Use $(MAKE) for recursive make
[qemu/ar7.git] / target-xtensa / op_helper.c
blobbe657e615d203b98268bf11fddc77facaaaa0297
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #include "cpu.h"
29 #include "exec/helper-proto.h"
30 #include "qemu/host-utils.h"
31 #include "exec/cpu_ldst.h"
32 #include "exec/address-spaces.h"
33 #include "qemu/timer.h"
35 void xtensa_cpu_do_unaligned_access(CPUState *cs,
36 vaddr addr, int is_write, int is_user, uintptr_t retaddr)
38 XtensaCPU *cpu = XTENSA_CPU(cs);
39 CPUXtensaState *env = &cpu->env;
41 if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) &&
42 !xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) {
43 cpu_restore_state(CPU(cpu), retaddr);
44 HELPER(exception_cause_vaddr)(env,
45 env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr);
49 void tlb_fill(CPUState *cs,
50 target_ulong vaddr, int is_write, int mmu_idx, uintptr_t retaddr)
52 XtensaCPU *cpu = XTENSA_CPU(cs);
53 CPUXtensaState *env = &cpu->env;
54 uint32_t paddr;
55 uint32_t page_size;
56 unsigned access;
57 int ret = xtensa_get_physical_addr(env, true, vaddr, is_write, mmu_idx,
58 &paddr, &page_size, &access);
60 qemu_log("%s(%08x, %d, %d) -> %08x, ret = %d\n", __func__,
61 vaddr, is_write, mmu_idx, paddr, ret);
63 if (ret == 0) {
64 tlb_set_page(cs,
65 vaddr & TARGET_PAGE_MASK,
66 paddr & TARGET_PAGE_MASK,
67 access, mmu_idx, page_size);
68 } else {
69 cpu_restore_state(cs, retaddr);
70 HELPER(exception_cause_vaddr)(env, env->pc, ret, vaddr);
74 void xtensa_cpu_do_unassigned_access(CPUState *cs, hwaddr addr,
75 bool is_write, bool is_exec, int opaque,
76 unsigned size)
78 XtensaCPU *cpu = XTENSA_CPU(cs);
79 CPUXtensaState *env = &cpu->env;
81 HELPER(exception_cause_vaddr)(env, env->pc,
82 is_exec ?
83 INSTR_PIF_ADDR_ERROR_CAUSE :
84 LOAD_STORE_PIF_ADDR_ERROR_CAUSE,
85 is_exec ? addr : cs->mem_io_vaddr);
88 static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr)
90 uint32_t paddr;
91 uint32_t page_size;
92 unsigned access;
93 int ret = xtensa_get_physical_addr(env, false, vaddr, 2, 0,
94 &paddr, &page_size, &access);
95 if (ret == 0) {
96 tb_invalidate_phys_addr(&address_space_memory, paddr);
100 void HELPER(exception)(CPUXtensaState *env, uint32_t excp)
102 CPUState *cs = CPU(xtensa_env_get_cpu(env));
104 cs->exception_index = excp;
105 if (excp == EXCP_DEBUG) {
106 env->exception_taken = 0;
108 cpu_loop_exit(cs);
111 void HELPER(exception_cause)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
113 uint32_t vector;
115 env->pc = pc;
116 if (env->sregs[PS] & PS_EXCM) {
117 if (env->config->ndepc) {
118 env->sregs[DEPC] = pc;
119 } else {
120 env->sregs[EPC1] = pc;
122 vector = EXC_DOUBLE;
123 } else {
124 env->sregs[EPC1] = pc;
125 vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
128 env->sregs[EXCCAUSE] = cause;
129 env->sregs[PS] |= PS_EXCM;
131 HELPER(exception)(env, vector);
134 void HELPER(exception_cause_vaddr)(CPUXtensaState *env,
135 uint32_t pc, uint32_t cause, uint32_t vaddr)
137 env->sregs[EXCVADDR] = vaddr;
138 HELPER(exception_cause)(env, pc, cause);
141 void debug_exception_env(CPUXtensaState *env, uint32_t cause)
143 if (xtensa_get_cintlevel(env) < env->config->debug_level) {
144 HELPER(debug_exception)(env, env->pc, cause);
148 void HELPER(debug_exception)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
150 unsigned level = env->config->debug_level;
152 env->pc = pc;
153 env->sregs[DEBUGCAUSE] = cause;
154 env->sregs[EPC1 + level - 1] = pc;
155 env->sregs[EPS2 + level - 2] = env->sregs[PS];
156 env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM |
157 (level << PS_INTLEVEL_SHIFT);
158 HELPER(exception)(env, EXC_DEBUG);
161 uint32_t HELPER(nsa)(uint32_t v)
163 if (v & 0x80000000) {
164 v = ~v;
166 return v ? clz32(v) - 1 : 31;
169 uint32_t HELPER(nsau)(uint32_t v)
171 return v ? clz32(v) : 32;
174 static void copy_window_from_phys(CPUXtensaState *env,
175 uint32_t window, uint32_t phys, uint32_t n)
177 assert(phys < env->config->nareg);
178 if (phys + n <= env->config->nareg) {
179 memcpy(env->regs + window, env->phys_regs + phys,
180 n * sizeof(uint32_t));
181 } else {
182 uint32_t n1 = env->config->nareg - phys;
183 memcpy(env->regs + window, env->phys_regs + phys,
184 n1 * sizeof(uint32_t));
185 memcpy(env->regs + window + n1, env->phys_regs,
186 (n - n1) * sizeof(uint32_t));
190 static void copy_phys_from_window(CPUXtensaState *env,
191 uint32_t phys, uint32_t window, uint32_t n)
193 assert(phys < env->config->nareg);
194 if (phys + n <= env->config->nareg) {
195 memcpy(env->phys_regs + phys, env->regs + window,
196 n * sizeof(uint32_t));
197 } else {
198 uint32_t n1 = env->config->nareg - phys;
199 memcpy(env->phys_regs + phys, env->regs + window,
200 n1 * sizeof(uint32_t));
201 memcpy(env->phys_regs, env->regs + window + n1,
202 (n - n1) * sizeof(uint32_t));
207 static inline unsigned windowbase_bound(unsigned a, const CPUXtensaState *env)
209 return a & (env->config->nareg / 4 - 1);
212 static inline unsigned windowstart_bit(unsigned a, const CPUXtensaState *env)
214 return 1 << windowbase_bound(a, env);
217 void xtensa_sync_window_from_phys(CPUXtensaState *env)
219 copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16);
222 void xtensa_sync_phys_from_window(CPUXtensaState *env)
224 copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16);
227 static void rotate_window_abs(CPUXtensaState *env, uint32_t position)
229 xtensa_sync_phys_from_window(env);
230 env->sregs[WINDOW_BASE] = windowbase_bound(position, env);
231 xtensa_sync_window_from_phys(env);
234 static void rotate_window(CPUXtensaState *env, uint32_t delta)
236 rotate_window_abs(env, env->sregs[WINDOW_BASE] + delta);
239 void HELPER(wsr_windowbase)(CPUXtensaState *env, uint32_t v)
241 rotate_window_abs(env, v);
244 void HELPER(entry)(CPUXtensaState *env, uint32_t pc, uint32_t s, uint32_t imm)
246 int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT;
247 if (s > 3 || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
248 qemu_log("Illegal entry instruction(pc = %08x), PS = %08x\n",
249 pc, env->sregs[PS]);
250 HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
251 } else {
252 uint32_t windowstart = xtensa_replicate_windowstart(env) >>
253 (env->sregs[WINDOW_BASE] + 1);
255 if (windowstart & ((1 << callinc) - 1)) {
256 HELPER(window_check)(env, pc, callinc);
258 env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - (imm << 3);
259 rotate_window(env, callinc);
260 env->sregs[WINDOW_START] |=
261 windowstart_bit(env->sregs[WINDOW_BASE], env);
265 void HELPER(window_check)(CPUXtensaState *env, uint32_t pc, uint32_t w)
267 uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
268 uint32_t windowstart = xtensa_replicate_windowstart(env) >>
269 (env->sregs[WINDOW_BASE] + 1);
270 uint32_t n = ctz32(windowstart) + 1;
272 assert(n <= w);
274 rotate_window(env, n);
275 env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
276 (windowbase << PS_OWB_SHIFT) | PS_EXCM;
277 env->sregs[EPC1] = env->pc = pc;
279 switch (ctz32(windowstart >> n)) {
280 case 0:
281 HELPER(exception)(env, EXC_WINDOW_OVERFLOW4);
282 break;
283 case 1:
284 HELPER(exception)(env, EXC_WINDOW_OVERFLOW8);
285 break;
286 default:
287 HELPER(exception)(env, EXC_WINDOW_OVERFLOW12);
288 break;
292 uint32_t HELPER(retw)(CPUXtensaState *env, uint32_t pc)
294 int n = (env->regs[0] >> 30) & 0x3;
295 int m = 0;
296 uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
297 uint32_t windowstart = env->sregs[WINDOW_START];
298 uint32_t ret_pc = 0;
300 if (windowstart & windowstart_bit(windowbase - 1, env)) {
301 m = 1;
302 } else if (windowstart & windowstart_bit(windowbase - 2, env)) {
303 m = 2;
304 } else if (windowstart & windowstart_bit(windowbase - 3, env)) {
305 m = 3;
308 if (n == 0 || (m != 0 && m != n) ||
309 ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
310 qemu_log("Illegal retw instruction(pc = %08x), "
311 "PS = %08x, m = %d, n = %d\n",
312 pc, env->sregs[PS], m, n);
313 HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
314 } else {
315 int owb = windowbase;
317 ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff);
319 rotate_window(env, -n);
320 if (windowstart & windowstart_bit(env->sregs[WINDOW_BASE], env)) {
321 env->sregs[WINDOW_START] &= ~windowstart_bit(owb, env);
322 } else {
323 /* window underflow */
324 env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
325 (windowbase << PS_OWB_SHIFT) | PS_EXCM;
326 env->sregs[EPC1] = env->pc = pc;
328 if (n == 1) {
329 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW4);
330 } else if (n == 2) {
331 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW8);
332 } else if (n == 3) {
333 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW12);
337 return ret_pc;
340 void HELPER(rotw)(CPUXtensaState *env, uint32_t imm4)
342 rotate_window(env, imm4);
345 void HELPER(restore_owb)(CPUXtensaState *env)
347 rotate_window_abs(env, (env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT);
350 void HELPER(movsp)(CPUXtensaState *env, uint32_t pc)
352 if ((env->sregs[WINDOW_START] &
353 (windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) |
354 windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) |
355 windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) {
356 HELPER(exception_cause)(env, pc, ALLOCA_CAUSE);
360 void HELPER(wsr_lbeg)(CPUXtensaState *env, uint32_t v)
362 if (env->sregs[LBEG] != v) {
363 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
364 env->sregs[LBEG] = v;
368 void HELPER(wsr_lend)(CPUXtensaState *env, uint32_t v)
370 if (env->sregs[LEND] != v) {
371 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
372 env->sregs[LEND] = v;
373 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
377 void HELPER(dump_state)(CPUXtensaState *env)
379 XtensaCPU *cpu = xtensa_env_get_cpu(env);
381 cpu_dump_state(CPU(cpu), stderr, fprintf, 0);
384 void HELPER(waiti)(CPUXtensaState *env, uint32_t pc, uint32_t intlevel)
386 CPUState *cpu;
388 env->pc = pc;
389 env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) |
390 (intlevel << PS_INTLEVEL_SHIFT);
391 check_interrupts(env);
392 if (env->pending_irq_level) {
393 cpu_loop_exit(CPU(xtensa_env_get_cpu(env)));
394 return;
397 cpu = CPU(xtensa_env_get_cpu(env));
398 env->halt_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
399 cpu->halted = 1;
400 if (xtensa_option_enabled(env->config, XTENSA_OPTION_TIMER_INTERRUPT)) {
401 xtensa_rearm_ccompare_timer(env);
403 HELPER(exception)(env, EXCP_HLT);
406 void HELPER(timer_irq)(CPUXtensaState *env, uint32_t id, uint32_t active)
408 xtensa_timer_irq(env, id, active);
411 void HELPER(advance_ccount)(CPUXtensaState *env, uint32_t d)
413 xtensa_advance_ccount(env, d);
416 void HELPER(check_interrupts)(CPUXtensaState *env)
418 check_interrupts(env);
421 void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
423 get_page_addr_code(env, vaddr);
427 * Check vaddr accessibility/cache attributes and raise an exception if
428 * specified by the ATOMCTL SR.
430 * Note: local memory exclusion is not implemented
432 void HELPER(check_atomctl)(CPUXtensaState *env, uint32_t pc, uint32_t vaddr)
434 uint32_t paddr, page_size, access;
435 uint32_t atomctl = env->sregs[ATOMCTL];
436 int rc = xtensa_get_physical_addr(env, true, vaddr, 1,
437 xtensa_get_cring(env), &paddr, &page_size, &access);
440 * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
441 * see opcode description in the ISA
443 if (rc == 0 &&
444 (access & (PAGE_READ | PAGE_WRITE)) != (PAGE_READ | PAGE_WRITE)) {
445 rc = STORE_PROHIBITED_CAUSE;
448 if (rc) {
449 HELPER(exception_cause_vaddr)(env, pc, rc, vaddr);
453 * When data cache is not configured use ATOMCTL bypass field.
454 * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
455 * under the Conditional Store Option.
457 if (!xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
458 access = PAGE_CACHE_BYPASS;
461 switch (access & PAGE_CACHE_MASK) {
462 case PAGE_CACHE_WB:
463 atomctl >>= 2;
464 /* fall through */
465 case PAGE_CACHE_WT:
466 atomctl >>= 2;
467 /* fall through */
468 case PAGE_CACHE_BYPASS:
469 if ((atomctl & 0x3) == 0) {
470 HELPER(exception_cause_vaddr)(env, pc,
471 LOAD_STORE_ERROR_CAUSE, vaddr);
473 break;
475 case PAGE_CACHE_ISOLATE:
476 HELPER(exception_cause_vaddr)(env, pc,
477 LOAD_STORE_ERROR_CAUSE, vaddr);
478 break;
480 default:
481 break;
485 void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
487 XtensaCPU *cpu = xtensa_env_get_cpu(env);
489 v = (v & 0xffffff00) | 0x1;
490 if (v != env->sregs[RASID]) {
491 env->sregs[RASID] = v;
492 tlb_flush(CPU(cpu), 1);
496 static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way)
498 uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
500 switch (way) {
501 case 4:
502 return (tlbcfg >> 16) & 0x3;
504 case 5:
505 return (tlbcfg >> 20) & 0x1;
507 case 6:
508 return (tlbcfg >> 24) & 0x1;
510 default:
511 return 0;
516 * Get bit mask for the virtual address bits translated by the TLB way
518 uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
520 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
521 bool varway56 = dtlb ?
522 env->config->dtlb.varway56 :
523 env->config->itlb.varway56;
525 switch (way) {
526 case 4:
527 return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
529 case 5:
530 if (varway56) {
531 return 0xf8000000 << get_page_size(env, dtlb, way);
532 } else {
533 return 0xf8000000;
536 case 6:
537 if (varway56) {
538 return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
539 } else {
540 return 0xf0000000;
543 default:
544 return 0xfffff000;
546 } else {
547 return REGION_PAGE_MASK;
552 * Get bit mask for the 'VPN without index' field.
553 * See ISA, 4.6.5.6, data format for RxTLB0
555 static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
557 if (way < 4) {
558 bool is32 = (dtlb ?
559 env->config->dtlb.nrefillentries :
560 env->config->itlb.nrefillentries) == 32;
561 return is32 ? 0xffff8000 : 0xffffc000;
562 } else if (way == 4) {
563 return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
564 } else if (way <= 6) {
565 uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
566 bool varway56 = dtlb ?
567 env->config->dtlb.varway56 :
568 env->config->itlb.varway56;
570 if (varway56) {
571 return mask << (way == 5 ? 2 : 3);
572 } else {
573 return mask << 1;
575 } else {
576 return 0xfffff000;
581 * Split virtual address into VPN (with index) and entry index
582 * for the given TLB way
584 void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb,
585 uint32_t *vpn, uint32_t wi, uint32_t *ei)
587 bool varway56 = dtlb ?
588 env->config->dtlb.varway56 :
589 env->config->itlb.varway56;
591 if (!dtlb) {
592 wi &= 7;
595 if (wi < 4) {
596 bool is32 = (dtlb ?
597 env->config->dtlb.nrefillentries :
598 env->config->itlb.nrefillentries) == 32;
599 *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
600 } else {
601 switch (wi) {
602 case 4:
604 uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
605 *ei = (v >> eibase) & 0x3;
607 break;
609 case 5:
610 if (varway56) {
611 uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
612 *ei = (v >> eibase) & 0x3;
613 } else {
614 *ei = (v >> 27) & 0x1;
616 break;
618 case 6:
619 if (varway56) {
620 uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
621 *ei = (v >> eibase) & 0x7;
622 } else {
623 *ei = (v >> 28) & 0x1;
625 break;
627 default:
628 *ei = 0;
629 break;
632 *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
636 * Split TLB address into TLB way, entry index and VPN (with index).
637 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
639 static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
640 uint32_t *vpn, uint32_t *wi, uint32_t *ei)
642 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
643 *wi = v & (dtlb ? 0xf : 0x7);
644 split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
645 } else {
646 *vpn = v & REGION_PAGE_MASK;
647 *wi = 0;
648 *ei = (v >> 29) & 0x7;
652 static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
653 uint32_t v, bool dtlb, uint32_t *pwi)
655 uint32_t vpn;
656 uint32_t wi;
657 uint32_t ei;
659 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
660 if (pwi) {
661 *pwi = wi;
663 return xtensa_tlb_get_entry(env, dtlb, wi, ei);
666 uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
668 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
669 uint32_t wi;
670 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
671 return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
672 } else {
673 return v & REGION_PAGE_MASK;
677 uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
679 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
680 return entry->paddr | entry->attr;
683 void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
685 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
686 uint32_t wi;
687 xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
688 if (entry->variable && entry->asid) {
689 tlb_flush_page(CPU(xtensa_env_get_cpu(env)), entry->vaddr);
690 entry->asid = 0;
695 uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
697 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
698 uint32_t wi;
699 uint32_t ei;
700 uint8_t ring;
701 int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
703 switch (res) {
704 case 0:
705 if (ring >= xtensa_get_ring(env)) {
706 return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
708 break;
710 case INST_TLB_MULTI_HIT_CAUSE:
711 case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
712 HELPER(exception_cause_vaddr)(env, env->pc, res, v);
713 break;
715 return 0;
716 } else {
717 return (v & REGION_PAGE_MASK) | 0x1;
721 void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
722 xtensa_tlb_entry *entry, bool dtlb,
723 unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
725 entry->vaddr = vpn;
726 entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
727 entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
728 entry->attr = pte & 0xf;
731 void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
732 unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
734 XtensaCPU *cpu = xtensa_env_get_cpu(env);
735 CPUState *cs = CPU(cpu);
736 xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
738 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
739 if (entry->variable) {
740 if (entry->asid) {
741 tlb_flush_page(cs, entry->vaddr);
743 xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
744 tlb_flush_page(cs, entry->vaddr);
745 } else {
746 qemu_log("%s %d, %d, %d trying to set immutable entry\n",
747 __func__, dtlb, wi, ei);
749 } else {
750 tlb_flush_page(cs, entry->vaddr);
751 if (xtensa_option_enabled(env->config,
752 XTENSA_OPTION_REGION_TRANSLATION)) {
753 entry->paddr = pte & REGION_PAGE_MASK;
755 entry->attr = pte & 0xf;
759 void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
761 uint32_t vpn;
762 uint32_t wi;
763 uint32_t ei;
764 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
765 xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
769 void HELPER(wsr_ibreakenable)(CPUXtensaState *env, uint32_t v)
771 uint32_t change = v ^ env->sregs[IBREAKENABLE];
772 unsigned i;
774 for (i = 0; i < env->config->nibreak; ++i) {
775 if (change & (1 << i)) {
776 tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
779 env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1);
782 void HELPER(wsr_ibreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
784 if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) {
785 tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
786 tb_invalidate_virtual_addr(env, v);
788 env->sregs[IBREAKA + i] = v;
791 static void set_dbreak(CPUXtensaState *env, unsigned i, uint32_t dbreaka,
792 uint32_t dbreakc)
794 CPUState *cs = CPU(xtensa_env_get_cpu(env));
795 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
796 uint32_t mask = dbreakc | ~DBREAKC_MASK;
798 if (env->cpu_watchpoint[i]) {
799 cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
801 if (dbreakc & DBREAKC_SB) {
802 flags |= BP_MEM_WRITE;
804 if (dbreakc & DBREAKC_LB) {
805 flags |= BP_MEM_READ;
807 /* contiguous mask after inversion is one less than some power of 2 */
808 if ((~mask + 1) & ~mask) {
809 qemu_log("DBREAKC mask is not contiguous: 0x%08x\n", dbreakc);
810 /* cut mask after the first zero bit */
811 mask = 0xffffffff << (32 - clo32(mask));
813 if (cpu_watchpoint_insert(cs, dbreaka & mask, ~mask + 1,
814 flags, &env->cpu_watchpoint[i])) {
815 env->cpu_watchpoint[i] = NULL;
816 qemu_log("Failed to set data breakpoint at 0x%08x/%d\n",
817 dbreaka & mask, ~mask + 1);
821 void HELPER(wsr_dbreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
823 uint32_t dbreakc = env->sregs[DBREAKC + i];
825 if ((dbreakc & DBREAKC_SB_LB) &&
826 env->sregs[DBREAKA + i] != v) {
827 set_dbreak(env, i, v, dbreakc);
829 env->sregs[DBREAKA + i] = v;
832 void HELPER(wsr_dbreakc)(CPUXtensaState *env, uint32_t i, uint32_t v)
834 if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) {
835 if (v & DBREAKC_SB_LB) {
836 set_dbreak(env, i, env->sregs[DBREAKA + i], v);
837 } else {
838 if (env->cpu_watchpoint[i]) {
839 CPUState *cs = CPU(xtensa_env_get_cpu(env));
841 cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
842 env->cpu_watchpoint[i] = NULL;
846 env->sregs[DBREAKC + i] = v;
849 void HELPER(wur_fcr)(CPUXtensaState *env, uint32_t v)
851 static const int rounding_mode[] = {
852 float_round_nearest_even,
853 float_round_to_zero,
854 float_round_up,
855 float_round_down,
858 env->uregs[FCR] = v & 0xfffff07f;
859 set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status);
862 float32 HELPER(abs_s)(float32 v)
864 return float32_abs(v);
867 float32 HELPER(neg_s)(float32 v)
869 return float32_chs(v);
872 float32 HELPER(add_s)(CPUXtensaState *env, float32 a, float32 b)
874 return float32_add(a, b, &env->fp_status);
877 float32 HELPER(sub_s)(CPUXtensaState *env, float32 a, float32 b)
879 return float32_sub(a, b, &env->fp_status);
882 float32 HELPER(mul_s)(CPUXtensaState *env, float32 a, float32 b)
884 return float32_mul(a, b, &env->fp_status);
887 float32 HELPER(madd_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
889 return float32_muladd(b, c, a, 0,
890 &env->fp_status);
893 float32 HELPER(msub_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
895 return float32_muladd(b, c, a, float_muladd_negate_product,
896 &env->fp_status);
899 uint32_t HELPER(ftoi)(float32 v, uint32_t rounding_mode, uint32_t scale)
901 float_status fp_status = {0};
903 set_float_rounding_mode(rounding_mode, &fp_status);
904 return float32_to_int32(
905 float32_scalbn(v, scale, &fp_status), &fp_status);
908 uint32_t HELPER(ftoui)(float32 v, uint32_t rounding_mode, uint32_t scale)
910 float_status fp_status = {0};
911 float32 res;
913 set_float_rounding_mode(rounding_mode, &fp_status);
915 res = float32_scalbn(v, scale, &fp_status);
917 if (float32_is_neg(v) && !float32_is_any_nan(v)) {
918 return float32_to_int32(res, &fp_status);
919 } else {
920 return float32_to_uint32(res, &fp_status);
924 float32 HELPER(itof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
926 return float32_scalbn(int32_to_float32(v, &env->fp_status),
927 (int32_t)scale, &env->fp_status);
930 float32 HELPER(uitof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
932 return float32_scalbn(uint32_to_float32(v, &env->fp_status),
933 (int32_t)scale, &env->fp_status);
936 static inline void set_br(CPUXtensaState *env, bool v, uint32_t br)
938 if (v) {
939 env->sregs[BR] |= br;
940 } else {
941 env->sregs[BR] &= ~br;
945 void HELPER(un_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
947 set_br(env, float32_unordered_quiet(a, b, &env->fp_status), br);
950 void HELPER(oeq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
952 set_br(env, float32_eq_quiet(a, b, &env->fp_status), br);
955 void HELPER(ueq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
957 int v = float32_compare_quiet(a, b, &env->fp_status);
958 set_br(env, v == float_relation_equal || v == float_relation_unordered, br);
961 void HELPER(olt_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
963 set_br(env, float32_lt_quiet(a, b, &env->fp_status), br);
966 void HELPER(ult_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
968 int v = float32_compare_quiet(a, b, &env->fp_status);
969 set_br(env, v == float_relation_less || v == float_relation_unordered, br);
972 void HELPER(ole_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
974 set_br(env, float32_le_quiet(a, b, &env->fp_status), br);
977 void HELPER(ule_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
979 int v = float32_compare_quiet(a, b, &env->fp_status);
980 set_br(env, v != float_relation_greater, br);