spapr/xive: print out the EQ page address in the monitor
[qemu/ar7.git] / hw / intc / spapr_xive.c
blob58cc6e2b500c064708dfa1d84651cd6a4b7f54d4
1 /*
2 * QEMU PowerPC sPAPR XIVE interrupt controller model
4 * Copyright (c) 2017-2018, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qapi/error.h"
13 #include "qemu/error-report.h"
14 #include "target/ppc/cpu.h"
15 #include "sysemu/cpus.h"
16 #include "monitor/monitor.h"
17 #include "hw/ppc/fdt.h"
18 #include "hw/ppc/spapr.h"
19 #include "hw/ppc/spapr_cpu_core.h"
20 #include "hw/ppc/spapr_xive.h"
21 #include "hw/ppc/xive.h"
22 #include "hw/ppc/xive_regs.h"
25 * XIVE Virtualization Controller BAR and Thread Managment BAR that we
26 * use for the ESB pages and the TIMA pages
28 #define SPAPR_XIVE_VC_BASE 0x0006010000000000ull
29 #define SPAPR_XIVE_TM_BASE 0x0006030203180000ull
32 * The allocation of VP blocks is a complex operation in OPAL and the
33 * VP identifiers have a relation with the number of HW chips, the
34 * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE
35 * controller model does not have the same constraints and can use a
36 * simple mapping scheme of the CPU vcpu_id
38 * These identifiers are never returned to the OS.
41 #define SPAPR_XIVE_NVT_BASE 0x400
44 * The sPAPR machine has a unique XIVE IC device. Assign a fixed value
45 * to the controller block id value. It can nevertheless be changed
46 * for testing purpose.
48 #define SPAPR_XIVE_BLOCK_ID 0x0
51 * sPAPR NVT and END indexing helpers
53 static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx)
55 return nvt_idx - SPAPR_XIVE_NVT_BASE;
58 static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu,
59 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
61 assert(cpu);
63 if (out_nvt_blk) {
64 *out_nvt_blk = SPAPR_XIVE_BLOCK_ID;
67 if (out_nvt_blk) {
68 *out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id;
72 static int spapr_xive_target_to_nvt(uint32_t target,
73 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
75 PowerPCCPU *cpu = spapr_find_cpu(target);
77 if (!cpu) {
78 return -1;
81 spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx);
82 return 0;
86 * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8
87 * priorities per CPU
89 static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio,
90 uint8_t *out_end_blk, uint32_t *out_end_idx)
92 assert(cpu);
94 if (out_end_blk) {
95 *out_end_blk = SPAPR_XIVE_BLOCK_ID;
98 if (out_end_idx) {
99 *out_end_idx = (cpu->vcpu_id << 3) + prio;
103 static int spapr_xive_target_to_end(uint32_t target, uint8_t prio,
104 uint8_t *out_end_blk, uint32_t *out_end_idx)
106 PowerPCCPU *cpu = spapr_find_cpu(target);
108 if (!cpu) {
109 return -1;
112 spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx);
113 return 0;
117 * On sPAPR machines, use a simplified output for the XIVE END
118 * structure dumping only the information related to the OS EQ.
120 static void spapr_xive_end_pic_print_info(SpaprXive *xive, XiveEND *end,
121 Monitor *mon)
123 uint64_t qaddr_base = xive_end_qaddr(end);
124 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
125 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
126 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
127 uint32_t qentries = 1 << (qsize + 10);
128 uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
129 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
131 monitor_printf(mon, "%3d/%d % 6d/%5d @%"PRIx64" ^%d",
132 spapr_xive_nvt_to_target(0, nvt),
133 priority, qindex, qentries, qaddr_base, qgen);
135 xive_end_queue_pic_print_info(end, 6, mon);
136 monitor_printf(mon, "]");
139 void spapr_xive_pic_print_info(SpaprXive *xive, Monitor *mon)
141 XiveSource *xsrc = &xive->source;
142 int i;
144 monitor_printf(mon, " LSIN PQ EISN CPU/PRIO EQ\n");
146 for (i = 0; i < xive->nr_irqs; i++) {
147 uint8_t pq = xive_source_esb_get(xsrc, i);
148 XiveEAS *eas = &xive->eat[i];
150 if (!xive_eas_is_valid(eas)) {
151 continue;
154 monitor_printf(mon, " %08x %s %c%c%c %s %08x ", i,
155 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
156 pq & XIVE_ESB_VAL_P ? 'P' : '-',
157 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
158 xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ',
159 xive_eas_is_masked(eas) ? "M" : " ",
160 (int) xive_get_field64(EAS_END_DATA, eas->w));
162 if (!xive_eas_is_masked(eas)) {
163 uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
164 XiveEND *end;
166 assert(end_idx < xive->nr_ends);
167 end = &xive->endt[end_idx];
169 if (xive_end_is_valid(end)) {
170 spapr_xive_end_pic_print_info(xive, end, mon);
173 monitor_printf(mon, "\n");
177 static void spapr_xive_map_mmio(SpaprXive *xive)
179 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 0, xive->vc_base);
180 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 1, xive->end_base);
181 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 2, xive->tm_base);
184 void spapr_xive_mmio_set_enabled(SpaprXive *xive, bool enable)
186 memory_region_set_enabled(&xive->source.esb_mmio, enable);
187 memory_region_set_enabled(&xive->tm_mmio, enable);
189 /* Disable the END ESBs until a guest OS makes use of them */
190 memory_region_set_enabled(&xive->end_source.esb_mmio, false);
194 * When a Virtual Processor is scheduled to run on a HW thread, the
195 * hypervisor pushes its identifier in the OS CAM line. Emulate the
196 * same behavior under QEMU.
198 void spapr_xive_set_tctx_os_cam(XiveTCTX *tctx)
200 uint8_t nvt_blk;
201 uint32_t nvt_idx;
202 uint32_t nvt_cam;
204 spapr_xive_cpu_to_nvt(POWERPC_CPU(tctx->cs), &nvt_blk, &nvt_idx);
206 nvt_cam = cpu_to_be32(TM_QW1W2_VO | xive_nvt_cam_line(nvt_blk, nvt_idx));
207 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &nvt_cam, 4);
210 static void spapr_xive_end_reset(XiveEND *end)
212 memset(end, 0, sizeof(*end));
214 /* switch off the escalation and notification ESBs */
215 end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q);
218 static void spapr_xive_reset(void *dev)
220 SpaprXive *xive = SPAPR_XIVE(dev);
221 int i;
224 * The XiveSource has its own reset handler, which mask off all
225 * IRQs (!P|Q)
228 /* Mask all valid EASs in the IRQ number space. */
229 for (i = 0; i < xive->nr_irqs; i++) {
230 XiveEAS *eas = &xive->eat[i];
231 if (xive_eas_is_valid(eas)) {
232 eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED);
233 } else {
234 eas->w = 0;
238 /* Clear all ENDs */
239 for (i = 0; i < xive->nr_ends; i++) {
240 spapr_xive_end_reset(&xive->endt[i]);
244 static void spapr_xive_instance_init(Object *obj)
246 SpaprXive *xive = SPAPR_XIVE(obj);
248 object_initialize_child(obj, "source", &xive->source, sizeof(xive->source),
249 TYPE_XIVE_SOURCE, &error_abort, NULL);
251 object_initialize_child(obj, "end_source", &xive->end_source,
252 sizeof(xive->end_source), TYPE_XIVE_END_SOURCE,
253 &error_abort, NULL);
256 static void spapr_xive_realize(DeviceState *dev, Error **errp)
258 SpaprXive *xive = SPAPR_XIVE(dev);
259 XiveSource *xsrc = &xive->source;
260 XiveENDSource *end_xsrc = &xive->end_source;
261 Error *local_err = NULL;
263 if (!xive->nr_irqs) {
264 error_setg(errp, "Number of interrupt needs to be greater 0");
265 return;
268 if (!xive->nr_ends) {
269 error_setg(errp, "Number of interrupt needs to be greater 0");
270 return;
274 * Initialize the internal sources, for IPIs and virtual devices.
276 object_property_set_int(OBJECT(xsrc), xive->nr_irqs, "nr-irqs",
277 &error_fatal);
278 object_property_add_const_link(OBJECT(xsrc), "xive", OBJECT(xive),
279 &error_fatal);
280 object_property_set_bool(OBJECT(xsrc), true, "realized", &local_err);
281 if (local_err) {
282 error_propagate(errp, local_err);
283 return;
287 * Initialize the END ESB source
289 object_property_set_int(OBJECT(end_xsrc), xive->nr_irqs, "nr-ends",
290 &error_fatal);
291 object_property_add_const_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
292 &error_fatal);
293 object_property_set_bool(OBJECT(end_xsrc), true, "realized", &local_err);
294 if (local_err) {
295 error_propagate(errp, local_err);
296 return;
299 /* Set the mapping address of the END ESB pages after the source ESBs */
300 xive->end_base = xive->vc_base + (1ull << xsrc->esb_shift) * xsrc->nr_irqs;
303 * Allocate the routing tables
305 xive->eat = g_new0(XiveEAS, xive->nr_irqs);
306 xive->endt = g_new0(XiveEND, xive->nr_ends);
308 /* TIMA initialization */
309 memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &xive_tm_ops, xive,
310 "xive.tima", 4ull << TM_SHIFT);
312 /* Define all XIVE MMIO regions on SysBus */
313 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xsrc->esb_mmio);
314 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &end_xsrc->esb_mmio);
315 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xive->tm_mmio);
317 /* Map all regions */
318 spapr_xive_map_mmio(xive);
320 xive->nodename = g_strdup_printf("interrupt-controller@%" PRIx64,
321 xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT));
323 qemu_register_reset(spapr_xive_reset, dev);
326 static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk,
327 uint32_t eas_idx, XiveEAS *eas)
329 SpaprXive *xive = SPAPR_XIVE(xrtr);
331 if (eas_idx >= xive->nr_irqs) {
332 return -1;
335 *eas = xive->eat[eas_idx];
336 return 0;
339 static int spapr_xive_get_end(XiveRouter *xrtr,
340 uint8_t end_blk, uint32_t end_idx, XiveEND *end)
342 SpaprXive *xive = SPAPR_XIVE(xrtr);
344 if (end_idx >= xive->nr_ends) {
345 return -1;
348 memcpy(end, &xive->endt[end_idx], sizeof(XiveEND));
349 return 0;
352 static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk,
353 uint32_t end_idx, XiveEND *end,
354 uint8_t word_number)
356 SpaprXive *xive = SPAPR_XIVE(xrtr);
358 if (end_idx >= xive->nr_ends) {
359 return -1;
362 memcpy(&xive->endt[end_idx], end, sizeof(XiveEND));
363 return 0;
366 static int spapr_xive_get_nvt(XiveRouter *xrtr,
367 uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt)
369 uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
370 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
372 if (!cpu) {
373 /* TODO: should we assert() if we can find a NVT ? */
374 return -1;
378 * sPAPR does not maintain a NVT table. Return that the NVT is
379 * valid if we have found a matching CPU
381 nvt->w0 = cpu_to_be32(NVT_W0_VALID);
382 return 0;
385 static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk,
386 uint32_t nvt_idx, XiveNVT *nvt,
387 uint8_t word_number)
390 * We don't need to write back to the NVTs because the sPAPR
391 * machine should never hit a non-scheduled NVT. It should never
392 * get called.
394 g_assert_not_reached();
397 static XiveTCTX *spapr_xive_get_tctx(XiveRouter *xrtr, CPUState *cs)
399 PowerPCCPU *cpu = POWERPC_CPU(cs);
401 return spapr_cpu_state(cpu)->tctx;
404 static const VMStateDescription vmstate_spapr_xive_end = {
405 .name = TYPE_SPAPR_XIVE "/end",
406 .version_id = 1,
407 .minimum_version_id = 1,
408 .fields = (VMStateField []) {
409 VMSTATE_UINT32(w0, XiveEND),
410 VMSTATE_UINT32(w1, XiveEND),
411 VMSTATE_UINT32(w2, XiveEND),
412 VMSTATE_UINT32(w3, XiveEND),
413 VMSTATE_UINT32(w4, XiveEND),
414 VMSTATE_UINT32(w5, XiveEND),
415 VMSTATE_UINT32(w6, XiveEND),
416 VMSTATE_UINT32(w7, XiveEND),
417 VMSTATE_END_OF_LIST()
421 static const VMStateDescription vmstate_spapr_xive_eas = {
422 .name = TYPE_SPAPR_XIVE "/eas",
423 .version_id = 1,
424 .minimum_version_id = 1,
425 .fields = (VMStateField []) {
426 VMSTATE_UINT64(w, XiveEAS),
427 VMSTATE_END_OF_LIST()
431 static const VMStateDescription vmstate_spapr_xive = {
432 .name = TYPE_SPAPR_XIVE,
433 .version_id = 1,
434 .minimum_version_id = 1,
435 .fields = (VMStateField[]) {
436 VMSTATE_UINT32_EQUAL(nr_irqs, SpaprXive, NULL),
437 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, SpaprXive, nr_irqs,
438 vmstate_spapr_xive_eas, XiveEAS),
439 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, SpaprXive, nr_ends,
440 vmstate_spapr_xive_end, XiveEND),
441 VMSTATE_END_OF_LIST()
445 static Property spapr_xive_properties[] = {
446 DEFINE_PROP_UINT32("nr-irqs", SpaprXive, nr_irqs, 0),
447 DEFINE_PROP_UINT32("nr-ends", SpaprXive, nr_ends, 0),
448 DEFINE_PROP_UINT64("vc-base", SpaprXive, vc_base, SPAPR_XIVE_VC_BASE),
449 DEFINE_PROP_UINT64("tm-base", SpaprXive, tm_base, SPAPR_XIVE_TM_BASE),
450 DEFINE_PROP_END_OF_LIST(),
453 static void spapr_xive_class_init(ObjectClass *klass, void *data)
455 DeviceClass *dc = DEVICE_CLASS(klass);
456 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
458 dc->desc = "sPAPR XIVE Interrupt Controller";
459 dc->props = spapr_xive_properties;
460 dc->realize = spapr_xive_realize;
461 dc->vmsd = &vmstate_spapr_xive;
463 xrc->get_eas = spapr_xive_get_eas;
464 xrc->get_end = spapr_xive_get_end;
465 xrc->write_end = spapr_xive_write_end;
466 xrc->get_nvt = spapr_xive_get_nvt;
467 xrc->write_nvt = spapr_xive_write_nvt;
468 xrc->get_tctx = spapr_xive_get_tctx;
471 static const TypeInfo spapr_xive_info = {
472 .name = TYPE_SPAPR_XIVE,
473 .parent = TYPE_XIVE_ROUTER,
474 .instance_init = spapr_xive_instance_init,
475 .instance_size = sizeof(SpaprXive),
476 .class_init = spapr_xive_class_init,
479 static void spapr_xive_register_types(void)
481 type_register_static(&spapr_xive_info);
484 type_init(spapr_xive_register_types)
486 bool spapr_xive_irq_claim(SpaprXive *xive, uint32_t lisn, bool lsi)
488 XiveSource *xsrc = &xive->source;
490 if (lisn >= xive->nr_irqs) {
491 return false;
494 xive->eat[lisn].w |= cpu_to_be64(EAS_VALID);
495 if (lsi) {
496 xive_source_irq_set_lsi(xsrc, lisn);
498 return true;
501 bool spapr_xive_irq_free(SpaprXive *xive, uint32_t lisn)
503 if (lisn >= xive->nr_irqs) {
504 return false;
507 xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID);
508 return true;
512 * XIVE hcalls
514 * The terminology used by the XIVE hcalls is the following :
516 * TARGET vCPU number
517 * EQ Event Queue assigned by OS to receive event data
518 * ESB page for source interrupt management
519 * LISN Logical Interrupt Source Number identifying a source in the
520 * machine
521 * EISN Effective Interrupt Source Number used by guest OS to
522 * identify source in the guest
524 * The EAS, END, NVT structures are not exposed.
528 * Linux hosts under OPAL reserve priority 7 for their own escalation
529 * interrupts (DD2.X POWER9). So we only allow the guest to use
530 * priorities [0..6].
532 static bool spapr_xive_priority_is_reserved(uint8_t priority)
534 switch (priority) {
535 case 0 ... 6:
536 return false;
537 case 7: /* OPAL escalation queue */
538 default:
539 return true;
544 * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical
545 * real address of the MMIO page through which the Event State Buffer
546 * entry associated with the value of the "lisn" parameter is managed.
548 * Parameters:
549 * Input
550 * - R4: "flags"
551 * Bits 0-63 reserved
552 * - R5: "lisn" is per "interrupts", "interrupt-map", or
553 * "ibm,xive-lisn-ranges" properties, or as returned by the
554 * ibm,query-interrupt-source-number RTAS call, or as returned
555 * by the H_ALLOCATE_VAS_WINDOW hcall
557 * Output
558 * - R4: "flags"
559 * Bits 0-59: Reserved
560 * Bit 60: H_INT_ESB must be used for Event State Buffer
561 * management
562 * Bit 61: 1 == LSI 0 == MSI
563 * Bit 62: the full function page supports trigger
564 * Bit 63: Store EOI Supported
565 * - R5: Logical Real address of full function Event State Buffer
566 * management page, -1 if H_INT_ESB hcall flag is set to 1.
567 * - R6: Logical Real Address of trigger only Event State Buffer
568 * management page or -1.
569 * - R7: Power of 2 page size for the ESB management pages returned in
570 * R5 and R6.
573 #define SPAPR_XIVE_SRC_H_INT_ESB PPC_BIT(60) /* ESB manage with H_INT_ESB */
574 #define SPAPR_XIVE_SRC_LSI PPC_BIT(61) /* Virtual LSI type */
575 #define SPAPR_XIVE_SRC_TRIGGER PPC_BIT(62) /* Trigger and management
576 on same page */
577 #define SPAPR_XIVE_SRC_STORE_EOI PPC_BIT(63) /* Store EOI support */
579 static target_ulong h_int_get_source_info(PowerPCCPU *cpu,
580 SpaprMachineState *spapr,
581 target_ulong opcode,
582 target_ulong *args)
584 SpaprXive *xive = spapr->xive;
585 XiveSource *xsrc = &xive->source;
586 target_ulong flags = args[0];
587 target_ulong lisn = args[1];
589 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
590 return H_FUNCTION;
593 if (flags) {
594 return H_PARAMETER;
597 if (lisn >= xive->nr_irqs) {
598 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
599 lisn);
600 return H_P2;
603 if (!xive_eas_is_valid(&xive->eat[lisn])) {
604 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
605 lisn);
606 return H_P2;
610 * All sources are emulated under the main XIVE object and share
611 * the same characteristics.
613 args[0] = 0;
614 if (!xive_source_esb_has_2page(xsrc)) {
615 args[0] |= SPAPR_XIVE_SRC_TRIGGER;
617 if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) {
618 args[0] |= SPAPR_XIVE_SRC_STORE_EOI;
622 * Force the use of the H_INT_ESB hcall in case of an LSI
623 * interrupt. This is necessary under KVM to re-trigger the
624 * interrupt if the level is still asserted
626 if (xive_source_irq_is_lsi(xsrc, lisn)) {
627 args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI;
630 if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
631 args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn);
632 } else {
633 args[1] = -1;
636 if (xive_source_esb_has_2page(xsrc) &&
637 !(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
638 args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn);
639 } else {
640 args[2] = -1;
643 if (xive_source_esb_has_2page(xsrc)) {
644 args[3] = xsrc->esb_shift - 1;
645 } else {
646 args[3] = xsrc->esb_shift;
649 return H_SUCCESS;
653 * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical
654 * Interrupt Source to a target. The Logical Interrupt Source is
655 * designated with the "lisn" parameter and the target is designated
656 * with the "target" and "priority" parameters. Upon return from the
657 * hcall(), no additional interrupts will be directed to the old EQ.
659 * Parameters:
660 * Input:
661 * - R4: "flags"
662 * Bits 0-61: Reserved
663 * Bit 62: set the "eisn" in the EAS
664 * Bit 63: masks the interrupt source in the hardware interrupt
665 * control structure. An interrupt masked by this mechanism will
666 * be dropped, but it's source state bits will still be
667 * set. There is no race-free way of unmasking and restoring the
668 * source. Thus this should only be used in interrupts that are
669 * also masked at the source, and only in cases where the
670 * interrupt is not meant to be used for a large amount of time
671 * because no valid target exists for it for example
672 * - R5: "lisn" is per "interrupts", "interrupt-map", or
673 * "ibm,xive-lisn-ranges" properties, or as returned by the
674 * ibm,query-interrupt-source-number RTAS call, or as returned by
675 * the H_ALLOCATE_VAS_WINDOW hcall
676 * - R6: "target" is per "ibm,ppc-interrupt-server#s" or
677 * "ibm,ppc-interrupt-gserver#s"
678 * - R7: "priority" is a valid priority not in
679 * "ibm,plat-res-int-priorities"
680 * - R8: "eisn" is the guest EISN associated with the "lisn"
682 * Output:
683 * - None
686 #define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62)
687 #define SPAPR_XIVE_SRC_MASK PPC_BIT(63)
689 static target_ulong h_int_set_source_config(PowerPCCPU *cpu,
690 SpaprMachineState *spapr,
691 target_ulong opcode,
692 target_ulong *args)
694 SpaprXive *xive = spapr->xive;
695 XiveEAS eas, new_eas;
696 target_ulong flags = args[0];
697 target_ulong lisn = args[1];
698 target_ulong target = args[2];
699 target_ulong priority = args[3];
700 target_ulong eisn = args[4];
701 uint8_t end_blk;
702 uint32_t end_idx;
704 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
705 return H_FUNCTION;
708 if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) {
709 return H_PARAMETER;
712 if (lisn >= xive->nr_irqs) {
713 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
714 lisn);
715 return H_P2;
718 eas = xive->eat[lisn];
719 if (!xive_eas_is_valid(&eas)) {
720 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
721 lisn);
722 return H_P2;
725 /* priority 0xff is used to reset the EAS */
726 if (priority == 0xff) {
727 new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED);
728 goto out;
731 if (flags & SPAPR_XIVE_SRC_MASK) {
732 new_eas.w = eas.w | cpu_to_be64(EAS_MASKED);
733 } else {
734 new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED);
737 if (spapr_xive_priority_is_reserved(priority)) {
738 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
739 " is reserved\n", priority);
740 return H_P4;
744 * Validate that "target" is part of the list of threads allocated
745 * to the partition. For that, find the END corresponding to the
746 * target.
748 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
749 return H_P3;
752 new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk);
753 new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx);
755 if (flags & SPAPR_XIVE_SRC_SET_EISN) {
756 new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn);
759 out:
760 xive->eat[lisn] = new_eas;
761 return H_SUCCESS;
765 * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which
766 * target/priority pair is assigned to the specified Logical Interrupt
767 * Source.
769 * Parameters:
770 * Input:
771 * - R4: "flags"
772 * Bits 0-63 Reserved
773 * - R5: "lisn" is per "interrupts", "interrupt-map", or
774 * "ibm,xive-lisn-ranges" properties, or as returned by the
775 * ibm,query-interrupt-source-number RTAS call, or as
776 * returned by the H_ALLOCATE_VAS_WINDOW hcall
778 * Output:
779 * - R4: Target to which the specified Logical Interrupt Source is
780 * assigned
781 * - R5: Priority to which the specified Logical Interrupt Source is
782 * assigned
783 * - R6: EISN for the specified Logical Interrupt Source (this will be
784 * equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG)
786 static target_ulong h_int_get_source_config(PowerPCCPU *cpu,
787 SpaprMachineState *spapr,
788 target_ulong opcode,
789 target_ulong *args)
791 SpaprXive *xive = spapr->xive;
792 target_ulong flags = args[0];
793 target_ulong lisn = args[1];
794 XiveEAS eas;
795 XiveEND *end;
796 uint8_t nvt_blk;
797 uint32_t end_idx, nvt_idx;
799 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
800 return H_FUNCTION;
803 if (flags) {
804 return H_PARAMETER;
807 if (lisn >= xive->nr_irqs) {
808 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
809 lisn);
810 return H_P2;
813 eas = xive->eat[lisn];
814 if (!xive_eas_is_valid(&eas)) {
815 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
816 lisn);
817 return H_P2;
820 /* EAS_END_BLOCK is unused on sPAPR */
821 end_idx = xive_get_field64(EAS_END_INDEX, eas.w);
823 assert(end_idx < xive->nr_ends);
824 end = &xive->endt[end_idx];
826 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
827 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
828 args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
830 if (xive_eas_is_masked(&eas)) {
831 args[1] = 0xff;
832 } else {
833 args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
836 args[2] = xive_get_field64(EAS_END_DATA, eas.w);
838 return H_SUCCESS;
842 * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real
843 * address of the notification management page associated with the
844 * specified target and priority.
846 * Parameters:
847 * Input:
848 * - R4: "flags"
849 * Bits 0-63 Reserved
850 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
851 * "ibm,ppc-interrupt-gserver#s"
852 * - R6: "priority" is a valid priority not in
853 * "ibm,plat-res-int-priorities"
855 * Output:
856 * - R4: Logical real address of notification page
857 * - R5: Power of 2 page size of the notification page
859 static target_ulong h_int_get_queue_info(PowerPCCPU *cpu,
860 SpaprMachineState *spapr,
861 target_ulong opcode,
862 target_ulong *args)
864 SpaprXive *xive = spapr->xive;
865 XiveENDSource *end_xsrc = &xive->end_source;
866 target_ulong flags = args[0];
867 target_ulong target = args[1];
868 target_ulong priority = args[2];
869 XiveEND *end;
870 uint8_t end_blk;
871 uint32_t end_idx;
873 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
874 return H_FUNCTION;
877 if (flags) {
878 return H_PARAMETER;
882 * H_STATE should be returned if a H_INT_RESET is in progress.
883 * This is not needed when running the emulation under QEMU
886 if (spapr_xive_priority_is_reserved(priority)) {
887 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
888 " is reserved\n", priority);
889 return H_P3;
893 * Validate that "target" is part of the list of threads allocated
894 * to the partition. For that, find the END corresponding to the
895 * target.
897 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
898 return H_P2;
901 assert(end_idx < xive->nr_ends);
902 end = &xive->endt[end_idx];
904 args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx;
905 if (xive_end_is_enqueue(end)) {
906 args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
907 } else {
908 args[1] = 0;
911 return H_SUCCESS;
915 * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for
916 * a given "target" and "priority". It is also used to set the
917 * notification config associated with the EQ. An EQ size of 0 is
918 * used to reset the EQ config for a given target and priority. If
919 * resetting the EQ config, the END associated with the given "target"
920 * and "priority" will be changed to disable queueing.
922 * Upon return from the hcall(), no additional interrupts will be
923 * directed to the old EQ (if one was set). The old EQ (if one was
924 * set) should be investigated for interrupts that occurred prior to
925 * or during the hcall().
927 * Parameters:
928 * Input:
929 * - R4: "flags"
930 * Bits 0-62: Reserved
931 * Bit 63: Unconditional Notify (n) per the XIVE spec
932 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
933 * "ibm,ppc-interrupt-gserver#s"
934 * - R6: "priority" is a valid priority not in
935 * "ibm,plat-res-int-priorities"
936 * - R7: "eventQueue": The logical real address of the start of the EQ
937 * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes"
939 * Output:
940 * - None
943 #define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63)
945 static target_ulong h_int_set_queue_config(PowerPCCPU *cpu,
946 SpaprMachineState *spapr,
947 target_ulong opcode,
948 target_ulong *args)
950 SpaprXive *xive = spapr->xive;
951 target_ulong flags = args[0];
952 target_ulong target = args[1];
953 target_ulong priority = args[2];
954 target_ulong qpage = args[3];
955 target_ulong qsize = args[4];
956 XiveEND end;
957 uint8_t end_blk, nvt_blk;
958 uint32_t end_idx, nvt_idx;
960 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
961 return H_FUNCTION;
964 if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) {
965 return H_PARAMETER;
969 * H_STATE should be returned if a H_INT_RESET is in progress.
970 * This is not needed when running the emulation under QEMU
973 if (spapr_xive_priority_is_reserved(priority)) {
974 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
975 " is reserved\n", priority);
976 return H_P3;
980 * Validate that "target" is part of the list of threads allocated
981 * to the partition. For that, find the END corresponding to the
982 * target.
985 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
986 return H_P2;
989 assert(end_idx < xive->nr_ends);
990 memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND));
992 switch (qsize) {
993 case 12:
994 case 16:
995 case 21:
996 case 24:
997 if (!QEMU_IS_ALIGNED(qpage, 1ul << qsize)) {
998 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: EQ @0x%" HWADDR_PRIx
999 " is not naturally aligned with %" HWADDR_PRIx "\n",
1000 qpage, (hwaddr)1 << qsize);
1001 return H_P4;
1003 end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff);
1004 end.w3 = cpu_to_be32(qpage & 0xffffffff);
1005 end.w0 |= cpu_to_be32(END_W0_ENQUEUE);
1006 end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12);
1007 break;
1008 case 0:
1009 /* reset queue and disable queueing */
1010 spapr_xive_end_reset(&end);
1011 goto out;
1013 default:
1014 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n",
1015 qsize);
1016 return H_P5;
1019 if (qsize) {
1020 hwaddr plen = 1 << qsize;
1021 void *eq;
1024 * Validate the guest EQ. We should also check that the queue
1025 * has been zeroed by the OS.
1027 eq = address_space_map(CPU(cpu)->as, qpage, &plen, true,
1028 MEMTXATTRS_UNSPECIFIED);
1029 if (plen != 1 << qsize) {
1030 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%"
1031 HWADDR_PRIx "\n", qpage);
1032 return H_P4;
1034 address_space_unmap(CPU(cpu)->as, eq, plen, true, plen);
1037 /* "target" should have been validated above */
1038 if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) {
1039 g_assert_not_reached();
1043 * Ensure the priority and target are correctly set (they will not
1044 * be right after allocation)
1046 end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) |
1047 xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx);
1048 end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority);
1050 if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1051 end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY);
1052 } else {
1053 end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY);
1057 * The generation bit for the END starts at 1 and The END page
1058 * offset counter starts at 0.
1060 end.w1 = cpu_to_be32(END_W1_GENERATION) |
1061 xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul);
1062 end.w0 |= cpu_to_be32(END_W0_VALID);
1065 * TODO: issue syncs required to ensure all in-flight interrupts
1066 * are complete on the old END
1069 out:
1070 /* Update END */
1071 memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND));
1072 return H_SUCCESS;
1076 * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given
1077 * target and priority.
1079 * Parameters:
1080 * Input:
1081 * - R4: "flags"
1082 * Bits 0-62: Reserved
1083 * Bit 63: Debug: Return debug data
1084 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1085 * "ibm,ppc-interrupt-gserver#s"
1086 * - R6: "priority" is a valid priority not in
1087 * "ibm,plat-res-int-priorities"
1089 * Output:
1090 * - R4: "flags":
1091 * Bits 0-61: Reserved
1092 * Bit 62: The value of Event Queue Generation Number (g) per
1093 * the XIVE spec if "Debug" = 1
1094 * Bit 63: The value of Unconditional Notify (n) per the XIVE spec
1095 * - R5: The logical real address of the start of the EQ
1096 * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes"
1097 * - R7: The value of Event Queue Offset Counter per XIVE spec
1098 * if "Debug" = 1, else 0
1102 #define SPAPR_XIVE_END_DEBUG PPC_BIT(63)
1104 static target_ulong h_int_get_queue_config(PowerPCCPU *cpu,
1105 SpaprMachineState *spapr,
1106 target_ulong opcode,
1107 target_ulong *args)
1109 SpaprXive *xive = spapr->xive;
1110 target_ulong flags = args[0];
1111 target_ulong target = args[1];
1112 target_ulong priority = args[2];
1113 XiveEND *end;
1114 uint8_t end_blk;
1115 uint32_t end_idx;
1117 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1118 return H_FUNCTION;
1121 if (flags & ~SPAPR_XIVE_END_DEBUG) {
1122 return H_PARAMETER;
1126 * H_STATE should be returned if a H_INT_RESET is in progress.
1127 * This is not needed when running the emulation under QEMU
1130 if (spapr_xive_priority_is_reserved(priority)) {
1131 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1132 " is reserved\n", priority);
1133 return H_P3;
1137 * Validate that "target" is part of the list of threads allocated
1138 * to the partition. For that, find the END corresponding to the
1139 * target.
1141 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1142 return H_P2;
1145 assert(end_idx < xive->nr_ends);
1146 end = &xive->endt[end_idx];
1148 args[0] = 0;
1149 if (xive_end_is_notify(end)) {
1150 args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY;
1153 if (xive_end_is_enqueue(end)) {
1154 args[1] = xive_end_qaddr(end);
1155 args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1156 } else {
1157 args[1] = 0;
1158 args[2] = 0;
1161 /* TODO: do we need any locking on the END ? */
1162 if (flags & SPAPR_XIVE_END_DEBUG) {
1163 /* Load the event queue generation number into the return flags */
1164 args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62;
1166 /* Load R7 with the event queue offset counter */
1167 args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1168 } else {
1169 args[3] = 0;
1172 return H_SUCCESS;
1176 * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the
1177 * reporting cache line pair for the calling thread. The reporting
1178 * cache lines will contain the OS interrupt context when the OS
1179 * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS
1180 * interrupt. The reporting cache lines can be reset by inputting -1
1181 * in "reportingLine". Issuing the CI store byte without reporting
1182 * cache lines registered will result in the data not being accessible
1183 * to the OS.
1185 * Parameters:
1186 * Input:
1187 * - R4: "flags"
1188 * Bits 0-63: Reserved
1189 * - R5: "reportingLine": The logical real address of the reporting cache
1190 * line pair
1192 * Output:
1193 * - None
1195 static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu,
1196 SpaprMachineState *spapr,
1197 target_ulong opcode,
1198 target_ulong *args)
1200 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1201 return H_FUNCTION;
1205 * H_STATE should be returned if a H_INT_RESET is in progress.
1206 * This is not needed when running the emulation under QEMU
1209 /* TODO: H_INT_SET_OS_REPORTING_LINE */
1210 return H_FUNCTION;
1214 * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical
1215 * real address of the reporting cache line pair set for the input
1216 * "target". If no reporting cache line pair has been set, -1 is
1217 * returned.
1219 * Parameters:
1220 * Input:
1221 * - R4: "flags"
1222 * Bits 0-63: Reserved
1223 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1224 * "ibm,ppc-interrupt-gserver#s"
1225 * - R6: "reportingLine": The logical real address of the reporting
1226 * cache line pair
1228 * Output:
1229 * - R4: The logical real address of the reporting line if set, else -1
1231 static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu,
1232 SpaprMachineState *spapr,
1233 target_ulong opcode,
1234 target_ulong *args)
1236 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1237 return H_FUNCTION;
1241 * H_STATE should be returned if a H_INT_RESET is in progress.
1242 * This is not needed when running the emulation under QEMU
1245 /* TODO: H_INT_GET_OS_REPORTING_LINE */
1246 return H_FUNCTION;
1250 * The H_INT_ESB hcall() is used to issue a load or store to the ESB
1251 * page for the input "lisn". This hcall is only supported for LISNs
1252 * that have the ESB hcall flag set to 1 when returned from hcall()
1253 * H_INT_GET_SOURCE_INFO.
1255 * Parameters:
1256 * Input:
1257 * - R4: "flags"
1258 * Bits 0-62: Reserved
1259 * bit 63: Store: Store=1, store operation, else load operation
1260 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1261 * "ibm,xive-lisn-ranges" properties, or as returned by the
1262 * ibm,query-interrupt-source-number RTAS call, or as
1263 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1264 * - R6: "esbOffset" is the offset into the ESB page for the load or
1265 * store operation
1266 * - R7: "storeData" is the data to write for a store operation
1268 * Output:
1269 * - R4: The value of the load if load operation, else -1
1272 #define SPAPR_XIVE_ESB_STORE PPC_BIT(63)
1274 static target_ulong h_int_esb(PowerPCCPU *cpu,
1275 SpaprMachineState *spapr,
1276 target_ulong opcode,
1277 target_ulong *args)
1279 SpaprXive *xive = spapr->xive;
1280 XiveEAS eas;
1281 target_ulong flags = args[0];
1282 target_ulong lisn = args[1];
1283 target_ulong offset = args[2];
1284 target_ulong data = args[3];
1285 hwaddr mmio_addr;
1286 XiveSource *xsrc = &xive->source;
1288 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1289 return H_FUNCTION;
1292 if (flags & ~SPAPR_XIVE_ESB_STORE) {
1293 return H_PARAMETER;
1296 if (lisn >= xive->nr_irqs) {
1297 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1298 lisn);
1299 return H_P2;
1302 eas = xive->eat[lisn];
1303 if (!xive_eas_is_valid(&eas)) {
1304 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1305 lisn);
1306 return H_P2;
1309 if (offset > (1ull << xsrc->esb_shift)) {
1310 return H_P3;
1313 mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset;
1315 if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8,
1316 (flags & SPAPR_XIVE_ESB_STORE))) {
1317 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%"
1318 HWADDR_PRIx "\n", mmio_addr);
1319 return H_HARDWARE;
1321 args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data;
1322 return H_SUCCESS;
1326 * The H_INT_SYNC hcall() is used to issue hardware syncs that will
1327 * ensure any in flight events for the input lisn are in the event
1328 * queue.
1330 * Parameters:
1331 * Input:
1332 * - R4: "flags"
1333 * Bits 0-63: Reserved
1334 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1335 * "ibm,xive-lisn-ranges" properties, or as returned by the
1336 * ibm,query-interrupt-source-number RTAS call, or as
1337 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1339 * Output:
1340 * - None
1342 static target_ulong h_int_sync(PowerPCCPU *cpu,
1343 SpaprMachineState *spapr,
1344 target_ulong opcode,
1345 target_ulong *args)
1347 SpaprXive *xive = spapr->xive;
1348 XiveEAS eas;
1349 target_ulong flags = args[0];
1350 target_ulong lisn = args[1];
1352 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1353 return H_FUNCTION;
1356 if (flags) {
1357 return H_PARAMETER;
1360 if (lisn >= xive->nr_irqs) {
1361 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1362 lisn);
1363 return H_P2;
1366 eas = xive->eat[lisn];
1367 if (!xive_eas_is_valid(&eas)) {
1368 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1369 lisn);
1370 return H_P2;
1374 * H_STATE should be returned if a H_INT_RESET is in progress.
1375 * This is not needed when running the emulation under QEMU
1378 /* This is not real hardware. Nothing to be done */
1379 return H_SUCCESS;
1383 * The H_INT_RESET hcall() is used to reset all of the partition's
1384 * interrupt exploitation structures to their initial state. This
1385 * means losing all previously set interrupt state set via
1386 * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.
1388 * Parameters:
1389 * Input:
1390 * - R4: "flags"
1391 * Bits 0-63: Reserved
1393 * Output:
1394 * - None
1396 static target_ulong h_int_reset(PowerPCCPU *cpu,
1397 SpaprMachineState *spapr,
1398 target_ulong opcode,
1399 target_ulong *args)
1401 SpaprXive *xive = spapr->xive;
1402 target_ulong flags = args[0];
1404 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1405 return H_FUNCTION;
1408 if (flags) {
1409 return H_PARAMETER;
1412 device_reset(DEVICE(xive));
1413 return H_SUCCESS;
1416 void spapr_xive_hcall_init(SpaprMachineState *spapr)
1418 spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info);
1419 spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config);
1420 spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config);
1421 spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info);
1422 spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config);
1423 spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config);
1424 spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE,
1425 h_int_set_os_reporting_line);
1426 spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE,
1427 h_int_get_os_reporting_line);
1428 spapr_register_hypercall(H_INT_ESB, h_int_esb);
1429 spapr_register_hypercall(H_INT_SYNC, h_int_sync);
1430 spapr_register_hypercall(H_INT_RESET, h_int_reset);
1433 void spapr_dt_xive(SpaprMachineState *spapr, uint32_t nr_servers, void *fdt,
1434 uint32_t phandle)
1436 SpaprXive *xive = spapr->xive;
1437 int node;
1438 uint64_t timas[2 * 2];
1439 /* Interrupt number ranges for the IPIs */
1440 uint32_t lisn_ranges[] = {
1441 cpu_to_be32(0),
1442 cpu_to_be32(nr_servers),
1445 * EQ size - the sizes of pages supported by the system 4K, 64K,
1446 * 2M, 16M. We only advertise 64K for the moment.
1448 uint32_t eq_sizes[] = {
1449 cpu_to_be32(16), /* 64K */
1452 * The following array is in sync with the reserved priorities
1453 * defined by the 'spapr_xive_priority_is_reserved' routine.
1455 uint32_t plat_res_int_priorities[] = {
1456 cpu_to_be32(7), /* start */
1457 cpu_to_be32(0xf8), /* count */
1460 /* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */
1461 timas[0] = cpu_to_be64(xive->tm_base +
1462 XIVE_TM_USER_PAGE * (1ull << TM_SHIFT));
1463 timas[1] = cpu_to_be64(1ull << TM_SHIFT);
1464 timas[2] = cpu_to_be64(xive->tm_base +
1465 XIVE_TM_OS_PAGE * (1ull << TM_SHIFT));
1466 timas[3] = cpu_to_be64(1ull << TM_SHIFT);
1468 _FDT(node = fdt_add_subnode(fdt, 0, xive->nodename));
1470 _FDT(fdt_setprop_string(fdt, node, "device_type", "power-ivpe"));
1471 _FDT(fdt_setprop(fdt, node, "reg", timas, sizeof(timas)));
1473 _FDT(fdt_setprop_string(fdt, node, "compatible", "ibm,power-ivpe"));
1474 _FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes", eq_sizes,
1475 sizeof(eq_sizes)));
1476 _FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges", lisn_ranges,
1477 sizeof(lisn_ranges)));
1479 /* For Linux to link the LSIs to the interrupt controller. */
1480 _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0));
1481 _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2));
1483 /* For SLOF */
1484 _FDT(fdt_setprop_cell(fdt, node, "linux,phandle", phandle));
1485 _FDT(fdt_setprop_cell(fdt, node, "phandle", phandle));
1488 * The "ibm,plat-res-int-priorities" property defines the priority
1489 * ranges reserved by the hypervisor
1491 _FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities",
1492 plat_res_int_priorities, sizeof(plat_res_int_priorities)));