MemoryRegionIoeventfd
*fd
;
763 MemoryRegionSection section
;
765 /* Generate a symmetric difference of the old and new fd sets, adding
766 * and deleting as necessary.
770 while (iold
< fds_old_nb
|| inew
< fds_new_nb
) {
771 if (iold
< fds_old_nb
772 && (inew
== fds_new_nb
773 || memory_region_ioeventfd_before(&fds_old
[iold
],
776 section
= (MemoryRegionSection
) {
777 .fv
= address_space_to_flatview(as
),
778 .offset_within_address_space
= int128_get64(fd
->addr
.start
),
779 .size
= fd
->addr
.size
,
781 MEMORY_LISTENER_CALL(as
, eventfd_del
, Forward
, §ion
,
782 fd
->match_data
, fd
->data
, fd
->e
);
784 } else if (inew
< fds_new_nb
785 && (iold
== fds_old_nb
786 || memory_region_ioeventfd_before(&fds_new
[inew
],
789 section
= (MemoryRegionSection
) {
790 .fv
= address_space_to_flatview(as
),
791 .offset_within_address_space
= int128_get64(fd
->addr
.start
),
792 .size
= fd
->addr
.size
,
794 MEMORY_LISTENER_CALL(as
, eventfd_add
, Reverse
, §ion
,
795 fd
->match_data
, fd
->data
, fd
->e
);
804 FlatView
*address_space_get_flatview(AddressSpace
*as
)
810 view
= address_space_to_flatview(as
);
811 /* If somebody has replaced as->current_map concurrently,
812 * flatview_ref returns false.
814 } while (!flatview_ref(view
));
819 static void address_space_update_ioeventfds(AddressSpace
*as
)
823 unsigned ioeventfd_nb
= 0;
824 MemoryRegionIoeventfd
*ioeventfds
= NULL
;
828 view
= address_space_get_flatview(as
);
829 FOR_EACH_FLAT_RANGE(fr
, view
) {
830 for (i
= 0; i
< fr
->mr
->ioeventfd_nb
; ++i
) {
831 tmp
= addrrange_shift(fr
->mr
->ioeventfds
[i
].addr
,
832 int128_sub(fr
->addr
.start
,
833 int128_make64(fr
->offset_in_region
)));
834 if (addrrange_intersects(fr
->addr
, tmp
)) {
836 ioeventfds
= g_realloc(ioeventfds
,
837 ioeventfd_nb
* sizeof(*ioeventfds
));
838 ioeventfds
[ioeventfd_nb
-1] = fr
->mr
->ioeventfds
[i
];
839 ioeventfds
[ioeventfd_nb
-1].addr
= tmp
;
844 address_space_add_del_ioeventfds(as
, ioeventfds
, ioeventfd_nb
,
845 as
->ioeventfds
, as
->ioeventfd_nb
);
847 g_free(as
->ioeventfds
);
848 as
->ioeventfds
= ioeventfds
;
849 as
->ioeventfd_nb
= ioeventfd_nb
;
850 flatview_unref(view
);
853 static void flat_range_coalesced_io_del(FlatRange
*fr
, AddressSpace
*as
)
855 if (!fr
->has_coalesced_range
) {
859 if (--fr
->has_coalesced_range
> 0) {
863 MEMORY_LISTENER_UPDATE_REGION(fr
, as
, Reverse
, coalesced_io_del
,
864 int128_get64(fr
->addr
.start
),
865 int128_get64(fr
->addr
.size
));
868 static void flat_range_coalesced_io_add(FlatRange
*fr
, AddressSpace
*as
)
870 MemoryRegion
*mr
= fr
->mr
;
871 CoalescedMemoryRange
*cmr
;
874 if (QTAILQ_EMPTY(&mr
->coalesced
)) {
878 if (fr
->has_coalesced_range
++) {
882 QTAILQ_FOREACH(cmr
, &mr
->coalesced
, link
) {
883 tmp
= addrrange_shift(cmr
->addr
,
884 int128_sub(fr
->addr
.start
,
885 int128_make64(fr
->offset_in_region
)));
886 if (!addrrange_intersects(tmp
, fr
->addr
)) {
889 tmp
= addrrange_intersection(tmp
, fr
->addr
);
890 MEMORY_LISTENER_UPDATE_REGION(fr
, as
, Forward
, coalesced_io_add
,
891 int128_get64(tmp
.start
),
892 int128_get64(tmp
.size
));
896 static void address_space_update_topology_pass(AddressSpace
*as
,
897 const FlatView
*old_view
,
898 const FlatView
*new_view
,
902 FlatRange
*frold
, *frnew
;
904 /* Generate a symmetric difference of the old and new memory maps.
905 * Kill ranges in the old map, and instantiate ranges in the new map.
908 while (iold
< old_view
->nr
|| inew
< new_view
->nr
) {
909 if (iold
< old_view
->nr
) {
910 frold
= &old_view
->ranges
[iold
];
914 if (inew
< new_view
->nr
) {
915 frnew
= &new_view
->ranges
[inew
];
922 || int128_lt(frold
->addr
.start
, frnew
->addr
.start
)
923 || (int128_eq(frold
->addr
.start
, frnew
->addr
.start
)
924 && !flatrange_equal(frold
, frnew
)))) {
925 /* In old but not in new, or in both but attributes changed. */
928 flat_range_coalesced_io_del(frold
, as
);
929 MEMORY_LISTENER_UPDATE_REGION(frold
, as
, Reverse
, region_del
);
933 } else if (frold
&& frnew
&& flatrange_equal(frold
, frnew
)) {
934 /* In both and unchanged (except logging may have changed) */
937 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, region_nop
);
938 if (frnew
->dirty_log_mask
& ~frold
->dirty_log_mask
) {
939 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, log_start
,
940 frold
->dirty_log_mask
,
941 frnew
->dirty_log_mask
);
943 if (frold
->dirty_log_mask
& ~frnew
->dirty_log_mask
) {
944 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Reverse
, log_stop
,
945 frold
->dirty_log_mask
,
946 frnew
->dirty_log_mask
);
956 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, region_add
);
957 flat_range_coalesced_io_add(frnew
, as
);
965 static void flatviews_init(void)
967 static FlatView
*empty_view
;
973 flat_views
= g_hash_table_new_full(g_direct_hash
, g_direct_equal
, NULL
,
974 (GDestroyNotify
) flatview_unref
);
976 empty_view
= generate_memory_topology(NULL
);
977 /* We keep it alive forever in the global variable. */
978 flatview_ref(empty_view
);
980 g_hash_table_replace(flat_views
, NULL
, empty_view
);
981 flatview_ref(empty_view
);
985 static void flatviews_reset(void)
990 g_hash_table_unref(flat_views
);
995 /* Render unique FVs */
996 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
997 MemoryRegion
*physmr
= memory_region_get_flatview_root(as
->root
);
999 if (g_hash_table_lookup(flat_views
, physmr
)) {
1003 generate_memory_topology(physmr
);
1007 static void address_space_set_flatview(AddressSpace
*as
)
1009 FlatView
*old_view
= address_space_to_flatview(as
);
1010 MemoryRegion
*physmr
= memory_region_get_flatview_root(as
->root
);
1011 FlatView
*new_view
= g_hash_table_lookup(flat_views
, physmr
);
1015 if (old_view
== new_view
) {
1020 flatview_ref(old_view
);
1023 flatview_ref(new_view
);
1025 if (!QTAILQ_EMPTY(&as
->listeners
)) {
1026 FlatView tmpview
= { .nr
= 0 }, *old_view2
= old_view
;
1029 old_view2
= &tmpview
;
1031 address_space_update_topology_pass(as
, old_view2
, new_view
, false);
1032 address_space_update_topology_pass(as
, old_view2
, new_view
, true);
1035 /* Writes are protected by the BQL. */
1036 atomic_rcu_set(&as
->current_map
, new_view
);
1038 flatview_unref(old_view
);
1041 /* Note that all the old MemoryRegions are still alive up to this
1042 * point. This relieves most MemoryListeners from the need to
1043 * ref/unref the MemoryRegions they get---unless they use them
1044 * outside the iothread mutex, in which case precise reference
1045 * counting is necessary.
1048 flatview_unref(old_view
);
1052 static void address_space_update_topology(AddressSpace
*as
)
1054 MemoryRegion
*physmr
= memory_region_get_flatview_root(as
->root
);
1057 if (!g_hash_table_lookup(flat_views
, physmr
)) {
1058 generate_memory_topology(physmr
);
1060 address_space_set_flatview(as
);
1063 void memory_region_transaction_begin(void)
1065 qemu_flush_coalesced_mmio_buffer();
1066 ++memory_region_transaction_depth
;
1069 void memory_region_transaction_commit(void)
1073 assert(memory_region_transaction_depth
);
1074 assert(qemu_mutex_iothread_locked());
1076 --memory_region_transaction_depth
;
1077 if (!memory_region_transaction_depth
) {
1078 if (memory_region_update_pending
) {
1081 MEMORY_LISTENER_CALL_GLOBAL(begin
, Forward
);
1083 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
1084 address_space_set_flatview(as
);
1085 address_space_update_ioeventfds(as
);
1087 memory_region_update_pending
= false;
1088 ioeventfd_update_pending
= false;
1089 MEMORY_LISTENER_CALL_GLOBAL(commit
, Forward
);
1090 } else if (ioeventfd_update_pending
) {
1091 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
1092 address_space_update_ioeventfds(as
);
1094 ioeventfd_update_pending
= false;
1099 static void memory_region_destructor_none(MemoryRegion
*mr
)
1103 static void memory_region_destructor_ram(MemoryRegion
*mr
)
1105 qemu_ram_free(mr
->ram_block
);
1108 static bool memory_region_need_escape(char c
)
1110 return c
== '/' || c
== '[' || c
== '\\' || c
== ']';
1113 static char *memory_region_escape_name(const char *name
)
1120 for (p
= name
; *p
; p
++) {
1121 bytes
+= memory_region_need_escape(*p
) ? 4 : 1;
1123 if (bytes
== p
- name
) {
1124 return g_memdup(name
, bytes
+ 1);
1127 escaped
= g_malloc(bytes
+ 1);
1128 for (p
= name
, q
= escaped
; *p
; p
++) {
1130 if (unlikely(memory_region_need_escape(c
))) {
1133 *q
++ = "0123456789abcdef"[c
>> 4];
1134 c
= "0123456789abcdef"[c
& 15];
1142 static void memory_region_do_init(MemoryRegion
*mr
,
1147 mr
->size
= int128_make64(size
);
1148 if (size
== UINT64_MAX
) {
1149 mr
->size
= int128_2_64();
1151 mr
->name
= g_strdup(name
);
1153 mr
->ram_block
= NULL
;
1156 char *escaped_name
= memory_region_escape_name(name
);
1157 char *name_array
= g_strdup_printf("%s[*]", escaped_name
);
1160 owner
= container_get(qdev_get_machine(), "/unattached");
1163 object_property_add_child(owner
, name_array
, OBJECT(mr
), &error_abort
);
1164 object_unref(OBJECT(mr
));
1166 g_free(escaped_name
);
1170 void memory_region_init(MemoryRegion
*mr
,
1175 object_initialize(mr
, sizeof(*mr
), TYPE_MEMORY_REGION
);
1176 memory_region_do_init(mr
, owner
, name
, size
);
1179 static void memory_region_get_addr(Object
*obj
, Visitor
*v
, const char *name
,
1180 void *opaque
, Error
**errp
)
1182 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1183 uint64_t value
= mr
->addr
;
1185 visit_type_uint64(v
, name
, &value
, errp
);
1188 static void memory_region_get_container(Object
*obj
, Visitor
*v
,
1189 const char *name
, void *opaque
,
1192 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1193 gchar
*path
= (gchar
*)"";
1195 if (mr
->container
) {
1196 path
= object_get_canonical_path(OBJECT(mr
->container
));
1198 visit_type_str(v
, name
, &path
, errp
);
1199 if (mr
->container
) {
1204 static Object
*memory_region_resolve_container(Object
*obj
, void *opaque
,
1207 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1209 return OBJECT(mr
->container
);
1212 static void memory_region_get_priority(Object
*obj
, Visitor
*v
,
1213 const char *name
, void *opaque
,
1216 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1217 int32_t value
= mr
->priority
;
1219 visit_type_int32(v
, name
, &value
, errp
);
1222 static void memory_region_get_size(Object
*obj
, Visitor
*v
, const char *name
,
1223 void *opaque
, Error
**errp
)
1225 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1226 uint64_t value
= memory_region_size(mr
);
1228 visit_type_uint64(v
, name
, &value
, errp
);
1231 static void memory_region_initfn(Object
*obj
)
1233 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1236 mr
->ops
= &unassigned_mem_ops
;
1238 mr
->romd_mode
= true;
1239 mr
->global_locking
= true;
1240 mr
->destructor
= memory_region_destructor_none
;
1241 QTAILQ_INIT(&mr
->subregions
);
1242 QTAILQ_INIT(&mr
->coalesced
);
1244 op
= object_property_add(OBJECT(mr
), "container",
1245 "link<" TYPE_MEMORY_REGION
">",
1246 memory_region_get_container
,
1247 NULL
, /* memory_region_set_container */
1248 NULL
, NULL
, &error_abort
);
1249 op
->resolve
= memory_region_resolve_container
;
1251 object_property_add(OBJECT(mr
), "addr", "uint64",
1252 memory_region_get_addr
,
1253 NULL
, /* memory_region_set_addr */
1254 NULL
, NULL
, &error_abort
);
1255 object_property_add(OBJECT(mr
), "priority", "uint32",
1256 memory_region_get_priority
,
1257 NULL
, /* memory_region_set_priority */
1258 NULL
, NULL
, &error_abort
);
1259 object_property_add(OBJECT(mr
), "size", "uint64",
1260 memory_region_get_size
,
1261 NULL
, /* memory_region_set_size, */
1262 NULL
, NULL
, &error_abort
);
1265 static void iommu_memory_region_initfn(Object
*obj
)
1267 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1269 mr
->is_iommu
= true;
1272 static uint64_t unassigned_mem_read(void *opaque
, hwaddr addr
,
1275 #ifdef DEBUG_UNASSIGNED
1276 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
1278 if (current_cpu
!= NULL
) {
1279 bool is_exec
= current_cpu
->mem_io_access_type
== MMU_INST_FETCH
;
1280 cpu_unassigned_access(current_cpu
, addr
, false, is_exec
, 0, size
);
1285 static void unassigned_mem_write(void *opaque
, hwaddr addr
,
1286 uint64_t val
, unsigned size
)
1288 #ifdef DEBUG_UNASSIGNED
1289 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%"PRIx64
"\n", addr
, val
);
1291 if (current_cpu
!= NULL
) {
1292 cpu_unassigned_access(current_cpu
, addr
, true, false, 0, size
);
1296 static bool unassigned_mem_accepts(void *opaque
, hwaddr addr
,
1297 unsigned size
, bool is_write
,
1303 const MemoryRegionOps unassigned_mem_ops
= {
1304 .valid
.accepts
= unassigned_mem_accepts
,
1305 .endianness
= DEVICE_NATIVE_ENDIAN
,
1308 static uint64_t memory_region_ram_device_read(void *opaque
,
1309 hwaddr addr
, unsigned size
)
1311 MemoryRegion
*mr
= opaque
;
1312 uint64_t data
= (uint64_t)~0;
1316 data
= *(uint8_t *)(mr
->ram_block
->host
+ addr
);
1319 data
= *(uint16_t *)(mr
->ram_block
->host
+ addr
);
1322 data
= *(uint32_t *)(mr
->ram_block
->host
+ addr
);
1325 data
= *(uint64_t *)(mr
->ram_block
->host
+ addr
);
1329 trace_memory_region_ram_device_read(get_cpu_index(), mr
, addr
, data
, size
);
1334 static void memory_region_ram_device_write(void *opaque
, hwaddr addr
,
1335 uint64_t data
, unsigned size
)
1337 MemoryRegion
*mr
= opaque
;
1339 trace_memory_region_ram_device_write(get_cpu_index(), mr
, addr
, data
, size
);
1343 *(uint8_t *)(mr
->ram_block
->host
+ addr
) = (uint8_t)data
;
1346 *(uint16_t *)(mr
->ram_block
->host
+ addr
) = (uint16_t)data
;
1349 *(uint32_t *)(mr
->ram_block
->host
+ addr
) = (uint32_t)data
;
1352 *(uint64_t *)(mr
->ram_block
->host
+ addr
) = data
;
1357 static const MemoryRegionOps ram_device_mem_ops
= {
1358 .read
= memory_region_ram_device_read
,
1359 .write
= memory_region_ram_device_write
,
1360 .endianness
= DEVICE_HOST_ENDIAN
,
1362 .min_access_size
= 1,
1363 .max_access_size
= 8,
1367 .min_access_size
= 1,
1368 .max_access_size
= 8,
1373 bool memory_region_access_valid(MemoryRegion
*mr
,
1379 int access_size_min
, access_size_max
;
1382 if (!mr
->ops
->valid
.unaligned
&& (addr
& (size
- 1))) {
1386 if (!mr
->ops
->valid
.accepts
) {
1390 access_size_min
= mr
->ops
->valid
.min_access_size
;
1391 if (!mr
->ops
->valid
.min_access_size
) {
1392 access_size_min
= 1;
1395 access_size_max
= mr
->ops
->valid
.max_access_size
;
1396 if (!mr
->ops
->valid
.max_access_size
) {
1397 access_size_max
= 4;
1400 access_size
= MAX(MIN(size
, access_size_max
), access_size_min
);
1401 for (i
= 0; i
< size
; i
+= access_size
) {
1402 if (!mr
->ops
->valid
.accepts(mr
->opaque
, addr
+ i
, access_size
,
1411 static MemTxResult
memory_region_dispatch_read1(MemoryRegion
*mr
,
1419 if (mr
->ops
->read
) {
1420 return access_with_adjusted_size(addr
, pval
, size
,
1421 mr
->ops
->impl
.min_access_size
,
1422 mr
->ops
->impl
.max_access_size
,
1423 memory_region_read_accessor
,
1426 return access_with_adjusted_size(addr
, pval
, size
,
1427 mr
->ops
->impl
.min_access_size
,
1428 mr
->ops
->impl
.max_access_size
,
1429 memory_region_read_with_attrs_accessor
,
1434 MemTxResult
memory_region_dispatch_read(MemoryRegion
*mr
,
1442 if (!memory_region_access_valid(mr
, addr
, size
, false, attrs
)) {
1443 *pval
= unassigned_mem_read(mr
, addr
, size
);
1444 return MEMTX_DECODE_ERROR
;
1447 r
= memory_region_dispatch_read1(mr
, addr
, pval
, size
, attrs
);
1448 adjust_endianness(mr
, pval
, size
);
1452 /* Return true if an eventfd was signalled */
1453 static bool memory_region_dispatch_write_eventfds(MemoryRegion
*mr
,
1459 MemoryRegionIoeventfd ioeventfd
= {
1460 .addr
= addrrange_make(int128_make64(addr
), int128_make64(size
)),
1465 for (i
= 0; i
< mr
->ioeventfd_nb
; i
++) {
1466 ioeventfd
.match_data
= mr
->ioeventfds
[i
].match_data
;
1467 ioeventfd
.e
= mr
->ioeventfds
[i
].e
;
1469 if (memory_region_ioeventfd_equal(&ioeventfd
, &mr
->ioeventfds
[i
])) {
1470 event_notifier_set(ioeventfd
.e
);
1478 MemTxResult
memory_region_dispatch_write(MemoryRegion
*mr
,
1484 if (!memory_region_access_valid(mr
, addr
, size
, true, attrs
)) {
1485 unassigned_mem_write(mr
, addr
, data
, size
);
1486 return MEMTX_DECODE_ERROR
;
1489 adjust_endianness(mr
, &data
, size
);
1491 if ((!kvm_eventfds_enabled()) &&
1492 memory_region_dispatch_write_eventfds(mr
, addr
, data
, size
, attrs
)) {
1496 if (mr
->ops
->write
) {
1497 return access_with_adjusted_size(addr
, &data
, size
,
1498 mr
->ops
->impl
.min_access_size
,
1499 mr
->ops
->impl
.max_access_size
,
1500 memory_region_write_accessor
, mr
,
1504 access_with_adjusted_size(addr
, &data
, size
,
1505 mr
->ops
->impl
.min_access_size
,
1506 mr
->ops
->impl
.max_access_size
,
1507 memory_region_write_with_attrs_accessor
,
1512 void memory_region_init_io(MemoryRegion
*mr
,
1514 const MemoryRegionOps
*ops
,
1519 memory_region_init(mr
, owner
, name
, size
);
1520 mr
->ops
= ops
? ops
: &unassigned_mem_ops
;
1521 mr
->opaque
= opaque
;
1522 mr
->terminates
= true;
1525 void memory_region_init_ram_nomigrate(MemoryRegion
*mr
,
1531 memory_region_init_ram_shared_nomigrate(mr
, owner
, name
, size
, false, errp
);
1534 void memory_region_init_ram_shared_nomigrate(MemoryRegion
*mr
,
1542 memory_region_init(mr
, owner
, name
, size
);
1544 mr
->terminates
= true;
1545 mr
->destructor
= memory_region_destructor_ram
;
1546 mr
->ram_block
= qemu_ram_alloc(size
, share
, mr
, &err
);
1547 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1549 mr
->size
= int128_zero();
1550 object_unparent(OBJECT(mr
));
1551 error_propagate(errp
, err
);
1555 void memory_region_init_resizeable_ram(MemoryRegion
*mr
,
1560 void (*resized
)(const char*,
1566 memory_region_init(mr
, owner
, name
, size
);
1568 mr
->terminates
= true;
1569 mr
->destructor
= memory_region_destructor_ram
;
1570 mr
->ram_block
= qemu_ram_alloc_resizeable(size
, max_size
, resized
,
1572 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1574 mr
->size
= int128_zero();
1575 object_unparent(OBJECT(mr
));
1576 error_propagate(errp
, err
);
1581 void memory_region_init_ram_from_file(MemoryRegion
*mr
,
1582 struct Object
*owner
,
1591 memory_region_init(mr
, owner
, name
, size
);
1593 mr
->terminates
= true;
1594 mr
->destructor
= memory_region_destructor_ram
;
1596 mr
->ram_block
= qemu_ram_alloc_from_file(size
, mr
, ram_flags
, path
, &err
);
1597 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1599 mr
->size
= int128_zero();
1600 object_unparent(OBJECT(mr
));
1601 error_propagate(errp
, err
);
1605 void memory_region_init_ram_from_fd(MemoryRegion
*mr
,
1606 struct Object
*owner
,
1614 memory_region_init(mr
, owner
, name
, size
);
1616 mr
->terminates
= true;
1617 mr
->destructor
= memory_region_destructor_ram
;
1618 mr
->ram_block
= qemu_ram_alloc_from_fd(size
, mr
,
1619 share
? RAM_SHARED
: 0,
1621 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1623 mr
->size
= int128_zero();
1624 object_unparent(OBJECT(mr
));
1625 error_propagate(errp
, err
);
1630 void memory_region_init_ram_ptr(MemoryRegion
*mr
,
1636 memory_region_init(mr
, owner
, name
, size
);
1638 mr
->terminates
= true;
1639 mr
->destructor
= memory_region_destructor_ram
;
1640 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1642 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1643 assert(ptr
!= NULL
);
1644 mr
->ram_block
= qemu_ram_alloc_from_ptr(size
, ptr
, mr
, &error_fatal
);
1647 void memory_region_init_ram_device_ptr(MemoryRegion
*mr
,
1653 memory_region_init(mr
, owner
, name
, size
);
1655 mr
->terminates
= true;
1656 mr
->ram_device
= true;
1657 mr
->ops
= &ram_device_mem_ops
;
1659 mr
->destructor
= memory_region_destructor_ram
;
1660 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1661 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1662 assert(ptr
!= NULL
);
1663 mr
->ram_block
= qemu_ram_alloc_from_ptr(size
, ptr
, mr
, &error_fatal
);
1666 void memory_region_init_alias(MemoryRegion
*mr
,
1673 memory_region_init(mr
, owner
, name
, size
);
1675 mr
->alias_offset
= offset
;
1678 void memory_region_init_rom_nomigrate(MemoryRegion
*mr
,
1679 struct Object
*owner
,
1685 memory_region_init(mr
, owner
, name
, size
);
1687 mr
->readonly
= true;
1688 mr
->terminates
= true;
1689 mr
->destructor
= memory_region_destructor_ram
;
1690 mr
->ram_block
= qemu_ram_alloc(size
, false, mr
, &err
);
1691 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1693 mr
->size
= int128_zero();
1694 object_unparent(OBJECT(mr
));
1695 error_propagate(errp
, err
);
1699 void memory_region_init_rom_device_nomigrate(MemoryRegion
*mr
,
1701 const MemoryRegionOps
*ops
,
1709 memory_region_init(mr
, owner
, name
, size
);
1711 mr
->opaque
= opaque
;
1712 mr
->terminates
= true;
1713 mr
->rom_device
= true;
1714 mr
->destructor
= memory_region_destructor_ram
;
1715 mr
->ram_block
= qemu_ram_alloc(size
, false, mr
, &err
);
1717 mr
->size
= int128_zero();
1718 object_unparent(OBJECT(mr
));
1719 error_propagate(errp
, err
);
1723 void memory_region_init_iommu(void *_iommu_mr
,
1724 size_t instance_size
,
1725 const char *mrtypename
,
1730 struct IOMMUMemoryRegion
*iommu_mr
;
1731 struct MemoryRegion
*mr
;
1733 object_initialize(_iommu_mr
, instance_size
, mrtypename
);
1734 mr
= MEMORY_REGION(_iommu_mr
);
1735 memory_region_do_init(mr
, owner
, name
, size
);
1736 iommu_mr
= IOMMU_MEMORY_REGION(mr
);
1737 mr
->terminates
= true; /* then re-forwards */
1738 QLIST_INIT(&iommu_mr
->iommu_notify
);
1739 iommu_mr
->iommu_notify_flags
= IOMMU_NOTIFIER_NONE
;
1742 static void memory_region_finalize(Object
*obj
)
1744 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1746 assert(!mr
->container
);
1748 /* We know the region is not visible in any address space (it
1749 * does not have a container and cannot be a root either because
1750 * it has no references, so we can blindly clear mr->enabled.
1751 * memory_region_set_enabled instead could trigger a transaction
1752 * and cause an infinite loop.
1754 mr
->enabled
= false;
1755 memory_region_transaction_begin();
1756 while (!QTAILQ_EMPTY(&mr
->subregions
)) {
1757 MemoryRegion
*subregion
= QTAILQ_FIRST(&mr
->subregions
);
1758 memory_region_del_subregion(mr
, subregion
);
1760 memory_region_transaction_commit();
1763 memory_region_clear_coalescing(mr
);
1764 g_free((char *)mr
->name
);
1765 g_free(mr
->ioeventfds
);
1768 Object
*memory_region_owner(MemoryRegion
*mr
)
1770 Object
*obj
= OBJECT(mr
);
1774 void memory_region_ref(MemoryRegion
*mr
)
1776 /* MMIO callbacks most likely will access data that belongs
1777 * to the owner, hence the need to ref/unref the owner whenever
1778 * the memory region is in use.
1780 * The memory region is a child of its owner. As long as the
1781 * owner doesn't call unparent itself on the memory region,
1782 * ref-ing the owner will also keep the memory region alive.
1783 * Memory regions without an owner are supposed to never go away;
1784 * we do not ref/unref them because it slows down DMA sensibly.
1786 if (mr
&& mr
->owner
) {
1787 object_ref(mr
->owner
);
1791 void memory_region_unref(MemoryRegion
*mr
)
1793 if (mr
&& mr
->owner
) {
1794 object_unref(mr
->owner
);
1798 uint64_t memory_region_size(MemoryRegion
*mr
)
1800 if (int128_eq(mr
->size
, int128_2_64())) {
1803 return int128_get64(mr
->size
);
1806 const char *memory_region_name(const MemoryRegion
*mr
)
1809 ((MemoryRegion
*)mr
)->name
=
1810 object_get_canonical_path_component(OBJECT(mr
));
1815 bool memory_region_is_ram_device(MemoryRegion
*mr
)
1817 return mr
->ram_device
;
1820 uint8_t memory_region_get_dirty_log_mask(MemoryRegion
*mr
)
1822 uint8_t mask
= mr
->dirty_log_mask
;
1823 if (global_dirty_log
&& mr
->ram_block
) {
1824 mask
|= (1 << DIRTY_MEMORY_MIGRATION
);
1829 bool memory_region_is_logging(MemoryRegion
*mr
, uint8_t client
)
1831 return memory_region_get_dirty_log_mask(mr
) & (1 << client
);
1834 static void memory_region_update_iommu_notify_flags(IOMMUMemoryRegion
*iommu_mr
)
1836 IOMMUNotifierFlag flags
= IOMMU_NOTIFIER_NONE
;
1837 IOMMUNotifier
*iommu_notifier
;
1838 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1840 IOMMU_NOTIFIER_FOREACH(iommu_notifier
, iommu_mr
) {
1841 flags
|= iommu_notifier
->notifier_flags
;
1844 if (flags
!= iommu_mr
->iommu_notify_flags
&& imrc
->notify_flag_changed
) {
1845 imrc
->notify_flag_changed(iommu_mr
,
1846 iommu_mr
->iommu_notify_flags
,
1850 iommu_mr
->iommu_notify_flags
= flags
;
1853 void memory_region_register_iommu_notifier(MemoryRegion
*mr
,
1856 IOMMUMemoryRegion
*iommu_mr
;
1859 memory_region_register_iommu_notifier(mr
->alias
, n
);
1863 /* We need to register for at least one bitfield */
1864 iommu_mr
= IOMMU_MEMORY_REGION(mr
);
1865 assert(n
->notifier_flags
!= IOMMU_NOTIFIER_NONE
);
1866 assert(n
->start
<= n
->end
);
1867 assert(n
->iommu_idx
>= 0 &&
1868 n
->iommu_idx
< memory_region_iommu_num_indexes(iommu_mr
));
1870 QLIST_INSERT_HEAD(&iommu_mr
->iommu_notify
, n
, node
);
1871 memory_region_update_iommu_notify_flags(iommu_mr
);
1874 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion
*iommu_mr
)
1876 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1878 if (imrc
->get_min_page_size
) {
1879 return imrc
->get_min_page_size(iommu_mr
);
1881 return TARGET_PAGE_SIZE
;
1884 void memory_region_iommu_replay(IOMMUMemoryRegion
*iommu_mr
, IOMMUNotifier
*n
)
1886 MemoryRegion
*mr
= MEMORY_REGION(iommu_mr
);
1887 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1888 hwaddr addr
, granularity
;
1889 IOMMUTLBEntry iotlb
;
1891 /* If the IOMMU has its own replay callback, override */
1893 imrc
->replay(iommu_mr
, n
);
1897 granularity
= memory_region_iommu_get_min_page_size(iommu_mr
);
1899 for (addr
= 0; addr
< memory_region_size(mr
); addr
+= granularity
) {
1900 iotlb
= imrc
->translate(iommu_mr
, addr
, IOMMU_NONE
, n
->iommu_idx
);
1901 if (iotlb
.perm
!= IOMMU_NONE
) {
1902 n
->notify(n
, &iotlb
);
1905 /* if (2^64 - MR size) < granularity, it's possible to get an
1906 * infinite loop here. This should catch such a wraparound */
1907 if ((addr
+ granularity
) < addr
) {
1913 void memory_region_iommu_replay_all(IOMMUMemoryRegion
*iommu_mr
)
1915 IOMMUNotifier
*notifier
;
1917 IOMMU_NOTIFIER_FOREACH(notifier
, iommu_mr
) {
1918 memory_region_iommu_replay(iommu_mr
, notifier
);
1922 void memory_region_unregister_iommu_notifier(MemoryRegion
*mr
,
1925 IOMMUMemoryRegion
*iommu_mr
;
1928 memory_region_unregister_iommu_notifier(mr
->alias
, n
);
1931 QLIST_REMOVE(n
, node
);
1932 iommu_mr
= IOMMU_MEMORY_REGION(mr
);
1933 memory_region_update_iommu_notify_flags(iommu_mr
);
1936 void memory_region_notify_one(IOMMUNotifier
*notifier
,
1937 IOMMUTLBEntry
*entry
)
1939 IOMMUNotifierFlag request_flags
;
1942 * Skip the notification if the notification does not overlap
1943 * with registered range.
1945 if (notifier
->start
> entry
->iova
+ entry
->addr_mask
||
1946 notifier
->end
< entry
->iova
) {
1950 if (entry
->perm
& IOMMU_RW
) {
1951 request_flags
= IOMMU_NOTIFIER_MAP
;
1953 request_flags
= IOMMU_NOTIFIER_UNMAP
;
1956 if (notifier
->notifier_flags
& request_flags
) {
1957 notifier
->notify(notifier
, entry
);
1961 void memory_region_notify_iommu(IOMMUMemoryRegion
*iommu_mr
,
1963 IOMMUTLBEntry entry
)
1965 IOMMUNotifier
*iommu_notifier
;
1967 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr
)));
1969 IOMMU_NOTIFIER_FOREACH(iommu_notifier
, iommu_mr
) {
1970 if (iommu_notifier
->iommu_idx
== iommu_idx
) {
1971 memory_region_notify_one(iommu_notifier
, &entry
);
1976 int memory_region_iommu_get_attr(IOMMUMemoryRegion
*iommu_mr
,
1977 enum IOMMUMemoryRegionAttr attr
,
1980 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1982 if (!imrc
->get_attr
) {
1986 return imrc
->get_attr(iommu_mr
, attr
, data
);
1989 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion
*iommu_mr
,
1992 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1994 if (!imrc
->attrs_to_index
) {
1998 return imrc
->attrs_to_index(iommu_mr
, attrs
);
2001 int memory_region_iommu_num_indexes(IOMMUMemoryRegion
*iommu_mr
)
2003 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
2005 if (!imrc
->num_indexes
) {
2009 return imrc
->num_indexes(iommu_mr
);
2012 void memory_region_set_log(MemoryRegion
*mr
, bool log
, unsigned client
)
2014 uint8_t mask
= 1 << client
;
2015 uint8_t old_logging
;
2017 assert(client
== DIRTY_MEMORY_VGA
);
2018 old_logging
= mr
->vga_logging_count
;
2019 mr
->vga_logging_count
+= log
? 1 : -1;
2020 if (!!old_logging
== !!mr
->vga_logging_count
) {
2024 memory_region_transaction_begin();
2025 mr
->dirty_log_mask
= (mr
->dirty_log_mask
& ~mask
) | (log
* mask
);
2026 memory_region_update_pending
|= mr
->enabled
;
2027 memory_region_transaction_commit();
2030 void memory_region_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
2033 assert(mr
->ram_block
);
2034 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr
) + addr
,
2036 memory_region_get_dirty_log_mask(mr
));
2039 static void memory_region_sync_dirty_bitmap(MemoryRegion
*mr
)
2041 MemoryListener
*listener
;
2046 /* If the same address space has multiple log_sync listeners, we
2047 * visit that address space's FlatView multiple times. But because
2048 * log_sync listeners are rare, it's still cheaper than walking each
2049 * address space once.
2051 QTAILQ_FOREACH(listener
, &memory_listeners
, link
) {
2052 if (!listener
->log_sync
) {
2055 as
= listener
->address_space
;
2056 view
= address_space_get_flatview(as
);
2057 FOR_EACH_FLAT_RANGE(fr
, view
) {
2058 if (fr
->dirty_log_mask
&& (!mr
|| fr
->mr
== mr
)) {
2059 MemoryRegionSection mrs
= section_from_flat_range(fr
, view
);
2060 listener
->log_sync(listener
, &mrs
);
2063 flatview_unref(view
);
2067 DirtyBitmapSnapshot
*memory_region_snapshot_and_clear_dirty(MemoryRegion
*mr
,
2072 assert(mr
->ram_block
);
2073 memory_region_sync_dirty_bitmap(mr
);
2074 return cpu_physical_memory_snapshot_and_clear_dirty(
2075 memory_region_get_ram_addr(mr
) + addr
, size
, client
);
2078 bool memory_region_snapshot_get_dirty(MemoryRegion
*mr
, DirtyBitmapSnapshot
*snap
,
2079 hwaddr addr
, hwaddr size
)
2081 assert(mr
->ram_block
);
2082 return cpu_physical_memory_snapshot_get_dirty(snap
,
2083 memory_region_get_ram_addr(mr
) + addr
, size
);
2086 void memory_region_set_readonly(MemoryRegion
*mr
, bool readonly
)
2088 if (mr
->readonly
!= readonly
) {
2089 memory_region_transaction_begin();
2090 mr
->readonly
= readonly
;
2091 memory_region_update_pending
|= mr
->enabled
;
2092 memory_region_transaction_commit();
2096 void memory_region_set_nonvolatile(MemoryRegion
*mr
, bool nonvolatile
)
2098 if (mr
->nonvolatile
!= nonvolatile
) {
2099 memory_region_transaction_begin();
2100 mr
->nonvolatile
= nonvolatile
;
2101 memory_region_update_pending
|= mr
->enabled
;
2102 memory_region_transaction_commit();
2106 void memory_region_rom_device_set_romd(MemoryRegion
*mr
, bool romd_mode
)
2108 if (mr
->romd_mode
!= romd_mode
) {
2109 memory_region_transaction_begin();
2110 mr
->romd_mode
= romd_mode
;
2111 memory_region_update_pending
|= mr
->enabled
;
2112 memory_region_transaction_commit();
2116 void memory_region_reset_dirty(MemoryRegion
*mr
, hwaddr addr
,
2117 hwaddr size
, unsigned client
)
2119 assert(mr
->ram_block
);
2120 cpu_physical_memory_test_and_clear_dirty(
2121 memory_region_get_ram_addr(mr
) + addr
, size
, client
);
2124 int memory_region_get_fd(MemoryRegion
*mr
)
2132 fd
= mr
->ram_block
->fd
;
2138 void *memory_region_get_ram_ptr(MemoryRegion
*mr
)
2141 uint64_t offset
= 0;
2145 offset
+= mr
->alias_offset
;
2148 assert(mr
->ram_block
);
2149 ptr
= qemu_map_ram_ptr(mr
->ram_block
, offset
);
2155 MemoryRegion
*memory_region_from_host(void *ptr
, ram_addr_t
*offset
)
2159 block
= qemu_ram_block_from_host(ptr
, false, offset
);
2167 ram_addr_t
memory_region_get_ram_addr(MemoryRegion
*mr
)
2169 return mr
->ram_block
? mr
->ram_block
->offset
: RAM_ADDR_INVALID
;
2172 void memory_region_ram_resize(MemoryRegion
*mr
, ram_addr_t newsize
, Error
**errp
)
2174 assert(mr
->ram_block
);
2176 qemu_ram_resize(mr
->ram_block
, newsize
, errp
);
2179 static void memory_region_update_coalesced_range_as(MemoryRegion
*mr
, AddressSpace
*as
)
2184 view
= address_space_get_flatview(as
);
2185 FOR_EACH_FLAT_RANGE(fr
, view
) {
2187 flat_range_coalesced_io_del(fr
, as
);
2188 flat_range_coalesced_io_add(fr
, as
);
2191 flatview_unref(view
);
2194 static void memory_region_update_coalesced_range(MemoryRegion
*mr
)
2198 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
2199 memory_region_update_coalesced_range_as(mr
, as
);
2203 void memory_region_set_coalescing(MemoryRegion
*mr
)
2205 memory_region_clear_coalescing(mr
);
2206 memory_region_add_coalescing(mr
, 0, int128_get64(mr
->size
));
2209 void memory_region_add_coalescing(MemoryRegion
*mr
,
2213 CoalescedMemoryRange
*cmr
= g_malloc(sizeof(*cmr
));
2215 cmr
->addr
= addrrange_make(int128_make64(offset
), int128_make64(size
));
2216 QTAILQ_INSERT_TAIL(&mr
->coalesced
, cmr
, link
);
2217 memory_region_update_coalesced_range(mr
);
2218 memory_region_set_flush_coalesced(mr
);
2221 void memory_region_clear_coalescing(MemoryRegion
*mr
)
2223 CoalescedMemoryRange
*cmr
;
2224 bool updated
= false;
2226 qemu_flush_coalesced_mmio_buffer();
2227 mr
->flush_coalesced_mmio
= false;
2229 while (!QTAILQ_EMPTY(&mr
->coalesced
)) {
2230 cmr
= QTAILQ_FIRST(&mr
->coalesced
);
2231 QTAILQ_REMOVE(&mr
->coalesced
, cmr
, link
);
2237 memory_region_update_coalesced_range(mr
);
2241 void memory_region_set_flush_coalesced(MemoryRegion
*mr
)
2243 mr
->flush_coalesced_mmio
= true;
2246 void memory_region_clear_flush_coalesced(MemoryRegion
*mr
)
2248 qemu_flush_coalesced_mmio_buffer();
2249 if (QTAILQ_EMPTY(&mr
->coalesced
)) {
2250 mr
->flush_coalesced_mmio
= false;
2254 void memory_region_clear_global_locking(MemoryRegion
*mr
)
2256 mr
->global_locking
= false;
2259 static bool userspace_eventfd_warning
;
2261 void memory_region_add_eventfd(MemoryRegion
*mr
,
2268 MemoryRegionIoeventfd mrfd
= {
2269 .addr
.start
= int128_make64(addr
),
2270 .addr
.size
= int128_make64(size
),
2271 .match_data
= match_data
,
2277 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2278 userspace_eventfd_warning
))) {
2279 userspace_eventfd_warning
= true;
2280 error_report("Using eventfd without MMIO binding in KVM. "
2281 "Suboptimal performance expected");
2285 adjust_endianness(mr
, &mrfd
.data
, size
);
2287 memory_region_transaction_begin();
2288 for (i
= 0; i
< mr
->ioeventfd_nb
; ++i
) {
2289 if (memory_region_ioeventfd_before(&mrfd
, &mr
->ioeventfds
[i
])) {
2294 mr
->ioeventfds
= g_realloc(mr
->ioeventfds
,
2295 sizeof(*mr
->ioeventfds
) * mr
->ioeventfd_nb
);
2296 memmove(&mr
->ioeventfds
[i
+1], &mr
->ioeventfds
[i
],
2297 sizeof(*mr
->ioeventfds
) * (mr
->ioeventfd_nb
-1 - i
));
2298 mr
->ioeventfds
[i
] = mrfd
;
2299 ioeventfd_update_pending
|= mr
->enabled
;
2300 memory_region_transaction_commit();
2303 void memory_region_del_eventfd(MemoryRegion
*mr
,
2310 MemoryRegionIoeventfd mrfd
= {
2311 .addr
.start
= int128_make64(addr
),
2312 .addr
.size
= int128_make64(size
),
2313 .match_data
= match_data
,
2320 adjust_endianness(mr
, &mrfd
.data
, size
);
2322 memory_region_transaction_begin();
2323 for (i
= 0; i
< mr
->ioeventfd_nb
; ++i
) {
2324 if (memory_region_ioeventfd_equal(&mrfd
, &mr
->ioeventfds
[i
])) {
2328 assert(i
!= mr
->ioeventfd_nb
);
2329 memmove(&mr
->ioeventfds
[i
], &mr
->ioeventfds
[i
+1],
2330 sizeof(*mr
->ioeventfds
) * (mr
->ioeventfd_nb
- (i
+1)));
2332 mr
->ioeventfds
= g_realloc(mr
->ioeventfds
,
2333 sizeof(*mr
->ioeventfds
)*mr
->ioeventfd_nb
+ 1);
2334 ioeventfd_update_pending
|= mr
->enabled
;
2335 memory_region_transaction_commit();
2338 static void memory_region_update_container_subregions(MemoryRegion
*subregion
)
2340 MemoryRegion
*mr
= subregion
->container
;
2341 MemoryRegion
*other
;
2343 memory_region_transaction_begin();
2345 memory_region_ref(subregion
);
2346 QTAILQ_FOREACH(other
, &mr
->subregions
, subregions_link
) {
2347 if (subregion
->priority
>= other
->priority
) {
2348 QTAILQ_INSERT_BEFORE(other
, subregion
, subregions_link
);
2352 QTAILQ_INSERT_TAIL(&mr
->subregions
, subregion
, subregions_link
);
2354 memory_region_update_pending
|= mr
->enabled
&& subregion
->enabled
;
2355 memory_region_transaction_commit();
2358 static void memory_region_add_subregion_common(MemoryRegion
*mr
,
2360 MemoryRegion
*subregion
)
2362 assert(!subregion
->container
);
2363 subregion
->container
= mr
;
2364 subregion
->addr
= offset
;
2365 memory_region_update_container_subregions(subregion
);
2368 void memory_region_add_subregion(MemoryRegion
*mr
,
2370 MemoryRegion
*subregion
)
2372 subregion
->priority
= 0;
2373 memory_region_add_subregion_common(mr
, offset
, subregion
);
2376 void memory_region_add_subregion_overlap(MemoryRegion
*mr
,
2378 MemoryRegion
*subregion
,
2381 subregion
->priority
= priority
;
2382 memory_region_add_subregion_common(mr
, offset
, subregion
);
2385 void memory_region_del_subregion(MemoryRegion
*mr
,
2386 MemoryRegion
*subregion
)
2388 memory_region_transaction_begin();
2389 assert(subregion
->container
== mr
);
2390 subregion
->container
= NULL
;
2391 QTAILQ_REMOVE(&mr
->subregions
, subregion
, subregions_link
);
2392 memory_region_unref(subregion
);
2393 memory_region_update_pending
|= mr
->enabled
&& subregion
->enabled
;
2394 memory_region_transaction_commit();
2397 void memory_region_set_enabled(MemoryRegion
*mr
, bool enabled
)
2399 if (enabled
== mr
->enabled
) {
2402 memory_region_transaction_begin();
2403 mr
->enabled
= enabled
;
2404 memory_region_update_pending
= true;
2405 memory_region_transaction_commit();
2408 void memory_region_set_size(MemoryRegion
*mr
, uint64_t size
)
2410 Int128 s
= int128_make64(size
);
2412 if (size
== UINT64_MAX
) {
2415 if (int128_eq(s
, mr
->size
)) {
2418 memory_region_transaction_begin();
2420 memory_region_update_pending
= true;
2421 memory_region_transaction_commit();
2424 static void memory_region_readd_subregion(MemoryRegion
*mr
)
2426 MemoryRegion
*container
= mr
->container
;
2429 memory_region_transaction_begin();
2430 memory_region_ref(mr
);
2431 memory_region_del_subregion(container
, mr
);
2432 mr
->container
= container
;
2433 memory_region_update_container_subregions(mr
);
2434 memory_region_unref(mr
);
2435 memory_region_transaction_commit();
2439 void memory_region_set_address(MemoryRegion
*mr
, hwaddr addr
)
2441 if (addr
!= mr
->addr
) {
2443 memory_region_readd_subregion(mr
);
2447 void memory_region_set_alias_offset(MemoryRegion
*mr
, hwaddr offset
)
2451 if (offset
== mr
->alias_offset
) {
2455 memory_region_transaction_begin();
2456 mr
->alias_offset
= offset
;
2457 memory_region_update_pending
|= mr
->enabled
;
2458 memory_region_transaction_commit();
2461 uint64_t memory_region_get_alignment(const MemoryRegion
*mr
)
2466 static int cmp_flatrange_addr(const void *addr_
, const void *fr_
)
2468 const AddrRange
*addr
= addr_
;
2469 const FlatRange
*fr
= fr_
;
2471 if (int128_le(addrrange_end(*addr
), fr
->addr
.start
)) {
2473 } else if (int128_ge(addr
->start
, addrrange_end(fr
->addr
))) {
2479 static FlatRange
*flatview_lookup(FlatView
*view
, AddrRange addr
)
2481 return bsearch(&addr
, view
->ranges
, view
->nr
,
2482 sizeof(FlatRange
), cmp_flatrange_addr
);
2485 bool memory_region_is_mapped(MemoryRegion
*mr
)
2487 return mr
->container
? true : false;
2490 /* Same as memory_region_find, but it does not add a reference to the
2491 * returned region. It must be called from an RCU critical section.
2493 static MemoryRegionSection
memory_region_find_rcu(MemoryRegion
*mr
,
2494 hwaddr addr
, uint64_t size
)
2496 MemoryRegionSection ret
= { .mr
= NULL
};
2504 for (root
= mr
; root
->container
; ) {
2505 root
= root
->container
;
2509 as
= memory_region_to_address_space(root
);
2513 range
= addrrange_make(int128_make64(addr
), int128_make64(size
));
2515 view
= address_space_to_flatview(as
);
2516 fr
= flatview_lookup(view
, range
);
2521 while (fr
> view
->ranges
&& addrrange_intersects(fr
[-1].addr
, range
)) {
2527 range
= addrrange_intersection(range
, fr
->addr
);
2528 ret
.offset_within_region
= fr
->offset_in_region
;
2529 ret
.offset_within_region
+= int128_get64(int128_sub(range
.start
,
2531 ret
.size
= range
.size
;
2532 ret
.offset_within_address_space
= int128_get64(range
.start
);
2533 ret
.readonly
= fr
->readonly
;
2534 ret
.nonvolatile
= fr
->nonvolatile
;
2538 MemoryRegionSection
memory_region_find(MemoryRegion
*mr
,
2539 hwaddr addr
, uint64_t size
)
2541 MemoryRegionSection ret
;
2543 ret
= memory_region_find_rcu(mr
, addr
, size
);
2545 memory_region_ref(ret
.mr
);
2551 bool memory_region_present(MemoryRegion
*container
, hwaddr addr
)
2556 mr
= memory_region_find_rcu(container
, addr
, 1).mr
;
2558 return mr
&& mr
!= container
;
2561 void memory_global_dirty_log_sync(void)
2563 memory_region_sync_dirty_bitmap(NULL
);
2566 static VMChangeStateEntry
*vmstate_change
;
2568 void memory_global_dirty_log_start(void)
2570 if (vmstate_change
) {
2571 qemu_del_vm_change_state_handler(vmstate_change
);
2572 vmstate_change
= NULL
;
2575 global_dirty_log
= true;
2577 MEMORY_LISTENER_CALL_GLOBAL(log_global_start
, Forward
);
2579 /* Refresh DIRTY_MEMORY_MIGRATION bit. */
2580 memory_region_transaction_begin();
2581 memory_region_update_pending
= true;
2582 memory_region_transaction_commit();
2585 static void memory_global_dirty_log_do_stop(void)
2587 global_dirty_log
= false;
2589 /* Refresh DIRTY_MEMORY_MIGRATION bit. */
2590 memory_region_transaction_begin();
2591 memory_region_update_pending
= true;
2592 memory_region_transaction_commit();
2594 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop
, Reverse
);
2597 static void memory_vm_change_state_handler(void *opaque
, int running
,
2601 memory_global_dirty_log_do_stop();
2603 if (vmstate_change
) {
2604 qemu_del_vm_change_state_handler(vmstate_change
);
2605 vmstate_change
= NULL
;
2610 void memory_global_dirty_log_stop(void)
2612 if (!runstate_is_running()) {
2613 if (vmstate_change
) {
2616 vmstate_change
= qemu_add_vm_change_state_handler(
2617 memory_vm_change_state_handler
, NULL
);
2621 memory_global_dirty_log_do_stop();
2624 static void listener_add_address_space(MemoryListener
*listener
,
2630 if (listener
->begin
) {
2631 listener
->begin(listener
);
2633 if (global_dirty_log
) {
2634 if (listener
->log_global_start
) {
2635 listener
->log_global_start(listener
);
2639 view
= address_space_get_flatview(as
);
2640 FOR_EACH_FLAT_RANGE(fr
, view
) {
2641 MemoryRegionSection section
= section_from_flat_range(fr
, view
);
2643 if (listener
->region_add
) {
2644 listener
->region_add(listener
, §ion
);
2646 if (fr
->dirty_log_mask
&& listener
->log_start
) {
2647 listener
->log_start(listener
, §ion
, 0, fr
->dirty_log_mask
);
2650 if (listener
->commit
) {
2651 listener
->commit(listener
);
2653 flatview_unref(view
);
2656 static void listener_del_address_space(MemoryListener
*listener
,
2662 if (listener
->begin
) {
2663 listener
->begin(listener
);
2665 view
= address_space_get_flatview(as
);
2666 FOR_EACH_FLAT_RANGE(fr
, view
) {
2667 MemoryRegionSection section
= section_from_flat_range(fr
, view
);
2669 if (fr
->dirty_log_mask
&& listener
->log_stop
) {
2670 listener
->log_stop(listener
, §ion
, fr
->dirty_log_mask
, 0);
2672 if (listener
->region_del
) {
2673 listener
->region_del(listener
, §ion
);
2676 if (listener
->commit
) {
2677 listener
->commit(listener
);
2679 flatview_unref(view
);
2682 void memory_listener_register(MemoryListener
*listener
, AddressSpace
*as
)
2684 MemoryListener
*other
= NULL
;
2686 listener
->address_space
= as
;
2687 if (QTAILQ_EMPTY(&memory_listeners
)
2688 || listener
->priority
>= QTAILQ_LAST(&memory_listeners
)->priority
) {
2689 QTAILQ_INSERT_TAIL(&memory_listeners
, listener
, link
);
2691 QTAILQ_FOREACH(other
, &memory_listeners
, link
) {
2692 if (listener
->priority
< other
->priority
) {
2696 QTAILQ_INSERT_BEFORE(other
, listener
, link
);
2699 if (QTAILQ_EMPTY(&as
->listeners
)
2700 || listener
->priority
>= QTAILQ_LAST(&as
->listeners
)->priority
) {
2701 QTAILQ_INSERT_TAIL(&as
->listeners
, listener
, link_as
);
2703 QTAILQ_FOREACH(other
, &as
->listeners
, link_as
) {
2704 if (listener
->priority
< other
->priority
) {
2708 QTAILQ_INSERT_BEFORE(other
, listener
, link_as
);
2711 listener_add_address_space(listener
, as
);
2714 void memory_listener_unregister(MemoryListener
*listener
)
2716 if (!listener
->address_space
) {
2720 listener_del_address_space(listener
, listener
->address_space
);
2721 QTAILQ_REMOVE(&memory_listeners
, listener
, link
);
2722 QTAILQ_REMOVE(&listener
->address_space
->listeners
, listener
, link_as
);
2723 listener
->address_space
= NULL
;
2726 void address_space_remove_listeners(AddressSpace
*as
)
2728 while (!QTAILQ_EMPTY(&as
->listeners
)) {
2729 memory_listener_unregister(QTAILQ_FIRST(&as
->listeners
));
2733 void address_space_init(AddressSpace
*as
, MemoryRegion
*root
, const char *name
)
2735 memory_region_ref(root
);
2737 as
->current_map
= NULL
;
2738 as
->ioeventfd_nb
= 0;
2739 as
->ioeventfds
= NULL
;
2740 QTAILQ_INIT(&as
->listeners
);
2741 QTAILQ_INSERT_TAIL(&address_spaces
, as
, address_spaces_link
);
2742 as
->name
= g_strdup(name
? name
: "anonymous");
2743 address_space_update_topology(as
);
2744 address_space_update_ioeventfds(as
);
2747 static void do_address_space_destroy(AddressSpace
*as
)
2749 assert(QTAILQ_EMPTY(&as
->listeners
));
2751 flatview_unref(as
->current_map
);
2753 g_free(as
->ioeventfds
);
2754 memory_region_unref(as
->root
);
2757 void address_space_destroy(AddressSpace
*as
)
2759 MemoryRegion
*root
= as
->root
;
2761 /* Flush out anything from MemoryListeners listening in on this */
2762 memory_region_transaction_begin();
2764 memory_region_transaction_commit();
2765 QTAILQ_REMOVE(&address_spaces
, as
, address_spaces_link
);
2767 /* At this point, as->dispatch and as->current_map are dummy
2768 * entries that the guest should never use. Wait for the old
2769 * values to expire before freeing the data.
2772 call_rcu(as
, do_address_space_destroy
, rcu
);
2775 static const char *memory_region_type(MemoryRegion
*mr
)
2777 if (memory_region_is_ram_device(mr
)) {
2779 } else if (memory_region_is_romd(mr
)) {
2781 } else if (memory_region_is_rom(mr
)) {
2783 } else if (memory_region_is_ram(mr
)) {
2790 typedef struct MemoryRegionList MemoryRegionList
;
2792 struct MemoryRegionList
{
2793 const MemoryRegion
*mr
;
2794 QTAILQ_ENTRY(MemoryRegionList
) mrqueue
;
2797 typedef QTAILQ_HEAD(, MemoryRegionList
) MemoryRegionListHead
;
2799 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2800 int128_sub((size), int128_one())) : 0)
2801 #define MTREE_INDENT " "
2803 static void mtree_expand_owner(const char *label
, Object
*obj
)
2805 DeviceState
*dev
= (DeviceState
*) object_dynamic_cast(obj
, TYPE_DEVICE
);
2807 qemu_printf(" %s:{%s", label
, dev
? "dev" : "obj");
2808 if (dev
&& dev
->id
) {
2809 qemu_printf(" id=%s", dev
->id
);
2811 gchar
*canonical_path
= object_get_canonical_path(obj
);
2812 if (canonical_path
) {
2813 qemu_printf(" path=%s", canonical_path
);
2814 g_free(canonical_path
);
2816 qemu_printf(" type=%s", object_get_typename(obj
));
2822 static void mtree_print_mr_owner(const MemoryRegion
*mr
)
2824 Object
*owner
= mr
->owner
;
2825 Object
*parent
= memory_region_owner((MemoryRegion
*)mr
);
2827 if (!owner
&& !parent
) {
2828 qemu_printf(" orphan");
2832 mtree_expand_owner("owner", owner
);
2834 if (parent
&& parent
!= owner
) {
2835 mtree_expand_owner("parent", parent
);
2839 static void mtree_print_mr(const MemoryRegion
*mr
, unsigned int level
,
2841 MemoryRegionListHead
*alias_print_queue
,
2844 MemoryRegionList
*new_ml
, *ml
, *next_ml
;
2845 MemoryRegionListHead submr_print_queue
;
2846 const MemoryRegion
*submr
;
2848 hwaddr cur_start
, cur_end
;
2854 for (i
= 0; i
< level
; i
++) {
2855 qemu_printf(MTREE_INDENT
);
2858 cur_start
= base
+ mr
->addr
;
2859 cur_end
= cur_start
+ MR_SIZE(mr
->size
);
2862 * Try to detect overflow of memory region. This should never
2863 * happen normally. When it happens, we dump something to warn the
2864 * user who is observing this.
2866 if (cur_start
< base
|| cur_end
< cur_start
) {
2867 qemu_printf("[DETECTED OVERFLOW!] ");
2871 MemoryRegionList
*ml
;
2874 /* check if the alias is already in the queue */
2875 QTAILQ_FOREACH(ml
, alias_print_queue
, mrqueue
) {
2876 if (ml
->mr
== mr
->alias
) {
2882 ml
= g_new(MemoryRegionList
, 1);
2884 QTAILQ_INSERT_TAIL(alias_print_queue
, ml
, mrqueue
);
2886 qemu_printf(TARGET_FMT_plx
"-" TARGET_FMT_plx
2887 " (prio %d, %s%s): alias %s @%s " TARGET_FMT_plx
2888 "-" TARGET_FMT_plx
"%s",
2891 mr
->nonvolatile
? "nv-" : "",
2892 memory_region_type((MemoryRegion
*)mr
),
2893 memory_region_name(mr
),
2894 memory_region_name(mr
->alias
),
2896 mr
->alias_offset
+ MR_SIZE(mr
->size
),
2897 mr
->enabled
? "" : " [disabled]");
2899 mtree_print_mr_owner(mr
);
2902 qemu_printf(TARGET_FMT_plx
"-" TARGET_FMT_plx
2903 " (prio %d, %s%s): %s%s",
2906 mr
->nonvolatile
? "nv-" : "",
2907 memory_region_type((MemoryRegion
*)mr
),
2908 memory_region_name(mr
),
2909 mr
->enabled
? "" : " [disabled]");
2911 mtree_print_mr_owner(mr
);
2916 QTAILQ_INIT(&submr_print_queue
);
2918 QTAILQ_FOREACH(submr
, &mr
->subregions
, subregions_link
) {
2919 new_ml
= g_new(MemoryRegionList
, 1);
2921 QTAILQ_FOREACH(ml
, &submr_print_queue
, mrqueue
) {
2922 if (new_ml
->mr
->addr
< ml
->mr
->addr
||
2923 (new_ml
->mr
->addr
== ml
->mr
->addr
&&
2924 new_ml
->mr
->priority
> ml
->mr
->priority
)) {
2925 QTAILQ_INSERT_BEFORE(ml
, new_ml
, mrqueue
);
2931 QTAILQ_INSERT_TAIL(&submr_print_queue
, new_ml
, mrqueue
);
2935 QTAILQ_FOREACH(ml
, &submr_print_queue
, mrqueue
) {
2936 mtree_print_mr(ml
->mr
, level
+ 1, cur_start
,
2937 alias_print_queue
, owner
);
2940 QTAILQ_FOREACH_SAFE(ml
, &submr_print_queue
, mrqueue
, next_ml
) {
2945 struct FlatViewInfo
{
2951 static void mtree_print_flatview(gpointer key
, gpointer value
,
2954 FlatView
*view
= key
;
2955 GArray
*fv_address_spaces
= value
;
2956 struct FlatViewInfo
*fvi
= user_data
;
2957 FlatRange
*range
= &view
->ranges
[0];
2963 qemu_printf("FlatView #%d\n", fvi
->counter
);
2966 for (i
= 0; i
< fv_address_spaces
->len
; ++i
) {
2967 as
= g_array_index(fv_address_spaces
, AddressSpace
*, i
);
2968 qemu_printf(" AS \"%s\", root: %s",
2969 as
->name
, memory_region_name(as
->root
));
2970 if (as
->root
->alias
) {
2971 qemu_printf(", alias %s", memory_region_name(as
->root
->alias
));
2976 qemu_printf(" Root memory region: %s\n",
2977 view
->root
? memory_region_name(view
->root
) : "(none)");
2980 qemu_printf(MTREE_INDENT
"No rendered FlatView\n\n");
2986 if (range
->offset_in_region
) {
2987 qemu_printf(MTREE_INDENT TARGET_FMT_plx
"-" TARGET_FMT_plx
2988 " (prio %d, %s%s): %s @" TARGET_FMT_plx
,
2989 int128_get64(range
->addr
.start
),
2990 int128_get64(range
->addr
.start
)
2991 + MR_SIZE(range
->addr
.size
),
2993 range
->nonvolatile
? "nv-" : "",
2994 range
->readonly
? "rom" : memory_region_type(mr
),
2995 memory_region_name(mr
),
2996 range
->offset_in_region
);
2998 qemu_printf(MTREE_INDENT TARGET_FMT_plx
"-" TARGET_FMT_plx
2999 " (prio %d, %s%s): %s",
3000 int128_get64(range
->addr
.start
),
3001 int128_get64(range
->addr
.start
)
3002 + MR_SIZE(range
->addr
.size
),
3004 range
->nonvolatile
? "nv-" : "",
3005 range
->readonly
? "rom" : memory_region_type(mr
),
3006 memory_region_name(mr
));
3009 mtree_print_mr_owner(mr
);
3015 #if !defined(CONFIG_USER_ONLY)
3016 if (fvi
->dispatch_tree
&& view
->root
) {
3017 mtree_print_dispatch(view
->dispatch
, view
->root
);
3024 static gboolean
mtree_info_flatview_free(gpointer key
, gpointer value
,
3027 FlatView
*view
= key
;
3028 GArray
*fv_address_spaces
= value
;
3030 g_array_unref(fv_address_spaces
);
3031 flatview_unref(view
);
3036 void mtree_info(bool flatview
, bool dispatch_tree
, bool owner
)
3038 MemoryRegionListHead ml_head
;
3039 MemoryRegionList
*ml
, *ml2
;
3044 struct FlatViewInfo fvi
= {
3046 .dispatch_tree
= dispatch_tree
,
3049 GArray
*fv_address_spaces
;
3050 GHashTable
*views
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
3052 /* Gather all FVs in one table */
3053 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
3054 view
= address_space_get_flatview(as
);
3056 fv_address_spaces
= g_hash_table_lookup(views
, view
);
3057 if (!fv_address_spaces
) {
3058 fv_address_spaces
= g_array_new(false, false, sizeof(as
));
3059 g_hash_table_insert(views
, view
, fv_address_spaces
);
3062 g_array_append_val(fv_address_spaces
, as
);
3066 g_hash_table_foreach(views
, mtree_print_flatview
, &fvi
);
3069 g_hash_table_foreach_remove(views
, mtree_info_flatview_free
, 0);
3070 g_hash_table_unref(views
);
3075 QTAILQ_INIT(&ml_head
);
3077 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
3078 qemu_printf("address-space: %s\n", as
->name
);
3079 mtree_print_mr(as
->root
, 1, 0, &ml_head
, owner
);
3083 /* print aliased regions */
3084 QTAILQ_FOREACH(ml
, &ml_head
, mrqueue
) {
3085 qemu_printf("memory-region: %s\n", memory_region_name(ml
->mr
));
3086 mtree_print_mr(ml
->mr
, 1, 0, &ml_head
, owner
);
3090 QTAILQ_FOREACH_SAFE(ml
, &ml_head
, mrqueue
, ml2
) {
3095 void memory_region_init_ram(MemoryRegion
*mr
,
3096 struct Object
*owner
,
3101 DeviceState
*owner_dev
;
3104 memory_region_init_ram_nomigrate(mr
, owner
, name
, size
, &err
);
3106 error_propagate(errp
, err
);
3109 /* This will assert if owner is neither NULL nor a DeviceState.
3110 * We only want the owner here for the purposes of defining a
3111 * unique name for migration. TODO: Ideally we should implement
3112 * a naming scheme for Objects which are not DeviceStates, in
3113 * which case we can relax this restriction.
3115 owner_dev
= DEVICE(owner
);
3116 vmstate_register_ram(mr
, owner_dev
);
3119 void memory_region_init_rom(MemoryRegion
*mr
,
3120 struct Object
*owner
,
3125 DeviceState
*owner_dev
;
3128 memory_region_init_rom_nomigrate(mr
, owner
, name
, size
, &err
);
3130 error_propagate(errp
, err
);
3133 /* This will assert if owner is neither NULL nor a DeviceState.
3134 * We only want the owner here for the purposes of defining a
3135 * unique name for migration. TODO: Ideally we should implement
3136 * a naming scheme for Objects which are not DeviceStates, in
3137 * which case we can relax this restriction.
3139 owner_dev
= DEVICE(owner
);
3140 vmstate_register_ram(mr
, owner_dev
);
3143 void memory_region_init_rom_device(MemoryRegion
*mr
,
3144 struct Object
*owner
,
3145 const MemoryRegionOps
*ops
,
3151 DeviceState
*owner_dev
;
3154 memory_region_init_rom_device_nomigrate(mr
, owner
, ops
, opaque
,
3157 error_propagate(errp
, err
);
3160 /* This will assert if owner is neither NULL nor a DeviceState.
3161 * We only want the owner here for the purposes of defining a
3162 * unique name for migration. TODO: Ideally we should implement
3163 * a naming scheme for Objects which are not DeviceStates, in
3164 * which case we can relax this restriction.
3166 owner_dev
= DEVICE(owner
);
3167 vmstate_register_ram(mr
, owner_dev
);
3170 static const TypeInfo memory_region_info
= {
3171 .parent
= TYPE_OBJECT
,
3172 .name
= TYPE_MEMORY_REGION
,
3173 .instance_size
= sizeof(MemoryRegion
),
3174 .instance_init
= memory_region_initfn
,
3175 .instance_finalize
= memory_region_finalize
,
3178 static const TypeInfo iommu_memory_region_info
= {
3179 .parent
= TYPE_MEMORY_REGION
,
3180 .name
= TYPE_IOMMU_MEMORY_REGION
,
3181 .class_size
= sizeof(IOMMUMemoryRegionClass
),
3182 .instance_size
= sizeof(IOMMUMemoryRegion
),
3183 .instance_init
= iommu_memory_region_initfn
,
3187 static void memory_register_types(void)
3189 type_register_static(&memory_region_info
);
3190 type_register_static(&iommu_memory_region_info
);
3193 type_init(memory_register_types
)