2 * QEMU S390x KVM implementation
4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5 * Copyright IBM Corp. 2012
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * Contributions after 2012-10-29 are licensed under the terms of the
18 * GNU GPL, version 2 or (at your option) any later version.
20 * You should have received a copy of the GNU (Lesser) General Public
21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include <sys/ioctl.h>
28 #include <linux/kvm.h>
29 #include <asm/ptrace.h>
31 #include "qemu-common.h"
32 #include "qemu/error-report.h"
33 #include "qemu/timer.h"
34 #include "sysemu/sysemu.h"
35 #include "sysemu/kvm.h"
38 #include "sysemu/device_tree.h"
39 #include "qapi/qmp/qjson.h"
40 #include "exec/gdbstub.h"
41 #include "exec/address-spaces.h"
43 #include "qapi-event.h"
44 #include "hw/s390x/s390-pci-inst.h"
45 #include "hw/s390x/s390-pci-bus.h"
46 #include "hw/s390x/ipl.h"
47 #include "hw/s390x/ebcdic.h"
48 #include "exec/memattrs.h"
50 /* #define DEBUG_KVM */
53 #define DPRINTF(fmt, ...) \
54 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
56 #define DPRINTF(fmt, ...) \
60 #define kvm_vm_check_mem_attr(s, attr) \
61 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
63 #define IPA0_DIAG 0x8300
64 #define IPA0_SIGP 0xae00
65 #define IPA0_B2 0xb200
66 #define IPA0_B9 0xb900
67 #define IPA0_EB 0xeb00
68 #define IPA0_E3 0xe300
70 #define PRIV_B2_SCLP_CALL 0x20
71 #define PRIV_B2_CSCH 0x30
72 #define PRIV_B2_HSCH 0x31
73 #define PRIV_B2_MSCH 0x32
74 #define PRIV_B2_SSCH 0x33
75 #define PRIV_B2_STSCH 0x34
76 #define PRIV_B2_TSCH 0x35
77 #define PRIV_B2_TPI 0x36
78 #define PRIV_B2_SAL 0x37
79 #define PRIV_B2_RSCH 0x38
80 #define PRIV_B2_STCRW 0x39
81 #define PRIV_B2_STCPS 0x3a
82 #define PRIV_B2_RCHP 0x3b
83 #define PRIV_B2_SCHM 0x3c
84 #define PRIV_B2_CHSC 0x5f
85 #define PRIV_B2_SIGA 0x74
86 #define PRIV_B2_XSCH 0x76
88 #define PRIV_EB_SQBS 0x8a
89 #define PRIV_EB_PCISTB 0xd0
90 #define PRIV_EB_SIC 0xd1
92 #define PRIV_B9_EQBS 0x9c
93 #define PRIV_B9_CLP 0xa0
94 #define PRIV_B9_PCISTG 0xd0
95 #define PRIV_B9_PCILG 0xd2
96 #define PRIV_B9_RPCIT 0xd3
98 #define PRIV_E3_MPCIFC 0xd0
99 #define PRIV_E3_STPCIFC 0xd4
101 #define DIAG_TIMEREVENT 0x288
102 #define DIAG_IPL 0x308
103 #define DIAG_KVM_HYPERCALL 0x500
104 #define DIAG_KVM_BREAKPOINT 0x501
106 #define ICPT_INSTRUCTION 0x04
107 #define ICPT_PROGRAM 0x08
108 #define ICPT_EXT_INT 0x14
109 #define ICPT_WAITPSW 0x1c
110 #define ICPT_SOFT_INTERCEPT 0x24
111 #define ICPT_CPU_STOP 0x28
114 #define NR_LOCAL_IRQS 32
116 * Needs to be big enough to contain max_cpus emergency signals
117 * and in addition NR_LOCAL_IRQS interrupts
119 #define VCPU_IRQ_BUF_SIZE (sizeof(struct kvm_s390_irq) * \
120 (max_cpus + NR_LOCAL_IRQS))
122 static CPUWatchpoint hw_watchpoint
;
124 * We don't use a list because this structure is also used to transmit the
125 * hardware breakpoints to the kernel.
127 static struct kvm_hw_breakpoint
*hw_breakpoints
;
128 static int nb_hw_breakpoints
;
130 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
134 static int cap_sync_regs
;
135 static int cap_async_pf
;
136 static int cap_mem_op
;
137 static int cap_s390_irq
;
139 static void *legacy_s390_alloc(size_t size
, uint64_t *align
);
141 static int kvm_s390_query_mem_limit(KVMState
*s
, uint64_t *memory_limit
)
143 struct kvm_device_attr attr
= {
144 .group
= KVM_S390_VM_MEM_CTRL
,
145 .attr
= KVM_S390_VM_MEM_LIMIT_SIZE
,
146 .addr
= (uint64_t) memory_limit
,
149 return kvm_vm_ioctl(s
, KVM_GET_DEVICE_ATTR
, &attr
);
152 int kvm_s390_set_mem_limit(KVMState
*s
, uint64_t new_limit
, uint64_t *hw_limit
)
156 struct kvm_device_attr attr
= {
157 .group
= KVM_S390_VM_MEM_CTRL
,
158 .attr
= KVM_S390_VM_MEM_LIMIT_SIZE
,
159 .addr
= (uint64_t) &new_limit
,
162 if (!kvm_vm_check_mem_attr(s
, KVM_S390_VM_MEM_LIMIT_SIZE
)) {
166 rc
= kvm_s390_query_mem_limit(s
, hw_limit
);
169 } else if (*hw_limit
< new_limit
) {
173 return kvm_vm_ioctl(s
, KVM_SET_DEVICE_ATTR
, &attr
);
176 void kvm_s390_cmma_reset(void)
179 struct kvm_device_attr attr
= {
180 .group
= KVM_S390_VM_MEM_CTRL
,
181 .attr
= KVM_S390_VM_MEM_CLR_CMMA
,
184 rc
= kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
185 trace_kvm_clear_cmma(rc
);
188 static void kvm_s390_enable_cmma(KVMState
*s
)
191 struct kvm_device_attr attr
= {
192 .group
= KVM_S390_VM_MEM_CTRL
,
193 .attr
= KVM_S390_VM_MEM_ENABLE_CMMA
,
196 if (!kvm_vm_check_mem_attr(s
, KVM_S390_VM_MEM_ENABLE_CMMA
) ||
197 !kvm_vm_check_mem_attr(s
, KVM_S390_VM_MEM_CLR_CMMA
)) {
201 rc
= kvm_vm_ioctl(s
, KVM_SET_DEVICE_ATTR
, &attr
);
202 trace_kvm_enable_cmma(rc
);
205 static void kvm_s390_set_attr(uint64_t attr
)
207 struct kvm_device_attr attribute
= {
208 .group
= KVM_S390_VM_CRYPTO
,
212 int ret
= kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attribute
);
215 error_report("Failed to set crypto device attribute %lu: %s",
216 attr
, strerror(-ret
));
220 static void kvm_s390_init_aes_kw(void)
222 uint64_t attr
= KVM_S390_VM_CRYPTO_DISABLE_AES_KW
;
224 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
226 attr
= KVM_S390_VM_CRYPTO_ENABLE_AES_KW
;
229 if (kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CRYPTO
, attr
)) {
230 kvm_s390_set_attr(attr
);
234 static void kvm_s390_init_dea_kw(void)
236 uint64_t attr
= KVM_S390_VM_CRYPTO_DISABLE_DEA_KW
;
238 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
240 attr
= KVM_S390_VM_CRYPTO_ENABLE_DEA_KW
;
243 if (kvm_vm_check_attr(kvm_state
, KVM_S390_VM_CRYPTO
, attr
)) {
244 kvm_s390_set_attr(attr
);
248 void kvm_s390_crypto_reset(void)
250 kvm_s390_init_aes_kw();
251 kvm_s390_init_dea_kw();
254 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
256 cap_sync_regs
= kvm_check_extension(s
, KVM_CAP_SYNC_REGS
);
257 cap_async_pf
= kvm_check_extension(s
, KVM_CAP_ASYNC_PF
);
258 cap_mem_op
= kvm_check_extension(s
, KVM_CAP_S390_MEM_OP
);
259 cap_s390_irq
= kvm_check_extension(s
, KVM_CAP_S390_INJECT_IRQ
);
262 kvm_s390_enable_cmma(s
);
265 if (!kvm_check_extension(s
, KVM_CAP_S390_GMAP
)
266 || !kvm_check_extension(s
, KVM_CAP_S390_COW
)) {
267 phys_mem_set_alloc(legacy_s390_alloc
);
270 kvm_vm_enable_cap(s
, KVM_CAP_S390_USER_SIGP
, 0);
271 kvm_vm_enable_cap(s
, KVM_CAP_S390_VECTOR_REGISTERS
, 0);
272 kvm_vm_enable_cap(s
, KVM_CAP_S390_USER_STSI
, 0);
277 unsigned long kvm_arch_vcpu_id(CPUState
*cpu
)
279 return cpu
->cpu_index
;
282 int kvm_arch_init_vcpu(CPUState
*cs
)
284 S390CPU
*cpu
= S390_CPU(cs
);
285 kvm_s390_set_cpu_state(cpu
, cpu
->env
.cpu_state
);
286 cpu
->irqstate
= g_malloc0(VCPU_IRQ_BUF_SIZE
);
290 void kvm_s390_reset_vcpu(S390CPU
*cpu
)
292 CPUState
*cs
= CPU(cpu
);
294 /* The initial reset call is needed here to reset in-kernel
295 * vcpu data that we can't access directly from QEMU
296 * (i.e. with older kernels which don't support sync_regs/ONE_REG).
297 * Before this ioctl cpu_synchronize_state() is called in common kvm
299 if (kvm_vcpu_ioctl(cs
, KVM_S390_INITIAL_RESET
, NULL
)) {
300 error_report("Initial CPU reset failed on CPU %i", cs
->cpu_index
);
304 static int can_sync_regs(CPUState
*cs
, int regs
)
306 return cap_sync_regs
&& (cs
->kvm_run
->kvm_valid_regs
& regs
) == regs
;
309 int kvm_arch_put_registers(CPUState
*cs
, int level
)
311 S390CPU
*cpu
= S390_CPU(cs
);
312 CPUS390XState
*env
= &cpu
->env
;
313 struct kvm_sregs sregs
;
314 struct kvm_regs regs
;
315 struct kvm_fpu fpu
= {};
319 /* always save the PSW and the GPRS*/
320 cs
->kvm_run
->psw_addr
= env
->psw
.addr
;
321 cs
->kvm_run
->psw_mask
= env
->psw
.mask
;
323 if (can_sync_regs(cs
, KVM_SYNC_GPRS
)) {
324 for (i
= 0; i
< 16; i
++) {
325 cs
->kvm_run
->s
.regs
.gprs
[i
] = env
->regs
[i
];
326 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_GPRS
;
329 for (i
= 0; i
< 16; i
++) {
330 regs
.gprs
[i
] = env
->regs
[i
];
332 r
= kvm_vcpu_ioctl(cs
, KVM_SET_REGS
, ®s
);
338 if (can_sync_regs(cs
, KVM_SYNC_VRS
)) {
339 for (i
= 0; i
< 32; i
++) {
340 cs
->kvm_run
->s
.regs
.vrs
[i
][0] = env
->vregs
[i
][0].ll
;
341 cs
->kvm_run
->s
.regs
.vrs
[i
][1] = env
->vregs
[i
][1].ll
;
343 cs
->kvm_run
->s
.regs
.fpc
= env
->fpc
;
344 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_VRS
;
347 for (i
= 0; i
< 16; i
++) {
348 fpu
.fprs
[i
] = get_freg(env
, i
)->ll
;
352 r
= kvm_vcpu_ioctl(cs
, KVM_SET_FPU
, &fpu
);
358 /* Do we need to save more than that? */
359 if (level
== KVM_PUT_RUNTIME_STATE
) {
363 if (can_sync_regs(cs
, KVM_SYNC_ARCH0
)) {
364 cs
->kvm_run
->s
.regs
.cputm
= env
->cputm
;
365 cs
->kvm_run
->s
.regs
.ckc
= env
->ckc
;
366 cs
->kvm_run
->s
.regs
.todpr
= env
->todpr
;
367 cs
->kvm_run
->s
.regs
.gbea
= env
->gbea
;
368 cs
->kvm_run
->s
.regs
.pp
= env
->pp
;
369 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_ARCH0
;
372 * These ONE_REGS are not protected by a capability. As they are only
373 * necessary for migration we just trace a possible error, but don't
374 * return with an error return code.
376 kvm_set_one_reg(cs
, KVM_REG_S390_CPU_TIMER
, &env
->cputm
);
377 kvm_set_one_reg(cs
, KVM_REG_S390_CLOCK_COMP
, &env
->ckc
);
378 kvm_set_one_reg(cs
, KVM_REG_S390_TODPR
, &env
->todpr
);
379 kvm_set_one_reg(cs
, KVM_REG_S390_GBEA
, &env
->gbea
);
380 kvm_set_one_reg(cs
, KVM_REG_S390_PP
, &env
->pp
);
383 /* pfault parameters */
384 if (can_sync_regs(cs
, KVM_SYNC_PFAULT
)) {
385 cs
->kvm_run
->s
.regs
.pft
= env
->pfault_token
;
386 cs
->kvm_run
->s
.regs
.pfs
= env
->pfault_select
;
387 cs
->kvm_run
->s
.regs
.pfc
= env
->pfault_compare
;
388 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_PFAULT
;
389 } else if (cap_async_pf
) {
390 r
= kvm_set_one_reg(cs
, KVM_REG_S390_PFTOKEN
, &env
->pfault_token
);
394 r
= kvm_set_one_reg(cs
, KVM_REG_S390_PFCOMPARE
, &env
->pfault_compare
);
398 r
= kvm_set_one_reg(cs
, KVM_REG_S390_PFSELECT
, &env
->pfault_select
);
404 /* access registers and control registers*/
405 if (can_sync_regs(cs
, KVM_SYNC_ACRS
| KVM_SYNC_CRS
)) {
406 for (i
= 0; i
< 16; i
++) {
407 cs
->kvm_run
->s
.regs
.acrs
[i
] = env
->aregs
[i
];
408 cs
->kvm_run
->s
.regs
.crs
[i
] = env
->cregs
[i
];
410 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_ACRS
;
411 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_CRS
;
413 for (i
= 0; i
< 16; i
++) {
414 sregs
.acrs
[i
] = env
->aregs
[i
];
415 sregs
.crs
[i
] = env
->cregs
[i
];
417 r
= kvm_vcpu_ioctl(cs
, KVM_SET_SREGS
, &sregs
);
423 /* Finally the prefix */
424 if (can_sync_regs(cs
, KVM_SYNC_PREFIX
)) {
425 cs
->kvm_run
->s
.regs
.prefix
= env
->psa
;
426 cs
->kvm_run
->kvm_dirty_regs
|= KVM_SYNC_PREFIX
;
428 /* prefix is only supported via sync regs */
433 int kvm_arch_get_registers(CPUState
*cs
)
435 S390CPU
*cpu
= S390_CPU(cs
);
436 CPUS390XState
*env
= &cpu
->env
;
437 struct kvm_sregs sregs
;
438 struct kvm_regs regs
;
443 env
->psw
.addr
= cs
->kvm_run
->psw_addr
;
444 env
->psw
.mask
= cs
->kvm_run
->psw_mask
;
447 if (can_sync_regs(cs
, KVM_SYNC_GPRS
)) {
448 for (i
= 0; i
< 16; i
++) {
449 env
->regs
[i
] = cs
->kvm_run
->s
.regs
.gprs
[i
];
452 r
= kvm_vcpu_ioctl(cs
, KVM_GET_REGS
, ®s
);
456 for (i
= 0; i
< 16; i
++) {
457 env
->regs
[i
] = regs
.gprs
[i
];
461 /* The ACRS and CRS */
462 if (can_sync_regs(cs
, KVM_SYNC_ACRS
| KVM_SYNC_CRS
)) {
463 for (i
= 0; i
< 16; i
++) {
464 env
->aregs
[i
] = cs
->kvm_run
->s
.regs
.acrs
[i
];
465 env
->cregs
[i
] = cs
->kvm_run
->s
.regs
.crs
[i
];
468 r
= kvm_vcpu_ioctl(cs
, KVM_GET_SREGS
, &sregs
);
472 for (i
= 0; i
< 16; i
++) {
473 env
->aregs
[i
] = sregs
.acrs
[i
];
474 env
->cregs
[i
] = sregs
.crs
[i
];
478 /* Floating point and vector registers */
479 if (can_sync_regs(cs
, KVM_SYNC_VRS
)) {
480 for (i
= 0; i
< 32; i
++) {
481 env
->vregs
[i
][0].ll
= cs
->kvm_run
->s
.regs
.vrs
[i
][0];
482 env
->vregs
[i
][1].ll
= cs
->kvm_run
->s
.regs
.vrs
[i
][1];
484 env
->fpc
= cs
->kvm_run
->s
.regs
.fpc
;
486 r
= kvm_vcpu_ioctl(cs
, KVM_GET_FPU
, &fpu
);
490 for (i
= 0; i
< 16; i
++) {
491 get_freg(env
, i
)->ll
= fpu
.fprs
[i
];
497 if (can_sync_regs(cs
, KVM_SYNC_PREFIX
)) {
498 env
->psa
= cs
->kvm_run
->s
.regs
.prefix
;
501 if (can_sync_regs(cs
, KVM_SYNC_ARCH0
)) {
502 env
->cputm
= cs
->kvm_run
->s
.regs
.cputm
;
503 env
->ckc
= cs
->kvm_run
->s
.regs
.ckc
;
504 env
->todpr
= cs
->kvm_run
->s
.regs
.todpr
;
505 env
->gbea
= cs
->kvm_run
->s
.regs
.gbea
;
506 env
->pp
= cs
->kvm_run
->s
.regs
.pp
;
509 * These ONE_REGS are not protected by a capability. As they are only
510 * necessary for migration we just trace a possible error, but don't
511 * return with an error return code.
513 kvm_get_one_reg(cs
, KVM_REG_S390_CPU_TIMER
, &env
->cputm
);
514 kvm_get_one_reg(cs
, KVM_REG_S390_CLOCK_COMP
, &env
->ckc
);
515 kvm_get_one_reg(cs
, KVM_REG_S390_TODPR
, &env
->todpr
);
516 kvm_get_one_reg(cs
, KVM_REG_S390_GBEA
, &env
->gbea
);
517 kvm_get_one_reg(cs
, KVM_REG_S390_PP
, &env
->pp
);
520 /* pfault parameters */
521 if (can_sync_regs(cs
, KVM_SYNC_PFAULT
)) {
522 env
->pfault_token
= cs
->kvm_run
->s
.regs
.pft
;
523 env
->pfault_select
= cs
->kvm_run
->s
.regs
.pfs
;
524 env
->pfault_compare
= cs
->kvm_run
->s
.regs
.pfc
;
525 } else if (cap_async_pf
) {
526 r
= kvm_get_one_reg(cs
, KVM_REG_S390_PFTOKEN
, &env
->pfault_token
);
530 r
= kvm_get_one_reg(cs
, KVM_REG_S390_PFCOMPARE
, &env
->pfault_compare
);
534 r
= kvm_get_one_reg(cs
, KVM_REG_S390_PFSELECT
, &env
->pfault_select
);
543 int kvm_s390_get_clock(uint8_t *tod_high
, uint64_t *tod_low
)
546 struct kvm_device_attr attr
= {
547 .group
= KVM_S390_VM_TOD
,
548 .attr
= KVM_S390_VM_TOD_LOW
,
549 .addr
= (uint64_t)tod_low
,
552 r
= kvm_vm_ioctl(kvm_state
, KVM_GET_DEVICE_ATTR
, &attr
);
557 attr
.attr
= KVM_S390_VM_TOD_HIGH
;
558 attr
.addr
= (uint64_t)tod_high
;
559 return kvm_vm_ioctl(kvm_state
, KVM_GET_DEVICE_ATTR
, &attr
);
562 int kvm_s390_set_clock(uint8_t *tod_high
, uint64_t *tod_low
)
566 struct kvm_device_attr attr
= {
567 .group
= KVM_S390_VM_TOD
,
568 .attr
= KVM_S390_VM_TOD_LOW
,
569 .addr
= (uint64_t)tod_low
,
572 r
= kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
577 attr
.attr
= KVM_S390_VM_TOD_HIGH
;
578 attr
.addr
= (uint64_t)tod_high
;
579 return kvm_vm_ioctl(kvm_state
, KVM_SET_DEVICE_ATTR
, &attr
);
584 * @addr: the logical start address in guest memory
585 * @ar: the access register number
586 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying
587 * @len: length that should be transferred
588 * @is_write: true = write, false = read
589 * Returns: 0 on success, non-zero if an exception or error occurred
591 * Use KVM ioctl to read/write from/to guest memory. An access exception
592 * is injected into the vCPU in case of translation errors.
594 int kvm_s390_mem_op(S390CPU
*cpu
, vaddr addr
, uint8_t ar
, void *hostbuf
,
595 int len
, bool is_write
)
597 struct kvm_s390_mem_op mem_op
= {
599 .flags
= KVM_S390_MEMOP_F_INJECT_EXCEPTION
,
601 .op
= is_write
? KVM_S390_MEMOP_LOGICAL_WRITE
602 : KVM_S390_MEMOP_LOGICAL_READ
,
603 .buf
= (uint64_t)hostbuf
,
612 mem_op
.flags
|= KVM_S390_MEMOP_F_CHECK_ONLY
;
615 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_S390_MEM_OP
, &mem_op
);
617 error_printf("KVM_S390_MEM_OP failed: %s\n", strerror(-ret
));
623 * Legacy layout for s390:
624 * Older S390 KVM requires the topmost vma of the RAM to be
625 * smaller than an system defined value, which is at least 256GB.
626 * Larger systems have larger values. We put the guest between
627 * the end of data segment (system break) and this value. We
628 * use 32GB as a base to have enough room for the system break
629 * to grow. We also have to use MAP parameters that avoid
630 * read-only mapping of guest pages.
632 static void *legacy_s390_alloc(size_t size
, uint64_t *align
)
636 mem
= mmap((void *) 0x800000000ULL
, size
,
637 PROT_EXEC
|PROT_READ
|PROT_WRITE
,
638 MAP_SHARED
| MAP_ANONYMOUS
| MAP_FIXED
, -1, 0);
639 return mem
== MAP_FAILED
? NULL
: mem
;
642 /* DIAG 501 is used for sw breakpoints */
643 static const uint8_t diag_501
[] = {0x83, 0x24, 0x05, 0x01};
645 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
648 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
,
649 sizeof(diag_501
), 0) ||
650 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)diag_501
,
651 sizeof(diag_501
), 1)) {
657 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
659 uint8_t t
[sizeof(diag_501
)];
661 if (cpu_memory_rw_debug(cs
, bp
->pc
, t
, sizeof(diag_501
), 0)) {
663 } else if (memcmp(t
, diag_501
, sizeof(diag_501
))) {
665 } else if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
,
666 sizeof(diag_501
), 1)) {
673 static struct kvm_hw_breakpoint
*find_hw_breakpoint(target_ulong addr
,
678 for (n
= 0; n
< nb_hw_breakpoints
; n
++) {
679 if (hw_breakpoints
[n
].addr
== addr
&& hw_breakpoints
[n
].type
== type
&&
680 (hw_breakpoints
[n
].len
== len
|| len
== -1)) {
681 return &hw_breakpoints
[n
];
688 static int insert_hw_breakpoint(target_ulong addr
, int len
, int type
)
692 if (find_hw_breakpoint(addr
, len
, type
)) {
696 size
= (nb_hw_breakpoints
+ 1) * sizeof(struct kvm_hw_breakpoint
);
698 if (!hw_breakpoints
) {
699 nb_hw_breakpoints
= 0;
700 hw_breakpoints
= (struct kvm_hw_breakpoint
*)g_try_malloc(size
);
703 (struct kvm_hw_breakpoint
*)g_try_realloc(hw_breakpoints
, size
);
706 if (!hw_breakpoints
) {
707 nb_hw_breakpoints
= 0;
711 hw_breakpoints
[nb_hw_breakpoints
].addr
= addr
;
712 hw_breakpoints
[nb_hw_breakpoints
].len
= len
;
713 hw_breakpoints
[nb_hw_breakpoints
].type
= type
;
720 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
721 target_ulong len
, int type
)
724 case GDB_BREAKPOINT_HW
:
727 case GDB_WATCHPOINT_WRITE
:
731 type
= KVM_HW_WP_WRITE
;
736 return insert_hw_breakpoint(addr
, len
, type
);
739 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
740 target_ulong len
, int type
)
743 struct kvm_hw_breakpoint
*bp
= find_hw_breakpoint(addr
, len
, type
);
750 if (nb_hw_breakpoints
> 0) {
752 * In order to trim the array, move the last element to the position to
753 * be removed - if necessary.
755 if (bp
!= &hw_breakpoints
[nb_hw_breakpoints
]) {
756 *bp
= hw_breakpoints
[nb_hw_breakpoints
];
758 size
= nb_hw_breakpoints
* sizeof(struct kvm_hw_breakpoint
);
760 (struct kvm_hw_breakpoint
*)g_realloc(hw_breakpoints
, size
);
762 g_free(hw_breakpoints
);
763 hw_breakpoints
= NULL
;
769 void kvm_arch_remove_all_hw_breakpoints(void)
771 nb_hw_breakpoints
= 0;
772 g_free(hw_breakpoints
);
773 hw_breakpoints
= NULL
;
776 void kvm_arch_update_guest_debug(CPUState
*cpu
, struct kvm_guest_debug
*dbg
)
780 if (nb_hw_breakpoints
> 0) {
781 dbg
->arch
.nr_hw_bp
= nb_hw_breakpoints
;
782 dbg
->arch
.hw_bp
= hw_breakpoints
;
784 for (i
= 0; i
< nb_hw_breakpoints
; ++i
) {
785 hw_breakpoints
[i
].phys_addr
= s390_cpu_get_phys_addr_debug(cpu
,
786 hw_breakpoints
[i
].addr
);
788 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
790 dbg
->arch
.nr_hw_bp
= 0;
791 dbg
->arch
.hw_bp
= NULL
;
795 void kvm_arch_pre_run(CPUState
*cpu
, struct kvm_run
*run
)
799 MemTxAttrs
kvm_arch_post_run(CPUState
*cs
, struct kvm_run
*run
)
801 return MEMTXATTRS_UNSPECIFIED
;
804 int kvm_arch_process_async_events(CPUState
*cs
)
809 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq
*irq
,
810 struct kvm_s390_interrupt
*interrupt
)
814 interrupt
->type
= irq
->type
;
816 case KVM_S390_INT_VIRTIO
:
817 interrupt
->parm
= irq
->u
.ext
.ext_params
;
819 case KVM_S390_INT_PFAULT_INIT
:
820 case KVM_S390_INT_PFAULT_DONE
:
821 interrupt
->parm64
= irq
->u
.ext
.ext_params2
;
823 case KVM_S390_PROGRAM_INT
:
824 interrupt
->parm
= irq
->u
.pgm
.code
;
826 case KVM_S390_SIGP_SET_PREFIX
:
827 interrupt
->parm
= irq
->u
.prefix
.address
;
829 case KVM_S390_INT_SERVICE
:
830 interrupt
->parm
= irq
->u
.ext
.ext_params
;
833 interrupt
->parm
= irq
->u
.mchk
.cr14
;
834 interrupt
->parm64
= irq
->u
.mchk
.mcic
;
836 case KVM_S390_INT_EXTERNAL_CALL
:
837 interrupt
->parm
= irq
->u
.extcall
.code
;
839 case KVM_S390_INT_EMERGENCY
:
840 interrupt
->parm
= irq
->u
.emerg
.code
;
842 case KVM_S390_SIGP_STOP
:
843 case KVM_S390_RESTART
:
844 break; /* These types have no parameters */
845 case KVM_S390_INT_IO_MIN
...KVM_S390_INT_IO_MAX
:
846 interrupt
->parm
= irq
->u
.io
.subchannel_id
<< 16;
847 interrupt
->parm
|= irq
->u
.io
.subchannel_nr
;
848 interrupt
->parm64
= (uint64_t)irq
->u
.io
.io_int_parm
<< 32;
849 interrupt
->parm64
|= irq
->u
.io
.io_int_word
;
858 static void inject_vcpu_irq_legacy(CPUState
*cs
, struct kvm_s390_irq
*irq
)
860 struct kvm_s390_interrupt kvmint
= {};
863 r
= s390_kvm_irq_to_interrupt(irq
, &kvmint
);
865 fprintf(stderr
, "%s called with bogus interrupt\n", __func__
);
869 r
= kvm_vcpu_ioctl(cs
, KVM_S390_INTERRUPT
, &kvmint
);
871 fprintf(stderr
, "KVM failed to inject interrupt\n");
876 void kvm_s390_vcpu_interrupt(S390CPU
*cpu
, struct kvm_s390_irq
*irq
)
878 CPUState
*cs
= CPU(cpu
);
882 r
= kvm_vcpu_ioctl(cs
, KVM_S390_IRQ
, irq
);
886 error_report("KVM failed to inject interrupt %llx", irq
->type
);
890 inject_vcpu_irq_legacy(cs
, irq
);
893 static void __kvm_s390_floating_interrupt(struct kvm_s390_irq
*irq
)
895 struct kvm_s390_interrupt kvmint
= {};
898 r
= s390_kvm_irq_to_interrupt(irq
, &kvmint
);
900 fprintf(stderr
, "%s called with bogus interrupt\n", __func__
);
904 r
= kvm_vm_ioctl(kvm_state
, KVM_S390_INTERRUPT
, &kvmint
);
906 fprintf(stderr
, "KVM failed to inject interrupt\n");
911 void kvm_s390_floating_interrupt(struct kvm_s390_irq
*irq
)
913 static bool use_flic
= true;
917 r
= kvm_s390_inject_flic(irq
);
925 __kvm_s390_floating_interrupt(irq
);
928 void kvm_s390_virtio_irq(int config_change
, uint64_t token
)
930 struct kvm_s390_irq irq
= {
931 .type
= KVM_S390_INT_VIRTIO
,
932 .u
.ext
.ext_params
= config_change
,
933 .u
.ext
.ext_params2
= token
,
936 kvm_s390_floating_interrupt(&irq
);
939 void kvm_s390_service_interrupt(uint32_t parm
)
941 struct kvm_s390_irq irq
= {
942 .type
= KVM_S390_INT_SERVICE
,
943 .u
.ext
.ext_params
= parm
,
946 kvm_s390_floating_interrupt(&irq
);
949 static void enter_pgmcheck(S390CPU
*cpu
, uint16_t code
)
951 struct kvm_s390_irq irq
= {
952 .type
= KVM_S390_PROGRAM_INT
,
956 kvm_s390_vcpu_interrupt(cpu
, &irq
);
959 void kvm_s390_access_exception(S390CPU
*cpu
, uint16_t code
, uint64_t te_code
)
961 struct kvm_s390_irq irq
= {
962 .type
= KVM_S390_PROGRAM_INT
,
964 .u
.pgm
.trans_exc_code
= te_code
,
965 .u
.pgm
.exc_access_id
= te_code
& 3,
968 kvm_s390_vcpu_interrupt(cpu
, &irq
);
971 static int kvm_sclp_service_call(S390CPU
*cpu
, struct kvm_run
*run
,
974 CPUS390XState
*env
= &cpu
->env
;
979 cpu_synchronize_state(CPU(cpu
));
980 sccb
= env
->regs
[ipbh0
& 0xf];
981 code
= env
->regs
[(ipbh0
& 0xf0) >> 4];
983 r
= sclp_service_call(env
, sccb
, code
);
985 enter_pgmcheck(cpu
, -r
);
993 static int handle_b2(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipa1
)
995 CPUS390XState
*env
= &cpu
->env
;
997 uint16_t ipbh0
= (run
->s390_sieic
.ipb
& 0xffff0000) >> 16;
999 cpu_synchronize_state(CPU(cpu
));
1003 ioinst_handle_xsch(cpu
, env
->regs
[1]);
1006 ioinst_handle_csch(cpu
, env
->regs
[1]);
1009 ioinst_handle_hsch(cpu
, env
->regs
[1]);
1012 ioinst_handle_msch(cpu
, env
->regs
[1], run
->s390_sieic
.ipb
);
1015 ioinst_handle_ssch(cpu
, env
->regs
[1], run
->s390_sieic
.ipb
);
1018 ioinst_handle_stcrw(cpu
, run
->s390_sieic
.ipb
);
1021 ioinst_handle_stsch(cpu
, env
->regs
[1], run
->s390_sieic
.ipb
);
1024 /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1025 fprintf(stderr
, "Spurious tsch intercept\n");
1028 ioinst_handle_chsc(cpu
, run
->s390_sieic
.ipb
);
1031 /* This should have been handled by kvm already. */
1032 fprintf(stderr
, "Spurious tpi intercept\n");
1035 ioinst_handle_schm(cpu
, env
->regs
[1], env
->regs
[2],
1036 run
->s390_sieic
.ipb
);
1039 ioinst_handle_rsch(cpu
, env
->regs
[1]);
1042 ioinst_handle_rchp(cpu
, env
->regs
[1]);
1045 /* We do not provide this instruction, it is suppressed. */
1048 ioinst_handle_sal(cpu
, env
->regs
[1]);
1051 /* Not provided, set CC = 3 for subchannel not operational */
1054 case PRIV_B2_SCLP_CALL
:
1055 rc
= kvm_sclp_service_call(cpu
, run
, ipbh0
);
1059 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1
);
1066 static uint64_t get_base_disp_rxy(S390CPU
*cpu
, struct kvm_run
*run
,
1069 CPUS390XState
*env
= &cpu
->env
;
1070 uint32_t x2
= (run
->s390_sieic
.ipa
& 0x000f);
1071 uint32_t base2
= run
->s390_sieic
.ipb
>> 28;
1072 uint32_t disp2
= ((run
->s390_sieic
.ipb
& 0x0fff0000) >> 16) +
1073 ((run
->s390_sieic
.ipb
& 0xff00) << 4);
1075 if (disp2
& 0x80000) {
1076 disp2
+= 0xfff00000;
1082 return (base2
? env
->regs
[base2
] : 0) +
1083 (x2
? env
->regs
[x2
] : 0) + (long)(int)disp2
;
1086 static uint64_t get_base_disp_rsy(S390CPU
*cpu
, struct kvm_run
*run
,
1089 CPUS390XState
*env
= &cpu
->env
;
1090 uint32_t base2
= run
->s390_sieic
.ipb
>> 28;
1091 uint32_t disp2
= ((run
->s390_sieic
.ipb
& 0x0fff0000) >> 16) +
1092 ((run
->s390_sieic
.ipb
& 0xff00) << 4);
1094 if (disp2
& 0x80000) {
1095 disp2
+= 0xfff00000;
1101 return (base2
? env
->regs
[base2
] : 0) + (long)(int)disp2
;
1104 static int kvm_clp_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1106 uint8_t r2
= (run
->s390_sieic
.ipb
& 0x000f0000) >> 16;
1108 return clp_service_call(cpu
, r2
);
1111 static int kvm_pcilg_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1113 uint8_t r1
= (run
->s390_sieic
.ipb
& 0x00f00000) >> 20;
1114 uint8_t r2
= (run
->s390_sieic
.ipb
& 0x000f0000) >> 16;
1116 return pcilg_service_call(cpu
, r1
, r2
);
1119 static int kvm_pcistg_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1121 uint8_t r1
= (run
->s390_sieic
.ipb
& 0x00f00000) >> 20;
1122 uint8_t r2
= (run
->s390_sieic
.ipb
& 0x000f0000) >> 16;
1124 return pcistg_service_call(cpu
, r1
, r2
);
1127 static int kvm_stpcifc_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1129 uint8_t r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1133 cpu_synchronize_state(CPU(cpu
));
1134 fiba
= get_base_disp_rxy(cpu
, run
, &ar
);
1136 return stpcifc_service_call(cpu
, r1
, fiba
, ar
);
1139 static int kvm_sic_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1145 static int kvm_rpcit_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1147 uint8_t r1
= (run
->s390_sieic
.ipb
& 0x00f00000) >> 20;
1148 uint8_t r2
= (run
->s390_sieic
.ipb
& 0x000f0000) >> 16;
1150 return rpcit_service_call(cpu
, r1
, r2
);
1153 static int kvm_pcistb_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1155 uint8_t r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1156 uint8_t r3
= run
->s390_sieic
.ipa
& 0x000f;
1160 cpu_synchronize_state(CPU(cpu
));
1161 gaddr
= get_base_disp_rsy(cpu
, run
, &ar
);
1163 return pcistb_service_call(cpu
, r1
, r3
, gaddr
, ar
);
1166 static int kvm_mpcifc_service_call(S390CPU
*cpu
, struct kvm_run
*run
)
1168 uint8_t r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1172 cpu_synchronize_state(CPU(cpu
));
1173 fiba
= get_base_disp_rxy(cpu
, run
, &ar
);
1175 return mpcifc_service_call(cpu
, r1
, fiba
, ar
);
1178 static int handle_b9(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipa1
)
1184 r
= kvm_clp_service_call(cpu
, run
);
1186 case PRIV_B9_PCISTG
:
1187 r
= kvm_pcistg_service_call(cpu
, run
);
1190 r
= kvm_pcilg_service_call(cpu
, run
);
1193 r
= kvm_rpcit_service_call(cpu
, run
);
1196 /* just inject exception */
1201 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1
);
1208 static int handle_eb(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipbl
)
1213 case PRIV_EB_PCISTB
:
1214 r
= kvm_pcistb_service_call(cpu
, run
);
1217 r
= kvm_sic_service_call(cpu
, run
);
1220 /* just inject exception */
1225 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl
);
1232 static int handle_e3(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipbl
)
1237 case PRIV_E3_MPCIFC
:
1238 r
= kvm_mpcifc_service_call(cpu
, run
);
1240 case PRIV_E3_STPCIFC
:
1241 r
= kvm_stpcifc_service_call(cpu
, run
);
1245 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl
);
1252 static int handle_hypercall(S390CPU
*cpu
, struct kvm_run
*run
)
1254 CPUS390XState
*env
= &cpu
->env
;
1257 cpu_synchronize_state(CPU(cpu
));
1258 ret
= s390_virtio_hypercall(env
);
1259 if (ret
== -EINVAL
) {
1260 enter_pgmcheck(cpu
, PGM_SPECIFICATION
);
1267 static void kvm_handle_diag_288(S390CPU
*cpu
, struct kvm_run
*run
)
1272 cpu_synchronize_state(CPU(cpu
));
1273 r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1274 r3
= run
->s390_sieic
.ipa
& 0x000f;
1275 rc
= handle_diag_288(&cpu
->env
, r1
, r3
);
1277 enter_pgmcheck(cpu
, PGM_SPECIFICATION
);
1281 static void kvm_handle_diag_308(S390CPU
*cpu
, struct kvm_run
*run
)
1285 cpu_synchronize_state(CPU(cpu
));
1286 r1
= (run
->s390_sieic
.ipa
& 0x00f0) >> 4;
1287 r3
= run
->s390_sieic
.ipa
& 0x000f;
1288 handle_diag_308(&cpu
->env
, r1
, r3
);
1291 static int handle_sw_breakpoint(S390CPU
*cpu
, struct kvm_run
*run
)
1293 CPUS390XState
*env
= &cpu
->env
;
1296 cpu_synchronize_state(CPU(cpu
));
1298 pc
= env
->psw
.addr
- 4;
1299 if (kvm_find_sw_breakpoint(CPU(cpu
), pc
)) {
1307 #define DIAG_KVM_CODE_MASK 0x000000000000ffff
1309 static int handle_diag(S390CPU
*cpu
, struct kvm_run
*run
, uint32_t ipb
)
1315 * For any diagnose call we support, bits 48-63 of the resulting
1316 * address specify the function code; the remainder is ignored.
1318 func_code
= decode_basedisp_rs(&cpu
->env
, ipb
, NULL
) & DIAG_KVM_CODE_MASK
;
1319 switch (func_code
) {
1320 case DIAG_TIMEREVENT
:
1321 kvm_handle_diag_288(cpu
, run
);
1324 kvm_handle_diag_308(cpu
, run
);
1326 case DIAG_KVM_HYPERCALL
:
1327 r
= handle_hypercall(cpu
, run
);
1329 case DIAG_KVM_BREAKPOINT
:
1330 r
= handle_sw_breakpoint(cpu
, run
);
1333 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code
);
1334 enter_pgmcheck(cpu
, PGM_SPECIFICATION
);
1341 typedef struct SigpInfo
{
1345 uint64_t *status_reg
;
1348 static void set_sigp_status(SigpInfo
*si
, uint64_t status
)
1350 *si
->status_reg
&= 0xffffffff00000000ULL
;
1351 *si
->status_reg
|= status
;
1352 si
->cc
= SIGP_CC_STATUS_STORED
;
1355 static void sigp_start(void *arg
)
1359 if (s390_cpu_get_state(si
->cpu
) != CPU_STATE_STOPPED
) {
1360 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1364 s390_cpu_set_state(CPU_STATE_OPERATING
, si
->cpu
);
1365 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1368 static void sigp_stop(void *arg
)
1371 struct kvm_s390_irq irq
= {
1372 .type
= KVM_S390_SIGP_STOP
,
1375 if (s390_cpu_get_state(si
->cpu
) != CPU_STATE_OPERATING
) {
1376 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1380 /* disabled wait - sleeping in user space */
1381 if (CPU(si
->cpu
)->halted
) {
1382 s390_cpu_set_state(CPU_STATE_STOPPED
, si
->cpu
);
1384 /* execute the stop function */
1385 si
->cpu
->env
.sigp_order
= SIGP_STOP
;
1386 kvm_s390_vcpu_interrupt(si
->cpu
, &irq
);
1388 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1391 #define ADTL_SAVE_AREA_SIZE 1024
1392 static int kvm_s390_store_adtl_status(S390CPU
*cpu
, hwaddr addr
)
1395 hwaddr len
= ADTL_SAVE_AREA_SIZE
;
1397 mem
= cpu_physical_memory_map(addr
, &len
, 1);
1401 if (len
!= ADTL_SAVE_AREA_SIZE
) {
1402 cpu_physical_memory_unmap(mem
, len
, 1, 0);
1406 memcpy(mem
, &cpu
->env
.vregs
, 512);
1408 cpu_physical_memory_unmap(mem
, len
, 1, len
);
1413 #define KVM_S390_STORE_STATUS_DEF_ADDR offsetof(LowCore, floating_pt_save_area)
1414 #define SAVE_AREA_SIZE 512
1415 static int kvm_s390_store_status(S390CPU
*cpu
, hwaddr addr
, bool store_arch
)
1417 static const uint8_t ar_id
= 1;
1418 uint64_t ckc
= cpu
->env
.ckc
>> 8;
1421 hwaddr len
= SAVE_AREA_SIZE
;
1423 mem
= cpu_physical_memory_map(addr
, &len
, 1);
1427 if (len
!= SAVE_AREA_SIZE
) {
1428 cpu_physical_memory_unmap(mem
, len
, 1, 0);
1433 cpu_physical_memory_write(offsetof(LowCore
, ar_access_id
), &ar_id
, 1);
1435 for (i
= 0; i
< 16; ++i
) {
1436 *((uint64_t *)mem
+ i
) = get_freg(&cpu
->env
, i
)->ll
;
1438 memcpy(mem
+ 128, &cpu
->env
.regs
, 128);
1439 memcpy(mem
+ 256, &cpu
->env
.psw
, 16);
1440 memcpy(mem
+ 280, &cpu
->env
.psa
, 4);
1441 memcpy(mem
+ 284, &cpu
->env
.fpc
, 4);
1442 memcpy(mem
+ 292, &cpu
->env
.todpr
, 4);
1443 memcpy(mem
+ 296, &cpu
->env
.cputm
, 8);
1444 memcpy(mem
+ 304, &ckc
, 8);
1445 memcpy(mem
+ 320, &cpu
->env
.aregs
, 64);
1446 memcpy(mem
+ 384, &cpu
->env
.cregs
, 128);
1448 cpu_physical_memory_unmap(mem
, len
, 1, len
);
1453 static void sigp_stop_and_store_status(void *arg
)
1456 struct kvm_s390_irq irq
= {
1457 .type
= KVM_S390_SIGP_STOP
,
1460 /* disabled wait - sleeping in user space */
1461 if (s390_cpu_get_state(si
->cpu
) == CPU_STATE_OPERATING
&&
1462 CPU(si
->cpu
)->halted
) {
1463 s390_cpu_set_state(CPU_STATE_STOPPED
, si
->cpu
);
1466 switch (s390_cpu_get_state(si
->cpu
)) {
1467 case CPU_STATE_OPERATING
:
1468 si
->cpu
->env
.sigp_order
= SIGP_STOP_STORE_STATUS
;
1469 kvm_s390_vcpu_interrupt(si
->cpu
, &irq
);
1470 /* store will be performed when handling the stop intercept */
1472 case CPU_STATE_STOPPED
:
1473 /* already stopped, just store the status */
1474 cpu_synchronize_state(CPU(si
->cpu
));
1475 kvm_s390_store_status(si
->cpu
, KVM_S390_STORE_STATUS_DEF_ADDR
, true);
1478 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1481 static void sigp_store_status_at_address(void *arg
)
1484 uint32_t address
= si
->param
& 0x7ffffe00u
;
1486 /* cpu has to be stopped */
1487 if (s390_cpu_get_state(si
->cpu
) != CPU_STATE_STOPPED
) {
1488 set_sigp_status(si
, SIGP_STAT_INCORRECT_STATE
);
1492 cpu_synchronize_state(CPU(si
->cpu
));
1494 if (kvm_s390_store_status(si
->cpu
, address
, false)) {
1495 set_sigp_status(si
, SIGP_STAT_INVALID_PARAMETER
);
1498 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1501 static void sigp_store_adtl_status(void *arg
)
1505 if (!kvm_check_extension(kvm_state
, KVM_CAP_S390_VECTOR_REGISTERS
)) {
1506 set_sigp_status(si
, SIGP_STAT_INVALID_ORDER
);
1510 /* cpu has to be stopped */
1511 if (s390_cpu_get_state(si
->cpu
) != CPU_STATE_STOPPED
) {
1512 set_sigp_status(si
, SIGP_STAT_INCORRECT_STATE
);
1516 /* parameter must be aligned to 1024-byte boundary */
1517 if (si
->param
& 0x3ff) {
1518 set_sigp_status(si
, SIGP_STAT_INVALID_PARAMETER
);
1522 cpu_synchronize_state(CPU(si
->cpu
));
1524 if (kvm_s390_store_adtl_status(si
->cpu
, si
->param
)) {
1525 set_sigp_status(si
, SIGP_STAT_INVALID_PARAMETER
);
1528 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1531 static void sigp_restart(void *arg
)
1534 struct kvm_s390_irq irq
= {
1535 .type
= KVM_S390_RESTART
,
1538 switch (s390_cpu_get_state(si
->cpu
)) {
1539 case CPU_STATE_STOPPED
:
1540 /* the restart irq has to be delivered prior to any other pending irq */
1541 cpu_synchronize_state(CPU(si
->cpu
));
1542 do_restart_interrupt(&si
->cpu
->env
);
1543 s390_cpu_set_state(CPU_STATE_OPERATING
, si
->cpu
);
1545 case CPU_STATE_OPERATING
:
1546 kvm_s390_vcpu_interrupt(si
->cpu
, &irq
);
1549 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1552 int kvm_s390_cpu_restart(S390CPU
*cpu
)
1558 run_on_cpu(CPU(cpu
), sigp_restart
, &si
);
1559 DPRINTF("DONE: KVM cpu restart: %p\n", &cpu
->env
);
1563 static void sigp_initial_cpu_reset(void *arg
)
1566 CPUState
*cs
= CPU(si
->cpu
);
1567 S390CPUClass
*scc
= S390_CPU_GET_CLASS(si
->cpu
);
1569 cpu_synchronize_state(cs
);
1570 scc
->initial_cpu_reset(cs
);
1571 cpu_synchronize_post_reset(cs
);
1572 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1575 static void sigp_cpu_reset(void *arg
)
1578 CPUState
*cs
= CPU(si
->cpu
);
1579 S390CPUClass
*scc
= S390_CPU_GET_CLASS(si
->cpu
);
1581 cpu_synchronize_state(cs
);
1583 cpu_synchronize_post_reset(cs
);
1584 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1587 static void sigp_set_prefix(void *arg
)
1590 uint32_t addr
= si
->param
& 0x7fffe000u
;
1592 cpu_synchronize_state(CPU(si
->cpu
));
1594 if (!address_space_access_valid(&address_space_memory
, addr
,
1595 sizeof(struct LowCore
), false)) {
1596 set_sigp_status(si
, SIGP_STAT_INVALID_PARAMETER
);
1600 /* cpu has to be stopped */
1601 if (s390_cpu_get_state(si
->cpu
) != CPU_STATE_STOPPED
) {
1602 set_sigp_status(si
, SIGP_STAT_INCORRECT_STATE
);
1606 si
->cpu
->env
.psa
= addr
;
1607 cpu_synchronize_post_init(CPU(si
->cpu
));
1608 si
->cc
= SIGP_CC_ORDER_CODE_ACCEPTED
;
1611 static int handle_sigp_single_dst(S390CPU
*dst_cpu
, uint8_t order
,
1612 uint64_t param
, uint64_t *status_reg
)
1617 .status_reg
= status_reg
,
1620 /* cpu available? */
1621 if (dst_cpu
== NULL
) {
1622 return SIGP_CC_NOT_OPERATIONAL
;
1625 /* only resets can break pending orders */
1626 if (dst_cpu
->env
.sigp_order
!= 0 &&
1627 order
!= SIGP_CPU_RESET
&&
1628 order
!= SIGP_INITIAL_CPU_RESET
) {
1629 return SIGP_CC_BUSY
;
1634 run_on_cpu(CPU(dst_cpu
), sigp_start
, &si
);
1637 run_on_cpu(CPU(dst_cpu
), sigp_stop
, &si
);
1640 run_on_cpu(CPU(dst_cpu
), sigp_restart
, &si
);
1642 case SIGP_STOP_STORE_STATUS
:
1643 run_on_cpu(CPU(dst_cpu
), sigp_stop_and_store_status
, &si
);
1645 case SIGP_STORE_STATUS_ADDR
:
1646 run_on_cpu(CPU(dst_cpu
), sigp_store_status_at_address
, &si
);
1648 case SIGP_STORE_ADTL_STATUS
:
1649 run_on_cpu(CPU(dst_cpu
), sigp_store_adtl_status
, &si
);
1651 case SIGP_SET_PREFIX
:
1652 run_on_cpu(CPU(dst_cpu
), sigp_set_prefix
, &si
);
1654 case SIGP_INITIAL_CPU_RESET
:
1655 run_on_cpu(CPU(dst_cpu
), sigp_initial_cpu_reset
, &si
);
1657 case SIGP_CPU_RESET
:
1658 run_on_cpu(CPU(dst_cpu
), sigp_cpu_reset
, &si
);
1661 DPRINTF("KVM: unknown SIGP: 0x%x\n", order
);
1662 set_sigp_status(&si
, SIGP_STAT_INVALID_ORDER
);
1668 static int sigp_set_architecture(S390CPU
*cpu
, uint32_t param
,
1669 uint64_t *status_reg
)
1674 /* due to the BQL, we are the only active cpu */
1675 CPU_FOREACH(cur_cs
) {
1676 cur_cpu
= S390_CPU(cur_cs
);
1677 if (cur_cpu
->env
.sigp_order
!= 0) {
1678 return SIGP_CC_BUSY
;
1680 cpu_synchronize_state(cur_cs
);
1681 /* all but the current one have to be stopped */
1682 if (cur_cpu
!= cpu
&&
1683 s390_cpu_get_state(cur_cpu
) != CPU_STATE_STOPPED
) {
1684 *status_reg
&= 0xffffffff00000000ULL
;
1685 *status_reg
|= SIGP_STAT_INCORRECT_STATE
;
1686 return SIGP_CC_STATUS_STORED
;
1690 switch (param
& 0xff) {
1691 case SIGP_MODE_ESA_S390
:
1693 return SIGP_CC_NOT_OPERATIONAL
;
1694 case SIGP_MODE_Z_ARCH_TRANS_ALL_PSW
:
1695 case SIGP_MODE_Z_ARCH_TRANS_CUR_PSW
:
1696 CPU_FOREACH(cur_cs
) {
1697 cur_cpu
= S390_CPU(cur_cs
);
1698 cur_cpu
->env
.pfault_token
= -1UL;
1702 *status_reg
&= 0xffffffff00000000ULL
;
1703 *status_reg
|= SIGP_STAT_INVALID_PARAMETER
;
1704 return SIGP_CC_STATUS_STORED
;
1707 return SIGP_CC_ORDER_CODE_ACCEPTED
;
1710 #define SIGP_ORDER_MASK 0x000000ff
1712 static int handle_sigp(S390CPU
*cpu
, struct kvm_run
*run
, uint8_t ipa1
)
1714 CPUS390XState
*env
= &cpu
->env
;
1715 const uint8_t r1
= ipa1
>> 4;
1716 const uint8_t r3
= ipa1
& 0x0f;
1719 uint64_t *status_reg
;
1721 S390CPU
*dst_cpu
= NULL
;
1723 cpu_synchronize_state(CPU(cpu
));
1725 /* get order code */
1726 order
= decode_basedisp_rs(env
, run
->s390_sieic
.ipb
, NULL
)
1728 status_reg
= &env
->regs
[r1
];
1729 param
= (r1
% 2) ? env
->regs
[r1
] : env
->regs
[r1
+ 1];
1733 ret
= sigp_set_architecture(cpu
, param
, status_reg
);
1736 /* all other sigp orders target a single vcpu */
1737 dst_cpu
= s390_cpu_addr2state(env
->regs
[r3
]);
1738 ret
= handle_sigp_single_dst(dst_cpu
, order
, param
, status_reg
);
1741 trace_kvm_sigp_finished(order
, CPU(cpu
)->cpu_index
,
1742 dst_cpu
? CPU(dst_cpu
)->cpu_index
: -1, ret
);
1752 static int handle_instruction(S390CPU
*cpu
, struct kvm_run
*run
)
1754 unsigned int ipa0
= (run
->s390_sieic
.ipa
& 0xff00);
1755 uint8_t ipa1
= run
->s390_sieic
.ipa
& 0x00ff;
1758 DPRINTF("handle_instruction 0x%x 0x%x\n",
1759 run
->s390_sieic
.ipa
, run
->s390_sieic
.ipb
);
1762 r
= handle_b2(cpu
, run
, ipa1
);
1765 r
= handle_b9(cpu
, run
, ipa1
);
1768 r
= handle_eb(cpu
, run
, run
->s390_sieic
.ipb
& 0xff);
1771 r
= handle_e3(cpu
, run
, run
->s390_sieic
.ipb
& 0xff);
1774 r
= handle_diag(cpu
, run
, run
->s390_sieic
.ipb
);
1777 r
= handle_sigp(cpu
, run
, ipa1
);
1783 enter_pgmcheck(cpu
, 0x0001);
1789 static bool is_special_wait_psw(CPUState
*cs
)
1791 /* signal quiesce */
1792 return cs
->kvm_run
->psw_addr
== 0xfffUL
;
1795 static void unmanageable_intercept(S390CPU
*cpu
, const char *str
, int pswoffset
)
1797 CPUState
*cs
= CPU(cpu
);
1799 error_report("Unmanageable %s! CPU%i new PSW: 0x%016lx:%016lx",
1800 str
, cs
->cpu_index
, ldq_phys(cs
->as
, cpu
->env
.psa
+ pswoffset
),
1801 ldq_phys(cs
->as
, cpu
->env
.psa
+ pswoffset
+ 8));
1803 qemu_system_guest_panicked();
1806 static int handle_intercept(S390CPU
*cpu
)
1808 CPUState
*cs
= CPU(cpu
);
1809 struct kvm_run
*run
= cs
->kvm_run
;
1810 int icpt_code
= run
->s390_sieic
.icptcode
;
1813 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code
,
1814 (long)cs
->kvm_run
->psw_addr
);
1815 switch (icpt_code
) {
1816 case ICPT_INSTRUCTION
:
1817 r
= handle_instruction(cpu
, run
);
1820 unmanageable_intercept(cpu
, "program interrupt",
1821 offsetof(LowCore
, program_new_psw
));
1825 unmanageable_intercept(cpu
, "external interrupt",
1826 offsetof(LowCore
, external_new_psw
));
1830 /* disabled wait, since enabled wait is handled in kernel */
1831 cpu_synchronize_state(cs
);
1832 if (s390_cpu_halt(cpu
) == 0) {
1833 if (is_special_wait_psw(cs
)) {
1834 qemu_system_shutdown_request();
1836 qemu_system_guest_panicked();
1842 if (s390_cpu_set_state(CPU_STATE_STOPPED
, cpu
) == 0) {
1843 qemu_system_shutdown_request();
1845 if (cpu
->env
.sigp_order
== SIGP_STOP_STORE_STATUS
) {
1846 kvm_s390_store_status(cpu
, KVM_S390_STORE_STATUS_DEF_ADDR
,
1849 cpu
->env
.sigp_order
= 0;
1852 case ICPT_SOFT_INTERCEPT
:
1853 fprintf(stderr
, "KVM unimplemented icpt SOFT\n");
1857 fprintf(stderr
, "KVM unimplemented icpt IO\n");
1861 fprintf(stderr
, "Unknown intercept code: %d\n", icpt_code
);
1869 static int handle_tsch(S390CPU
*cpu
)
1871 CPUState
*cs
= CPU(cpu
);
1872 struct kvm_run
*run
= cs
->kvm_run
;
1875 cpu_synchronize_state(cs
);
1877 ret
= ioinst_handle_tsch(cpu
, cpu
->env
.regs
[1], run
->s390_tsch
.ipb
);
1881 * If an I/O interrupt had been dequeued, we have to reinject it.
1883 if (run
->s390_tsch
.dequeued
) {
1884 kvm_s390_io_interrupt(run
->s390_tsch
.subchannel_id
,
1885 run
->s390_tsch
.subchannel_nr
,
1886 run
->s390_tsch
.io_int_parm
,
1887 run
->s390_tsch
.io_int_word
);
1894 static void insert_stsi_3_2_2(S390CPU
*cpu
, __u64 addr
, uint8_t ar
)
1896 struct sysib_322 sysib
;
1899 if (s390_cpu_virt_mem_read(cpu
, addr
, ar
, &sysib
, sizeof(sysib
))) {
1902 /* Shift the stack of Extended Names to prepare for our own data */
1903 memmove(&sysib
.ext_names
[1], &sysib
.ext_names
[0],
1904 sizeof(sysib
.ext_names
[0]) * (sysib
.count
- 1));
1905 /* First virt level, that doesn't provide Ext Names delimits stack. It is
1906 * assumed it's not capable of managing Extended Names for lower levels.
1908 for (del
= 1; del
< sysib
.count
; del
++) {
1909 if (!sysib
.vm
[del
].ext_name_encoding
|| !sysib
.ext_names
[del
][0]) {
1913 if (del
< sysib
.count
) {
1914 memset(sysib
.ext_names
[del
], 0,
1915 sizeof(sysib
.ext_names
[0]) * (sysib
.count
- del
));
1917 /* Insert short machine name in EBCDIC, padded with blanks */
1919 memset(sysib
.vm
[0].name
, 0x40, sizeof(sysib
.vm
[0].name
));
1920 ebcdic_put(sysib
.vm
[0].name
, qemu_name
, MIN(sizeof(sysib
.vm
[0].name
),
1921 strlen(qemu_name
)));
1923 sysib
.vm
[0].ext_name_encoding
= 2; /* 2 = UTF-8 */
1924 memset(sysib
.ext_names
[0], 0, sizeof(sysib
.ext_names
[0]));
1925 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1926 * considered by s390 as not capable of providing any Extended Name.
1927 * Therefore if no name was specified on qemu invocation, we go with the
1928 * same "KVMguest" default, which KVM has filled into short name field.
1931 strncpy((char *)sysib
.ext_names
[0], qemu_name
,
1932 sizeof(sysib
.ext_names
[0]));
1934 strcpy((char *)sysib
.ext_names
[0], "KVMguest");
1937 memcpy(sysib
.vm
[0].uuid
, qemu_uuid
, sizeof(sysib
.vm
[0].uuid
));
1939 s390_cpu_virt_mem_write(cpu
, addr
, ar
, &sysib
, sizeof(sysib
));
1942 static int handle_stsi(S390CPU
*cpu
)
1944 CPUState
*cs
= CPU(cpu
);
1945 struct kvm_run
*run
= cs
->kvm_run
;
1947 switch (run
->s390_stsi
.fc
) {
1949 if (run
->s390_stsi
.sel1
!= 2 || run
->s390_stsi
.sel2
!= 2) {
1952 /* Only sysib 3.2.2 needs post-handling for now. */
1953 insert_stsi_3_2_2(cpu
, run
->s390_stsi
.addr
, run
->s390_stsi
.ar
);
1960 static int kvm_arch_handle_debug_exit(S390CPU
*cpu
)
1962 CPUState
*cs
= CPU(cpu
);
1963 struct kvm_run
*run
= cs
->kvm_run
;
1966 struct kvm_debug_exit_arch
*arch_info
= &run
->debug
.arch
;
1968 switch (arch_info
->type
) {
1969 case KVM_HW_WP_WRITE
:
1970 if (find_hw_breakpoint(arch_info
->addr
, -1, arch_info
->type
)) {
1971 cs
->watchpoint_hit
= &hw_watchpoint
;
1972 hw_watchpoint
.vaddr
= arch_info
->addr
;
1973 hw_watchpoint
.flags
= BP_MEM_WRITE
;
1978 if (find_hw_breakpoint(arch_info
->addr
, -1, arch_info
->type
)) {
1982 case KVM_SINGLESTEP
:
1983 if (cs
->singlestep_enabled
) {
1994 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
1996 S390CPU
*cpu
= S390_CPU(cs
);
1999 qemu_mutex_lock_iothread();
2001 switch (run
->exit_reason
) {
2002 case KVM_EXIT_S390_SIEIC
:
2003 ret
= handle_intercept(cpu
);
2005 case KVM_EXIT_S390_RESET
:
2006 s390_reipl_request();
2008 case KVM_EXIT_S390_TSCH
:
2009 ret
= handle_tsch(cpu
);
2011 case KVM_EXIT_S390_STSI
:
2012 ret
= handle_stsi(cpu
);
2014 case KVM_EXIT_DEBUG
:
2015 ret
= kvm_arch_handle_debug_exit(cpu
);
2018 fprintf(stderr
, "Unknown KVM exit: %d\n", run
->exit_reason
);
2021 qemu_mutex_unlock_iothread();
2024 ret
= EXCP_INTERRUPT
;
2029 bool kvm_arch_stop_on_emulation_error(CPUState
*cpu
)
2034 int kvm_arch_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
2039 int kvm_arch_on_sigbus(int code
, void *addr
)
2044 void kvm_s390_io_interrupt(uint16_t subchannel_id
,
2045 uint16_t subchannel_nr
, uint32_t io_int_parm
,
2046 uint32_t io_int_word
)
2048 struct kvm_s390_irq irq
= {
2049 .u
.io
.subchannel_id
= subchannel_id
,
2050 .u
.io
.subchannel_nr
= subchannel_nr
,
2051 .u
.io
.io_int_parm
= io_int_parm
,
2052 .u
.io
.io_int_word
= io_int_word
,
2055 if (io_int_word
& IO_INT_WORD_AI
) {
2056 irq
.type
= KVM_S390_INT_IO(1, 0, 0, 0);
2058 irq
.type
= ((subchannel_id
& 0xff00) << 24) |
2059 ((subchannel_id
& 0x00060) << 22) | (subchannel_nr
<< 16);
2061 kvm_s390_floating_interrupt(&irq
);
2064 static uint64_t build_channel_report_mcic(void)
2068 /* subclass: indicate channel report pending */
2070 /* subclass modifiers: none */
2071 /* storage errors: none */
2072 /* validity bits: no damage */
2073 MCIC_VB_WP
| MCIC_VB_MS
| MCIC_VB_PM
| MCIC_VB_IA
| MCIC_VB_FP
|
2074 MCIC_VB_GR
| MCIC_VB_CR
| MCIC_VB_ST
| MCIC_VB_AR
| MCIC_VB_PR
|
2075 MCIC_VB_FC
| MCIC_VB_CT
| MCIC_VB_CC
;
2076 if (kvm_check_extension(kvm_state
, KVM_CAP_S390_VECTOR_REGISTERS
)) {
2082 void kvm_s390_crw_mchk(void)
2084 struct kvm_s390_irq irq
= {
2085 .type
= KVM_S390_MCHK
,
2086 .u
.mchk
.cr14
= 1 << 28,
2087 .u
.mchk
.mcic
= build_channel_report_mcic(),
2089 kvm_s390_floating_interrupt(&irq
);
2092 void kvm_s390_enable_css_support(S390CPU
*cpu
)
2096 /* Activate host kernel channel subsystem support. */
2097 r
= kvm_vcpu_enable_cap(CPU(cpu
), KVM_CAP_S390_CSS_SUPPORT
, 0);
2101 void kvm_arch_init_irq_routing(KVMState
*s
)
2104 * Note that while irqchip capabilities generally imply that cpustates
2105 * are handled in-kernel, it is not true for s390 (yet); therefore, we
2106 * have to override the common code kvm_halt_in_kernel_allowed setting.
2108 if (kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
)) {
2109 kvm_gsi_routing_allowed
= true;
2110 kvm_halt_in_kernel_allowed
= false;
2114 int kvm_s390_assign_subch_ioeventfd(EventNotifier
*notifier
, uint32_t sch
,
2115 int vq
, bool assign
)
2117 struct kvm_ioeventfd kick
= {
2118 .flags
= KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY
|
2119 KVM_IOEVENTFD_FLAG_DATAMATCH
,
2120 .fd
= event_notifier_get_fd(notifier
),
2125 if (!kvm_check_extension(kvm_state
, KVM_CAP_IOEVENTFD
)) {
2129 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
2131 return kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
2134 int kvm_s390_get_memslot_count(KVMState
*s
)
2136 return kvm_check_extension(s
, KVM_CAP_NR_MEMSLOTS
);
2139 int kvm_s390_set_cpu_state(S390CPU
*cpu
, uint8_t cpu_state
)
2141 struct kvm_mp_state mp_state
= {};
2144 /* the kvm part might not have been initialized yet */
2145 if (CPU(cpu
)->kvm_state
== NULL
) {
2149 switch (cpu_state
) {
2150 case CPU_STATE_STOPPED
:
2151 mp_state
.mp_state
= KVM_MP_STATE_STOPPED
;
2153 case CPU_STATE_CHECK_STOP
:
2154 mp_state
.mp_state
= KVM_MP_STATE_CHECK_STOP
;
2156 case CPU_STATE_OPERATING
:
2157 mp_state
.mp_state
= KVM_MP_STATE_OPERATING
;
2159 case CPU_STATE_LOAD
:
2160 mp_state
.mp_state
= KVM_MP_STATE_LOAD
;
2163 error_report("Requested CPU state is not a valid S390 CPU state: %u",
2168 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
2170 trace_kvm_failed_cpu_state_set(CPU(cpu
)->cpu_index
, cpu_state
,
2177 void kvm_s390_vcpu_interrupt_pre_save(S390CPU
*cpu
)
2179 struct kvm_s390_irq_state irq_state
;
2180 CPUState
*cs
= CPU(cpu
);
2183 if (!kvm_check_extension(kvm_state
, KVM_CAP_S390_IRQ_STATE
)) {
2187 irq_state
.buf
= (uint64_t) cpu
->irqstate
;
2188 irq_state
.len
= VCPU_IRQ_BUF_SIZE
;
2190 bytes
= kvm_vcpu_ioctl(cs
, KVM_S390_GET_IRQ_STATE
, &irq_state
);
2192 cpu
->irqstate_saved_size
= 0;
2193 error_report("Migration of interrupt state failed");
2197 cpu
->irqstate_saved_size
= bytes
;
2200 int kvm_s390_vcpu_interrupt_post_load(S390CPU
*cpu
)
2202 CPUState
*cs
= CPU(cpu
);
2203 struct kvm_s390_irq_state irq_state
;
2206 if (cpu
->irqstate_saved_size
== 0) {
2210 if (!kvm_check_extension(kvm_state
, KVM_CAP_S390_IRQ_STATE
)) {
2214 irq_state
.buf
= (uint64_t) cpu
->irqstate
;
2215 irq_state
.len
= cpu
->irqstate_saved_size
;
2217 r
= kvm_vcpu_ioctl(cs
, KVM_S390_SET_IRQ_STATE
, &irq_state
);
2219 error_report("Setting interrupt state failed %d", r
);
2224 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
2225 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
2227 S390PCIBusDevice
*pbdev
;
2228 uint32_t fid
= data
>> ZPCI_MSI_VEC_BITS
;
2229 uint32_t vec
= data
& ZPCI_MSI_VEC_MASK
;
2231 pbdev
= s390_pci_find_dev_by_fid(fid
);
2233 DPRINTF("add_msi_route no dev\n");
2237 pbdev
->routes
.adapter
.ind_offset
= vec
;
2239 route
->type
= KVM_IRQ_ROUTING_S390_ADAPTER
;
2241 route
->u
.adapter
.summary_addr
= pbdev
->routes
.adapter
.summary_addr
;
2242 route
->u
.adapter
.ind_addr
= pbdev
->routes
.adapter
.ind_addr
;
2243 route
->u
.adapter
.summary_offset
= pbdev
->routes
.adapter
.summary_offset
;
2244 route
->u
.adapter
.ind_offset
= pbdev
->routes
.adapter
.ind_offset
;
2245 route
->u
.adapter
.adapter_id
= pbdev
->routes
.adapter
.adapter_id
;
2249 int kvm_arch_msi_data_to_gsi(uint32_t data
)