nbd: Rely on block layer to break up large requests
[qemu/ar7.git] / kvm-all.c
bloba88f917fda69430ae2fa45100e7cd5a331fcdf2f
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "hw/hw.h"
27 #include "hw/pci/msi.h"
28 #include "hw/s390x/adapter.h"
29 #include "exec/gdbstub.h"
30 #include "sysemu/kvm_int.h"
31 #include "qemu/bswap.h"
32 #include "exec/memory.h"
33 #include "exec/ram_addr.h"
34 #include "exec/address-spaces.h"
35 #include "qemu/event_notifier.h"
36 #include "trace.h"
37 #include "hw/irq.h"
39 #include "hw/boards.h"
41 /* This check must be after config-host.h is included */
42 #ifdef CONFIG_EVENTFD
43 #include <sys/eventfd.h>
44 #endif
46 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
47 * need to use the real host PAGE_SIZE, as that's what KVM will use.
49 #define PAGE_SIZE getpagesize()
51 //#define DEBUG_KVM
53 #ifdef DEBUG_KVM
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
56 #else
57 #define DPRINTF(fmt, ...) \
58 do { } while (0)
59 #endif
61 #define KVM_MSI_HASHTAB_SIZE 256
63 struct KVMParkedVcpu {
64 unsigned long vcpu_id;
65 int kvm_fd;
66 QLIST_ENTRY(KVMParkedVcpu) node;
69 struct KVMState
71 AccelState parent_obj;
73 int nr_slots;
74 int fd;
75 int vmfd;
76 int coalesced_mmio;
77 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
78 bool coalesced_flush_in_progress;
79 int broken_set_mem_region;
80 int vcpu_events;
81 int robust_singlestep;
82 int debugregs;
83 #ifdef KVM_CAP_SET_GUEST_DEBUG
84 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
85 #endif
86 int many_ioeventfds;
87 int intx_set_mask;
88 /* The man page (and posix) say ioctl numbers are signed int, but
89 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
90 * unsigned, and treating them as signed here can break things */
91 unsigned irq_set_ioctl;
92 unsigned int sigmask_len;
93 GHashTable *gsimap;
94 #ifdef KVM_CAP_IRQ_ROUTING
95 struct kvm_irq_routing *irq_routes;
96 int nr_allocated_irq_routes;
97 unsigned long *used_gsi_bitmap;
98 unsigned int gsi_count;
99 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
100 #endif
101 KVMMemoryListener memory_listener;
102 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
105 KVMState *kvm_state;
106 bool kvm_kernel_irqchip;
107 bool kvm_split_irqchip;
108 bool kvm_async_interrupts_allowed;
109 bool kvm_halt_in_kernel_allowed;
110 bool kvm_eventfds_allowed;
111 bool kvm_irqfds_allowed;
112 bool kvm_resamplefds_allowed;
113 bool kvm_msi_via_irqfd_allowed;
114 bool kvm_gsi_routing_allowed;
115 bool kvm_gsi_direct_mapping;
116 bool kvm_allowed;
117 bool kvm_readonly_mem_allowed;
118 bool kvm_vm_attributes_allowed;
119 bool kvm_direct_msi_allowed;
120 bool kvm_ioeventfd_any_length_allowed;
122 static const KVMCapabilityInfo kvm_required_capabilites[] = {
123 KVM_CAP_INFO(USER_MEMORY),
124 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
125 KVM_CAP_LAST_INFO
128 int kvm_get_max_memslots(void)
130 KVMState *s = KVM_STATE(current_machine->accelerator);
132 return s->nr_slots;
135 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
137 KVMState *s = kvm_state;
138 int i;
140 for (i = 0; i < s->nr_slots; i++) {
141 if (kml->slots[i].memory_size == 0) {
142 return &kml->slots[i];
146 return NULL;
149 bool kvm_has_free_slot(MachineState *ms)
151 KVMState *s = KVM_STATE(ms->accelerator);
153 return kvm_get_free_slot(&s->memory_listener);
156 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
158 KVMSlot *slot = kvm_get_free_slot(kml);
160 if (slot) {
161 return slot;
164 fprintf(stderr, "%s: no free slot available\n", __func__);
165 abort();
168 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
169 hwaddr start_addr,
170 hwaddr end_addr)
172 KVMState *s = kvm_state;
173 int i;
175 for (i = 0; i < s->nr_slots; i++) {
176 KVMSlot *mem = &kml->slots[i];
178 if (start_addr == mem->start_addr &&
179 end_addr == mem->start_addr + mem->memory_size) {
180 return mem;
184 return NULL;
188 * Find overlapping slot with lowest start address
190 static KVMSlot *kvm_lookup_overlapping_slot(KVMMemoryListener *kml,
191 hwaddr start_addr,
192 hwaddr end_addr)
194 KVMState *s = kvm_state;
195 KVMSlot *found = NULL;
196 int i;
198 for (i = 0; i < s->nr_slots; i++) {
199 KVMSlot *mem = &kml->slots[i];
201 if (mem->memory_size == 0 ||
202 (found && found->start_addr < mem->start_addr)) {
203 continue;
206 if (end_addr > mem->start_addr &&
207 start_addr < mem->start_addr + mem->memory_size) {
208 found = mem;
212 return found;
215 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
216 hwaddr *phys_addr)
218 KVMMemoryListener *kml = &s->memory_listener;
219 int i;
221 for (i = 0; i < s->nr_slots; i++) {
222 KVMSlot *mem = &kml->slots[i];
224 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
225 *phys_addr = mem->start_addr + (ram - mem->ram);
226 return 1;
230 return 0;
233 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot)
235 KVMState *s = kvm_state;
236 struct kvm_userspace_memory_region mem;
238 mem.slot = slot->slot | (kml->as_id << 16);
239 mem.guest_phys_addr = slot->start_addr;
240 mem.userspace_addr = (unsigned long)slot->ram;
241 mem.flags = slot->flags;
243 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
244 /* Set the slot size to 0 before setting the slot to the desired
245 * value. This is needed based on KVM commit 75d61fbc. */
246 mem.memory_size = 0;
247 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
249 mem.memory_size = slot->memory_size;
250 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
253 int kvm_destroy_vcpu(CPUState *cpu)
255 KVMState *s = kvm_state;
256 long mmap_size;
257 struct KVMParkedVcpu *vcpu = NULL;
258 int ret = 0;
260 DPRINTF("kvm_destroy_vcpu\n");
262 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
263 if (mmap_size < 0) {
264 ret = mmap_size;
265 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
266 goto err;
269 ret = munmap(cpu->kvm_run, mmap_size);
270 if (ret < 0) {
271 goto err;
274 vcpu = g_malloc0(sizeof(*vcpu));
275 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
276 vcpu->kvm_fd = cpu->kvm_fd;
277 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
278 err:
279 return ret;
282 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
284 struct KVMParkedVcpu *cpu;
286 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
287 if (cpu->vcpu_id == vcpu_id) {
288 int kvm_fd;
290 QLIST_REMOVE(cpu, node);
291 kvm_fd = cpu->kvm_fd;
292 g_free(cpu);
293 return kvm_fd;
297 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
300 int kvm_init_vcpu(CPUState *cpu)
302 KVMState *s = kvm_state;
303 long mmap_size;
304 int ret;
306 DPRINTF("kvm_init_vcpu\n");
308 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
309 if (ret < 0) {
310 DPRINTF("kvm_create_vcpu failed\n");
311 goto err;
314 cpu->kvm_fd = ret;
315 cpu->kvm_state = s;
316 cpu->kvm_vcpu_dirty = true;
318 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
319 if (mmap_size < 0) {
320 ret = mmap_size;
321 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
322 goto err;
325 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
326 cpu->kvm_fd, 0);
327 if (cpu->kvm_run == MAP_FAILED) {
328 ret = -errno;
329 DPRINTF("mmap'ing vcpu state failed\n");
330 goto err;
333 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
334 s->coalesced_mmio_ring =
335 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
338 ret = kvm_arch_init_vcpu(cpu);
339 err:
340 return ret;
344 * dirty pages logging control
347 static int kvm_mem_flags(MemoryRegion *mr)
349 bool readonly = mr->readonly || memory_region_is_romd(mr);
350 int flags = 0;
352 if (memory_region_get_dirty_log_mask(mr) != 0) {
353 flags |= KVM_MEM_LOG_DIRTY_PAGES;
355 if (readonly && kvm_readonly_mem_allowed) {
356 flags |= KVM_MEM_READONLY;
358 return flags;
361 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
362 MemoryRegion *mr)
364 int old_flags;
366 old_flags = mem->flags;
367 mem->flags = kvm_mem_flags(mr);
369 /* If nothing changed effectively, no need to issue ioctl */
370 if (mem->flags == old_flags) {
371 return 0;
374 return kvm_set_user_memory_region(kml, mem);
377 static int kvm_section_update_flags(KVMMemoryListener *kml,
378 MemoryRegionSection *section)
380 hwaddr phys_addr = section->offset_within_address_space;
381 ram_addr_t size = int128_get64(section->size);
382 KVMSlot *mem = kvm_lookup_matching_slot(kml, phys_addr, phys_addr + size);
384 if (mem == NULL) {
385 return 0;
386 } else {
387 return kvm_slot_update_flags(kml, mem, section->mr);
391 static void kvm_log_start(MemoryListener *listener,
392 MemoryRegionSection *section,
393 int old, int new)
395 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
396 int r;
398 if (old != 0) {
399 return;
402 r = kvm_section_update_flags(kml, section);
403 if (r < 0) {
404 abort();
408 static void kvm_log_stop(MemoryListener *listener,
409 MemoryRegionSection *section,
410 int old, int new)
412 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
413 int r;
415 if (new != 0) {
416 return;
419 r = kvm_section_update_flags(kml, section);
420 if (r < 0) {
421 abort();
425 /* get kvm's dirty pages bitmap and update qemu's */
426 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
427 unsigned long *bitmap)
429 ram_addr_t start = section->offset_within_region +
430 memory_region_get_ram_addr(section->mr);
431 ram_addr_t pages = int128_get64(section->size) / getpagesize();
433 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
434 return 0;
437 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
440 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
441 * This function updates qemu's dirty bitmap using
442 * memory_region_set_dirty(). This means all bits are set
443 * to dirty.
445 * @start_add: start of logged region.
446 * @end_addr: end of logged region.
448 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
449 MemoryRegionSection *section)
451 KVMState *s = kvm_state;
452 unsigned long size, allocated_size = 0;
453 struct kvm_dirty_log d = {};
454 KVMSlot *mem;
455 int ret = 0;
456 hwaddr start_addr = section->offset_within_address_space;
457 hwaddr end_addr = start_addr + int128_get64(section->size);
459 d.dirty_bitmap = NULL;
460 while (start_addr < end_addr) {
461 mem = kvm_lookup_overlapping_slot(kml, start_addr, end_addr);
462 if (mem == NULL) {
463 break;
466 /* XXX bad kernel interface alert
467 * For dirty bitmap, kernel allocates array of size aligned to
468 * bits-per-long. But for case when the kernel is 64bits and
469 * the userspace is 32bits, userspace can't align to the same
470 * bits-per-long, since sizeof(long) is different between kernel
471 * and user space. This way, userspace will provide buffer which
472 * may be 4 bytes less than the kernel will use, resulting in
473 * userspace memory corruption (which is not detectable by valgrind
474 * too, in most cases).
475 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
476 * a hope that sizeof(long) won't become >8 any time soon.
478 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
479 /*HOST_LONG_BITS*/ 64) / 8;
480 if (!d.dirty_bitmap) {
481 d.dirty_bitmap = g_malloc(size);
482 } else if (size > allocated_size) {
483 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
485 allocated_size = size;
486 memset(d.dirty_bitmap, 0, allocated_size);
488 d.slot = mem->slot | (kml->as_id << 16);
489 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
490 DPRINTF("ioctl failed %d\n", errno);
491 ret = -1;
492 break;
495 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
496 start_addr = mem->start_addr + mem->memory_size;
498 g_free(d.dirty_bitmap);
500 return ret;
503 static void kvm_coalesce_mmio_region(MemoryListener *listener,
504 MemoryRegionSection *secion,
505 hwaddr start, hwaddr size)
507 KVMState *s = kvm_state;
509 if (s->coalesced_mmio) {
510 struct kvm_coalesced_mmio_zone zone;
512 zone.addr = start;
513 zone.size = size;
514 zone.pad = 0;
516 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
520 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
521 MemoryRegionSection *secion,
522 hwaddr start, hwaddr size)
524 KVMState *s = kvm_state;
526 if (s->coalesced_mmio) {
527 struct kvm_coalesced_mmio_zone zone;
529 zone.addr = start;
530 zone.size = size;
531 zone.pad = 0;
533 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
537 int kvm_check_extension(KVMState *s, unsigned int extension)
539 int ret;
541 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
542 if (ret < 0) {
543 ret = 0;
546 return ret;
549 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
551 int ret;
553 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
554 if (ret < 0) {
555 /* VM wide version not implemented, use global one instead */
556 ret = kvm_check_extension(s, extension);
559 return ret;
562 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
564 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
565 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
566 * endianness, but the memory core hands them in target endianness.
567 * For example, PPC is always treated as big-endian even if running
568 * on KVM and on PPC64LE. Correct here.
570 switch (size) {
571 case 2:
572 val = bswap16(val);
573 break;
574 case 4:
575 val = bswap32(val);
576 break;
578 #endif
579 return val;
582 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
583 bool assign, uint32_t size, bool datamatch)
585 int ret;
586 struct kvm_ioeventfd iofd = {
587 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
588 .addr = addr,
589 .len = size,
590 .flags = 0,
591 .fd = fd,
594 if (!kvm_enabled()) {
595 return -ENOSYS;
598 if (datamatch) {
599 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
601 if (!assign) {
602 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
605 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
607 if (ret < 0) {
608 return -errno;
611 return 0;
614 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
615 bool assign, uint32_t size, bool datamatch)
617 struct kvm_ioeventfd kick = {
618 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
619 .addr = addr,
620 .flags = KVM_IOEVENTFD_FLAG_PIO,
621 .len = size,
622 .fd = fd,
624 int r;
625 if (!kvm_enabled()) {
626 return -ENOSYS;
628 if (datamatch) {
629 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
631 if (!assign) {
632 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
634 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
635 if (r < 0) {
636 return r;
638 return 0;
642 static int kvm_check_many_ioeventfds(void)
644 /* Userspace can use ioeventfd for io notification. This requires a host
645 * that supports eventfd(2) and an I/O thread; since eventfd does not
646 * support SIGIO it cannot interrupt the vcpu.
648 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
649 * can avoid creating too many ioeventfds.
651 #if defined(CONFIG_EVENTFD)
652 int ioeventfds[7];
653 int i, ret = 0;
654 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
655 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
656 if (ioeventfds[i] < 0) {
657 break;
659 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
660 if (ret < 0) {
661 close(ioeventfds[i]);
662 break;
666 /* Decide whether many devices are supported or not */
667 ret = i == ARRAY_SIZE(ioeventfds);
669 while (i-- > 0) {
670 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
671 close(ioeventfds[i]);
673 return ret;
674 #else
675 return 0;
676 #endif
679 static const KVMCapabilityInfo *
680 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
682 while (list->name) {
683 if (!kvm_check_extension(s, list->value)) {
684 return list;
686 list++;
688 return NULL;
691 static void kvm_set_phys_mem(KVMMemoryListener *kml,
692 MemoryRegionSection *section, bool add)
694 KVMState *s = kvm_state;
695 KVMSlot *mem, old;
696 int err;
697 MemoryRegion *mr = section->mr;
698 bool writeable = !mr->readonly && !mr->rom_device;
699 hwaddr start_addr = section->offset_within_address_space;
700 ram_addr_t size = int128_get64(section->size);
701 void *ram = NULL;
702 unsigned delta;
704 /* kvm works in page size chunks, but the function may be called
705 with sub-page size and unaligned start address. Pad the start
706 address to next and truncate size to previous page boundary. */
707 delta = qemu_real_host_page_size - (start_addr & ~qemu_real_host_page_mask);
708 delta &= ~qemu_real_host_page_mask;
709 if (delta > size) {
710 return;
712 start_addr += delta;
713 size -= delta;
714 size &= qemu_real_host_page_mask;
715 if (!size || (start_addr & ~qemu_real_host_page_mask)) {
716 return;
719 if (!memory_region_is_ram(mr)) {
720 if (writeable || !kvm_readonly_mem_allowed) {
721 return;
722 } else if (!mr->romd_mode) {
723 /* If the memory device is not in romd_mode, then we actually want
724 * to remove the kvm memory slot so all accesses will trap. */
725 add = false;
729 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
731 while (1) {
732 mem = kvm_lookup_overlapping_slot(kml, start_addr, start_addr + size);
733 if (!mem) {
734 break;
737 if (add && start_addr >= mem->start_addr &&
738 (start_addr + size <= mem->start_addr + mem->memory_size) &&
739 (ram - start_addr == mem->ram - mem->start_addr)) {
740 /* The new slot fits into the existing one and comes with
741 * identical parameters - update flags and done. */
742 kvm_slot_update_flags(kml, mem, mr);
743 return;
746 old = *mem;
748 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
749 kvm_physical_sync_dirty_bitmap(kml, section);
752 /* unregister the overlapping slot */
753 mem->memory_size = 0;
754 err = kvm_set_user_memory_region(kml, mem);
755 if (err) {
756 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
757 __func__, strerror(-err));
758 abort();
761 /* Workaround for older KVM versions: we can't join slots, even not by
762 * unregistering the previous ones and then registering the larger
763 * slot. We have to maintain the existing fragmentation. Sigh.
765 * This workaround assumes that the new slot starts at the same
766 * address as the first existing one. If not or if some overlapping
767 * slot comes around later, we will fail (not seen in practice so far)
768 * - and actually require a recent KVM version. */
769 if (s->broken_set_mem_region &&
770 old.start_addr == start_addr && old.memory_size < size && add) {
771 mem = kvm_alloc_slot(kml);
772 mem->memory_size = old.memory_size;
773 mem->start_addr = old.start_addr;
774 mem->ram = old.ram;
775 mem->flags = kvm_mem_flags(mr);
777 err = kvm_set_user_memory_region(kml, mem);
778 if (err) {
779 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
780 strerror(-err));
781 abort();
784 start_addr += old.memory_size;
785 ram += old.memory_size;
786 size -= old.memory_size;
787 continue;
790 /* register prefix slot */
791 if (old.start_addr < start_addr) {
792 mem = kvm_alloc_slot(kml);
793 mem->memory_size = start_addr - old.start_addr;
794 mem->start_addr = old.start_addr;
795 mem->ram = old.ram;
796 mem->flags = kvm_mem_flags(mr);
798 err = kvm_set_user_memory_region(kml, mem);
799 if (err) {
800 fprintf(stderr, "%s: error registering prefix slot: %s\n",
801 __func__, strerror(-err));
802 #ifdef TARGET_PPC
803 fprintf(stderr, "%s: This is probably because your kernel's " \
804 "PAGE_SIZE is too big. Please try to use 4k " \
805 "PAGE_SIZE!\n", __func__);
806 #endif
807 abort();
811 /* register suffix slot */
812 if (old.start_addr + old.memory_size > start_addr + size) {
813 ram_addr_t size_delta;
815 mem = kvm_alloc_slot(kml);
816 mem->start_addr = start_addr + size;
817 size_delta = mem->start_addr - old.start_addr;
818 mem->memory_size = old.memory_size - size_delta;
819 mem->ram = old.ram + size_delta;
820 mem->flags = kvm_mem_flags(mr);
822 err = kvm_set_user_memory_region(kml, mem);
823 if (err) {
824 fprintf(stderr, "%s: error registering suffix slot: %s\n",
825 __func__, strerror(-err));
826 abort();
831 /* in case the KVM bug workaround already "consumed" the new slot */
832 if (!size) {
833 return;
835 if (!add) {
836 return;
838 mem = kvm_alloc_slot(kml);
839 mem->memory_size = size;
840 mem->start_addr = start_addr;
841 mem->ram = ram;
842 mem->flags = kvm_mem_flags(mr);
844 err = kvm_set_user_memory_region(kml, mem);
845 if (err) {
846 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
847 strerror(-err));
848 abort();
852 static void kvm_region_add(MemoryListener *listener,
853 MemoryRegionSection *section)
855 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
857 memory_region_ref(section->mr);
858 kvm_set_phys_mem(kml, section, true);
861 static void kvm_region_del(MemoryListener *listener,
862 MemoryRegionSection *section)
864 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
866 kvm_set_phys_mem(kml, section, false);
867 memory_region_unref(section->mr);
870 static void kvm_log_sync(MemoryListener *listener,
871 MemoryRegionSection *section)
873 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
874 int r;
876 r = kvm_physical_sync_dirty_bitmap(kml, section);
877 if (r < 0) {
878 abort();
882 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
883 MemoryRegionSection *section,
884 bool match_data, uint64_t data,
885 EventNotifier *e)
887 int fd = event_notifier_get_fd(e);
888 int r;
890 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
891 data, true, int128_get64(section->size),
892 match_data);
893 if (r < 0) {
894 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
895 __func__, strerror(-r));
896 abort();
900 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
901 MemoryRegionSection *section,
902 bool match_data, uint64_t data,
903 EventNotifier *e)
905 int fd = event_notifier_get_fd(e);
906 int r;
908 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
909 data, false, int128_get64(section->size),
910 match_data);
911 if (r < 0) {
912 abort();
916 static void kvm_io_ioeventfd_add(MemoryListener *listener,
917 MemoryRegionSection *section,
918 bool match_data, uint64_t data,
919 EventNotifier *e)
921 int fd = event_notifier_get_fd(e);
922 int r;
924 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
925 data, true, int128_get64(section->size),
926 match_data);
927 if (r < 0) {
928 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
929 __func__, strerror(-r));
930 abort();
934 static void kvm_io_ioeventfd_del(MemoryListener *listener,
935 MemoryRegionSection *section,
936 bool match_data, uint64_t data,
937 EventNotifier *e)
940 int fd = event_notifier_get_fd(e);
941 int r;
943 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
944 data, false, int128_get64(section->size),
945 match_data);
946 if (r < 0) {
947 abort();
951 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
952 AddressSpace *as, int as_id)
954 int i;
956 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
957 kml->as_id = as_id;
959 for (i = 0; i < s->nr_slots; i++) {
960 kml->slots[i].slot = i;
963 kml->listener.region_add = kvm_region_add;
964 kml->listener.region_del = kvm_region_del;
965 kml->listener.log_start = kvm_log_start;
966 kml->listener.log_stop = kvm_log_stop;
967 kml->listener.log_sync = kvm_log_sync;
968 kml->listener.priority = 10;
970 memory_listener_register(&kml->listener, as);
973 static MemoryListener kvm_io_listener = {
974 .eventfd_add = kvm_io_ioeventfd_add,
975 .eventfd_del = kvm_io_ioeventfd_del,
976 .priority = 10,
979 static void kvm_handle_interrupt(CPUState *cpu, int mask)
981 cpu->interrupt_request |= mask;
983 if (!qemu_cpu_is_self(cpu)) {
984 qemu_cpu_kick(cpu);
988 int kvm_set_irq(KVMState *s, int irq, int level)
990 struct kvm_irq_level event;
991 int ret;
993 assert(kvm_async_interrupts_enabled());
995 event.level = level;
996 event.irq = irq;
997 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
998 if (ret < 0) {
999 perror("kvm_set_irq");
1000 abort();
1003 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1006 #ifdef KVM_CAP_IRQ_ROUTING
1007 typedef struct KVMMSIRoute {
1008 struct kvm_irq_routing_entry kroute;
1009 QTAILQ_ENTRY(KVMMSIRoute) entry;
1010 } KVMMSIRoute;
1012 static void set_gsi(KVMState *s, unsigned int gsi)
1014 set_bit(gsi, s->used_gsi_bitmap);
1017 static void clear_gsi(KVMState *s, unsigned int gsi)
1019 clear_bit(gsi, s->used_gsi_bitmap);
1022 void kvm_init_irq_routing(KVMState *s)
1024 int gsi_count, i;
1026 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1027 if (gsi_count > 0) {
1028 /* Round up so we can search ints using ffs */
1029 s->used_gsi_bitmap = bitmap_new(gsi_count);
1030 s->gsi_count = gsi_count;
1033 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1034 s->nr_allocated_irq_routes = 0;
1036 if (!kvm_direct_msi_allowed) {
1037 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1038 QTAILQ_INIT(&s->msi_hashtab[i]);
1042 kvm_arch_init_irq_routing(s);
1045 void kvm_irqchip_commit_routes(KVMState *s)
1047 int ret;
1049 s->irq_routes->flags = 0;
1050 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1051 assert(ret == 0);
1054 static void kvm_add_routing_entry(KVMState *s,
1055 struct kvm_irq_routing_entry *entry)
1057 struct kvm_irq_routing_entry *new;
1058 int n, size;
1060 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1061 n = s->nr_allocated_irq_routes * 2;
1062 if (n < 64) {
1063 n = 64;
1065 size = sizeof(struct kvm_irq_routing);
1066 size += n * sizeof(*new);
1067 s->irq_routes = g_realloc(s->irq_routes, size);
1068 s->nr_allocated_irq_routes = n;
1070 n = s->irq_routes->nr++;
1071 new = &s->irq_routes->entries[n];
1073 *new = *entry;
1075 set_gsi(s, entry->gsi);
1078 static int kvm_update_routing_entry(KVMState *s,
1079 struct kvm_irq_routing_entry *new_entry)
1081 struct kvm_irq_routing_entry *entry;
1082 int n;
1084 for (n = 0; n < s->irq_routes->nr; n++) {
1085 entry = &s->irq_routes->entries[n];
1086 if (entry->gsi != new_entry->gsi) {
1087 continue;
1090 if(!memcmp(entry, new_entry, sizeof *entry)) {
1091 return 0;
1094 *entry = *new_entry;
1096 kvm_irqchip_commit_routes(s);
1098 return 0;
1101 return -ESRCH;
1104 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1106 struct kvm_irq_routing_entry e = {};
1108 assert(pin < s->gsi_count);
1110 e.gsi = irq;
1111 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1112 e.flags = 0;
1113 e.u.irqchip.irqchip = irqchip;
1114 e.u.irqchip.pin = pin;
1115 kvm_add_routing_entry(s, &e);
1118 void kvm_irqchip_release_virq(KVMState *s, int virq)
1120 struct kvm_irq_routing_entry *e;
1121 int i;
1123 if (kvm_gsi_direct_mapping()) {
1124 return;
1127 for (i = 0; i < s->irq_routes->nr; i++) {
1128 e = &s->irq_routes->entries[i];
1129 if (e->gsi == virq) {
1130 s->irq_routes->nr--;
1131 *e = s->irq_routes->entries[s->irq_routes->nr];
1134 clear_gsi(s, virq);
1137 static unsigned int kvm_hash_msi(uint32_t data)
1139 /* This is optimized for IA32 MSI layout. However, no other arch shall
1140 * repeat the mistake of not providing a direct MSI injection API. */
1141 return data & 0xff;
1144 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1146 KVMMSIRoute *route, *next;
1147 unsigned int hash;
1149 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1150 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1151 kvm_irqchip_release_virq(s, route->kroute.gsi);
1152 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1153 g_free(route);
1158 static int kvm_irqchip_get_virq(KVMState *s)
1160 int next_virq;
1163 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1164 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1165 * number can succeed even though a new route entry cannot be added.
1166 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1168 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1169 kvm_flush_dynamic_msi_routes(s);
1172 /* Return the lowest unused GSI in the bitmap */
1173 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1174 if (next_virq >= s->gsi_count) {
1175 return -ENOSPC;
1176 } else {
1177 return next_virq;
1181 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1183 unsigned int hash = kvm_hash_msi(msg.data);
1184 KVMMSIRoute *route;
1186 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1187 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1188 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1189 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1190 return route;
1193 return NULL;
1196 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1198 struct kvm_msi msi;
1199 KVMMSIRoute *route;
1201 if (kvm_direct_msi_allowed) {
1202 msi.address_lo = (uint32_t)msg.address;
1203 msi.address_hi = msg.address >> 32;
1204 msi.data = le32_to_cpu(msg.data);
1205 msi.flags = 0;
1206 memset(msi.pad, 0, sizeof(msi.pad));
1208 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1211 route = kvm_lookup_msi_route(s, msg);
1212 if (!route) {
1213 int virq;
1215 virq = kvm_irqchip_get_virq(s);
1216 if (virq < 0) {
1217 return virq;
1220 route = g_malloc0(sizeof(KVMMSIRoute));
1221 route->kroute.gsi = virq;
1222 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1223 route->kroute.flags = 0;
1224 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1225 route->kroute.u.msi.address_hi = msg.address >> 32;
1226 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1228 kvm_add_routing_entry(s, &route->kroute);
1229 kvm_irqchip_commit_routes(s);
1231 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1232 entry);
1235 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1237 return kvm_set_irq(s, route->kroute.gsi, 1);
1240 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg, PCIDevice *dev)
1242 struct kvm_irq_routing_entry kroute = {};
1243 int virq;
1245 if (kvm_gsi_direct_mapping()) {
1246 return kvm_arch_msi_data_to_gsi(msg.data);
1249 if (!kvm_gsi_routing_enabled()) {
1250 return -ENOSYS;
1253 virq = kvm_irqchip_get_virq(s);
1254 if (virq < 0) {
1255 return virq;
1258 kroute.gsi = virq;
1259 kroute.type = KVM_IRQ_ROUTING_MSI;
1260 kroute.flags = 0;
1261 kroute.u.msi.address_lo = (uint32_t)msg.address;
1262 kroute.u.msi.address_hi = msg.address >> 32;
1263 kroute.u.msi.data = le32_to_cpu(msg.data);
1264 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1265 kvm_irqchip_release_virq(s, virq);
1266 return -EINVAL;
1269 kvm_add_routing_entry(s, &kroute);
1270 kvm_irqchip_commit_routes(s);
1272 return virq;
1275 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1276 PCIDevice *dev)
1278 struct kvm_irq_routing_entry kroute = {};
1280 if (kvm_gsi_direct_mapping()) {
1281 return 0;
1284 if (!kvm_irqchip_in_kernel()) {
1285 return -ENOSYS;
1288 kroute.gsi = virq;
1289 kroute.type = KVM_IRQ_ROUTING_MSI;
1290 kroute.flags = 0;
1291 kroute.u.msi.address_lo = (uint32_t)msg.address;
1292 kroute.u.msi.address_hi = msg.address >> 32;
1293 kroute.u.msi.data = le32_to_cpu(msg.data);
1294 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1295 return -EINVAL;
1298 return kvm_update_routing_entry(s, &kroute);
1301 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1302 bool assign)
1304 struct kvm_irqfd irqfd = {
1305 .fd = fd,
1306 .gsi = virq,
1307 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1310 if (rfd != -1) {
1311 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1312 irqfd.resamplefd = rfd;
1315 if (!kvm_irqfds_enabled()) {
1316 return -ENOSYS;
1319 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1322 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1324 struct kvm_irq_routing_entry kroute = {};
1325 int virq;
1327 if (!kvm_gsi_routing_enabled()) {
1328 return -ENOSYS;
1331 virq = kvm_irqchip_get_virq(s);
1332 if (virq < 0) {
1333 return virq;
1336 kroute.gsi = virq;
1337 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1338 kroute.flags = 0;
1339 kroute.u.adapter.summary_addr = adapter->summary_addr;
1340 kroute.u.adapter.ind_addr = adapter->ind_addr;
1341 kroute.u.adapter.summary_offset = adapter->summary_offset;
1342 kroute.u.adapter.ind_offset = adapter->ind_offset;
1343 kroute.u.adapter.adapter_id = adapter->adapter_id;
1345 kvm_add_routing_entry(s, &kroute);
1347 return virq;
1350 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1352 struct kvm_irq_routing_entry kroute = {};
1353 int virq;
1355 if (!kvm_gsi_routing_enabled()) {
1356 return -ENOSYS;
1358 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1359 return -ENOSYS;
1361 virq = kvm_irqchip_get_virq(s);
1362 if (virq < 0) {
1363 return virq;
1366 kroute.gsi = virq;
1367 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1368 kroute.flags = 0;
1369 kroute.u.hv_sint.vcpu = vcpu;
1370 kroute.u.hv_sint.sint = sint;
1372 kvm_add_routing_entry(s, &kroute);
1373 kvm_irqchip_commit_routes(s);
1375 return virq;
1378 #else /* !KVM_CAP_IRQ_ROUTING */
1380 void kvm_init_irq_routing(KVMState *s)
1384 void kvm_irqchip_release_virq(KVMState *s, int virq)
1388 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1390 abort();
1393 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1395 return -ENOSYS;
1398 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1400 return -ENOSYS;
1403 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1405 return -ENOSYS;
1408 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1410 abort();
1413 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1415 return -ENOSYS;
1417 #endif /* !KVM_CAP_IRQ_ROUTING */
1419 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1420 EventNotifier *rn, int virq)
1422 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1423 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1426 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1427 int virq)
1429 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1430 false);
1433 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1434 EventNotifier *rn, qemu_irq irq)
1436 gpointer key, gsi;
1437 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1439 if (!found) {
1440 return -ENXIO;
1442 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1445 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1446 qemu_irq irq)
1448 gpointer key, gsi;
1449 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1451 if (!found) {
1452 return -ENXIO;
1454 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1457 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1459 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1462 static void kvm_irqchip_create(MachineState *machine, KVMState *s)
1464 int ret;
1466 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1468 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1469 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1470 if (ret < 0) {
1471 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1472 exit(1);
1474 } else {
1475 return;
1478 /* First probe and see if there's a arch-specific hook to create the
1479 * in-kernel irqchip for us */
1480 ret = kvm_arch_irqchip_create(machine, s);
1481 if (ret == 0) {
1482 if (machine_kernel_irqchip_split(machine)) {
1483 perror("Split IRQ chip mode not supported.");
1484 exit(1);
1485 } else {
1486 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1489 if (ret < 0) {
1490 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1491 exit(1);
1494 kvm_kernel_irqchip = true;
1495 /* If we have an in-kernel IRQ chip then we must have asynchronous
1496 * interrupt delivery (though the reverse is not necessarily true)
1498 kvm_async_interrupts_allowed = true;
1499 kvm_halt_in_kernel_allowed = true;
1501 kvm_init_irq_routing(s);
1503 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1506 /* Find number of supported CPUs using the recommended
1507 * procedure from the kernel API documentation to cope with
1508 * older kernels that may be missing capabilities.
1510 static int kvm_recommended_vcpus(KVMState *s)
1512 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1513 return (ret) ? ret : 4;
1516 static int kvm_max_vcpus(KVMState *s)
1518 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1519 return (ret) ? ret : kvm_recommended_vcpus(s);
1522 static int kvm_max_vcpu_id(KVMState *s)
1524 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1525 return (ret) ? ret : kvm_max_vcpus(s);
1528 bool kvm_vcpu_id_is_valid(int vcpu_id)
1530 KVMState *s = KVM_STATE(current_machine->accelerator);
1531 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1534 static int kvm_init(MachineState *ms)
1536 MachineClass *mc = MACHINE_GET_CLASS(ms);
1537 static const char upgrade_note[] =
1538 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1539 "(see http://sourceforge.net/projects/kvm).\n";
1540 struct {
1541 const char *name;
1542 int num;
1543 } num_cpus[] = {
1544 { "SMP", smp_cpus },
1545 { "hotpluggable", max_cpus },
1546 { NULL, }
1547 }, *nc = num_cpus;
1548 int soft_vcpus_limit, hard_vcpus_limit;
1549 KVMState *s;
1550 const KVMCapabilityInfo *missing_cap;
1551 int ret;
1552 int type = 0;
1553 const char *kvm_type;
1555 s = KVM_STATE(ms->accelerator);
1558 * On systems where the kernel can support different base page
1559 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1560 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1561 * page size for the system though.
1563 assert(TARGET_PAGE_SIZE <= getpagesize());
1565 s->sigmask_len = 8;
1567 #ifdef KVM_CAP_SET_GUEST_DEBUG
1568 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1569 #endif
1570 QLIST_INIT(&s->kvm_parked_vcpus);
1571 s->vmfd = -1;
1572 s->fd = qemu_open("/dev/kvm", O_RDWR);
1573 if (s->fd == -1) {
1574 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1575 ret = -errno;
1576 goto err;
1579 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1580 if (ret < KVM_API_VERSION) {
1581 if (ret >= 0) {
1582 ret = -EINVAL;
1584 fprintf(stderr, "kvm version too old\n");
1585 goto err;
1588 if (ret > KVM_API_VERSION) {
1589 ret = -EINVAL;
1590 fprintf(stderr, "kvm version not supported\n");
1591 goto err;
1594 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1596 /* If unspecified, use the default value */
1597 if (!s->nr_slots) {
1598 s->nr_slots = 32;
1601 /* check the vcpu limits */
1602 soft_vcpus_limit = kvm_recommended_vcpus(s);
1603 hard_vcpus_limit = kvm_max_vcpus(s);
1605 while (nc->name) {
1606 if (nc->num > soft_vcpus_limit) {
1607 fprintf(stderr,
1608 "Warning: Number of %s cpus requested (%d) exceeds "
1609 "the recommended cpus supported by KVM (%d)\n",
1610 nc->name, nc->num, soft_vcpus_limit);
1612 if (nc->num > hard_vcpus_limit) {
1613 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1614 "the maximum cpus supported by KVM (%d)\n",
1615 nc->name, nc->num, hard_vcpus_limit);
1616 exit(1);
1619 nc++;
1622 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1623 if (mc->kvm_type) {
1624 type = mc->kvm_type(kvm_type);
1625 } else if (kvm_type) {
1626 ret = -EINVAL;
1627 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1628 goto err;
1631 do {
1632 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1633 } while (ret == -EINTR);
1635 if (ret < 0) {
1636 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1637 strerror(-ret));
1639 #ifdef TARGET_S390X
1640 if (ret == -EINVAL) {
1641 fprintf(stderr,
1642 "Host kernel setup problem detected. Please verify:\n");
1643 fprintf(stderr, "- for kernels supporting the switch_amode or"
1644 " user_mode parameters, whether\n");
1645 fprintf(stderr,
1646 " user space is running in primary address space\n");
1647 fprintf(stderr,
1648 "- for kernels supporting the vm.allocate_pgste sysctl, "
1649 "whether it is enabled\n");
1651 #endif
1652 goto err;
1655 s->vmfd = ret;
1656 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1657 if (!missing_cap) {
1658 missing_cap =
1659 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1661 if (missing_cap) {
1662 ret = -EINVAL;
1663 fprintf(stderr, "kvm does not support %s\n%s",
1664 missing_cap->name, upgrade_note);
1665 goto err;
1668 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1670 s->broken_set_mem_region = 1;
1671 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1672 if (ret > 0) {
1673 s->broken_set_mem_region = 0;
1676 #ifdef KVM_CAP_VCPU_EVENTS
1677 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1678 #endif
1680 s->robust_singlestep =
1681 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1683 #ifdef KVM_CAP_DEBUGREGS
1684 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1685 #endif
1687 #ifdef KVM_CAP_IRQ_ROUTING
1688 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1689 #endif
1691 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1693 s->irq_set_ioctl = KVM_IRQ_LINE;
1694 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1695 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1698 #ifdef KVM_CAP_READONLY_MEM
1699 kvm_readonly_mem_allowed =
1700 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1701 #endif
1703 kvm_eventfds_allowed =
1704 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1706 kvm_irqfds_allowed =
1707 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
1709 kvm_resamplefds_allowed =
1710 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
1712 kvm_vm_attributes_allowed =
1713 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
1715 kvm_ioeventfd_any_length_allowed =
1716 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
1718 ret = kvm_arch_init(ms, s);
1719 if (ret < 0) {
1720 goto err;
1723 if (machine_kernel_irqchip_allowed(ms)) {
1724 kvm_irqchip_create(ms, s);
1727 kvm_state = s;
1729 if (kvm_eventfds_allowed) {
1730 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
1731 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
1733 s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region;
1734 s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region;
1736 kvm_memory_listener_register(s, &s->memory_listener,
1737 &address_space_memory, 0);
1738 memory_listener_register(&kvm_io_listener,
1739 &address_space_io);
1741 s->many_ioeventfds = kvm_check_many_ioeventfds();
1743 cpu_interrupt_handler = kvm_handle_interrupt;
1745 return 0;
1747 err:
1748 assert(ret < 0);
1749 if (s->vmfd >= 0) {
1750 close(s->vmfd);
1752 if (s->fd != -1) {
1753 close(s->fd);
1755 g_free(s->memory_listener.slots);
1757 return ret;
1760 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1762 s->sigmask_len = sigmask_len;
1765 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
1766 int size, uint32_t count)
1768 int i;
1769 uint8_t *ptr = data;
1771 for (i = 0; i < count; i++) {
1772 address_space_rw(&address_space_io, port, attrs,
1773 ptr, size,
1774 direction == KVM_EXIT_IO_OUT);
1775 ptr += size;
1779 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1781 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1782 run->internal.suberror);
1784 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1785 int i;
1787 for (i = 0; i < run->internal.ndata; ++i) {
1788 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1789 i, (uint64_t)run->internal.data[i]);
1792 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1793 fprintf(stderr, "emulation failure\n");
1794 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1795 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1796 return EXCP_INTERRUPT;
1799 /* FIXME: Should trigger a qmp message to let management know
1800 * something went wrong.
1802 return -1;
1805 void kvm_flush_coalesced_mmio_buffer(void)
1807 KVMState *s = kvm_state;
1809 if (s->coalesced_flush_in_progress) {
1810 return;
1813 s->coalesced_flush_in_progress = true;
1815 if (s->coalesced_mmio_ring) {
1816 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1817 while (ring->first != ring->last) {
1818 struct kvm_coalesced_mmio *ent;
1820 ent = &ring->coalesced_mmio[ring->first];
1822 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1823 smp_wmb();
1824 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1828 s->coalesced_flush_in_progress = false;
1831 static void do_kvm_cpu_synchronize_state(void *arg)
1833 CPUState *cpu = arg;
1835 if (!cpu->kvm_vcpu_dirty) {
1836 kvm_arch_get_registers(cpu);
1837 cpu->kvm_vcpu_dirty = true;
1841 void kvm_cpu_synchronize_state(CPUState *cpu)
1843 if (!cpu->kvm_vcpu_dirty) {
1844 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1848 static void do_kvm_cpu_synchronize_post_reset(void *arg)
1850 CPUState *cpu = arg;
1852 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1853 cpu->kvm_vcpu_dirty = false;
1856 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1858 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, cpu);
1861 static void do_kvm_cpu_synchronize_post_init(void *arg)
1863 CPUState *cpu = arg;
1865 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1866 cpu->kvm_vcpu_dirty = false;
1869 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1871 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, cpu);
1874 int kvm_cpu_exec(CPUState *cpu)
1876 struct kvm_run *run = cpu->kvm_run;
1877 int ret, run_ret;
1879 DPRINTF("kvm_cpu_exec()\n");
1881 if (kvm_arch_process_async_events(cpu)) {
1882 cpu->exit_request = 0;
1883 return EXCP_HLT;
1886 qemu_mutex_unlock_iothread();
1888 do {
1889 MemTxAttrs attrs;
1891 if (cpu->kvm_vcpu_dirty) {
1892 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1893 cpu->kvm_vcpu_dirty = false;
1896 kvm_arch_pre_run(cpu, run);
1897 if (cpu->exit_request) {
1898 DPRINTF("interrupt exit requested\n");
1900 * KVM requires us to reenter the kernel after IO exits to complete
1901 * instruction emulation. This self-signal will ensure that we
1902 * leave ASAP again.
1904 qemu_cpu_kick_self();
1907 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1909 attrs = kvm_arch_post_run(cpu, run);
1911 if (run_ret < 0) {
1912 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1913 DPRINTF("io window exit\n");
1914 ret = EXCP_INTERRUPT;
1915 break;
1917 fprintf(stderr, "error: kvm run failed %s\n",
1918 strerror(-run_ret));
1919 #ifdef TARGET_PPC
1920 if (run_ret == -EBUSY) {
1921 fprintf(stderr,
1922 "This is probably because your SMT is enabled.\n"
1923 "VCPU can only run on primary threads with all "
1924 "secondary threads offline.\n");
1926 #endif
1927 ret = -1;
1928 break;
1931 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1932 switch (run->exit_reason) {
1933 case KVM_EXIT_IO:
1934 DPRINTF("handle_io\n");
1935 /* Called outside BQL */
1936 kvm_handle_io(run->io.port, attrs,
1937 (uint8_t *)run + run->io.data_offset,
1938 run->io.direction,
1939 run->io.size,
1940 run->io.count);
1941 ret = 0;
1942 break;
1943 case KVM_EXIT_MMIO:
1944 DPRINTF("handle_mmio\n");
1945 /* Called outside BQL */
1946 address_space_rw(&address_space_memory,
1947 run->mmio.phys_addr, attrs,
1948 run->mmio.data,
1949 run->mmio.len,
1950 run->mmio.is_write);
1951 ret = 0;
1952 break;
1953 case KVM_EXIT_IRQ_WINDOW_OPEN:
1954 DPRINTF("irq_window_open\n");
1955 ret = EXCP_INTERRUPT;
1956 break;
1957 case KVM_EXIT_SHUTDOWN:
1958 DPRINTF("shutdown\n");
1959 qemu_system_reset_request();
1960 ret = EXCP_INTERRUPT;
1961 break;
1962 case KVM_EXIT_UNKNOWN:
1963 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1964 (uint64_t)run->hw.hardware_exit_reason);
1965 ret = -1;
1966 break;
1967 case KVM_EXIT_INTERNAL_ERROR:
1968 ret = kvm_handle_internal_error(cpu, run);
1969 break;
1970 case KVM_EXIT_SYSTEM_EVENT:
1971 switch (run->system_event.type) {
1972 case KVM_SYSTEM_EVENT_SHUTDOWN:
1973 qemu_system_shutdown_request();
1974 ret = EXCP_INTERRUPT;
1975 break;
1976 case KVM_SYSTEM_EVENT_RESET:
1977 qemu_system_reset_request();
1978 ret = EXCP_INTERRUPT;
1979 break;
1980 case KVM_SYSTEM_EVENT_CRASH:
1981 qemu_mutex_lock_iothread();
1982 qemu_system_guest_panicked();
1983 qemu_mutex_unlock_iothread();
1984 ret = 0;
1985 break;
1986 default:
1987 DPRINTF("kvm_arch_handle_exit\n");
1988 ret = kvm_arch_handle_exit(cpu, run);
1989 break;
1991 break;
1992 default:
1993 DPRINTF("kvm_arch_handle_exit\n");
1994 ret = kvm_arch_handle_exit(cpu, run);
1995 break;
1997 } while (ret == 0);
1999 qemu_mutex_lock_iothread();
2001 if (ret < 0) {
2002 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
2003 vm_stop(RUN_STATE_INTERNAL_ERROR);
2006 cpu->exit_request = 0;
2007 return ret;
2010 int kvm_ioctl(KVMState *s, int type, ...)
2012 int ret;
2013 void *arg;
2014 va_list ap;
2016 va_start(ap, type);
2017 arg = va_arg(ap, void *);
2018 va_end(ap);
2020 trace_kvm_ioctl(type, arg);
2021 ret = ioctl(s->fd, type, arg);
2022 if (ret == -1) {
2023 ret = -errno;
2025 return ret;
2028 int kvm_vm_ioctl(KVMState *s, int type, ...)
2030 int ret;
2031 void *arg;
2032 va_list ap;
2034 va_start(ap, type);
2035 arg = va_arg(ap, void *);
2036 va_end(ap);
2038 trace_kvm_vm_ioctl(type, arg);
2039 ret = ioctl(s->vmfd, type, arg);
2040 if (ret == -1) {
2041 ret = -errno;
2043 return ret;
2046 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2048 int ret;
2049 void *arg;
2050 va_list ap;
2052 va_start(ap, type);
2053 arg = va_arg(ap, void *);
2054 va_end(ap);
2056 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2057 ret = ioctl(cpu->kvm_fd, type, arg);
2058 if (ret == -1) {
2059 ret = -errno;
2061 return ret;
2064 int kvm_device_ioctl(int fd, int type, ...)
2066 int ret;
2067 void *arg;
2068 va_list ap;
2070 va_start(ap, type);
2071 arg = va_arg(ap, void *);
2072 va_end(ap);
2074 trace_kvm_device_ioctl(fd, type, arg);
2075 ret = ioctl(fd, type, arg);
2076 if (ret == -1) {
2077 ret = -errno;
2079 return ret;
2082 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2084 int ret;
2085 struct kvm_device_attr attribute = {
2086 .group = group,
2087 .attr = attr,
2090 if (!kvm_vm_attributes_allowed) {
2091 return 0;
2094 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2095 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2096 return ret ? 0 : 1;
2099 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2101 struct kvm_device_attr attribute = {
2102 .group = group,
2103 .attr = attr,
2104 .flags = 0,
2107 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2110 void kvm_device_access(int fd, int group, uint64_t attr,
2111 void *val, bool write)
2113 struct kvm_device_attr kvmattr;
2114 int err;
2116 kvmattr.flags = 0;
2117 kvmattr.group = group;
2118 kvmattr.attr = attr;
2119 kvmattr.addr = (uintptr_t)val;
2121 err = kvm_device_ioctl(fd,
2122 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2123 &kvmattr);
2124 if (err < 0) {
2125 error_report("KVM_%s_DEVICE_ATTR failed: %s",
2126 write ? "SET" : "GET", strerror(-err));
2127 error_printf("Group %d attr 0x%016" PRIx64, group, attr);
2128 abort();
2132 int kvm_has_sync_mmu(void)
2134 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2137 int kvm_has_vcpu_events(void)
2139 return kvm_state->vcpu_events;
2142 int kvm_has_robust_singlestep(void)
2144 return kvm_state->robust_singlestep;
2147 int kvm_has_debugregs(void)
2149 return kvm_state->debugregs;
2152 int kvm_has_many_ioeventfds(void)
2154 if (!kvm_enabled()) {
2155 return 0;
2157 return kvm_state->many_ioeventfds;
2160 int kvm_has_gsi_routing(void)
2162 #ifdef KVM_CAP_IRQ_ROUTING
2163 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2164 #else
2165 return false;
2166 #endif
2169 int kvm_has_intx_set_mask(void)
2171 return kvm_state->intx_set_mask;
2174 void kvm_setup_guest_memory(void *start, size_t size)
2176 if (!kvm_has_sync_mmu()) {
2177 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
2179 if (ret) {
2180 perror("qemu_madvise");
2181 fprintf(stderr,
2182 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
2183 exit(1);
2188 #ifdef KVM_CAP_SET_GUEST_DEBUG
2189 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2190 target_ulong pc)
2192 struct kvm_sw_breakpoint *bp;
2194 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2195 if (bp->pc == pc) {
2196 return bp;
2199 return NULL;
2202 int kvm_sw_breakpoints_active(CPUState *cpu)
2204 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2207 struct kvm_set_guest_debug_data {
2208 struct kvm_guest_debug dbg;
2209 CPUState *cpu;
2210 int err;
2213 static void kvm_invoke_set_guest_debug(void *data)
2215 struct kvm_set_guest_debug_data *dbg_data = data;
2217 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
2218 &dbg_data->dbg);
2221 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2223 struct kvm_set_guest_debug_data data;
2225 data.dbg.control = reinject_trap;
2227 if (cpu->singlestep_enabled) {
2228 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2230 kvm_arch_update_guest_debug(cpu, &data.dbg);
2231 data.cpu = cpu;
2233 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
2234 return data.err;
2237 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2238 target_ulong len, int type)
2240 struct kvm_sw_breakpoint *bp;
2241 int err;
2243 if (type == GDB_BREAKPOINT_SW) {
2244 bp = kvm_find_sw_breakpoint(cpu, addr);
2245 if (bp) {
2246 bp->use_count++;
2247 return 0;
2250 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2251 bp->pc = addr;
2252 bp->use_count = 1;
2253 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2254 if (err) {
2255 g_free(bp);
2256 return err;
2259 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2260 } else {
2261 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2262 if (err) {
2263 return err;
2267 CPU_FOREACH(cpu) {
2268 err = kvm_update_guest_debug(cpu, 0);
2269 if (err) {
2270 return err;
2273 return 0;
2276 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2277 target_ulong len, int type)
2279 struct kvm_sw_breakpoint *bp;
2280 int err;
2282 if (type == GDB_BREAKPOINT_SW) {
2283 bp = kvm_find_sw_breakpoint(cpu, addr);
2284 if (!bp) {
2285 return -ENOENT;
2288 if (bp->use_count > 1) {
2289 bp->use_count--;
2290 return 0;
2293 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2294 if (err) {
2295 return err;
2298 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2299 g_free(bp);
2300 } else {
2301 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2302 if (err) {
2303 return err;
2307 CPU_FOREACH(cpu) {
2308 err = kvm_update_guest_debug(cpu, 0);
2309 if (err) {
2310 return err;
2313 return 0;
2316 void kvm_remove_all_breakpoints(CPUState *cpu)
2318 struct kvm_sw_breakpoint *bp, *next;
2319 KVMState *s = cpu->kvm_state;
2320 CPUState *tmpcpu;
2322 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2323 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2324 /* Try harder to find a CPU that currently sees the breakpoint. */
2325 CPU_FOREACH(tmpcpu) {
2326 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2327 break;
2331 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2332 g_free(bp);
2334 kvm_arch_remove_all_hw_breakpoints();
2336 CPU_FOREACH(cpu) {
2337 kvm_update_guest_debug(cpu, 0);
2341 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2343 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2345 return -EINVAL;
2348 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2349 target_ulong len, int type)
2351 return -EINVAL;
2354 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2355 target_ulong len, int type)
2357 return -EINVAL;
2360 void kvm_remove_all_breakpoints(CPUState *cpu)
2363 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2365 int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2367 KVMState *s = kvm_state;
2368 struct kvm_signal_mask *sigmask;
2369 int r;
2371 if (!sigset) {
2372 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2375 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2377 sigmask->len = s->sigmask_len;
2378 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2379 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2380 g_free(sigmask);
2382 return r;
2384 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2386 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2389 int kvm_on_sigbus(int code, void *addr)
2391 return kvm_arch_on_sigbus(code, addr);
2394 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2396 int ret;
2397 struct kvm_create_device create_dev;
2399 create_dev.type = type;
2400 create_dev.fd = -1;
2401 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2403 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2404 return -ENOTSUP;
2407 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2408 if (ret) {
2409 return ret;
2412 return test ? 0 : create_dev.fd;
2415 bool kvm_device_supported(int vmfd, uint64_t type)
2417 struct kvm_create_device create_dev = {
2418 .type = type,
2419 .fd = -1,
2420 .flags = KVM_CREATE_DEVICE_TEST,
2423 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
2424 return false;
2427 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
2430 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2432 struct kvm_one_reg reg;
2433 int r;
2435 reg.id = id;
2436 reg.addr = (uintptr_t) source;
2437 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2438 if (r) {
2439 trace_kvm_failed_reg_set(id, strerror(-r));
2441 return r;
2444 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2446 struct kvm_one_reg reg;
2447 int r;
2449 reg.id = id;
2450 reg.addr = (uintptr_t) target;
2451 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2452 if (r) {
2453 trace_kvm_failed_reg_get(id, strerror(-r));
2455 return r;
2458 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2460 AccelClass *ac = ACCEL_CLASS(oc);
2461 ac->name = "KVM";
2462 ac->init_machine = kvm_init;
2463 ac->allowed = &kvm_allowed;
2466 static const TypeInfo kvm_accel_type = {
2467 .name = TYPE_KVM_ACCEL,
2468 .parent = TYPE_ACCEL,
2469 .class_init = kvm_accel_class_init,
2470 .instance_size = sizeof(KVMState),
2473 static void kvm_type_init(void)
2475 type_register_static(&kvm_accel_type);
2478 type_init(kvm_type_init);