Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20190221' into...
[qemu/ar7.git] / hw / char / serial.c
blob7c42a2abfc18328cf0f45ffbf6bd402661917fbb
1 /*
2 * QEMU 16550A UART emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 * Copyright (c) 2008 Citrix Systems, Inc.
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
26 #include "qemu/osdep.h"
27 #include "hw/char/serial.h"
28 #include "chardev/char-serial.h"
29 #include "qapi/error.h"
30 #include "qemu/timer.h"
31 #include "qemu/error-report.h"
32 #include "trace.h"
34 //#define DEBUG_SERIAL
36 #define UART_LCR_DLAB 0x80 /* Divisor latch access bit */
38 #define UART_IER_MSI 0x08 /* Enable Modem status interrupt */
39 #define UART_IER_RLSI 0x04 /* Enable receiver line status interrupt */
40 #define UART_IER_THRI 0x02 /* Enable Transmitter holding register int. */
41 #define UART_IER_RDI 0x01 /* Enable receiver data interrupt */
43 #define UART_IIR_NO_INT 0x01 /* No interrupts pending */
44 #define UART_IIR_ID 0x06 /* Mask for the interrupt ID */
46 #define UART_IIR_MSI 0x00 /* Modem status interrupt */
47 #define UART_IIR_THRI 0x02 /* Transmitter holding register empty */
48 #define UART_IIR_RDI 0x04 /* Receiver data interrupt */
49 #define UART_IIR_RLSI 0x06 /* Receiver line status interrupt */
50 #define UART_IIR_CTI 0x0C /* Character Timeout Indication */
52 #define UART_IIR_FENF 0x80 /* Fifo enabled, but not functionning */
53 #define UART_IIR_FE 0xC0 /* Fifo enabled */
56 * These are the definitions for the Modem Control Register
58 #define UART_MCR_LOOP 0x10 /* Enable loopback test mode */
59 #define UART_MCR_OUT2 0x08 /* Out2 complement */
60 #define UART_MCR_OUT1 0x04 /* Out1 complement */
61 #define UART_MCR_RTS 0x02 /* RTS complement */
62 #define UART_MCR_DTR 0x01 /* DTR complement */
65 * These are the definitions for the Modem Status Register
67 #define UART_MSR_DCD 0x80 /* Data Carrier Detect */
68 #define UART_MSR_RI 0x40 /* Ring Indicator */
69 #define UART_MSR_DSR 0x20 /* Data Set Ready */
70 #define UART_MSR_CTS 0x10 /* Clear to Send */
71 #define UART_MSR_DDCD 0x08 /* Delta DCD */
72 #define UART_MSR_TERI 0x04 /* Trailing edge ring indicator */
73 #define UART_MSR_DDSR 0x02 /* Delta DSR */
74 #define UART_MSR_DCTS 0x01 /* Delta CTS */
75 #define UART_MSR_ANY_DELTA 0x0F /* Any of the delta bits! */
77 #define UART_LSR_TEMT 0x40 /* Transmitter empty */
78 #define UART_LSR_THRE 0x20 /* Transmit-hold-register empty */
79 #define UART_LSR_BI 0x10 /* Break interrupt indicator */
80 #define UART_LSR_FE 0x08 /* Frame error indicator */
81 #define UART_LSR_PE 0x04 /* Parity error indicator */
82 #define UART_LSR_OE 0x02 /* Overrun error indicator */
83 #define UART_LSR_DR 0x01 /* Receiver data ready */
84 #define UART_LSR_INT_ANY 0x1E /* Any of the lsr-interrupt-triggering status bits */
86 /* Interrupt trigger levels. The byte-counts are for 16550A - in newer UARTs the byte-count for each ITL is higher. */
88 #define UART_FCR_ITL_1 0x00 /* 1 byte ITL */
89 #define UART_FCR_ITL_2 0x40 /* 4 bytes ITL */
90 #define UART_FCR_ITL_3 0x80 /* 8 bytes ITL */
91 #define UART_FCR_ITL_4 0xC0 /* 14 bytes ITL */
93 #define UART_FCR_DMS 0x08 /* DMA Mode Select */
94 #define UART_FCR_XFR 0x04 /* XMIT Fifo Reset */
95 #define UART_FCR_RFR 0x02 /* RCVR Fifo Reset */
96 #define UART_FCR_FE 0x01 /* FIFO Enable */
98 #define MAX_XMIT_RETRY 4
100 #ifdef DEBUG_SERIAL
101 #define DPRINTF(fmt, ...) \
102 do { fprintf(stderr, "serial: " fmt , ## __VA_ARGS__); } while (0)
103 #else
104 #define DPRINTF(fmt, ...) \
105 do {} while (0)
106 #endif
108 static void serial_receive1(void *opaque, const uint8_t *buf, int size);
109 static void serial_xmit(SerialState *s);
111 static inline void recv_fifo_put(SerialState *s, uint8_t chr)
113 /* Receive overruns do not overwrite FIFO contents. */
114 if (!fifo8_is_full(&s->recv_fifo)) {
115 fifo8_push(&s->recv_fifo, chr);
116 } else {
117 s->lsr |= UART_LSR_OE;
121 static void serial_update_irq(SerialState *s)
123 uint8_t tmp_iir = UART_IIR_NO_INT;
125 if ((s->ier & UART_IER_RLSI) && (s->lsr & UART_LSR_INT_ANY)) {
126 tmp_iir = UART_IIR_RLSI;
127 } else if ((s->ier & UART_IER_RDI) && s->timeout_ipending) {
128 /* Note that(s->ier & UART_IER_RDI) can mask this interrupt,
129 * this is not in the specification but is observed on existing
130 * hardware. */
131 tmp_iir = UART_IIR_CTI;
132 } else if ((s->ier & UART_IER_RDI) && (s->lsr & UART_LSR_DR) &&
133 (!(s->fcr & UART_FCR_FE) ||
134 s->recv_fifo.num >= s->recv_fifo_itl)) {
135 tmp_iir = UART_IIR_RDI;
136 } else if ((s->ier & UART_IER_THRI) && s->thr_ipending) {
137 tmp_iir = UART_IIR_THRI;
138 } else if ((s->ier & UART_IER_MSI) && (s->msr & UART_MSR_ANY_DELTA)) {
139 tmp_iir = UART_IIR_MSI;
142 s->iir = tmp_iir | (s->iir & 0xF0);
144 if (tmp_iir != UART_IIR_NO_INT) {
145 qemu_irq_raise(s->irq);
146 } else {
147 qemu_irq_lower(s->irq);
151 static void serial_update_parameters(SerialState *s)
153 float speed;
154 int parity, data_bits, stop_bits, frame_size;
155 QEMUSerialSetParams ssp;
157 /* Start bit. */
158 frame_size = 1;
159 if (s->lcr & 0x08) {
160 /* Parity bit. */
161 frame_size++;
162 if (s->lcr & 0x10)
163 parity = 'E';
164 else
165 parity = 'O';
166 } else {
167 parity = 'N';
169 if (s->lcr & 0x04) {
170 stop_bits = 2;
171 } else {
172 stop_bits = 1;
175 data_bits = (s->lcr & 0x03) + 5;
176 frame_size += data_bits + stop_bits;
177 /* Zero divisor should give about 3500 baud */
178 speed = (s->divider == 0) ? 3500 : (float) s->baudbase / s->divider;
179 ssp.speed = speed;
180 ssp.parity = parity;
181 ssp.data_bits = data_bits;
182 ssp.stop_bits = stop_bits;
183 s->char_transmit_time = (NANOSECONDS_PER_SECOND / speed) * frame_size;
184 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
186 DPRINTF("speed=%.2f parity=%c data=%d stop=%d\n",
187 speed, parity, data_bits, stop_bits);
190 static void serial_update_msl(SerialState *s)
192 uint8_t omsr;
193 int flags;
195 timer_del(s->modem_status_poll);
197 if (qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_GET_TIOCM,
198 &flags) == -ENOTSUP) {
199 s->poll_msl = -1;
200 return;
203 omsr = s->msr;
205 s->msr = (flags & CHR_TIOCM_CTS) ? s->msr | UART_MSR_CTS : s->msr & ~UART_MSR_CTS;
206 s->msr = (flags & CHR_TIOCM_DSR) ? s->msr | UART_MSR_DSR : s->msr & ~UART_MSR_DSR;
207 s->msr = (flags & CHR_TIOCM_CAR) ? s->msr | UART_MSR_DCD : s->msr & ~UART_MSR_DCD;
208 s->msr = (flags & CHR_TIOCM_RI) ? s->msr | UART_MSR_RI : s->msr & ~UART_MSR_RI;
210 if (s->msr != omsr) {
211 /* Set delta bits */
212 s->msr = s->msr | ((s->msr >> 4) ^ (omsr >> 4));
213 /* UART_MSR_TERI only if change was from 1 -> 0 */
214 if ((s->msr & UART_MSR_TERI) && !(omsr & UART_MSR_RI))
215 s->msr &= ~UART_MSR_TERI;
216 serial_update_irq(s);
219 /* The real 16550A apparently has a 250ns response latency to line status changes.
220 We'll be lazy and poll only every 10ms, and only poll it at all if MSI interrupts are turned on */
222 if (s->poll_msl) {
223 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
224 NANOSECONDS_PER_SECOND / 100);
228 static gboolean serial_watch_cb(GIOChannel *chan, GIOCondition cond,
229 void *opaque)
231 SerialState *s = opaque;
232 s->watch_tag = 0;
233 serial_xmit(s);
234 return FALSE;
237 static void serial_xmit(SerialState *s)
239 do {
240 assert(!(s->lsr & UART_LSR_TEMT));
241 if (s->tsr_retry == 0) {
242 assert(!(s->lsr & UART_LSR_THRE));
244 if (s->fcr & UART_FCR_FE) {
245 assert(!fifo8_is_empty(&s->xmit_fifo));
246 s->tsr = fifo8_pop(&s->xmit_fifo);
247 if (!s->xmit_fifo.num) {
248 s->lsr |= UART_LSR_THRE;
250 } else {
251 s->tsr = s->thr;
252 s->lsr |= UART_LSR_THRE;
254 if ((s->lsr & UART_LSR_THRE) && !s->thr_ipending) {
255 s->thr_ipending = 1;
256 serial_update_irq(s);
260 if (s->mcr & UART_MCR_LOOP) {
261 /* in loopback mode, say that we just received a char */
262 serial_receive1(s, &s->tsr, 1);
263 } else {
264 int rc = qemu_chr_fe_write(&s->chr, &s->tsr, 1);
266 if ((rc == 0 ||
267 (rc == -1 && errno == EAGAIN)) &&
268 s->tsr_retry < MAX_XMIT_RETRY) {
269 assert(s->watch_tag == 0);
270 s->watch_tag =
271 qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
272 serial_watch_cb, s);
273 if (s->watch_tag > 0) {
274 s->tsr_retry++;
275 return;
279 s->tsr_retry = 0;
281 /* Transmit another byte if it is already available. It is only
282 possible when FIFO is enabled and not empty. */
283 } while (!(s->lsr & UART_LSR_THRE));
285 s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
286 s->lsr |= UART_LSR_TEMT;
289 /* Setter for FCR.
290 is_load flag means, that value is set while loading VM state
291 and interrupt should not be invoked */
292 static void serial_write_fcr(SerialState *s, uint8_t val)
294 /* Set fcr - val only has the bits that are supposed to "stick" */
295 s->fcr = val;
297 if (val & UART_FCR_FE) {
298 s->iir |= UART_IIR_FE;
299 /* Set recv_fifo trigger Level */
300 switch (val & 0xC0) {
301 case UART_FCR_ITL_1:
302 s->recv_fifo_itl = 1;
303 break;
304 case UART_FCR_ITL_2:
305 s->recv_fifo_itl = 4;
306 break;
307 case UART_FCR_ITL_3:
308 s->recv_fifo_itl = 8;
309 break;
310 case UART_FCR_ITL_4:
311 s->recv_fifo_itl = 14;
312 break;
314 } else {
315 s->iir &= ~UART_IIR_FE;
319 static void serial_update_tiocm(SerialState *s)
321 int flags;
323 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_GET_TIOCM, &flags);
325 flags &= ~(CHR_TIOCM_RTS | CHR_TIOCM_DTR);
327 if (s->mcr & UART_MCR_RTS) {
328 flags |= CHR_TIOCM_RTS;
330 if (s->mcr & UART_MCR_DTR) {
331 flags |= CHR_TIOCM_DTR;
334 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_TIOCM, &flags);
337 static void serial_ioport_write(void *opaque, hwaddr addr, uint64_t val,
338 unsigned size)
340 SerialState *s = opaque;
342 addr &= 7;
343 trace_serial_ioport_write(addr, val);
344 switch(addr) {
345 default:
346 case 0:
347 if (s->lcr & UART_LCR_DLAB) {
348 if (size == 1) {
349 s->divider = (s->divider & 0xff00) | val;
350 } else {
351 s->divider = val;
353 serial_update_parameters(s);
354 } else {
355 s->thr = (uint8_t) val;
356 if(s->fcr & UART_FCR_FE) {
357 /* xmit overruns overwrite data, so make space if needed */
358 if (fifo8_is_full(&s->xmit_fifo)) {
359 fifo8_pop(&s->xmit_fifo);
361 fifo8_push(&s->xmit_fifo, s->thr);
363 s->thr_ipending = 0;
364 s->lsr &= ~UART_LSR_THRE;
365 s->lsr &= ~UART_LSR_TEMT;
366 serial_update_irq(s);
367 if (s->tsr_retry == 0) {
368 serial_xmit(s);
371 break;
372 case 1:
373 if (s->lcr & UART_LCR_DLAB) {
374 s->divider = (s->divider & 0x00ff) | (val << 8);
375 serial_update_parameters(s);
376 } else {
377 uint8_t changed = (s->ier ^ val) & 0x0f;
378 s->ier = val & 0x0f;
379 /* If the backend device is a real serial port, turn polling of the modem
380 * status lines on physical port on or off depending on UART_IER_MSI state.
382 if ((changed & UART_IER_MSI) && s->poll_msl >= 0) {
383 if (s->ier & UART_IER_MSI) {
384 s->poll_msl = 1;
385 serial_update_msl(s);
386 } else {
387 timer_del(s->modem_status_poll);
388 s->poll_msl = 0;
392 /* Turning on the THRE interrupt on IER can trigger the interrupt
393 * if LSR.THRE=1, even if it had been masked before by reading IIR.
394 * This is not in the datasheet, but Windows relies on it. It is
395 * unclear if THRE has to be resampled every time THRI becomes
396 * 1, or only on the rising edge. Bochs does the latter, and Windows
397 * always toggles IER to all zeroes and back to all ones, so do the
398 * same.
400 * If IER.THRI is zero, thr_ipending is not used. Set it to zero
401 * so that the thr_ipending subsection is not migrated.
403 if (changed & UART_IER_THRI) {
404 if ((s->ier & UART_IER_THRI) && (s->lsr & UART_LSR_THRE)) {
405 s->thr_ipending = 1;
406 } else {
407 s->thr_ipending = 0;
411 if (changed) {
412 serial_update_irq(s);
415 break;
416 case 2:
417 /* Did the enable/disable flag change? If so, make sure FIFOs get flushed */
418 if ((val ^ s->fcr) & UART_FCR_FE) {
419 val |= UART_FCR_XFR | UART_FCR_RFR;
422 /* FIFO clear */
424 if (val & UART_FCR_RFR) {
425 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
426 timer_del(s->fifo_timeout_timer);
427 s->timeout_ipending = 0;
428 fifo8_reset(&s->recv_fifo);
431 if (val & UART_FCR_XFR) {
432 s->lsr |= UART_LSR_THRE;
433 s->thr_ipending = 1;
434 fifo8_reset(&s->xmit_fifo);
437 serial_write_fcr(s, val & 0xC9);
438 serial_update_irq(s);
439 break;
440 case 3:
442 int break_enable;
443 s->lcr = val;
444 serial_update_parameters(s);
445 break_enable = (val >> 6) & 1;
446 if (break_enable != s->last_break_enable) {
447 s->last_break_enable = break_enable;
448 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
449 &break_enable);
452 break;
453 case 4:
455 int old_mcr = s->mcr;
456 s->mcr = val & 0x1f;
457 if (val & UART_MCR_LOOP)
458 break;
460 if (s->poll_msl >= 0 && old_mcr != s->mcr) {
461 serial_update_tiocm(s);
462 /* Update the modem status after a one-character-send wait-time, since there may be a response
463 from the device/computer at the other end of the serial line */
464 timer_mod(s->modem_status_poll, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time);
467 break;
468 case 5:
469 break;
470 case 6:
471 break;
472 case 7:
473 s->scr = val;
474 break;
478 static uint64_t serial_ioport_read(void *opaque, hwaddr addr, unsigned size)
480 SerialState *s = opaque;
481 uint32_t ret;
483 addr &= 7;
484 switch(addr) {
485 default:
486 case 0:
487 if (s->lcr & UART_LCR_DLAB) {
488 ret = s->divider & 0xff;
489 } else {
490 if(s->fcr & UART_FCR_FE) {
491 ret = fifo8_is_empty(&s->recv_fifo) ?
492 0 : fifo8_pop(&s->recv_fifo);
493 if (s->recv_fifo.num == 0) {
494 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
495 } else {
496 timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
498 s->timeout_ipending = 0;
499 } else {
500 ret = s->rbr;
501 s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
503 serial_update_irq(s);
504 if (!(s->mcr & UART_MCR_LOOP)) {
505 /* in loopback mode, don't receive any data */
506 qemu_chr_fe_accept_input(&s->chr);
509 break;
510 case 1:
511 if (s->lcr & UART_LCR_DLAB) {
512 ret = (s->divider >> 8) & 0xff;
513 } else {
514 ret = s->ier;
516 break;
517 case 2:
518 ret = s->iir;
519 if ((ret & UART_IIR_ID) == UART_IIR_THRI) {
520 s->thr_ipending = 0;
521 serial_update_irq(s);
523 break;
524 case 3:
525 ret = s->lcr;
526 break;
527 case 4:
528 ret = s->mcr;
529 break;
530 case 5:
531 ret = s->lsr;
532 /* Clear break and overrun interrupts */
533 if (s->lsr & (UART_LSR_BI|UART_LSR_OE)) {
534 s->lsr &= ~(UART_LSR_BI|UART_LSR_OE);
535 serial_update_irq(s);
537 break;
538 case 6:
539 if (s->mcr & UART_MCR_LOOP) {
540 /* in loopback, the modem output pins are connected to the
541 inputs */
542 ret = (s->mcr & 0x0c) << 4;
543 ret |= (s->mcr & 0x02) << 3;
544 ret |= (s->mcr & 0x01) << 5;
545 } else {
546 if (s->poll_msl >= 0)
547 serial_update_msl(s);
548 ret = s->msr;
549 /* Clear delta bits & msr int after read, if they were set */
550 if (s->msr & UART_MSR_ANY_DELTA) {
551 s->msr &= 0xF0;
552 serial_update_irq(s);
555 break;
556 case 7:
557 ret = s->scr;
558 break;
560 trace_serial_ioport_read(addr, ret);
561 return ret;
564 static int serial_can_receive(SerialState *s)
566 if(s->fcr & UART_FCR_FE) {
567 if (s->recv_fifo.num < UART_FIFO_LENGTH) {
569 * Advertise (fifo.itl - fifo.count) bytes when count < ITL, and 1
570 * if above. If UART_FIFO_LENGTH - fifo.count is advertised the
571 * effect will be to almost always fill the fifo completely before
572 * the guest has a chance to respond, effectively overriding the ITL
573 * that the guest has set.
575 return (s->recv_fifo.num <= s->recv_fifo_itl) ?
576 s->recv_fifo_itl - s->recv_fifo.num : 1;
577 } else {
578 return 0;
580 } else {
581 return !(s->lsr & UART_LSR_DR);
585 static void serial_receive_break(SerialState *s)
587 s->rbr = 0;
588 /* When the LSR_DR is set a null byte is pushed into the fifo */
589 recv_fifo_put(s, '\0');
590 s->lsr |= UART_LSR_BI | UART_LSR_DR;
591 serial_update_irq(s);
594 /* There's data in recv_fifo and s->rbr has not been read for 4 char transmit times */
595 static void fifo_timeout_int (void *opaque) {
596 SerialState *s = opaque;
597 if (s->recv_fifo.num) {
598 s->timeout_ipending = 1;
599 serial_update_irq(s);
603 static int serial_can_receive1(void *opaque)
605 SerialState *s = opaque;
606 return serial_can_receive(s);
609 static void serial_receive1(void *opaque, const uint8_t *buf, int size)
611 SerialState *s = opaque;
613 if (s->wakeup) {
614 qemu_system_wakeup_request(QEMU_WAKEUP_REASON_OTHER, NULL);
616 if(s->fcr & UART_FCR_FE) {
617 int i;
618 for (i = 0; i < size; i++) {
619 recv_fifo_put(s, buf[i]);
621 s->lsr |= UART_LSR_DR;
622 /* call the timeout receive callback in 4 char transmit time */
623 timer_mod(s->fifo_timeout_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 4);
624 } else {
625 if (s->lsr & UART_LSR_DR)
626 s->lsr |= UART_LSR_OE;
627 s->rbr = buf[0];
628 s->lsr |= UART_LSR_DR;
630 serial_update_irq(s);
633 static void serial_event(void *opaque, int event)
635 SerialState *s = opaque;
636 DPRINTF("event %x\n", event);
637 if (event == CHR_EVENT_BREAK)
638 serial_receive_break(s);
641 static int serial_pre_save(void *opaque)
643 SerialState *s = opaque;
644 s->fcr_vmstate = s->fcr;
646 return 0;
649 static int serial_pre_load(void *opaque)
651 SerialState *s = opaque;
652 s->thr_ipending = -1;
653 s->poll_msl = -1;
654 return 0;
657 static int serial_post_load(void *opaque, int version_id)
659 SerialState *s = opaque;
661 if (version_id < 3) {
662 s->fcr_vmstate = 0;
664 if (s->thr_ipending == -1) {
665 s->thr_ipending = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
668 if (s->tsr_retry > 0) {
669 /* tsr_retry > 0 implies LSR.TEMT = 0 (transmitter not empty). */
670 if (s->lsr & UART_LSR_TEMT) {
671 error_report("inconsistent state in serial device "
672 "(tsr empty, tsr_retry=%d", s->tsr_retry);
673 return -1;
676 if (s->tsr_retry > MAX_XMIT_RETRY) {
677 s->tsr_retry = MAX_XMIT_RETRY;
680 assert(s->watch_tag == 0);
681 s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
682 serial_watch_cb, s);
683 } else {
684 /* tsr_retry == 0 implies LSR.TEMT = 1 (transmitter empty). */
685 if (!(s->lsr & UART_LSR_TEMT)) {
686 error_report("inconsistent state in serial device "
687 "(tsr not empty, tsr_retry=0");
688 return -1;
692 s->last_break_enable = (s->lcr >> 6) & 1;
693 /* Initialize fcr via setter to perform essential side-effects */
694 serial_write_fcr(s, s->fcr_vmstate);
695 serial_update_parameters(s);
696 return 0;
699 static bool serial_thr_ipending_needed(void *opaque)
701 SerialState *s = opaque;
703 if (s->ier & UART_IER_THRI) {
704 bool expected_value = ((s->iir & UART_IIR_ID) == UART_IIR_THRI);
705 return s->thr_ipending != expected_value;
706 } else {
707 /* LSR.THRE will be sampled again when the interrupt is
708 * enabled. thr_ipending is not used in this case, do
709 * not migrate it.
711 return false;
715 static const VMStateDescription vmstate_serial_thr_ipending = {
716 .name = "serial/thr_ipending",
717 .version_id = 1,
718 .minimum_version_id = 1,
719 .needed = serial_thr_ipending_needed,
720 .fields = (VMStateField[]) {
721 VMSTATE_INT32(thr_ipending, SerialState),
722 VMSTATE_END_OF_LIST()
726 static bool serial_tsr_needed(void *opaque)
728 SerialState *s = (SerialState *)opaque;
729 return s->tsr_retry != 0;
732 static const VMStateDescription vmstate_serial_tsr = {
733 .name = "serial/tsr",
734 .version_id = 1,
735 .minimum_version_id = 1,
736 .needed = serial_tsr_needed,
737 .fields = (VMStateField[]) {
738 VMSTATE_UINT32(tsr_retry, SerialState),
739 VMSTATE_UINT8(thr, SerialState),
740 VMSTATE_UINT8(tsr, SerialState),
741 VMSTATE_END_OF_LIST()
745 static bool serial_recv_fifo_needed(void *opaque)
747 SerialState *s = (SerialState *)opaque;
748 return !fifo8_is_empty(&s->recv_fifo);
752 static const VMStateDescription vmstate_serial_recv_fifo = {
753 .name = "serial/recv_fifo",
754 .version_id = 1,
755 .minimum_version_id = 1,
756 .needed = serial_recv_fifo_needed,
757 .fields = (VMStateField[]) {
758 VMSTATE_STRUCT(recv_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
759 VMSTATE_END_OF_LIST()
763 static bool serial_xmit_fifo_needed(void *opaque)
765 SerialState *s = (SerialState *)opaque;
766 return !fifo8_is_empty(&s->xmit_fifo);
769 static const VMStateDescription vmstate_serial_xmit_fifo = {
770 .name = "serial/xmit_fifo",
771 .version_id = 1,
772 .minimum_version_id = 1,
773 .needed = serial_xmit_fifo_needed,
774 .fields = (VMStateField[]) {
775 VMSTATE_STRUCT(xmit_fifo, SerialState, 1, vmstate_fifo8, Fifo8),
776 VMSTATE_END_OF_LIST()
780 static bool serial_fifo_timeout_timer_needed(void *opaque)
782 SerialState *s = (SerialState *)opaque;
783 return timer_pending(s->fifo_timeout_timer);
786 static const VMStateDescription vmstate_serial_fifo_timeout_timer = {
787 .name = "serial/fifo_timeout_timer",
788 .version_id = 1,
789 .minimum_version_id = 1,
790 .needed = serial_fifo_timeout_timer_needed,
791 .fields = (VMStateField[]) {
792 VMSTATE_TIMER_PTR(fifo_timeout_timer, SerialState),
793 VMSTATE_END_OF_LIST()
797 static bool serial_timeout_ipending_needed(void *opaque)
799 SerialState *s = (SerialState *)opaque;
800 return s->timeout_ipending != 0;
803 static const VMStateDescription vmstate_serial_timeout_ipending = {
804 .name = "serial/timeout_ipending",
805 .version_id = 1,
806 .minimum_version_id = 1,
807 .needed = serial_timeout_ipending_needed,
808 .fields = (VMStateField[]) {
809 VMSTATE_INT32(timeout_ipending, SerialState),
810 VMSTATE_END_OF_LIST()
814 static bool serial_poll_needed(void *opaque)
816 SerialState *s = (SerialState *)opaque;
817 return s->poll_msl >= 0;
820 static const VMStateDescription vmstate_serial_poll = {
821 .name = "serial/poll",
822 .version_id = 1,
823 .needed = serial_poll_needed,
824 .minimum_version_id = 1,
825 .fields = (VMStateField[]) {
826 VMSTATE_INT32(poll_msl, SerialState),
827 VMSTATE_TIMER_PTR(modem_status_poll, SerialState),
828 VMSTATE_END_OF_LIST()
832 const VMStateDescription vmstate_serial = {
833 .name = "serial",
834 .version_id = 3,
835 .minimum_version_id = 2,
836 .pre_save = serial_pre_save,
837 .pre_load = serial_pre_load,
838 .post_load = serial_post_load,
839 .fields = (VMStateField[]) {
840 VMSTATE_UINT16_V(divider, SerialState, 2),
841 VMSTATE_UINT8(rbr, SerialState),
842 VMSTATE_UINT8(ier, SerialState),
843 VMSTATE_UINT8(iir, SerialState),
844 VMSTATE_UINT8(lcr, SerialState),
845 VMSTATE_UINT8(mcr, SerialState),
846 VMSTATE_UINT8(lsr, SerialState),
847 VMSTATE_UINT8(msr, SerialState),
848 VMSTATE_UINT8(scr, SerialState),
849 VMSTATE_UINT8_V(fcr_vmstate, SerialState, 3),
850 VMSTATE_END_OF_LIST()
852 .subsections = (const VMStateDescription*[]) {
853 &vmstate_serial_thr_ipending,
854 &vmstate_serial_tsr,
855 &vmstate_serial_recv_fifo,
856 &vmstate_serial_xmit_fifo,
857 &vmstate_serial_fifo_timeout_timer,
858 &vmstate_serial_timeout_ipending,
859 &vmstate_serial_poll,
860 NULL
864 static void serial_reset(void *opaque)
866 SerialState *s = opaque;
868 if (s->watch_tag > 0) {
869 g_source_remove(s->watch_tag);
870 s->watch_tag = 0;
873 s->rbr = 0;
874 s->ier = 0;
875 s->iir = UART_IIR_NO_INT;
876 s->lcr = 0;
877 s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
878 s->msr = UART_MSR_DCD | UART_MSR_DSR | UART_MSR_CTS;
879 /* Default to 9600 baud, 1 start bit, 8 data bits, 1 stop bit, no parity. */
880 s->divider = 0x0C;
881 s->mcr = UART_MCR_OUT2;
882 s->scr = 0;
883 s->tsr_retry = 0;
884 s->char_transmit_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
885 s->poll_msl = 0;
887 s->timeout_ipending = 0;
888 timer_del(s->fifo_timeout_timer);
889 timer_del(s->modem_status_poll);
891 fifo8_reset(&s->recv_fifo);
892 fifo8_reset(&s->xmit_fifo);
894 s->last_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
896 s->thr_ipending = 0;
897 s->last_break_enable = 0;
898 qemu_irq_lower(s->irq);
900 serial_update_msl(s);
901 s->msr &= ~UART_MSR_ANY_DELTA;
904 static int serial_be_change(void *opaque)
906 SerialState *s = opaque;
908 qemu_chr_fe_set_handlers(&s->chr, serial_can_receive1, serial_receive1,
909 serial_event, serial_be_change, s, NULL, true);
911 serial_update_parameters(s);
913 qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
914 &s->last_break_enable);
916 s->poll_msl = (s->ier & UART_IER_MSI) ? 1 : 0;
917 serial_update_msl(s);
919 if (s->poll_msl >= 0 && !(s->mcr & UART_MCR_LOOP)) {
920 serial_update_tiocm(s);
923 if (s->watch_tag > 0) {
924 g_source_remove(s->watch_tag);
925 s->watch_tag = qemu_chr_fe_add_watch(&s->chr, G_IO_OUT | G_IO_HUP,
926 serial_watch_cb, s);
929 return 0;
932 void serial_realize_core(SerialState *s, Error **errp)
934 s->modem_status_poll = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) serial_update_msl, s);
936 s->fifo_timeout_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, (QEMUTimerCB *) fifo_timeout_int, s);
937 qemu_register_reset(serial_reset, s);
939 qemu_chr_fe_set_handlers(&s->chr, serial_can_receive1, serial_receive1,
940 serial_event, serial_be_change, s, NULL, true);
941 fifo8_create(&s->recv_fifo, UART_FIFO_LENGTH);
942 fifo8_create(&s->xmit_fifo, UART_FIFO_LENGTH);
943 serial_reset(s);
946 void serial_exit_core(SerialState *s)
948 qemu_chr_fe_deinit(&s->chr, false);
950 timer_del(s->modem_status_poll);
951 timer_free(s->modem_status_poll);
953 timer_del(s->fifo_timeout_timer);
954 timer_free(s->fifo_timeout_timer);
956 fifo8_destroy(&s->recv_fifo);
957 fifo8_destroy(&s->xmit_fifo);
959 qemu_unregister_reset(serial_reset, s);
962 /* Change the main reference oscillator frequency. */
963 void serial_set_frequency(SerialState *s, uint32_t frequency)
965 s->baudbase = frequency;
966 serial_update_parameters(s);
969 const MemoryRegionOps serial_io_ops = {
970 .read = serial_ioport_read,
971 .write = serial_ioport_write,
972 .impl = {
973 .min_access_size = 1,
974 .max_access_size = 1,
976 .endianness = DEVICE_LITTLE_ENDIAN,
979 SerialState *serial_init(int base, qemu_irq irq, int baudbase,
980 Chardev *chr, MemoryRegion *system_io)
982 SerialState *s;
984 s = g_malloc0(sizeof(SerialState));
986 s->irq = irq;
987 s->baudbase = baudbase;
988 qemu_chr_fe_init(&s->chr, chr, &error_abort);
989 serial_realize_core(s, &error_fatal);
991 vmstate_register(NULL, base, &vmstate_serial, s);
993 memory_region_init_io(&s->io, NULL, &serial_io_ops, s, "serial", 8);
994 memory_region_add_subregion(system_io, base, &s->io);
996 return s;
999 /* Memory mapped interface */
1000 static uint64_t serial_mm_read(void *opaque, hwaddr addr,
1001 unsigned size)
1003 SerialState *s = opaque;
1004 return serial_ioport_read(s, addr >> s->it_shift, 1);
1007 static void serial_mm_write(void *opaque, hwaddr addr,
1008 uint64_t value, unsigned size)
1010 SerialState *s = opaque;
1011 value &= 255;
1012 serial_ioport_write(s, addr >> s->it_shift, value, 1);
1015 static const MemoryRegionOps serial_mm_ops[3] = {
1016 [DEVICE_NATIVE_ENDIAN] = {
1017 .read = serial_mm_read,
1018 .write = serial_mm_write,
1019 .endianness = DEVICE_NATIVE_ENDIAN,
1020 .valid.max_access_size = 8,
1021 .impl.max_access_size = 8,
1023 [DEVICE_LITTLE_ENDIAN] = {
1024 .read = serial_mm_read,
1025 .write = serial_mm_write,
1026 .endianness = DEVICE_LITTLE_ENDIAN,
1027 .valid.max_access_size = 8,
1028 .impl.max_access_size = 8,
1030 [DEVICE_BIG_ENDIAN] = {
1031 .read = serial_mm_read,
1032 .write = serial_mm_write,
1033 .endianness = DEVICE_BIG_ENDIAN,
1034 .valid.max_access_size = 8,
1035 .impl.max_access_size = 8,
1039 SerialState *serial_mm_init(MemoryRegion *address_space,
1040 hwaddr base, int it_shift,
1041 qemu_irq irq, int baudbase,
1042 Chardev *chr, enum device_endian end)
1044 SerialState *s;
1046 s = g_malloc0(sizeof(SerialState));
1048 s->it_shift = it_shift;
1049 s->irq = irq;
1050 s->baudbase = baudbase;
1051 qemu_chr_fe_init(&s->chr, chr, &error_abort);
1053 serial_realize_core(s, &error_fatal);
1054 vmstate_register(NULL, base, &vmstate_serial, s);
1056 memory_region_init_io(&s->io, NULL, &serial_mm_ops[end], s,
1057 "serial", 8 << it_shift);
1058 memory_region_add_subregion(address_space, base, &s->io);
1059 return s;