linux-user/syscall.c: Use SOL_SOCKET instead of level for setsockopt()
[qemu/ar7.git] / hw / arm / omap1.c
blob6b1c076598a1e6848745cebc12debef72bdd52ab
1 /*
2 * TI OMAP processors emulation.
4 * Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License along
17 * with this program; if not, see <http://www.gnu.org/licenses/>.
20 #include "hw/boards.h"
21 #include "hw/hw.h"
22 #include "hw/arm/arm.h"
23 #include "hw/arm/omap.h"
24 #include "sysemu/sysemu.h"
25 #include "hw/arm/soc_dma.h"
26 #include "sysemu/block-backend.h"
27 #include "sysemu/blockdev.h"
28 #include "qemu/range.h"
29 #include "hw/sysbus.h"
31 /* Should signal the TCMI/GPMC */
32 uint32_t omap_badwidth_read8(void *opaque, hwaddr addr)
34 uint8_t ret;
36 OMAP_8B_REG(addr);
37 cpu_physical_memory_read(addr, &ret, 1);
38 return ret;
41 void omap_badwidth_write8(void *opaque, hwaddr addr,
42 uint32_t value)
44 uint8_t val8 = value;
46 OMAP_8B_REG(addr);
47 cpu_physical_memory_write(addr, &val8, 1);
50 uint32_t omap_badwidth_read16(void *opaque, hwaddr addr)
52 uint16_t ret;
54 OMAP_16B_REG(addr);
55 cpu_physical_memory_read(addr, &ret, 2);
56 return ret;
59 void omap_badwidth_write16(void *opaque, hwaddr addr,
60 uint32_t value)
62 uint16_t val16 = value;
64 OMAP_16B_REG(addr);
65 cpu_physical_memory_write(addr, &val16, 2);
68 uint32_t omap_badwidth_read32(void *opaque, hwaddr addr)
70 uint32_t ret;
72 OMAP_32B_REG(addr);
73 cpu_physical_memory_read(addr, &ret, 4);
74 return ret;
77 void omap_badwidth_write32(void *opaque, hwaddr addr,
78 uint32_t value)
80 OMAP_32B_REG(addr);
81 cpu_physical_memory_write(addr, &value, 4);
84 /* MPU OS timers */
85 struct omap_mpu_timer_s {
86 MemoryRegion iomem;
87 qemu_irq irq;
88 omap_clk clk;
89 uint32_t val;
90 int64_t time;
91 QEMUTimer *timer;
92 QEMUBH *tick;
93 int64_t rate;
94 int it_ena;
96 int enable;
97 int ptv;
98 int ar;
99 int st;
100 uint32_t reset_val;
103 static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
105 uint64_t distance = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->time;
107 if (timer->st && timer->enable && timer->rate)
108 return timer->val - muldiv64(distance >> (timer->ptv + 1),
109 timer->rate, get_ticks_per_sec());
110 else
111 return timer->val;
114 static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
116 timer->val = omap_timer_read(timer);
117 timer->time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
120 static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
122 int64_t expires;
124 if (timer->enable && timer->st && timer->rate) {
125 timer->val = timer->reset_val; /* Should skip this on clk enable */
126 expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
127 get_ticks_per_sec(), timer->rate);
129 /* If timer expiry would be sooner than in about 1 ms and
130 * auto-reload isn't set, then fire immediately. This is a hack
131 * to make systems like PalmOS run in acceptable time. PalmOS
132 * sets the interval to a very low value and polls the status bit
133 * in a busy loop when it wants to sleep just a couple of CPU
134 * ticks. */
135 if (expires > (get_ticks_per_sec() >> 10) || timer->ar)
136 timer_mod(timer->timer, timer->time + expires);
137 else
138 qemu_bh_schedule(timer->tick);
139 } else
140 timer_del(timer->timer);
143 static void omap_timer_fire(void *opaque)
145 struct omap_mpu_timer_s *timer = opaque;
147 if (!timer->ar) {
148 timer->val = 0;
149 timer->st = 0;
152 if (timer->it_ena)
153 /* Edge-triggered irq */
154 qemu_irq_pulse(timer->irq);
157 static void omap_timer_tick(void *opaque)
159 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
161 omap_timer_sync(timer);
162 omap_timer_fire(timer);
163 omap_timer_update(timer);
166 static void omap_timer_clk_update(void *opaque, int line, int on)
168 struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
170 omap_timer_sync(timer);
171 timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
172 omap_timer_update(timer);
175 static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
177 omap_clk_adduser(timer->clk,
178 qemu_allocate_irq(omap_timer_clk_update, timer, 0));
179 timer->rate = omap_clk_getrate(timer->clk);
182 static uint64_t omap_mpu_timer_read(void *opaque, hwaddr addr,
183 unsigned size)
185 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
187 if (size != 4) {
188 return omap_badwidth_read32(opaque, addr);
191 switch (addr) {
192 case 0x00: /* CNTL_TIMER */
193 return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
195 case 0x04: /* LOAD_TIM */
196 break;
198 case 0x08: /* READ_TIM */
199 return omap_timer_read(s);
202 OMAP_BAD_REG(addr);
203 return 0;
206 static void omap_mpu_timer_write(void *opaque, hwaddr addr,
207 uint64_t value, unsigned size)
209 struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
211 if (size != 4) {
212 omap_badwidth_write32(opaque, addr, value);
213 return;
216 switch (addr) {
217 case 0x00: /* CNTL_TIMER */
218 omap_timer_sync(s);
219 s->enable = (value >> 5) & 1;
220 s->ptv = (value >> 2) & 7;
221 s->ar = (value >> 1) & 1;
222 s->st = value & 1;
223 omap_timer_update(s);
224 return;
226 case 0x04: /* LOAD_TIM */
227 s->reset_val = value;
228 return;
230 case 0x08: /* READ_TIM */
231 OMAP_RO_REG(addr);
232 break;
234 default:
235 OMAP_BAD_REG(addr);
239 static const MemoryRegionOps omap_mpu_timer_ops = {
240 .read = omap_mpu_timer_read,
241 .write = omap_mpu_timer_write,
242 .endianness = DEVICE_LITTLE_ENDIAN,
245 static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
247 timer_del(s->timer);
248 s->enable = 0;
249 s->reset_val = 31337;
250 s->val = 0;
251 s->ptv = 0;
252 s->ar = 0;
253 s->st = 0;
254 s->it_ena = 1;
257 static struct omap_mpu_timer_s *omap_mpu_timer_init(MemoryRegion *system_memory,
258 hwaddr base,
259 qemu_irq irq, omap_clk clk)
261 struct omap_mpu_timer_s *s = g_new0(struct omap_mpu_timer_s, 1);
263 s->irq = irq;
264 s->clk = clk;
265 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, s);
266 s->tick = qemu_bh_new(omap_timer_fire, s);
267 omap_mpu_timer_reset(s);
268 omap_timer_clk_setup(s);
270 memory_region_init_io(&s->iomem, NULL, &omap_mpu_timer_ops, s,
271 "omap-mpu-timer", 0x100);
273 memory_region_add_subregion(system_memory, base, &s->iomem);
275 return s;
278 /* Watchdog timer */
279 struct omap_watchdog_timer_s {
280 struct omap_mpu_timer_s timer;
281 MemoryRegion iomem;
282 uint8_t last_wr;
283 int mode;
284 int free;
285 int reset;
288 static uint64_t omap_wd_timer_read(void *opaque, hwaddr addr,
289 unsigned size)
291 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
293 if (size != 2) {
294 return omap_badwidth_read16(opaque, addr);
297 switch (addr) {
298 case 0x00: /* CNTL_TIMER */
299 return (s->timer.ptv << 9) | (s->timer.ar << 8) |
300 (s->timer.st << 7) | (s->free << 1);
302 case 0x04: /* READ_TIMER */
303 return omap_timer_read(&s->timer);
305 case 0x08: /* TIMER_MODE */
306 return s->mode << 15;
309 OMAP_BAD_REG(addr);
310 return 0;
313 static void omap_wd_timer_write(void *opaque, hwaddr addr,
314 uint64_t value, unsigned size)
316 struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
318 if (size != 2) {
319 omap_badwidth_write16(opaque, addr, value);
320 return;
323 switch (addr) {
324 case 0x00: /* CNTL_TIMER */
325 omap_timer_sync(&s->timer);
326 s->timer.ptv = (value >> 9) & 7;
327 s->timer.ar = (value >> 8) & 1;
328 s->timer.st = (value >> 7) & 1;
329 s->free = (value >> 1) & 1;
330 omap_timer_update(&s->timer);
331 break;
333 case 0x04: /* LOAD_TIMER */
334 s->timer.reset_val = value & 0xffff;
335 break;
337 case 0x08: /* TIMER_MODE */
338 if (!s->mode && ((value >> 15) & 1))
339 omap_clk_get(s->timer.clk);
340 s->mode |= (value >> 15) & 1;
341 if (s->last_wr == 0xf5) {
342 if ((value & 0xff) == 0xa0) {
343 if (s->mode) {
344 s->mode = 0;
345 omap_clk_put(s->timer.clk);
347 } else {
348 /* XXX: on T|E hardware somehow this has no effect,
349 * on Zire 71 it works as specified. */
350 s->reset = 1;
351 qemu_system_reset_request();
354 s->last_wr = value & 0xff;
355 break;
357 default:
358 OMAP_BAD_REG(addr);
362 static const MemoryRegionOps omap_wd_timer_ops = {
363 .read = omap_wd_timer_read,
364 .write = omap_wd_timer_write,
365 .endianness = DEVICE_NATIVE_ENDIAN,
368 static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
370 timer_del(s->timer.timer);
371 if (!s->mode)
372 omap_clk_get(s->timer.clk);
373 s->mode = 1;
374 s->free = 1;
375 s->reset = 0;
376 s->timer.enable = 1;
377 s->timer.it_ena = 1;
378 s->timer.reset_val = 0xffff;
379 s->timer.val = 0;
380 s->timer.st = 0;
381 s->timer.ptv = 0;
382 s->timer.ar = 0;
383 omap_timer_update(&s->timer);
386 static struct omap_watchdog_timer_s *omap_wd_timer_init(MemoryRegion *memory,
387 hwaddr base,
388 qemu_irq irq, omap_clk clk)
390 struct omap_watchdog_timer_s *s = g_new0(struct omap_watchdog_timer_s, 1);
392 s->timer.irq = irq;
393 s->timer.clk = clk;
394 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
395 omap_wd_timer_reset(s);
396 omap_timer_clk_setup(&s->timer);
398 memory_region_init_io(&s->iomem, NULL, &omap_wd_timer_ops, s,
399 "omap-wd-timer", 0x100);
400 memory_region_add_subregion(memory, base, &s->iomem);
402 return s;
405 /* 32-kHz timer */
406 struct omap_32khz_timer_s {
407 struct omap_mpu_timer_s timer;
408 MemoryRegion iomem;
411 static uint64_t omap_os_timer_read(void *opaque, hwaddr addr,
412 unsigned size)
414 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
415 int offset = addr & OMAP_MPUI_REG_MASK;
417 if (size != 4) {
418 return omap_badwidth_read32(opaque, addr);
421 switch (offset) {
422 case 0x00: /* TVR */
423 return s->timer.reset_val;
425 case 0x04: /* TCR */
426 return omap_timer_read(&s->timer);
428 case 0x08: /* CR */
429 return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
431 default:
432 break;
434 OMAP_BAD_REG(addr);
435 return 0;
438 static void omap_os_timer_write(void *opaque, hwaddr addr,
439 uint64_t value, unsigned size)
441 struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
442 int offset = addr & OMAP_MPUI_REG_MASK;
444 if (size != 4) {
445 omap_badwidth_write32(opaque, addr, value);
446 return;
449 switch (offset) {
450 case 0x00: /* TVR */
451 s->timer.reset_val = value & 0x00ffffff;
452 break;
454 case 0x04: /* TCR */
455 OMAP_RO_REG(addr);
456 break;
458 case 0x08: /* CR */
459 s->timer.ar = (value >> 3) & 1;
460 s->timer.it_ena = (value >> 2) & 1;
461 if (s->timer.st != (value & 1) || (value & 2)) {
462 omap_timer_sync(&s->timer);
463 s->timer.enable = value & 1;
464 s->timer.st = value & 1;
465 omap_timer_update(&s->timer);
467 break;
469 default:
470 OMAP_BAD_REG(addr);
474 static const MemoryRegionOps omap_os_timer_ops = {
475 .read = omap_os_timer_read,
476 .write = omap_os_timer_write,
477 .endianness = DEVICE_NATIVE_ENDIAN,
480 static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
482 timer_del(s->timer.timer);
483 s->timer.enable = 0;
484 s->timer.it_ena = 0;
485 s->timer.reset_val = 0x00ffffff;
486 s->timer.val = 0;
487 s->timer.st = 0;
488 s->timer.ptv = 0;
489 s->timer.ar = 1;
492 static struct omap_32khz_timer_s *omap_os_timer_init(MemoryRegion *memory,
493 hwaddr base,
494 qemu_irq irq, omap_clk clk)
496 struct omap_32khz_timer_s *s = g_new0(struct omap_32khz_timer_s, 1);
498 s->timer.irq = irq;
499 s->timer.clk = clk;
500 s->timer.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_timer_tick, &s->timer);
501 omap_os_timer_reset(s);
502 omap_timer_clk_setup(&s->timer);
504 memory_region_init_io(&s->iomem, NULL, &omap_os_timer_ops, s,
505 "omap-os-timer", 0x800);
506 memory_region_add_subregion(memory, base, &s->iomem);
508 return s;
511 /* Ultra Low-Power Device Module */
512 static uint64_t omap_ulpd_pm_read(void *opaque, hwaddr addr,
513 unsigned size)
515 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
516 uint16_t ret;
518 if (size != 2) {
519 return omap_badwidth_read16(opaque, addr);
522 switch (addr) {
523 case 0x14: /* IT_STATUS */
524 ret = s->ulpd_pm_regs[addr >> 2];
525 s->ulpd_pm_regs[addr >> 2] = 0;
526 qemu_irq_lower(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
527 return ret;
529 case 0x18: /* Reserved */
530 case 0x1c: /* Reserved */
531 case 0x20: /* Reserved */
532 case 0x28: /* Reserved */
533 case 0x2c: /* Reserved */
534 OMAP_BAD_REG(addr);
535 /* fall through */
536 case 0x00: /* COUNTER_32_LSB */
537 case 0x04: /* COUNTER_32_MSB */
538 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
539 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
540 case 0x10: /* GAUGING_CTRL */
541 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
542 case 0x30: /* CLOCK_CTRL */
543 case 0x34: /* SOFT_REQ */
544 case 0x38: /* COUNTER_32_FIQ */
545 case 0x3c: /* DPLL_CTRL */
546 case 0x40: /* STATUS_REQ */
547 /* XXX: check clk::usecount state for every clock */
548 case 0x48: /* LOCL_TIME */
549 case 0x4c: /* APLL_CTRL */
550 case 0x50: /* POWER_CTRL */
551 return s->ulpd_pm_regs[addr >> 2];
554 OMAP_BAD_REG(addr);
555 return 0;
558 static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
559 uint16_t diff, uint16_t value)
561 if (diff & (1 << 4)) /* USB_MCLK_EN */
562 omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
563 if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */
564 omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
567 static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
568 uint16_t diff, uint16_t value)
570 if (diff & (1 << 0)) /* SOFT_DPLL_REQ */
571 omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
572 if (diff & (1 << 1)) /* SOFT_COM_REQ */
573 omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
574 if (diff & (1 << 2)) /* SOFT_SDW_REQ */
575 omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
576 if (diff & (1 << 3)) /* SOFT_USB_REQ */
577 omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
580 static void omap_ulpd_pm_write(void *opaque, hwaddr addr,
581 uint64_t value, unsigned size)
583 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
584 int64_t now, ticks;
585 int div, mult;
586 static const int bypass_div[4] = { 1, 2, 4, 4 };
587 uint16_t diff;
589 if (size != 2) {
590 omap_badwidth_write16(opaque, addr, value);
591 return;
594 switch (addr) {
595 case 0x00: /* COUNTER_32_LSB */
596 case 0x04: /* COUNTER_32_MSB */
597 case 0x08: /* COUNTER_HIGH_FREQ_LSB */
598 case 0x0c: /* COUNTER_HIGH_FREQ_MSB */
599 case 0x14: /* IT_STATUS */
600 case 0x40: /* STATUS_REQ */
601 OMAP_RO_REG(addr);
602 break;
604 case 0x10: /* GAUGING_CTRL */
605 /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
606 if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) {
607 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
609 if (value & 1)
610 s->ulpd_gauge_start = now;
611 else {
612 now -= s->ulpd_gauge_start;
614 /* 32-kHz ticks */
615 ticks = muldiv64(now, 32768, get_ticks_per_sec());
616 s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff;
617 s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
618 if (ticks >> 32) /* OVERFLOW_32K */
619 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
621 /* High frequency ticks */
622 ticks = muldiv64(now, 12000000, get_ticks_per_sec());
623 s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff;
624 s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
625 if (ticks >> 32) /* OVERFLOW_HI_FREQ */
626 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
628 s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */
629 qemu_irq_raise(qdev_get_gpio_in(s->ih[1], OMAP_INT_GAUGE_32K));
632 s->ulpd_pm_regs[addr >> 2] = value;
633 break;
635 case 0x18: /* Reserved */
636 case 0x1c: /* Reserved */
637 case 0x20: /* Reserved */
638 case 0x28: /* Reserved */
639 case 0x2c: /* Reserved */
640 OMAP_BAD_REG(addr);
641 /* fall through */
642 case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */
643 case 0x38: /* COUNTER_32_FIQ */
644 case 0x48: /* LOCL_TIME */
645 case 0x50: /* POWER_CTRL */
646 s->ulpd_pm_regs[addr >> 2] = value;
647 break;
649 case 0x30: /* CLOCK_CTRL */
650 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
651 s->ulpd_pm_regs[addr >> 2] = value & 0x3f;
652 omap_ulpd_clk_update(s, diff, value);
653 break;
655 case 0x34: /* SOFT_REQ */
656 diff = s->ulpd_pm_regs[addr >> 2] ^ value;
657 s->ulpd_pm_regs[addr >> 2] = value & 0x1f;
658 omap_ulpd_req_update(s, diff, value);
659 break;
661 case 0x3c: /* DPLL_CTRL */
662 /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
663 * omitted altogether, probably a typo. */
664 /* This register has identical semantics with DPLL(1:3) control
665 * registers, see omap_dpll_write() */
666 diff = s->ulpd_pm_regs[addr >> 2] & value;
667 s->ulpd_pm_regs[addr >> 2] = value & 0x2fff;
668 if (diff & (0x3ff << 2)) {
669 if (value & (1 << 4)) { /* PLL_ENABLE */
670 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
671 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
672 } else {
673 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
674 mult = 1;
676 omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
679 /* Enter the desired mode. */
680 s->ulpd_pm_regs[addr >> 2] =
681 (s->ulpd_pm_regs[addr >> 2] & 0xfffe) |
682 ((s->ulpd_pm_regs[addr >> 2] >> 4) & 1);
684 /* Act as if the lock is restored. */
685 s->ulpd_pm_regs[addr >> 2] |= 2;
686 break;
688 case 0x4c: /* APLL_CTRL */
689 diff = s->ulpd_pm_regs[addr >> 2] & value;
690 s->ulpd_pm_regs[addr >> 2] = value & 0xf;
691 if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */
692 omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
693 (value & (1 << 0)) ? "apll" : "dpll4"));
694 break;
696 default:
697 OMAP_BAD_REG(addr);
701 static const MemoryRegionOps omap_ulpd_pm_ops = {
702 .read = omap_ulpd_pm_read,
703 .write = omap_ulpd_pm_write,
704 .endianness = DEVICE_NATIVE_ENDIAN,
707 static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
709 mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
710 mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
711 mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
712 mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
713 mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
714 mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
715 mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
716 mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
717 mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
718 mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
719 mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
720 omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
721 mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
722 omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
723 mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
724 mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
725 mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
726 mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
727 mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
728 mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
729 mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
730 omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
731 omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
734 static void omap_ulpd_pm_init(MemoryRegion *system_memory,
735 hwaddr base,
736 struct omap_mpu_state_s *mpu)
738 memory_region_init_io(&mpu->ulpd_pm_iomem, NULL, &omap_ulpd_pm_ops, mpu,
739 "omap-ulpd-pm", 0x800);
740 memory_region_add_subregion(system_memory, base, &mpu->ulpd_pm_iomem);
741 omap_ulpd_pm_reset(mpu);
744 /* OMAP Pin Configuration */
745 static uint64_t omap_pin_cfg_read(void *opaque, hwaddr addr,
746 unsigned size)
748 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
750 if (size != 4) {
751 return omap_badwidth_read32(opaque, addr);
754 switch (addr) {
755 case 0x00: /* FUNC_MUX_CTRL_0 */
756 case 0x04: /* FUNC_MUX_CTRL_1 */
757 case 0x08: /* FUNC_MUX_CTRL_2 */
758 return s->func_mux_ctrl[addr >> 2];
760 case 0x0c: /* COMP_MODE_CTRL_0 */
761 return s->comp_mode_ctrl[0];
763 case 0x10: /* FUNC_MUX_CTRL_3 */
764 case 0x14: /* FUNC_MUX_CTRL_4 */
765 case 0x18: /* FUNC_MUX_CTRL_5 */
766 case 0x1c: /* FUNC_MUX_CTRL_6 */
767 case 0x20: /* FUNC_MUX_CTRL_7 */
768 case 0x24: /* FUNC_MUX_CTRL_8 */
769 case 0x28: /* FUNC_MUX_CTRL_9 */
770 case 0x2c: /* FUNC_MUX_CTRL_A */
771 case 0x30: /* FUNC_MUX_CTRL_B */
772 case 0x34: /* FUNC_MUX_CTRL_C */
773 case 0x38: /* FUNC_MUX_CTRL_D */
774 return s->func_mux_ctrl[(addr >> 2) - 1];
776 case 0x40: /* PULL_DWN_CTRL_0 */
777 case 0x44: /* PULL_DWN_CTRL_1 */
778 case 0x48: /* PULL_DWN_CTRL_2 */
779 case 0x4c: /* PULL_DWN_CTRL_3 */
780 return s->pull_dwn_ctrl[(addr & 0xf) >> 2];
782 case 0x50: /* GATE_INH_CTRL_0 */
783 return s->gate_inh_ctrl[0];
785 case 0x60: /* VOLTAGE_CTRL_0 */
786 return s->voltage_ctrl[0];
788 case 0x70: /* TEST_DBG_CTRL_0 */
789 return s->test_dbg_ctrl[0];
791 case 0x80: /* MOD_CONF_CTRL_0 */
792 return s->mod_conf_ctrl[0];
795 OMAP_BAD_REG(addr);
796 return 0;
799 static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
800 uint32_t diff, uint32_t value)
802 if (s->compat1509) {
803 if (diff & (1 << 9)) /* BLUETOOTH */
804 omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
805 (~value >> 9) & 1);
806 if (diff & (1 << 7)) /* USB.CLKO */
807 omap_clk_onoff(omap_findclk(s, "usb.clko"),
808 (value >> 7) & 1);
812 static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
813 uint32_t diff, uint32_t value)
815 if (s->compat1509) {
816 if (diff & (1U << 31)) {
817 /* MCBSP3_CLK_HIZ_DI */
818 omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"), (value >> 31) & 1);
820 if (diff & (1 << 1)) {
821 /* CLK32K */
822 omap_clk_onoff(omap_findclk(s, "clk32k_out"), (~value >> 1) & 1);
827 static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
828 uint32_t diff, uint32_t value)
830 if (diff & (1U << 31)) {
831 /* CONF_MOD_UART3_CLK_MODE_R */
832 omap_clk_reparent(omap_findclk(s, "uart3_ck"),
833 omap_findclk(s, ((value >> 31) & 1) ?
834 "ck_48m" : "armper_ck"));
836 if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */
837 omap_clk_reparent(omap_findclk(s, "uart2_ck"),
838 omap_findclk(s, ((value >> 30) & 1) ?
839 "ck_48m" : "armper_ck"));
840 if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */
841 omap_clk_reparent(omap_findclk(s, "uart1_ck"),
842 omap_findclk(s, ((value >> 29) & 1) ?
843 "ck_48m" : "armper_ck"));
844 if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */
845 omap_clk_reparent(omap_findclk(s, "mmc_ck"),
846 omap_findclk(s, ((value >> 23) & 1) ?
847 "ck_48m" : "armper_ck"));
848 if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */
849 omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
850 omap_findclk(s, ((value >> 12) & 1) ?
851 "ck_48m" : "armper_ck"));
852 if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */
853 omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
856 static void omap_pin_cfg_write(void *opaque, hwaddr addr,
857 uint64_t value, unsigned size)
859 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
860 uint32_t diff;
862 if (size != 4) {
863 omap_badwidth_write32(opaque, addr, value);
864 return;
867 switch (addr) {
868 case 0x00: /* FUNC_MUX_CTRL_0 */
869 diff = s->func_mux_ctrl[addr >> 2] ^ value;
870 s->func_mux_ctrl[addr >> 2] = value;
871 omap_pin_funcmux0_update(s, diff, value);
872 return;
874 case 0x04: /* FUNC_MUX_CTRL_1 */
875 diff = s->func_mux_ctrl[addr >> 2] ^ value;
876 s->func_mux_ctrl[addr >> 2] = value;
877 omap_pin_funcmux1_update(s, diff, value);
878 return;
880 case 0x08: /* FUNC_MUX_CTRL_2 */
881 s->func_mux_ctrl[addr >> 2] = value;
882 return;
884 case 0x0c: /* COMP_MODE_CTRL_0 */
885 s->comp_mode_ctrl[0] = value;
886 s->compat1509 = (value != 0x0000eaef);
887 omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
888 omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
889 return;
891 case 0x10: /* FUNC_MUX_CTRL_3 */
892 case 0x14: /* FUNC_MUX_CTRL_4 */
893 case 0x18: /* FUNC_MUX_CTRL_5 */
894 case 0x1c: /* FUNC_MUX_CTRL_6 */
895 case 0x20: /* FUNC_MUX_CTRL_7 */
896 case 0x24: /* FUNC_MUX_CTRL_8 */
897 case 0x28: /* FUNC_MUX_CTRL_9 */
898 case 0x2c: /* FUNC_MUX_CTRL_A */
899 case 0x30: /* FUNC_MUX_CTRL_B */
900 case 0x34: /* FUNC_MUX_CTRL_C */
901 case 0x38: /* FUNC_MUX_CTRL_D */
902 s->func_mux_ctrl[(addr >> 2) - 1] = value;
903 return;
905 case 0x40: /* PULL_DWN_CTRL_0 */
906 case 0x44: /* PULL_DWN_CTRL_1 */
907 case 0x48: /* PULL_DWN_CTRL_2 */
908 case 0x4c: /* PULL_DWN_CTRL_3 */
909 s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value;
910 return;
912 case 0x50: /* GATE_INH_CTRL_0 */
913 s->gate_inh_ctrl[0] = value;
914 return;
916 case 0x60: /* VOLTAGE_CTRL_0 */
917 s->voltage_ctrl[0] = value;
918 return;
920 case 0x70: /* TEST_DBG_CTRL_0 */
921 s->test_dbg_ctrl[0] = value;
922 return;
924 case 0x80: /* MOD_CONF_CTRL_0 */
925 diff = s->mod_conf_ctrl[0] ^ value;
926 s->mod_conf_ctrl[0] = value;
927 omap_pin_modconf1_update(s, diff, value);
928 return;
930 default:
931 OMAP_BAD_REG(addr);
935 static const MemoryRegionOps omap_pin_cfg_ops = {
936 .read = omap_pin_cfg_read,
937 .write = omap_pin_cfg_write,
938 .endianness = DEVICE_NATIVE_ENDIAN,
941 static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
943 /* Start in Compatibility Mode. */
944 mpu->compat1509 = 1;
945 omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
946 omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
947 omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
948 memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
949 memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
950 memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
951 memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
952 memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
953 memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
954 memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
957 static void omap_pin_cfg_init(MemoryRegion *system_memory,
958 hwaddr base,
959 struct omap_mpu_state_s *mpu)
961 memory_region_init_io(&mpu->pin_cfg_iomem, NULL, &omap_pin_cfg_ops, mpu,
962 "omap-pin-cfg", 0x800);
963 memory_region_add_subregion(system_memory, base, &mpu->pin_cfg_iomem);
964 omap_pin_cfg_reset(mpu);
967 /* Device Identification, Die Identification */
968 static uint64_t omap_id_read(void *opaque, hwaddr addr,
969 unsigned size)
971 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
973 if (size != 4) {
974 return omap_badwidth_read32(opaque, addr);
977 switch (addr) {
978 case 0xfffe1800: /* DIE_ID_LSB */
979 return 0xc9581f0e;
980 case 0xfffe1804: /* DIE_ID_MSB */
981 return 0xa8858bfa;
983 case 0xfffe2000: /* PRODUCT_ID_LSB */
984 return 0x00aaaafc;
985 case 0xfffe2004: /* PRODUCT_ID_MSB */
986 return 0xcafeb574;
988 case 0xfffed400: /* JTAG_ID_LSB */
989 switch (s->mpu_model) {
990 case omap310:
991 return 0x03310315;
992 case omap1510:
993 return 0x03310115;
994 default:
995 hw_error("%s: bad mpu model\n", __FUNCTION__);
997 break;
999 case 0xfffed404: /* JTAG_ID_MSB */
1000 switch (s->mpu_model) {
1001 case omap310:
1002 return 0xfb57402f;
1003 case omap1510:
1004 return 0xfb47002f;
1005 default:
1006 hw_error("%s: bad mpu model\n", __FUNCTION__);
1008 break;
1011 OMAP_BAD_REG(addr);
1012 return 0;
1015 static void omap_id_write(void *opaque, hwaddr addr,
1016 uint64_t value, unsigned size)
1018 if (size != 4) {
1019 omap_badwidth_write32(opaque, addr, value);
1020 return;
1023 OMAP_BAD_REG(addr);
1026 static const MemoryRegionOps omap_id_ops = {
1027 .read = omap_id_read,
1028 .write = omap_id_write,
1029 .endianness = DEVICE_NATIVE_ENDIAN,
1032 static void omap_id_init(MemoryRegion *memory, struct omap_mpu_state_s *mpu)
1034 memory_region_init_io(&mpu->id_iomem, NULL, &omap_id_ops, mpu,
1035 "omap-id", 0x100000000ULL);
1036 memory_region_init_alias(&mpu->id_iomem_e18, NULL, "omap-id-e18", &mpu->id_iomem,
1037 0xfffe1800, 0x800);
1038 memory_region_add_subregion(memory, 0xfffe1800, &mpu->id_iomem_e18);
1039 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-ed4", &mpu->id_iomem,
1040 0xfffed400, 0x100);
1041 memory_region_add_subregion(memory, 0xfffed400, &mpu->id_iomem_ed4);
1042 if (!cpu_is_omap15xx(mpu)) {
1043 memory_region_init_alias(&mpu->id_iomem_ed4, NULL, "omap-id-e20",
1044 &mpu->id_iomem, 0xfffe2000, 0x800);
1045 memory_region_add_subregion(memory, 0xfffe2000, &mpu->id_iomem_e20);
1049 /* MPUI Control (Dummy) */
1050 static uint64_t omap_mpui_read(void *opaque, hwaddr addr,
1051 unsigned size)
1053 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1055 if (size != 4) {
1056 return omap_badwidth_read32(opaque, addr);
1059 switch (addr) {
1060 case 0x00: /* CTRL */
1061 return s->mpui_ctrl;
1062 case 0x04: /* DEBUG_ADDR */
1063 return 0x01ffffff;
1064 case 0x08: /* DEBUG_DATA */
1065 return 0xffffffff;
1066 case 0x0c: /* DEBUG_FLAG */
1067 return 0x00000800;
1068 case 0x10: /* STATUS */
1069 return 0x00000000;
1071 /* Not in OMAP310 */
1072 case 0x14: /* DSP_STATUS */
1073 case 0x18: /* DSP_BOOT_CONFIG */
1074 return 0x00000000;
1075 case 0x1c: /* DSP_MPUI_CONFIG */
1076 return 0x0000ffff;
1079 OMAP_BAD_REG(addr);
1080 return 0;
1083 static void omap_mpui_write(void *opaque, hwaddr addr,
1084 uint64_t value, unsigned size)
1086 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1088 if (size != 4) {
1089 omap_badwidth_write32(opaque, addr, value);
1090 return;
1093 switch (addr) {
1094 case 0x00: /* CTRL */
1095 s->mpui_ctrl = value & 0x007fffff;
1096 break;
1098 case 0x04: /* DEBUG_ADDR */
1099 case 0x08: /* DEBUG_DATA */
1100 case 0x0c: /* DEBUG_FLAG */
1101 case 0x10: /* STATUS */
1102 /* Not in OMAP310 */
1103 case 0x14: /* DSP_STATUS */
1104 OMAP_RO_REG(addr);
1105 break;
1106 case 0x18: /* DSP_BOOT_CONFIG */
1107 case 0x1c: /* DSP_MPUI_CONFIG */
1108 break;
1110 default:
1111 OMAP_BAD_REG(addr);
1115 static const MemoryRegionOps omap_mpui_ops = {
1116 .read = omap_mpui_read,
1117 .write = omap_mpui_write,
1118 .endianness = DEVICE_NATIVE_ENDIAN,
1121 static void omap_mpui_reset(struct omap_mpu_state_s *s)
1123 s->mpui_ctrl = 0x0003ff1b;
1126 static void omap_mpui_init(MemoryRegion *memory, hwaddr base,
1127 struct omap_mpu_state_s *mpu)
1129 memory_region_init_io(&mpu->mpui_iomem, NULL, &omap_mpui_ops, mpu,
1130 "omap-mpui", 0x100);
1131 memory_region_add_subregion(memory, base, &mpu->mpui_iomem);
1133 omap_mpui_reset(mpu);
1136 /* TIPB Bridges */
1137 struct omap_tipb_bridge_s {
1138 qemu_irq abort;
1139 MemoryRegion iomem;
1141 int width_intr;
1142 uint16_t control;
1143 uint16_t alloc;
1144 uint16_t buffer;
1145 uint16_t enh_control;
1148 static uint64_t omap_tipb_bridge_read(void *opaque, hwaddr addr,
1149 unsigned size)
1151 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1153 if (size < 2) {
1154 return omap_badwidth_read16(opaque, addr);
1157 switch (addr) {
1158 case 0x00: /* TIPB_CNTL */
1159 return s->control;
1160 case 0x04: /* TIPB_BUS_ALLOC */
1161 return s->alloc;
1162 case 0x08: /* MPU_TIPB_CNTL */
1163 return s->buffer;
1164 case 0x0c: /* ENHANCED_TIPB_CNTL */
1165 return s->enh_control;
1166 case 0x10: /* ADDRESS_DBG */
1167 case 0x14: /* DATA_DEBUG_LOW */
1168 case 0x18: /* DATA_DEBUG_HIGH */
1169 return 0xffff;
1170 case 0x1c: /* DEBUG_CNTR_SIG */
1171 return 0x00f8;
1174 OMAP_BAD_REG(addr);
1175 return 0;
1178 static void omap_tipb_bridge_write(void *opaque, hwaddr addr,
1179 uint64_t value, unsigned size)
1181 struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1183 if (size < 2) {
1184 omap_badwidth_write16(opaque, addr, value);
1185 return;
1188 switch (addr) {
1189 case 0x00: /* TIPB_CNTL */
1190 s->control = value & 0xffff;
1191 break;
1193 case 0x04: /* TIPB_BUS_ALLOC */
1194 s->alloc = value & 0x003f;
1195 break;
1197 case 0x08: /* MPU_TIPB_CNTL */
1198 s->buffer = value & 0x0003;
1199 break;
1201 case 0x0c: /* ENHANCED_TIPB_CNTL */
1202 s->width_intr = !(value & 2);
1203 s->enh_control = value & 0x000f;
1204 break;
1206 case 0x10: /* ADDRESS_DBG */
1207 case 0x14: /* DATA_DEBUG_LOW */
1208 case 0x18: /* DATA_DEBUG_HIGH */
1209 case 0x1c: /* DEBUG_CNTR_SIG */
1210 OMAP_RO_REG(addr);
1211 break;
1213 default:
1214 OMAP_BAD_REG(addr);
1218 static const MemoryRegionOps omap_tipb_bridge_ops = {
1219 .read = omap_tipb_bridge_read,
1220 .write = omap_tipb_bridge_write,
1221 .endianness = DEVICE_NATIVE_ENDIAN,
1224 static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1226 s->control = 0xffff;
1227 s->alloc = 0x0009;
1228 s->buffer = 0x0000;
1229 s->enh_control = 0x000f;
1232 static struct omap_tipb_bridge_s *omap_tipb_bridge_init(
1233 MemoryRegion *memory, hwaddr base,
1234 qemu_irq abort_irq, omap_clk clk)
1236 struct omap_tipb_bridge_s *s = g_new0(struct omap_tipb_bridge_s, 1);
1238 s->abort = abort_irq;
1239 omap_tipb_bridge_reset(s);
1241 memory_region_init_io(&s->iomem, NULL, &omap_tipb_bridge_ops, s,
1242 "omap-tipb-bridge", 0x100);
1243 memory_region_add_subregion(memory, base, &s->iomem);
1245 return s;
1248 /* Dummy Traffic Controller's Memory Interface */
1249 static uint64_t omap_tcmi_read(void *opaque, hwaddr addr,
1250 unsigned size)
1252 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1253 uint32_t ret;
1255 if (size != 4) {
1256 return omap_badwidth_read32(opaque, addr);
1259 switch (addr) {
1260 case 0x00: /* IMIF_PRIO */
1261 case 0x04: /* EMIFS_PRIO */
1262 case 0x08: /* EMIFF_PRIO */
1263 case 0x0c: /* EMIFS_CONFIG */
1264 case 0x10: /* EMIFS_CS0_CONFIG */
1265 case 0x14: /* EMIFS_CS1_CONFIG */
1266 case 0x18: /* EMIFS_CS2_CONFIG */
1267 case 0x1c: /* EMIFS_CS3_CONFIG */
1268 case 0x24: /* EMIFF_MRS */
1269 case 0x28: /* TIMEOUT1 */
1270 case 0x2c: /* TIMEOUT2 */
1271 case 0x30: /* TIMEOUT3 */
1272 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1273 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1274 return s->tcmi_regs[addr >> 2];
1276 case 0x20: /* EMIFF_SDRAM_CONFIG */
1277 ret = s->tcmi_regs[addr >> 2];
1278 s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1279 /* XXX: We can try using the VGA_DIRTY flag for this */
1280 return ret;
1283 OMAP_BAD_REG(addr);
1284 return 0;
1287 static void omap_tcmi_write(void *opaque, hwaddr addr,
1288 uint64_t value, unsigned size)
1290 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1292 if (size != 4) {
1293 omap_badwidth_write32(opaque, addr, value);
1294 return;
1297 switch (addr) {
1298 case 0x00: /* IMIF_PRIO */
1299 case 0x04: /* EMIFS_PRIO */
1300 case 0x08: /* EMIFF_PRIO */
1301 case 0x10: /* EMIFS_CS0_CONFIG */
1302 case 0x14: /* EMIFS_CS1_CONFIG */
1303 case 0x18: /* EMIFS_CS2_CONFIG */
1304 case 0x1c: /* EMIFS_CS3_CONFIG */
1305 case 0x20: /* EMIFF_SDRAM_CONFIG */
1306 case 0x24: /* EMIFF_MRS */
1307 case 0x28: /* TIMEOUT1 */
1308 case 0x2c: /* TIMEOUT2 */
1309 case 0x30: /* TIMEOUT3 */
1310 case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */
1311 case 0x40: /* EMIFS_CFG_DYN_WAIT */
1312 s->tcmi_regs[addr >> 2] = value;
1313 break;
1314 case 0x0c: /* EMIFS_CONFIG */
1315 s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4);
1316 break;
1318 default:
1319 OMAP_BAD_REG(addr);
1323 static const MemoryRegionOps omap_tcmi_ops = {
1324 .read = omap_tcmi_read,
1325 .write = omap_tcmi_write,
1326 .endianness = DEVICE_NATIVE_ENDIAN,
1329 static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1331 mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1332 mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1333 mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1334 mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1335 mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1336 mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1337 mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1338 mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1339 mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1340 mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1341 mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1342 mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1343 mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1344 mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1345 mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1348 static void omap_tcmi_init(MemoryRegion *memory, hwaddr base,
1349 struct omap_mpu_state_s *mpu)
1351 memory_region_init_io(&mpu->tcmi_iomem, NULL, &omap_tcmi_ops, mpu,
1352 "omap-tcmi", 0x100);
1353 memory_region_add_subregion(memory, base, &mpu->tcmi_iomem);
1354 omap_tcmi_reset(mpu);
1357 /* Digital phase-locked loops control */
1358 struct dpll_ctl_s {
1359 MemoryRegion iomem;
1360 uint16_t mode;
1361 omap_clk dpll;
1364 static uint64_t omap_dpll_read(void *opaque, hwaddr addr,
1365 unsigned size)
1367 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1369 if (size != 2) {
1370 return omap_badwidth_read16(opaque, addr);
1373 if (addr == 0x00) /* CTL_REG */
1374 return s->mode;
1376 OMAP_BAD_REG(addr);
1377 return 0;
1380 static void omap_dpll_write(void *opaque, hwaddr addr,
1381 uint64_t value, unsigned size)
1383 struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1384 uint16_t diff;
1385 static const int bypass_div[4] = { 1, 2, 4, 4 };
1386 int div, mult;
1388 if (size != 2) {
1389 omap_badwidth_write16(opaque, addr, value);
1390 return;
1393 if (addr == 0x00) { /* CTL_REG */
1394 /* See omap_ulpd_pm_write() too */
1395 diff = s->mode & value;
1396 s->mode = value & 0x2fff;
1397 if (diff & (0x3ff << 2)) {
1398 if (value & (1 << 4)) { /* PLL_ENABLE */
1399 div = ((value >> 5) & 3) + 1; /* PLL_DIV */
1400 mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */
1401 } else {
1402 div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */
1403 mult = 1;
1405 omap_clk_setrate(s->dpll, div, mult);
1408 /* Enter the desired mode. */
1409 s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1411 /* Act as if the lock is restored. */
1412 s->mode |= 2;
1413 } else {
1414 OMAP_BAD_REG(addr);
1418 static const MemoryRegionOps omap_dpll_ops = {
1419 .read = omap_dpll_read,
1420 .write = omap_dpll_write,
1421 .endianness = DEVICE_NATIVE_ENDIAN,
1424 static void omap_dpll_reset(struct dpll_ctl_s *s)
1426 s->mode = 0x2002;
1427 omap_clk_setrate(s->dpll, 1, 1);
1430 static struct dpll_ctl_s *omap_dpll_init(MemoryRegion *memory,
1431 hwaddr base, omap_clk clk)
1433 struct dpll_ctl_s *s = g_malloc0(sizeof(*s));
1434 memory_region_init_io(&s->iomem, NULL, &omap_dpll_ops, s, "omap-dpll", 0x100);
1436 s->dpll = clk;
1437 omap_dpll_reset(s);
1439 memory_region_add_subregion(memory, base, &s->iomem);
1440 return s;
1443 /* MPU Clock/Reset/Power Mode Control */
1444 static uint64_t omap_clkm_read(void *opaque, hwaddr addr,
1445 unsigned size)
1447 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1449 if (size != 2) {
1450 return omap_badwidth_read16(opaque, addr);
1453 switch (addr) {
1454 case 0x00: /* ARM_CKCTL */
1455 return s->clkm.arm_ckctl;
1457 case 0x04: /* ARM_IDLECT1 */
1458 return s->clkm.arm_idlect1;
1460 case 0x08: /* ARM_IDLECT2 */
1461 return s->clkm.arm_idlect2;
1463 case 0x0c: /* ARM_EWUPCT */
1464 return s->clkm.arm_ewupct;
1466 case 0x10: /* ARM_RSTCT1 */
1467 return s->clkm.arm_rstct1;
1469 case 0x14: /* ARM_RSTCT2 */
1470 return s->clkm.arm_rstct2;
1472 case 0x18: /* ARM_SYSST */
1473 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
1475 case 0x1c: /* ARM_CKOUT1 */
1476 return s->clkm.arm_ckout1;
1478 case 0x20: /* ARM_CKOUT2 */
1479 break;
1482 OMAP_BAD_REG(addr);
1483 return 0;
1486 static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
1487 uint16_t diff, uint16_t value)
1489 omap_clk clk;
1491 if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */
1492 if (value & (1 << 14))
1493 /* Reserved */;
1494 else {
1495 clk = omap_findclk(s, "arminth_ck");
1496 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1499 if (diff & (1 << 12)) { /* ARM_TIMXO */
1500 clk = omap_findclk(s, "armtim_ck");
1501 if (value & (1 << 12))
1502 omap_clk_reparent(clk, omap_findclk(s, "clkin"));
1503 else
1504 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1506 /* XXX: en_dspck */
1507 if (diff & (3 << 10)) { /* DSPMMUDIV */
1508 clk = omap_findclk(s, "dspmmu_ck");
1509 omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
1511 if (diff & (3 << 8)) { /* TCDIV */
1512 clk = omap_findclk(s, "tc_ck");
1513 omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
1515 if (diff & (3 << 6)) { /* DSPDIV */
1516 clk = omap_findclk(s, "dsp_ck");
1517 omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
1519 if (diff & (3 << 4)) { /* ARMDIV */
1520 clk = omap_findclk(s, "arm_ck");
1521 omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
1523 if (diff & (3 << 2)) { /* LCDDIV */
1524 clk = omap_findclk(s, "lcd_ck");
1525 omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
1527 if (diff & (3 << 0)) { /* PERDIV */
1528 clk = omap_findclk(s, "armper_ck");
1529 omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
1533 static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
1534 uint16_t diff, uint16_t value)
1536 omap_clk clk;
1538 if (value & (1 << 11)) { /* SETARM_IDLE */
1539 cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
1541 if (!(value & (1 << 10))) /* WKUP_MODE */
1542 qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
1544 #define SET_CANIDLE(clock, bit) \
1545 if (diff & (1 << bit)) { \
1546 clk = omap_findclk(s, clock); \
1547 omap_clk_canidle(clk, (value >> bit) & 1); \
1549 SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */
1550 SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */
1551 SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */
1552 SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */
1553 SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */
1554 SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */
1555 SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */
1556 SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */
1557 SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */
1558 SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */
1559 SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */
1560 SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */
1561 SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */
1562 SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */
1565 static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
1566 uint16_t diff, uint16_t value)
1568 omap_clk clk;
1570 #define SET_ONOFF(clock, bit) \
1571 if (diff & (1 << bit)) { \
1572 clk = omap_findclk(s, clock); \
1573 omap_clk_onoff(clk, (value >> bit) & 1); \
1575 SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */
1576 SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */
1577 SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */
1578 SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */
1579 SET_ONOFF("lb_ck", 4) /* EN_LBCK */
1580 SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */
1581 SET_ONOFF("mpui_ck", 6) /* EN_APICK */
1582 SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */
1583 SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */
1584 SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */
1585 SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */
1588 static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
1589 uint16_t diff, uint16_t value)
1591 omap_clk clk;
1593 if (diff & (3 << 4)) { /* TCLKOUT */
1594 clk = omap_findclk(s, "tclk_out");
1595 switch ((value >> 4) & 3) {
1596 case 1:
1597 omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
1598 omap_clk_onoff(clk, 1);
1599 break;
1600 case 2:
1601 omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
1602 omap_clk_onoff(clk, 1);
1603 break;
1604 default:
1605 omap_clk_onoff(clk, 0);
1608 if (diff & (3 << 2)) { /* DCLKOUT */
1609 clk = omap_findclk(s, "dclk_out");
1610 switch ((value >> 2) & 3) {
1611 case 0:
1612 omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
1613 break;
1614 case 1:
1615 omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
1616 break;
1617 case 2:
1618 omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
1619 break;
1620 case 3:
1621 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1622 break;
1625 if (diff & (3 << 0)) { /* ACLKOUT */
1626 clk = omap_findclk(s, "aclk_out");
1627 switch ((value >> 0) & 3) {
1628 case 1:
1629 omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
1630 omap_clk_onoff(clk, 1);
1631 break;
1632 case 2:
1633 omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
1634 omap_clk_onoff(clk, 1);
1635 break;
1636 case 3:
1637 omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
1638 omap_clk_onoff(clk, 1);
1639 break;
1640 default:
1641 omap_clk_onoff(clk, 0);
1646 static void omap_clkm_write(void *opaque, hwaddr addr,
1647 uint64_t value, unsigned size)
1649 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1650 uint16_t diff;
1651 omap_clk clk;
1652 static const char *clkschemename[8] = {
1653 "fully synchronous", "fully asynchronous", "synchronous scalable",
1654 "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
1657 if (size != 2) {
1658 omap_badwidth_write16(opaque, addr, value);
1659 return;
1662 switch (addr) {
1663 case 0x00: /* ARM_CKCTL */
1664 diff = s->clkm.arm_ckctl ^ value;
1665 s->clkm.arm_ckctl = value & 0x7fff;
1666 omap_clkm_ckctl_update(s, diff, value);
1667 return;
1669 case 0x04: /* ARM_IDLECT1 */
1670 diff = s->clkm.arm_idlect1 ^ value;
1671 s->clkm.arm_idlect1 = value & 0x0fff;
1672 omap_clkm_idlect1_update(s, diff, value);
1673 return;
1675 case 0x08: /* ARM_IDLECT2 */
1676 diff = s->clkm.arm_idlect2 ^ value;
1677 s->clkm.arm_idlect2 = value & 0x07ff;
1678 omap_clkm_idlect2_update(s, diff, value);
1679 return;
1681 case 0x0c: /* ARM_EWUPCT */
1682 s->clkm.arm_ewupct = value & 0x003f;
1683 return;
1685 case 0x10: /* ARM_RSTCT1 */
1686 diff = s->clkm.arm_rstct1 ^ value;
1687 s->clkm.arm_rstct1 = value & 0x0007;
1688 if (value & 9) {
1689 qemu_system_reset_request();
1690 s->clkm.cold_start = 0xa;
1692 if (diff & ~value & 4) { /* DSP_RST */
1693 omap_mpui_reset(s);
1694 omap_tipb_bridge_reset(s->private_tipb);
1695 omap_tipb_bridge_reset(s->public_tipb);
1697 if (diff & 2) { /* DSP_EN */
1698 clk = omap_findclk(s, "dsp_ck");
1699 omap_clk_canidle(clk, (~value >> 1) & 1);
1701 return;
1703 case 0x14: /* ARM_RSTCT2 */
1704 s->clkm.arm_rstct2 = value & 0x0001;
1705 return;
1707 case 0x18: /* ARM_SYSST */
1708 if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
1709 s->clkm.clocking_scheme = (value >> 11) & 7;
1710 printf("%s: clocking scheme set to %s\n", __FUNCTION__,
1711 clkschemename[s->clkm.clocking_scheme]);
1713 s->clkm.cold_start &= value & 0x3f;
1714 return;
1716 case 0x1c: /* ARM_CKOUT1 */
1717 diff = s->clkm.arm_ckout1 ^ value;
1718 s->clkm.arm_ckout1 = value & 0x003f;
1719 omap_clkm_ckout1_update(s, diff, value);
1720 return;
1722 case 0x20: /* ARM_CKOUT2 */
1723 default:
1724 OMAP_BAD_REG(addr);
1728 static const MemoryRegionOps omap_clkm_ops = {
1729 .read = omap_clkm_read,
1730 .write = omap_clkm_write,
1731 .endianness = DEVICE_NATIVE_ENDIAN,
1734 static uint64_t omap_clkdsp_read(void *opaque, hwaddr addr,
1735 unsigned size)
1737 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1738 CPUState *cpu = CPU(s->cpu);
1740 if (size != 2) {
1741 return omap_badwidth_read16(opaque, addr);
1744 switch (addr) {
1745 case 0x04: /* DSP_IDLECT1 */
1746 return s->clkm.dsp_idlect1;
1748 case 0x08: /* DSP_IDLECT2 */
1749 return s->clkm.dsp_idlect2;
1751 case 0x14: /* DSP_RSTCT2 */
1752 return s->clkm.dsp_rstct2;
1754 case 0x18: /* DSP_SYSST */
1755 cpu = CPU(s->cpu);
1756 return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
1757 (cpu->halted << 6); /* Quite useless... */
1760 OMAP_BAD_REG(addr);
1761 return 0;
1764 static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
1765 uint16_t diff, uint16_t value)
1767 omap_clk clk;
1769 SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */
1772 static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
1773 uint16_t diff, uint16_t value)
1775 omap_clk clk;
1777 SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */
1780 static void omap_clkdsp_write(void *opaque, hwaddr addr,
1781 uint64_t value, unsigned size)
1783 struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1784 uint16_t diff;
1786 if (size != 2) {
1787 omap_badwidth_write16(opaque, addr, value);
1788 return;
1791 switch (addr) {
1792 case 0x04: /* DSP_IDLECT1 */
1793 diff = s->clkm.dsp_idlect1 ^ value;
1794 s->clkm.dsp_idlect1 = value & 0x01f7;
1795 omap_clkdsp_idlect1_update(s, diff, value);
1796 break;
1798 case 0x08: /* DSP_IDLECT2 */
1799 s->clkm.dsp_idlect2 = value & 0x0037;
1800 diff = s->clkm.dsp_idlect1 ^ value;
1801 omap_clkdsp_idlect2_update(s, diff, value);
1802 break;
1804 case 0x14: /* DSP_RSTCT2 */
1805 s->clkm.dsp_rstct2 = value & 0x0001;
1806 break;
1808 case 0x18: /* DSP_SYSST */
1809 s->clkm.cold_start &= value & 0x3f;
1810 break;
1812 default:
1813 OMAP_BAD_REG(addr);
1817 static const MemoryRegionOps omap_clkdsp_ops = {
1818 .read = omap_clkdsp_read,
1819 .write = omap_clkdsp_write,
1820 .endianness = DEVICE_NATIVE_ENDIAN,
1823 static void omap_clkm_reset(struct omap_mpu_state_s *s)
1825 if (s->wdt && s->wdt->reset)
1826 s->clkm.cold_start = 0x6;
1827 s->clkm.clocking_scheme = 0;
1828 omap_clkm_ckctl_update(s, ~0, 0x3000);
1829 s->clkm.arm_ckctl = 0x3000;
1830 omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
1831 s->clkm.arm_idlect1 = 0x0400;
1832 omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
1833 s->clkm.arm_idlect2 = 0x0100;
1834 s->clkm.arm_ewupct = 0x003f;
1835 s->clkm.arm_rstct1 = 0x0000;
1836 s->clkm.arm_rstct2 = 0x0000;
1837 s->clkm.arm_ckout1 = 0x0015;
1838 s->clkm.dpll1_mode = 0x2002;
1839 omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
1840 s->clkm.dsp_idlect1 = 0x0040;
1841 omap_clkdsp_idlect2_update(s, ~0, 0x0000);
1842 s->clkm.dsp_idlect2 = 0x0000;
1843 s->clkm.dsp_rstct2 = 0x0000;
1846 static void omap_clkm_init(MemoryRegion *memory, hwaddr mpu_base,
1847 hwaddr dsp_base, struct omap_mpu_state_s *s)
1849 memory_region_init_io(&s->clkm_iomem, NULL, &omap_clkm_ops, s,
1850 "omap-clkm", 0x100);
1851 memory_region_init_io(&s->clkdsp_iomem, NULL, &omap_clkdsp_ops, s,
1852 "omap-clkdsp", 0x1000);
1854 s->clkm.arm_idlect1 = 0x03ff;
1855 s->clkm.arm_idlect2 = 0x0100;
1856 s->clkm.dsp_idlect1 = 0x0002;
1857 omap_clkm_reset(s);
1858 s->clkm.cold_start = 0x3a;
1860 memory_region_add_subregion(memory, mpu_base, &s->clkm_iomem);
1861 memory_region_add_subregion(memory, dsp_base, &s->clkdsp_iomem);
1864 /* MPU I/O */
1865 struct omap_mpuio_s {
1866 qemu_irq irq;
1867 qemu_irq kbd_irq;
1868 qemu_irq *in;
1869 qemu_irq handler[16];
1870 qemu_irq wakeup;
1871 MemoryRegion iomem;
1873 uint16_t inputs;
1874 uint16_t outputs;
1875 uint16_t dir;
1876 uint16_t edge;
1877 uint16_t mask;
1878 uint16_t ints;
1880 uint16_t debounce;
1881 uint16_t latch;
1882 uint8_t event;
1884 uint8_t buttons[5];
1885 uint8_t row_latch;
1886 uint8_t cols;
1887 int kbd_mask;
1888 int clk;
1891 static void omap_mpuio_set(void *opaque, int line, int level)
1893 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1894 uint16_t prev = s->inputs;
1896 if (level)
1897 s->inputs |= 1 << line;
1898 else
1899 s->inputs &= ~(1 << line);
1901 if (((1 << line) & s->dir & ~s->mask) && s->clk) {
1902 if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
1903 s->ints |= 1 << line;
1904 qemu_irq_raise(s->irq);
1905 /* TODO: wakeup */
1907 if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */
1908 (s->event >> 1) == line) /* PIN_SELECT */
1909 s->latch = s->inputs;
1913 static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
1915 int i;
1916 uint8_t *row, rows = 0, cols = ~s->cols;
1918 for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
1919 if (*row & cols)
1920 rows |= i;
1922 qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
1923 s->row_latch = ~rows;
1926 static uint64_t omap_mpuio_read(void *opaque, hwaddr addr,
1927 unsigned size)
1929 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1930 int offset = addr & OMAP_MPUI_REG_MASK;
1931 uint16_t ret;
1933 if (size != 2) {
1934 return omap_badwidth_read16(opaque, addr);
1937 switch (offset) {
1938 case 0x00: /* INPUT_LATCH */
1939 return s->inputs;
1941 case 0x04: /* OUTPUT_REG */
1942 return s->outputs;
1944 case 0x08: /* IO_CNTL */
1945 return s->dir;
1947 case 0x10: /* KBR_LATCH */
1948 return s->row_latch;
1950 case 0x14: /* KBC_REG */
1951 return s->cols;
1953 case 0x18: /* GPIO_EVENT_MODE_REG */
1954 return s->event;
1956 case 0x1c: /* GPIO_INT_EDGE_REG */
1957 return s->edge;
1959 case 0x20: /* KBD_INT */
1960 return (~s->row_latch & 0x1f) && !s->kbd_mask;
1962 case 0x24: /* GPIO_INT */
1963 ret = s->ints;
1964 s->ints &= s->mask;
1965 if (ret)
1966 qemu_irq_lower(s->irq);
1967 return ret;
1969 case 0x28: /* KBD_MASKIT */
1970 return s->kbd_mask;
1972 case 0x2c: /* GPIO_MASKIT */
1973 return s->mask;
1975 case 0x30: /* GPIO_DEBOUNCING_REG */
1976 return s->debounce;
1978 case 0x34: /* GPIO_LATCH_REG */
1979 return s->latch;
1982 OMAP_BAD_REG(addr);
1983 return 0;
1986 static void omap_mpuio_write(void *opaque, hwaddr addr,
1987 uint64_t value, unsigned size)
1989 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
1990 int offset = addr & OMAP_MPUI_REG_MASK;
1991 uint16_t diff;
1992 int ln;
1994 if (size != 2) {
1995 omap_badwidth_write16(opaque, addr, value);
1996 return;
1999 switch (offset) {
2000 case 0x04: /* OUTPUT_REG */
2001 diff = (s->outputs ^ value) & ~s->dir;
2002 s->outputs = value;
2003 while ((ln = ctz32(diff)) != 32) {
2004 if (s->handler[ln])
2005 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2006 diff &= ~(1 << ln);
2008 break;
2010 case 0x08: /* IO_CNTL */
2011 diff = s->outputs & (s->dir ^ value);
2012 s->dir = value;
2014 value = s->outputs & ~s->dir;
2015 while ((ln = ctz32(diff)) != 32) {
2016 if (s->handler[ln])
2017 qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2018 diff &= ~(1 << ln);
2020 break;
2022 case 0x14: /* KBC_REG */
2023 s->cols = value;
2024 omap_mpuio_kbd_update(s);
2025 break;
2027 case 0x18: /* GPIO_EVENT_MODE_REG */
2028 s->event = value & 0x1f;
2029 break;
2031 case 0x1c: /* GPIO_INT_EDGE_REG */
2032 s->edge = value;
2033 break;
2035 case 0x28: /* KBD_MASKIT */
2036 s->kbd_mask = value & 1;
2037 omap_mpuio_kbd_update(s);
2038 break;
2040 case 0x2c: /* GPIO_MASKIT */
2041 s->mask = value;
2042 break;
2044 case 0x30: /* GPIO_DEBOUNCING_REG */
2045 s->debounce = value & 0x1ff;
2046 break;
2048 case 0x00: /* INPUT_LATCH */
2049 case 0x10: /* KBR_LATCH */
2050 case 0x20: /* KBD_INT */
2051 case 0x24: /* GPIO_INT */
2052 case 0x34: /* GPIO_LATCH_REG */
2053 OMAP_RO_REG(addr);
2054 return;
2056 default:
2057 OMAP_BAD_REG(addr);
2058 return;
2062 static const MemoryRegionOps omap_mpuio_ops = {
2063 .read = omap_mpuio_read,
2064 .write = omap_mpuio_write,
2065 .endianness = DEVICE_NATIVE_ENDIAN,
2068 static void omap_mpuio_reset(struct omap_mpuio_s *s)
2070 s->inputs = 0;
2071 s->outputs = 0;
2072 s->dir = ~0;
2073 s->event = 0;
2074 s->edge = 0;
2075 s->kbd_mask = 0;
2076 s->mask = 0;
2077 s->debounce = 0;
2078 s->latch = 0;
2079 s->ints = 0;
2080 s->row_latch = 0x1f;
2081 s->clk = 1;
2084 static void omap_mpuio_onoff(void *opaque, int line, int on)
2086 struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2088 s->clk = on;
2089 if (on)
2090 omap_mpuio_kbd_update(s);
2093 static struct omap_mpuio_s *omap_mpuio_init(MemoryRegion *memory,
2094 hwaddr base,
2095 qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2096 omap_clk clk)
2098 struct omap_mpuio_s *s = g_new0(struct omap_mpuio_s, 1);
2100 s->irq = gpio_int;
2101 s->kbd_irq = kbd_int;
2102 s->wakeup = wakeup;
2103 s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2104 omap_mpuio_reset(s);
2106 memory_region_init_io(&s->iomem, NULL, &omap_mpuio_ops, s,
2107 "omap-mpuio", 0x800);
2108 memory_region_add_subregion(memory, base, &s->iomem);
2110 omap_clk_adduser(clk, qemu_allocate_irq(omap_mpuio_onoff, s, 0));
2112 return s;
2115 qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2117 return s->in;
2120 void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2122 if (line >= 16 || line < 0)
2123 hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
2124 s->handler[line] = handler;
2127 void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2129 if (row >= 5 || row < 0)
2130 hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
2132 if (down)
2133 s->buttons[row] |= 1 << col;
2134 else
2135 s->buttons[row] &= ~(1 << col);
2137 omap_mpuio_kbd_update(s);
2140 /* MicroWire Interface */
2141 struct omap_uwire_s {
2142 MemoryRegion iomem;
2143 qemu_irq txirq;
2144 qemu_irq rxirq;
2145 qemu_irq txdrq;
2147 uint16_t txbuf;
2148 uint16_t rxbuf;
2149 uint16_t control;
2150 uint16_t setup[5];
2152 uWireSlave *chip[4];
2155 static void omap_uwire_transfer_start(struct omap_uwire_s *s)
2157 int chipselect = (s->control >> 10) & 3; /* INDEX */
2158 uWireSlave *slave = s->chip[chipselect];
2160 if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */
2161 if (s->control & (1 << 12)) /* CS_CMD */
2162 if (slave && slave->send)
2163 slave->send(slave->opaque,
2164 s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
2165 s->control &= ~(1 << 14); /* CSRB */
2166 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2167 * a DRQ. When is the level IRQ supposed to be reset? */
2170 if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */
2171 if (s->control & (1 << 12)) /* CS_CMD */
2172 if (slave && slave->receive)
2173 s->rxbuf = slave->receive(slave->opaque);
2174 s->control |= 1 << 15; /* RDRB */
2175 /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
2176 * a DRQ. When is the level IRQ supposed to be reset? */
2180 static uint64_t omap_uwire_read(void *opaque, hwaddr addr,
2181 unsigned size)
2183 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2184 int offset = addr & OMAP_MPUI_REG_MASK;
2186 if (size != 2) {
2187 return omap_badwidth_read16(opaque, addr);
2190 switch (offset) {
2191 case 0x00: /* RDR */
2192 s->control &= ~(1 << 15); /* RDRB */
2193 return s->rxbuf;
2195 case 0x04: /* CSR */
2196 return s->control;
2198 case 0x08: /* SR1 */
2199 return s->setup[0];
2200 case 0x0c: /* SR2 */
2201 return s->setup[1];
2202 case 0x10: /* SR3 */
2203 return s->setup[2];
2204 case 0x14: /* SR4 */
2205 return s->setup[3];
2206 case 0x18: /* SR5 */
2207 return s->setup[4];
2210 OMAP_BAD_REG(addr);
2211 return 0;
2214 static void omap_uwire_write(void *opaque, hwaddr addr,
2215 uint64_t value, unsigned size)
2217 struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
2218 int offset = addr & OMAP_MPUI_REG_MASK;
2220 if (size != 2) {
2221 omap_badwidth_write16(opaque, addr, value);
2222 return;
2225 switch (offset) {
2226 case 0x00: /* TDR */
2227 s->txbuf = value; /* TD */
2228 if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */
2229 ((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */
2230 (s->control & (1 << 12)))) { /* CS_CMD */
2231 s->control |= 1 << 14; /* CSRB */
2232 omap_uwire_transfer_start(s);
2234 break;
2236 case 0x04: /* CSR */
2237 s->control = value & 0x1fff;
2238 if (value & (1 << 13)) /* START */
2239 omap_uwire_transfer_start(s);
2240 break;
2242 case 0x08: /* SR1 */
2243 s->setup[0] = value & 0x003f;
2244 break;
2246 case 0x0c: /* SR2 */
2247 s->setup[1] = value & 0x0fc0;
2248 break;
2250 case 0x10: /* SR3 */
2251 s->setup[2] = value & 0x0003;
2252 break;
2254 case 0x14: /* SR4 */
2255 s->setup[3] = value & 0x0001;
2256 break;
2258 case 0x18: /* SR5 */
2259 s->setup[4] = value & 0x000f;
2260 break;
2262 default:
2263 OMAP_BAD_REG(addr);
2264 return;
2268 static const MemoryRegionOps omap_uwire_ops = {
2269 .read = omap_uwire_read,
2270 .write = omap_uwire_write,
2271 .endianness = DEVICE_NATIVE_ENDIAN,
2274 static void omap_uwire_reset(struct omap_uwire_s *s)
2276 s->control = 0;
2277 s->setup[0] = 0;
2278 s->setup[1] = 0;
2279 s->setup[2] = 0;
2280 s->setup[3] = 0;
2281 s->setup[4] = 0;
2284 static struct omap_uwire_s *omap_uwire_init(MemoryRegion *system_memory,
2285 hwaddr base,
2286 qemu_irq txirq, qemu_irq rxirq,
2287 qemu_irq dma,
2288 omap_clk clk)
2290 struct omap_uwire_s *s = g_new0(struct omap_uwire_s, 1);
2292 s->txirq = txirq;
2293 s->rxirq = rxirq;
2294 s->txdrq = dma;
2295 omap_uwire_reset(s);
2297 memory_region_init_io(&s->iomem, NULL, &omap_uwire_ops, s, "omap-uwire", 0x800);
2298 memory_region_add_subregion(system_memory, base, &s->iomem);
2300 return s;
2303 void omap_uwire_attach(struct omap_uwire_s *s,
2304 uWireSlave *slave, int chipselect)
2306 if (chipselect < 0 || chipselect > 3) {
2307 fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
2308 exit(-1);
2311 s->chip[chipselect] = slave;
2314 /* Pseudonoise Pulse-Width Light Modulator */
2315 struct omap_pwl_s {
2316 MemoryRegion iomem;
2317 uint8_t output;
2318 uint8_t level;
2319 uint8_t enable;
2320 int clk;
2323 static void omap_pwl_update(struct omap_pwl_s *s)
2325 int output = (s->clk && s->enable) ? s->level : 0;
2327 if (output != s->output) {
2328 s->output = output;
2329 printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
2333 static uint64_t omap_pwl_read(void *opaque, hwaddr addr,
2334 unsigned size)
2336 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2337 int offset = addr & OMAP_MPUI_REG_MASK;
2339 if (size != 1) {
2340 return omap_badwidth_read8(opaque, addr);
2343 switch (offset) {
2344 case 0x00: /* PWL_LEVEL */
2345 return s->level;
2346 case 0x04: /* PWL_CTRL */
2347 return s->enable;
2349 OMAP_BAD_REG(addr);
2350 return 0;
2353 static void omap_pwl_write(void *opaque, hwaddr addr,
2354 uint64_t value, unsigned size)
2356 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2357 int offset = addr & OMAP_MPUI_REG_MASK;
2359 if (size != 1) {
2360 omap_badwidth_write8(opaque, addr, value);
2361 return;
2364 switch (offset) {
2365 case 0x00: /* PWL_LEVEL */
2366 s->level = value;
2367 omap_pwl_update(s);
2368 break;
2369 case 0x04: /* PWL_CTRL */
2370 s->enable = value & 1;
2371 omap_pwl_update(s);
2372 break;
2373 default:
2374 OMAP_BAD_REG(addr);
2375 return;
2379 static const MemoryRegionOps omap_pwl_ops = {
2380 .read = omap_pwl_read,
2381 .write = omap_pwl_write,
2382 .endianness = DEVICE_NATIVE_ENDIAN,
2385 static void omap_pwl_reset(struct omap_pwl_s *s)
2387 s->output = 0;
2388 s->level = 0;
2389 s->enable = 0;
2390 s->clk = 1;
2391 omap_pwl_update(s);
2394 static void omap_pwl_clk_update(void *opaque, int line, int on)
2396 struct omap_pwl_s *s = (struct omap_pwl_s *) opaque;
2398 s->clk = on;
2399 omap_pwl_update(s);
2402 static struct omap_pwl_s *omap_pwl_init(MemoryRegion *system_memory,
2403 hwaddr base,
2404 omap_clk clk)
2406 struct omap_pwl_s *s = g_malloc0(sizeof(*s));
2408 omap_pwl_reset(s);
2410 memory_region_init_io(&s->iomem, NULL, &omap_pwl_ops, s,
2411 "omap-pwl", 0x800);
2412 memory_region_add_subregion(system_memory, base, &s->iomem);
2414 omap_clk_adduser(clk, qemu_allocate_irq(omap_pwl_clk_update, s, 0));
2415 return s;
2418 /* Pulse-Width Tone module */
2419 struct omap_pwt_s {
2420 MemoryRegion iomem;
2421 uint8_t frc;
2422 uint8_t vrc;
2423 uint8_t gcr;
2424 omap_clk clk;
2427 static uint64_t omap_pwt_read(void *opaque, hwaddr addr,
2428 unsigned size)
2430 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2431 int offset = addr & OMAP_MPUI_REG_MASK;
2433 if (size != 1) {
2434 return omap_badwidth_read8(opaque, addr);
2437 switch (offset) {
2438 case 0x00: /* FRC */
2439 return s->frc;
2440 case 0x04: /* VCR */
2441 return s->vrc;
2442 case 0x08: /* GCR */
2443 return s->gcr;
2445 OMAP_BAD_REG(addr);
2446 return 0;
2449 static void omap_pwt_write(void *opaque, hwaddr addr,
2450 uint64_t value, unsigned size)
2452 struct omap_pwt_s *s = (struct omap_pwt_s *) opaque;
2453 int offset = addr & OMAP_MPUI_REG_MASK;
2455 if (size != 1) {
2456 omap_badwidth_write8(opaque, addr, value);
2457 return;
2460 switch (offset) {
2461 case 0x00: /* FRC */
2462 s->frc = value & 0x3f;
2463 break;
2464 case 0x04: /* VRC */
2465 if ((value ^ s->vrc) & 1) {
2466 if (value & 1)
2467 printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
2468 /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
2469 ((omap_clk_getrate(s->clk) >> 3) /
2470 /* Pre-multiplexer divider */
2471 ((s->gcr & 2) ? 1 : 154) /
2472 /* Octave multiplexer */
2473 (2 << (value & 3)) *
2474 /* 101/107 divider */
2475 ((value & (1 << 2)) ? 101 : 107) *
2476 /* 49/55 divider */
2477 ((value & (1 << 3)) ? 49 : 55) *
2478 /* 50/63 divider */
2479 ((value & (1 << 4)) ? 50 : 63) *
2480 /* 80/127 divider */
2481 ((value & (1 << 5)) ? 80 : 127) /
2482 (107 * 55 * 63 * 127)));
2483 else
2484 printf("%s: silence!\n", __FUNCTION__);
2486 s->vrc = value & 0x7f;
2487 break;
2488 case 0x08: /* GCR */
2489 s->gcr = value & 3;
2490 break;
2491 default:
2492 OMAP_BAD_REG(addr);
2493 return;
2497 static const MemoryRegionOps omap_pwt_ops = {
2498 .read =omap_pwt_read,
2499 .write = omap_pwt_write,
2500 .endianness = DEVICE_NATIVE_ENDIAN,
2503 static void omap_pwt_reset(struct omap_pwt_s *s)
2505 s->frc = 0;
2506 s->vrc = 0;
2507 s->gcr = 0;
2510 static struct omap_pwt_s *omap_pwt_init(MemoryRegion *system_memory,
2511 hwaddr base,
2512 omap_clk clk)
2514 struct omap_pwt_s *s = g_malloc0(sizeof(*s));
2515 s->clk = clk;
2516 omap_pwt_reset(s);
2518 memory_region_init_io(&s->iomem, NULL, &omap_pwt_ops, s,
2519 "omap-pwt", 0x800);
2520 memory_region_add_subregion(system_memory, base, &s->iomem);
2521 return s;
2524 /* Real-time Clock module */
2525 struct omap_rtc_s {
2526 MemoryRegion iomem;
2527 qemu_irq irq;
2528 qemu_irq alarm;
2529 QEMUTimer *clk;
2531 uint8_t interrupts;
2532 uint8_t status;
2533 int16_t comp_reg;
2534 int running;
2535 int pm_am;
2536 int auto_comp;
2537 int round;
2538 struct tm alarm_tm;
2539 time_t alarm_ti;
2541 struct tm current_tm;
2542 time_t ti;
2543 uint64_t tick;
2546 static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
2548 /* s->alarm is level-triggered */
2549 qemu_set_irq(s->alarm, (s->status >> 6) & 1);
2552 static void omap_rtc_alarm_update(struct omap_rtc_s *s)
2554 s->alarm_ti = mktimegm(&s->alarm_tm);
2555 if (s->alarm_ti == -1)
2556 printf("%s: conversion failed\n", __FUNCTION__);
2559 static uint64_t omap_rtc_read(void *opaque, hwaddr addr,
2560 unsigned size)
2562 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2563 int offset = addr & OMAP_MPUI_REG_MASK;
2564 uint8_t i;
2566 if (size != 1) {
2567 return omap_badwidth_read8(opaque, addr);
2570 switch (offset) {
2571 case 0x00: /* SECONDS_REG */
2572 return to_bcd(s->current_tm.tm_sec);
2574 case 0x04: /* MINUTES_REG */
2575 return to_bcd(s->current_tm.tm_min);
2577 case 0x08: /* HOURS_REG */
2578 if (s->pm_am)
2579 return ((s->current_tm.tm_hour > 11) << 7) |
2580 to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
2581 else
2582 return to_bcd(s->current_tm.tm_hour);
2584 case 0x0c: /* DAYS_REG */
2585 return to_bcd(s->current_tm.tm_mday);
2587 case 0x10: /* MONTHS_REG */
2588 return to_bcd(s->current_tm.tm_mon + 1);
2590 case 0x14: /* YEARS_REG */
2591 return to_bcd(s->current_tm.tm_year % 100);
2593 case 0x18: /* WEEK_REG */
2594 return s->current_tm.tm_wday;
2596 case 0x20: /* ALARM_SECONDS_REG */
2597 return to_bcd(s->alarm_tm.tm_sec);
2599 case 0x24: /* ALARM_MINUTES_REG */
2600 return to_bcd(s->alarm_tm.tm_min);
2602 case 0x28: /* ALARM_HOURS_REG */
2603 if (s->pm_am)
2604 return ((s->alarm_tm.tm_hour > 11) << 7) |
2605 to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
2606 else
2607 return to_bcd(s->alarm_tm.tm_hour);
2609 case 0x2c: /* ALARM_DAYS_REG */
2610 return to_bcd(s->alarm_tm.tm_mday);
2612 case 0x30: /* ALARM_MONTHS_REG */
2613 return to_bcd(s->alarm_tm.tm_mon + 1);
2615 case 0x34: /* ALARM_YEARS_REG */
2616 return to_bcd(s->alarm_tm.tm_year % 100);
2618 case 0x40: /* RTC_CTRL_REG */
2619 return (s->pm_am << 3) | (s->auto_comp << 2) |
2620 (s->round << 1) | s->running;
2622 case 0x44: /* RTC_STATUS_REG */
2623 i = s->status;
2624 s->status &= ~0x3d;
2625 return i;
2627 case 0x48: /* RTC_INTERRUPTS_REG */
2628 return s->interrupts;
2630 case 0x4c: /* RTC_COMP_LSB_REG */
2631 return ((uint16_t) s->comp_reg) & 0xff;
2633 case 0x50: /* RTC_COMP_MSB_REG */
2634 return ((uint16_t) s->comp_reg) >> 8;
2637 OMAP_BAD_REG(addr);
2638 return 0;
2641 static void omap_rtc_write(void *opaque, hwaddr addr,
2642 uint64_t value, unsigned size)
2644 struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
2645 int offset = addr & OMAP_MPUI_REG_MASK;
2646 struct tm new_tm;
2647 time_t ti[2];
2649 if (size != 1) {
2650 omap_badwidth_write8(opaque, addr, value);
2651 return;
2654 switch (offset) {
2655 case 0x00: /* SECONDS_REG */
2656 #ifdef ALMDEBUG
2657 printf("RTC SEC_REG <-- %02x\n", value);
2658 #endif
2659 s->ti -= s->current_tm.tm_sec;
2660 s->ti += from_bcd(value);
2661 return;
2663 case 0x04: /* MINUTES_REG */
2664 #ifdef ALMDEBUG
2665 printf("RTC MIN_REG <-- %02x\n", value);
2666 #endif
2667 s->ti -= s->current_tm.tm_min * 60;
2668 s->ti += from_bcd(value) * 60;
2669 return;
2671 case 0x08: /* HOURS_REG */
2672 #ifdef ALMDEBUG
2673 printf("RTC HRS_REG <-- %02x\n", value);
2674 #endif
2675 s->ti -= s->current_tm.tm_hour * 3600;
2676 if (s->pm_am) {
2677 s->ti += (from_bcd(value & 0x3f) & 12) * 3600;
2678 s->ti += ((value >> 7) & 1) * 43200;
2679 } else
2680 s->ti += from_bcd(value & 0x3f) * 3600;
2681 return;
2683 case 0x0c: /* DAYS_REG */
2684 #ifdef ALMDEBUG
2685 printf("RTC DAY_REG <-- %02x\n", value);
2686 #endif
2687 s->ti -= s->current_tm.tm_mday * 86400;
2688 s->ti += from_bcd(value) * 86400;
2689 return;
2691 case 0x10: /* MONTHS_REG */
2692 #ifdef ALMDEBUG
2693 printf("RTC MTH_REG <-- %02x\n", value);
2694 #endif
2695 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2696 new_tm.tm_mon = from_bcd(value);
2697 ti[0] = mktimegm(&s->current_tm);
2698 ti[1] = mktimegm(&new_tm);
2700 if (ti[0] != -1 && ti[1] != -1) {
2701 s->ti -= ti[0];
2702 s->ti += ti[1];
2703 } else {
2704 /* A less accurate version */
2705 s->ti -= s->current_tm.tm_mon * 2592000;
2706 s->ti += from_bcd(value) * 2592000;
2708 return;
2710 case 0x14: /* YEARS_REG */
2711 #ifdef ALMDEBUG
2712 printf("RTC YRS_REG <-- %02x\n", value);
2713 #endif
2714 memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
2715 new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
2716 ti[0] = mktimegm(&s->current_tm);
2717 ti[1] = mktimegm(&new_tm);
2719 if (ti[0] != -1 && ti[1] != -1) {
2720 s->ti -= ti[0];
2721 s->ti += ti[1];
2722 } else {
2723 /* A less accurate version */
2724 s->ti -= (time_t)(s->current_tm.tm_year % 100) * 31536000;
2725 s->ti += (time_t)from_bcd(value) * 31536000;
2727 return;
2729 case 0x18: /* WEEK_REG */
2730 return; /* Ignored */
2732 case 0x20: /* ALARM_SECONDS_REG */
2733 #ifdef ALMDEBUG
2734 printf("ALM SEC_REG <-- %02x\n", value);
2735 #endif
2736 s->alarm_tm.tm_sec = from_bcd(value);
2737 omap_rtc_alarm_update(s);
2738 return;
2740 case 0x24: /* ALARM_MINUTES_REG */
2741 #ifdef ALMDEBUG
2742 printf("ALM MIN_REG <-- %02x\n", value);
2743 #endif
2744 s->alarm_tm.tm_min = from_bcd(value);
2745 omap_rtc_alarm_update(s);
2746 return;
2748 case 0x28: /* ALARM_HOURS_REG */
2749 #ifdef ALMDEBUG
2750 printf("ALM HRS_REG <-- %02x\n", value);
2751 #endif
2752 if (s->pm_am)
2753 s->alarm_tm.tm_hour =
2754 ((from_bcd(value & 0x3f)) % 12) +
2755 ((value >> 7) & 1) * 12;
2756 else
2757 s->alarm_tm.tm_hour = from_bcd(value);
2758 omap_rtc_alarm_update(s);
2759 return;
2761 case 0x2c: /* ALARM_DAYS_REG */
2762 #ifdef ALMDEBUG
2763 printf("ALM DAY_REG <-- %02x\n", value);
2764 #endif
2765 s->alarm_tm.tm_mday = from_bcd(value);
2766 omap_rtc_alarm_update(s);
2767 return;
2769 case 0x30: /* ALARM_MONTHS_REG */
2770 #ifdef ALMDEBUG
2771 printf("ALM MON_REG <-- %02x\n", value);
2772 #endif
2773 s->alarm_tm.tm_mon = from_bcd(value);
2774 omap_rtc_alarm_update(s);
2775 return;
2777 case 0x34: /* ALARM_YEARS_REG */
2778 #ifdef ALMDEBUG
2779 printf("ALM YRS_REG <-- %02x\n", value);
2780 #endif
2781 s->alarm_tm.tm_year = from_bcd(value);
2782 omap_rtc_alarm_update(s);
2783 return;
2785 case 0x40: /* RTC_CTRL_REG */
2786 #ifdef ALMDEBUG
2787 printf("RTC CONTROL <-- %02x\n", value);
2788 #endif
2789 s->pm_am = (value >> 3) & 1;
2790 s->auto_comp = (value >> 2) & 1;
2791 s->round = (value >> 1) & 1;
2792 s->running = value & 1;
2793 s->status &= 0xfd;
2794 s->status |= s->running << 1;
2795 return;
2797 case 0x44: /* RTC_STATUS_REG */
2798 #ifdef ALMDEBUG
2799 printf("RTC STATUSL <-- %02x\n", value);
2800 #endif
2801 s->status &= ~((value & 0xc0) ^ 0x80);
2802 omap_rtc_interrupts_update(s);
2803 return;
2805 case 0x48: /* RTC_INTERRUPTS_REG */
2806 #ifdef ALMDEBUG
2807 printf("RTC INTRS <-- %02x\n", value);
2808 #endif
2809 s->interrupts = value;
2810 return;
2812 case 0x4c: /* RTC_COMP_LSB_REG */
2813 #ifdef ALMDEBUG
2814 printf("RTC COMPLSB <-- %02x\n", value);
2815 #endif
2816 s->comp_reg &= 0xff00;
2817 s->comp_reg |= 0x00ff & value;
2818 return;
2820 case 0x50: /* RTC_COMP_MSB_REG */
2821 #ifdef ALMDEBUG
2822 printf("RTC COMPMSB <-- %02x\n", value);
2823 #endif
2824 s->comp_reg &= 0x00ff;
2825 s->comp_reg |= 0xff00 & (value << 8);
2826 return;
2828 default:
2829 OMAP_BAD_REG(addr);
2830 return;
2834 static const MemoryRegionOps omap_rtc_ops = {
2835 .read = omap_rtc_read,
2836 .write = omap_rtc_write,
2837 .endianness = DEVICE_NATIVE_ENDIAN,
2840 static void omap_rtc_tick(void *opaque)
2842 struct omap_rtc_s *s = opaque;
2844 if (s->round) {
2845 /* Round to nearest full minute. */
2846 if (s->current_tm.tm_sec < 30)
2847 s->ti -= s->current_tm.tm_sec;
2848 else
2849 s->ti += 60 - s->current_tm.tm_sec;
2851 s->round = 0;
2854 localtime_r(&s->ti, &s->current_tm);
2856 if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
2857 s->status |= 0x40;
2858 omap_rtc_interrupts_update(s);
2861 if (s->interrupts & 0x04)
2862 switch (s->interrupts & 3) {
2863 case 0:
2864 s->status |= 0x04;
2865 qemu_irq_pulse(s->irq);
2866 break;
2867 case 1:
2868 if (s->current_tm.tm_sec)
2869 break;
2870 s->status |= 0x08;
2871 qemu_irq_pulse(s->irq);
2872 break;
2873 case 2:
2874 if (s->current_tm.tm_sec || s->current_tm.tm_min)
2875 break;
2876 s->status |= 0x10;
2877 qemu_irq_pulse(s->irq);
2878 break;
2879 case 3:
2880 if (s->current_tm.tm_sec ||
2881 s->current_tm.tm_min || s->current_tm.tm_hour)
2882 break;
2883 s->status |= 0x20;
2884 qemu_irq_pulse(s->irq);
2885 break;
2888 /* Move on */
2889 if (s->running)
2890 s->ti ++;
2891 s->tick += 1000;
2894 * Every full hour add a rough approximation of the compensation
2895 * register to the 32kHz Timer (which drives the RTC) value.
2897 if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
2898 s->tick += s->comp_reg * 1000 / 32768;
2900 timer_mod(s->clk, s->tick);
2903 static void omap_rtc_reset(struct omap_rtc_s *s)
2905 struct tm tm;
2907 s->interrupts = 0;
2908 s->comp_reg = 0;
2909 s->running = 0;
2910 s->pm_am = 0;
2911 s->auto_comp = 0;
2912 s->round = 0;
2913 s->tick = qemu_clock_get_ms(rtc_clock);
2914 memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
2915 s->alarm_tm.tm_mday = 0x01;
2916 s->status = 1 << 7;
2917 qemu_get_timedate(&tm, 0);
2918 s->ti = mktimegm(&tm);
2920 omap_rtc_alarm_update(s);
2921 omap_rtc_tick(s);
2924 static struct omap_rtc_s *omap_rtc_init(MemoryRegion *system_memory,
2925 hwaddr base,
2926 qemu_irq timerirq, qemu_irq alarmirq,
2927 omap_clk clk)
2929 struct omap_rtc_s *s = g_new0(struct omap_rtc_s, 1);
2931 s->irq = timerirq;
2932 s->alarm = alarmirq;
2933 s->clk = timer_new_ms(rtc_clock, omap_rtc_tick, s);
2935 omap_rtc_reset(s);
2937 memory_region_init_io(&s->iomem, NULL, &omap_rtc_ops, s,
2938 "omap-rtc", 0x800);
2939 memory_region_add_subregion(system_memory, base, &s->iomem);
2941 return s;
2944 /* Multi-channel Buffered Serial Port interfaces */
2945 struct omap_mcbsp_s {
2946 MemoryRegion iomem;
2947 qemu_irq txirq;
2948 qemu_irq rxirq;
2949 qemu_irq txdrq;
2950 qemu_irq rxdrq;
2952 uint16_t spcr[2];
2953 uint16_t rcr[2];
2954 uint16_t xcr[2];
2955 uint16_t srgr[2];
2956 uint16_t mcr[2];
2957 uint16_t pcr;
2958 uint16_t rcer[8];
2959 uint16_t xcer[8];
2960 int tx_rate;
2961 int rx_rate;
2962 int tx_req;
2963 int rx_req;
2965 I2SCodec *codec;
2966 QEMUTimer *source_timer;
2967 QEMUTimer *sink_timer;
2970 static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
2972 int irq;
2974 switch ((s->spcr[0] >> 4) & 3) { /* RINTM */
2975 case 0:
2976 irq = (s->spcr[0] >> 1) & 1; /* RRDY */
2977 break;
2978 case 3:
2979 irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */
2980 break;
2981 default:
2982 irq = 0;
2983 break;
2986 if (irq)
2987 qemu_irq_pulse(s->rxirq);
2989 switch ((s->spcr[1] >> 4) & 3) { /* XINTM */
2990 case 0:
2991 irq = (s->spcr[1] >> 1) & 1; /* XRDY */
2992 break;
2993 case 3:
2994 irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */
2995 break;
2996 default:
2997 irq = 0;
2998 break;
3001 if (irq)
3002 qemu_irq_pulse(s->txirq);
3005 static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3007 if ((s->spcr[0] >> 1) & 1) /* RRDY */
3008 s->spcr[0] |= 1 << 2; /* RFULL */
3009 s->spcr[0] |= 1 << 1; /* RRDY */
3010 qemu_irq_raise(s->rxdrq);
3011 omap_mcbsp_intr_update(s);
3014 static void omap_mcbsp_source_tick(void *opaque)
3016 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3017 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3019 if (!s->rx_rate)
3020 return;
3021 if (s->rx_req)
3022 printf("%s: Rx FIFO overrun\n", __FUNCTION__);
3024 s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3026 omap_mcbsp_rx_newdata(s);
3027 timer_mod(s->source_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3028 get_ticks_per_sec());
3031 static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3033 if (!s->codec || !s->codec->rts)
3034 omap_mcbsp_source_tick(s);
3035 else if (s->codec->in.len) {
3036 s->rx_req = s->codec->in.len;
3037 omap_mcbsp_rx_newdata(s);
3041 static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3043 timer_del(s->source_timer);
3046 static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3048 s->spcr[0] &= ~(1 << 1); /* RRDY */
3049 qemu_irq_lower(s->rxdrq);
3050 omap_mcbsp_intr_update(s);
3053 static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3055 s->spcr[1] |= 1 << 1; /* XRDY */
3056 qemu_irq_raise(s->txdrq);
3057 omap_mcbsp_intr_update(s);
3060 static void omap_mcbsp_sink_tick(void *opaque)
3062 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3063 static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3065 if (!s->tx_rate)
3066 return;
3067 if (s->tx_req)
3068 printf("%s: Tx FIFO underrun\n", __FUNCTION__);
3070 s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3072 omap_mcbsp_tx_newdata(s);
3073 timer_mod(s->sink_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
3074 get_ticks_per_sec());
3077 static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3079 if (!s->codec || !s->codec->cts)
3080 omap_mcbsp_sink_tick(s);
3081 else if (s->codec->out.size) {
3082 s->tx_req = s->codec->out.size;
3083 omap_mcbsp_tx_newdata(s);
3087 static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3089 s->spcr[1] &= ~(1 << 1); /* XRDY */
3090 qemu_irq_lower(s->txdrq);
3091 omap_mcbsp_intr_update(s);
3092 if (s->codec && s->codec->cts)
3093 s->codec->tx_swallow(s->codec->opaque);
3096 static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3098 s->tx_req = 0;
3099 omap_mcbsp_tx_done(s);
3100 timer_del(s->sink_timer);
3103 static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3105 int prev_rx_rate, prev_tx_rate;
3106 int rx_rate = 0, tx_rate = 0;
3107 int cpu_rate = 1500000; /* XXX */
3109 /* TODO: check CLKSTP bit */
3110 if (s->spcr[1] & (1 << 6)) { /* GRST */
3111 if (s->spcr[0] & (1 << 0)) { /* RRST */
3112 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3113 (s->pcr & (1 << 8))) { /* CLKRM */
3114 if (~s->pcr & (1 << 7)) /* SCLKME */
3115 rx_rate = cpu_rate /
3116 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3117 } else
3118 if (s->codec)
3119 rx_rate = s->codec->rx_rate;
3122 if (s->spcr[1] & (1 << 0)) { /* XRST */
3123 if ((s->srgr[1] & (1 << 13)) && /* CLKSM */
3124 (s->pcr & (1 << 9))) { /* CLKXM */
3125 if (~s->pcr & (1 << 7)) /* SCLKME */
3126 tx_rate = cpu_rate /
3127 ((s->srgr[0] & 0xff) + 1); /* CLKGDV */
3128 } else
3129 if (s->codec)
3130 tx_rate = s->codec->tx_rate;
3133 prev_tx_rate = s->tx_rate;
3134 prev_rx_rate = s->rx_rate;
3135 s->tx_rate = tx_rate;
3136 s->rx_rate = rx_rate;
3138 if (s->codec)
3139 s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3141 if (!prev_tx_rate && tx_rate)
3142 omap_mcbsp_tx_start(s);
3143 else if (s->tx_rate && !tx_rate)
3144 omap_mcbsp_tx_stop(s);
3146 if (!prev_rx_rate && rx_rate)
3147 omap_mcbsp_rx_start(s);
3148 else if (prev_tx_rate && !tx_rate)
3149 omap_mcbsp_rx_stop(s);
3152 static uint64_t omap_mcbsp_read(void *opaque, hwaddr addr,
3153 unsigned size)
3155 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3156 int offset = addr & OMAP_MPUI_REG_MASK;
3157 uint16_t ret;
3159 if (size != 2) {
3160 return omap_badwidth_read16(opaque, addr);
3163 switch (offset) {
3164 case 0x00: /* DRR2 */
3165 if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */
3166 return 0x0000;
3167 /* Fall through. */
3168 case 0x02: /* DRR1 */
3169 if (s->rx_req < 2) {
3170 printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3171 omap_mcbsp_rx_done(s);
3172 } else {
3173 s->tx_req -= 2;
3174 if (s->codec && s->codec->in.len >= 2) {
3175 ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
3176 ret |= s->codec->in.fifo[s->codec->in.start ++];
3177 s->codec->in.len -= 2;
3178 } else
3179 ret = 0x0000;
3180 if (!s->tx_req)
3181 omap_mcbsp_rx_done(s);
3182 return ret;
3184 return 0x0000;
3186 case 0x04: /* DXR2 */
3187 case 0x06: /* DXR1 */
3188 return 0x0000;
3190 case 0x08: /* SPCR2 */
3191 return s->spcr[1];
3192 case 0x0a: /* SPCR1 */
3193 return s->spcr[0];
3194 case 0x0c: /* RCR2 */
3195 return s->rcr[1];
3196 case 0x0e: /* RCR1 */
3197 return s->rcr[0];
3198 case 0x10: /* XCR2 */
3199 return s->xcr[1];
3200 case 0x12: /* XCR1 */
3201 return s->xcr[0];
3202 case 0x14: /* SRGR2 */
3203 return s->srgr[1];
3204 case 0x16: /* SRGR1 */
3205 return s->srgr[0];
3206 case 0x18: /* MCR2 */
3207 return s->mcr[1];
3208 case 0x1a: /* MCR1 */
3209 return s->mcr[0];
3210 case 0x1c: /* RCERA */
3211 return s->rcer[0];
3212 case 0x1e: /* RCERB */
3213 return s->rcer[1];
3214 case 0x20: /* XCERA */
3215 return s->xcer[0];
3216 case 0x22: /* XCERB */
3217 return s->xcer[1];
3218 case 0x24: /* PCR0 */
3219 return s->pcr;
3220 case 0x26: /* RCERC */
3221 return s->rcer[2];
3222 case 0x28: /* RCERD */
3223 return s->rcer[3];
3224 case 0x2a: /* XCERC */
3225 return s->xcer[2];
3226 case 0x2c: /* XCERD */
3227 return s->xcer[3];
3228 case 0x2e: /* RCERE */
3229 return s->rcer[4];
3230 case 0x30: /* RCERF */
3231 return s->rcer[5];
3232 case 0x32: /* XCERE */
3233 return s->xcer[4];
3234 case 0x34: /* XCERF */
3235 return s->xcer[5];
3236 case 0x36: /* RCERG */
3237 return s->rcer[6];
3238 case 0x38: /* RCERH */
3239 return s->rcer[7];
3240 case 0x3a: /* XCERG */
3241 return s->xcer[6];
3242 case 0x3c: /* XCERH */
3243 return s->xcer[7];
3246 OMAP_BAD_REG(addr);
3247 return 0;
3250 static void omap_mcbsp_writeh(void *opaque, hwaddr addr,
3251 uint32_t value)
3253 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3254 int offset = addr & OMAP_MPUI_REG_MASK;
3256 switch (offset) {
3257 case 0x00: /* DRR2 */
3258 case 0x02: /* DRR1 */
3259 OMAP_RO_REG(addr);
3260 return;
3262 case 0x04: /* DXR2 */
3263 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3264 return;
3265 /* Fall through. */
3266 case 0x06: /* DXR1 */
3267 if (s->tx_req > 1) {
3268 s->tx_req -= 2;
3269 if (s->codec && s->codec->cts) {
3270 s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
3271 s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
3273 if (s->tx_req < 2)
3274 omap_mcbsp_tx_done(s);
3275 } else
3276 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3277 return;
3279 case 0x08: /* SPCR2 */
3280 s->spcr[1] &= 0x0002;
3281 s->spcr[1] |= 0x03f9 & value;
3282 s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */
3283 if (~value & 1) /* XRST */
3284 s->spcr[1] &= ~6;
3285 omap_mcbsp_req_update(s);
3286 return;
3287 case 0x0a: /* SPCR1 */
3288 s->spcr[0] &= 0x0006;
3289 s->spcr[0] |= 0xf8f9 & value;
3290 if (value & (1 << 15)) /* DLB */
3291 printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
3292 if (~value & 1) { /* RRST */
3293 s->spcr[0] &= ~6;
3294 s->rx_req = 0;
3295 omap_mcbsp_rx_done(s);
3297 omap_mcbsp_req_update(s);
3298 return;
3300 case 0x0c: /* RCR2 */
3301 s->rcr[1] = value & 0xffff;
3302 return;
3303 case 0x0e: /* RCR1 */
3304 s->rcr[0] = value & 0x7fe0;
3305 return;
3306 case 0x10: /* XCR2 */
3307 s->xcr[1] = value & 0xffff;
3308 return;
3309 case 0x12: /* XCR1 */
3310 s->xcr[0] = value & 0x7fe0;
3311 return;
3312 case 0x14: /* SRGR2 */
3313 s->srgr[1] = value & 0xffff;
3314 omap_mcbsp_req_update(s);
3315 return;
3316 case 0x16: /* SRGR1 */
3317 s->srgr[0] = value & 0xffff;
3318 omap_mcbsp_req_update(s);
3319 return;
3320 case 0x18: /* MCR2 */
3321 s->mcr[1] = value & 0x03e3;
3322 if (value & 3) /* XMCM */
3323 printf("%s: Tx channel selection mode enable attempt\n",
3324 __FUNCTION__);
3325 return;
3326 case 0x1a: /* MCR1 */
3327 s->mcr[0] = value & 0x03e1;
3328 if (value & 1) /* RMCM */
3329 printf("%s: Rx channel selection mode enable attempt\n",
3330 __FUNCTION__);
3331 return;
3332 case 0x1c: /* RCERA */
3333 s->rcer[0] = value & 0xffff;
3334 return;
3335 case 0x1e: /* RCERB */
3336 s->rcer[1] = value & 0xffff;
3337 return;
3338 case 0x20: /* XCERA */
3339 s->xcer[0] = value & 0xffff;
3340 return;
3341 case 0x22: /* XCERB */
3342 s->xcer[1] = value & 0xffff;
3343 return;
3344 case 0x24: /* PCR0 */
3345 s->pcr = value & 0x7faf;
3346 return;
3347 case 0x26: /* RCERC */
3348 s->rcer[2] = value & 0xffff;
3349 return;
3350 case 0x28: /* RCERD */
3351 s->rcer[3] = value & 0xffff;
3352 return;
3353 case 0x2a: /* XCERC */
3354 s->xcer[2] = value & 0xffff;
3355 return;
3356 case 0x2c: /* XCERD */
3357 s->xcer[3] = value & 0xffff;
3358 return;
3359 case 0x2e: /* RCERE */
3360 s->rcer[4] = value & 0xffff;
3361 return;
3362 case 0x30: /* RCERF */
3363 s->rcer[5] = value & 0xffff;
3364 return;
3365 case 0x32: /* XCERE */
3366 s->xcer[4] = value & 0xffff;
3367 return;
3368 case 0x34: /* XCERF */
3369 s->xcer[5] = value & 0xffff;
3370 return;
3371 case 0x36: /* RCERG */
3372 s->rcer[6] = value & 0xffff;
3373 return;
3374 case 0x38: /* RCERH */
3375 s->rcer[7] = value & 0xffff;
3376 return;
3377 case 0x3a: /* XCERG */
3378 s->xcer[6] = value & 0xffff;
3379 return;
3380 case 0x3c: /* XCERH */
3381 s->xcer[7] = value & 0xffff;
3382 return;
3385 OMAP_BAD_REG(addr);
3388 static void omap_mcbsp_writew(void *opaque, hwaddr addr,
3389 uint32_t value)
3391 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3392 int offset = addr & OMAP_MPUI_REG_MASK;
3394 if (offset == 0x04) { /* DXR */
3395 if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */
3396 return;
3397 if (s->tx_req > 3) {
3398 s->tx_req -= 4;
3399 if (s->codec && s->codec->cts) {
3400 s->codec->out.fifo[s->codec->out.len ++] =
3401 (value >> 24) & 0xff;
3402 s->codec->out.fifo[s->codec->out.len ++] =
3403 (value >> 16) & 0xff;
3404 s->codec->out.fifo[s->codec->out.len ++] =
3405 (value >> 8) & 0xff;
3406 s->codec->out.fifo[s->codec->out.len ++] =
3407 (value >> 0) & 0xff;
3409 if (s->tx_req < 4)
3410 omap_mcbsp_tx_done(s);
3411 } else
3412 printf("%s: Tx FIFO overrun\n", __FUNCTION__);
3413 return;
3416 omap_badwidth_write16(opaque, addr, value);
3419 static void omap_mcbsp_write(void *opaque, hwaddr addr,
3420 uint64_t value, unsigned size)
3422 switch (size) {
3423 case 2:
3424 omap_mcbsp_writeh(opaque, addr, value);
3425 break;
3426 case 4:
3427 omap_mcbsp_writew(opaque, addr, value);
3428 break;
3429 default:
3430 omap_badwidth_write16(opaque, addr, value);
3434 static const MemoryRegionOps omap_mcbsp_ops = {
3435 .read = omap_mcbsp_read,
3436 .write = omap_mcbsp_write,
3437 .endianness = DEVICE_NATIVE_ENDIAN,
3440 static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
3442 memset(&s->spcr, 0, sizeof(s->spcr));
3443 memset(&s->rcr, 0, sizeof(s->rcr));
3444 memset(&s->xcr, 0, sizeof(s->xcr));
3445 s->srgr[0] = 0x0001;
3446 s->srgr[1] = 0x2000;
3447 memset(&s->mcr, 0, sizeof(s->mcr));
3448 memset(&s->pcr, 0, sizeof(s->pcr));
3449 memset(&s->rcer, 0, sizeof(s->rcer));
3450 memset(&s->xcer, 0, sizeof(s->xcer));
3451 s->tx_req = 0;
3452 s->rx_req = 0;
3453 s->tx_rate = 0;
3454 s->rx_rate = 0;
3455 timer_del(s->source_timer);
3456 timer_del(s->sink_timer);
3459 static struct omap_mcbsp_s *omap_mcbsp_init(MemoryRegion *system_memory,
3460 hwaddr base,
3461 qemu_irq txirq, qemu_irq rxirq,
3462 qemu_irq *dma, omap_clk clk)
3464 struct omap_mcbsp_s *s = g_new0(struct omap_mcbsp_s, 1);
3466 s->txirq = txirq;
3467 s->rxirq = rxirq;
3468 s->txdrq = dma[0];
3469 s->rxdrq = dma[1];
3470 s->sink_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_sink_tick, s);
3471 s->source_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, omap_mcbsp_source_tick, s);
3472 omap_mcbsp_reset(s);
3474 memory_region_init_io(&s->iomem, NULL, &omap_mcbsp_ops, s, "omap-mcbsp", 0x800);
3475 memory_region_add_subregion(system_memory, base, &s->iomem);
3477 return s;
3480 static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
3482 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3484 if (s->rx_rate) {
3485 s->rx_req = s->codec->in.len;
3486 omap_mcbsp_rx_newdata(s);
3490 static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
3492 struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3494 if (s->tx_rate) {
3495 s->tx_req = s->codec->out.size;
3496 omap_mcbsp_tx_newdata(s);
3500 void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave)
3502 s->codec = slave;
3503 slave->rx_swallow = qemu_allocate_irq(omap_mcbsp_i2s_swallow, s, 0);
3504 slave->tx_start = qemu_allocate_irq(omap_mcbsp_i2s_start, s, 0);
3507 /* LED Pulse Generators */
3508 struct omap_lpg_s {
3509 MemoryRegion iomem;
3510 QEMUTimer *tm;
3512 uint8_t control;
3513 uint8_t power;
3514 int64_t on;
3515 int64_t period;
3516 int clk;
3517 int cycle;
3520 static void omap_lpg_tick(void *opaque)
3522 struct omap_lpg_s *s = opaque;
3524 if (s->cycle)
3525 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->period - s->on);
3526 else
3527 timer_mod(s->tm, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + s->on);
3529 s->cycle = !s->cycle;
3530 printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
3533 static void omap_lpg_update(struct omap_lpg_s *s)
3535 int64_t on, period = 1, ticks = 1000;
3536 static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
3538 if (~s->control & (1 << 6)) /* LPGRES */
3539 on = 0;
3540 else if (s->control & (1 << 7)) /* PERM_ON */
3541 on = period;
3542 else {
3543 period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */
3544 256 / 32);
3545 on = (s->clk && s->power) ? muldiv64(ticks,
3546 per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */
3549 timer_del(s->tm);
3550 if (on == period && s->on < s->period)
3551 printf("%s: LED is on\n", __FUNCTION__);
3552 else if (on == 0 && s->on)
3553 printf("%s: LED is off\n", __FUNCTION__);
3554 else if (on && (on != s->on || period != s->period)) {
3555 s->cycle = 0;
3556 s->on = on;
3557 s->period = period;
3558 omap_lpg_tick(s);
3559 return;
3562 s->on = on;
3563 s->period = period;
3566 static void omap_lpg_reset(struct omap_lpg_s *s)
3568 s->control = 0x00;
3569 s->power = 0x00;
3570 s->clk = 1;
3571 omap_lpg_update(s);
3574 static uint64_t omap_lpg_read(void *opaque, hwaddr addr,
3575 unsigned size)
3577 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3578 int offset = addr & OMAP_MPUI_REG_MASK;
3580 if (size != 1) {
3581 return omap_badwidth_read8(opaque, addr);
3584 switch (offset) {
3585 case 0x00: /* LCR */
3586 return s->control;
3588 case 0x04: /* PMR */
3589 return s->power;
3592 OMAP_BAD_REG(addr);
3593 return 0;
3596 static void omap_lpg_write(void *opaque, hwaddr addr,
3597 uint64_t value, unsigned size)
3599 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3600 int offset = addr & OMAP_MPUI_REG_MASK;
3602 if (size != 1) {
3603 omap_badwidth_write8(opaque, addr, value);
3604 return;
3607 switch (offset) {
3608 case 0x00: /* LCR */
3609 if (~value & (1 << 6)) /* LPGRES */
3610 omap_lpg_reset(s);
3611 s->control = value & 0xff;
3612 omap_lpg_update(s);
3613 return;
3615 case 0x04: /* PMR */
3616 s->power = value & 0x01;
3617 omap_lpg_update(s);
3618 return;
3620 default:
3621 OMAP_BAD_REG(addr);
3622 return;
3626 static const MemoryRegionOps omap_lpg_ops = {
3627 .read = omap_lpg_read,
3628 .write = omap_lpg_write,
3629 .endianness = DEVICE_NATIVE_ENDIAN,
3632 static void omap_lpg_clk_update(void *opaque, int line, int on)
3634 struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
3636 s->clk = on;
3637 omap_lpg_update(s);
3640 static struct omap_lpg_s *omap_lpg_init(MemoryRegion *system_memory,
3641 hwaddr base, omap_clk clk)
3643 struct omap_lpg_s *s = g_new0(struct omap_lpg_s, 1);
3645 s->tm = timer_new_ms(QEMU_CLOCK_VIRTUAL, omap_lpg_tick, s);
3647 omap_lpg_reset(s);
3649 memory_region_init_io(&s->iomem, NULL, &omap_lpg_ops, s, "omap-lpg", 0x800);
3650 memory_region_add_subregion(system_memory, base, &s->iomem);
3652 omap_clk_adduser(clk, qemu_allocate_irq(omap_lpg_clk_update, s, 0));
3654 return s;
3657 /* MPUI Peripheral Bridge configuration */
3658 static uint64_t omap_mpui_io_read(void *opaque, hwaddr addr,
3659 unsigned size)
3661 if (size != 2) {
3662 return omap_badwidth_read16(opaque, addr);
3665 if (addr == OMAP_MPUI_BASE) /* CMR */
3666 return 0xfe4d;
3668 OMAP_BAD_REG(addr);
3669 return 0;
3672 static void omap_mpui_io_write(void *opaque, hwaddr addr,
3673 uint64_t value, unsigned size)
3675 /* FIXME: infinite loop */
3676 omap_badwidth_write16(opaque, addr, value);
3679 static const MemoryRegionOps omap_mpui_io_ops = {
3680 .read = omap_mpui_io_read,
3681 .write = omap_mpui_io_write,
3682 .endianness = DEVICE_NATIVE_ENDIAN,
3685 static void omap_setup_mpui_io(MemoryRegion *system_memory,
3686 struct omap_mpu_state_s *mpu)
3688 memory_region_init_io(&mpu->mpui_io_iomem, NULL, &omap_mpui_io_ops, mpu,
3689 "omap-mpui-io", 0x7fff);
3690 memory_region_add_subregion(system_memory, OMAP_MPUI_BASE,
3691 &mpu->mpui_io_iomem);
3694 /* General chip reset */
3695 static void omap1_mpu_reset(void *opaque)
3697 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3699 omap_dma_reset(mpu->dma);
3700 omap_mpu_timer_reset(mpu->timer[0]);
3701 omap_mpu_timer_reset(mpu->timer[1]);
3702 omap_mpu_timer_reset(mpu->timer[2]);
3703 omap_wd_timer_reset(mpu->wdt);
3704 omap_os_timer_reset(mpu->os_timer);
3705 omap_lcdc_reset(mpu->lcd);
3706 omap_ulpd_pm_reset(mpu);
3707 omap_pin_cfg_reset(mpu);
3708 omap_mpui_reset(mpu);
3709 omap_tipb_bridge_reset(mpu->private_tipb);
3710 omap_tipb_bridge_reset(mpu->public_tipb);
3711 omap_dpll_reset(mpu->dpll[0]);
3712 omap_dpll_reset(mpu->dpll[1]);
3713 omap_dpll_reset(mpu->dpll[2]);
3714 omap_uart_reset(mpu->uart[0]);
3715 omap_uart_reset(mpu->uart[1]);
3716 omap_uart_reset(mpu->uart[2]);
3717 omap_mmc_reset(mpu->mmc);
3718 omap_mpuio_reset(mpu->mpuio);
3719 omap_uwire_reset(mpu->microwire);
3720 omap_pwl_reset(mpu->pwl);
3721 omap_pwt_reset(mpu->pwt);
3722 omap_rtc_reset(mpu->rtc);
3723 omap_mcbsp_reset(mpu->mcbsp1);
3724 omap_mcbsp_reset(mpu->mcbsp2);
3725 omap_mcbsp_reset(mpu->mcbsp3);
3726 omap_lpg_reset(mpu->led[0]);
3727 omap_lpg_reset(mpu->led[1]);
3728 omap_clkm_reset(mpu);
3729 cpu_reset(CPU(mpu->cpu));
3732 static const struct omap_map_s {
3733 hwaddr phys_dsp;
3734 hwaddr phys_mpu;
3735 uint32_t size;
3736 const char *name;
3737 } omap15xx_dsp_mm[] = {
3738 /* Strobe 0 */
3739 { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */
3740 { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */
3741 { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */
3742 { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */
3743 { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */
3744 { 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */
3745 { 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */
3746 { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */
3747 { 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */
3748 { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */
3749 { 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */
3750 { 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */
3751 { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */
3752 { 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */
3753 { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */
3754 { 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */
3755 { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */
3756 /* Strobe 1 */
3757 { 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */
3759 { 0 }
3762 static void omap_setup_dsp_mapping(MemoryRegion *system_memory,
3763 const struct omap_map_s *map)
3765 MemoryRegion *io;
3767 for (; map->phys_dsp; map ++) {
3768 io = g_new(MemoryRegion, 1);
3769 memory_region_init_alias(io, NULL, map->name,
3770 system_memory, map->phys_mpu, map->size);
3771 memory_region_add_subregion(system_memory, map->phys_dsp, io);
3775 void omap_mpu_wakeup(void *opaque, int irq, int req)
3777 struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
3778 CPUState *cpu = CPU(mpu->cpu);
3780 if (cpu->halted) {
3781 cpu_interrupt(cpu, CPU_INTERRUPT_EXITTB);
3785 static const struct dma_irq_map omap1_dma_irq_map[] = {
3786 { 0, OMAP_INT_DMA_CH0_6 },
3787 { 0, OMAP_INT_DMA_CH1_7 },
3788 { 0, OMAP_INT_DMA_CH2_8 },
3789 { 0, OMAP_INT_DMA_CH3 },
3790 { 0, OMAP_INT_DMA_CH4 },
3791 { 0, OMAP_INT_DMA_CH5 },
3792 { 1, OMAP_INT_1610_DMA_CH6 },
3793 { 1, OMAP_INT_1610_DMA_CH7 },
3794 { 1, OMAP_INT_1610_DMA_CH8 },
3795 { 1, OMAP_INT_1610_DMA_CH9 },
3796 { 1, OMAP_INT_1610_DMA_CH10 },
3797 { 1, OMAP_INT_1610_DMA_CH11 },
3798 { 1, OMAP_INT_1610_DMA_CH12 },
3799 { 1, OMAP_INT_1610_DMA_CH13 },
3800 { 1, OMAP_INT_1610_DMA_CH14 },
3801 { 1, OMAP_INT_1610_DMA_CH15 }
3804 /* DMA ports for OMAP1 */
3805 static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
3806 hwaddr addr)
3808 return range_covers_byte(OMAP_EMIFF_BASE, s->sdram_size, addr);
3811 static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
3812 hwaddr addr)
3814 return range_covers_byte(OMAP_EMIFS_BASE, OMAP_EMIFF_BASE - OMAP_EMIFS_BASE,
3815 addr);
3818 static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
3819 hwaddr addr)
3821 return range_covers_byte(OMAP_IMIF_BASE, s->sram_size, addr);
3824 static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
3825 hwaddr addr)
3827 return range_covers_byte(0xfffb0000, 0xffff0000 - 0xfffb0000, addr);
3830 static int omap_validate_local_addr(struct omap_mpu_state_s *s,
3831 hwaddr addr)
3833 return range_covers_byte(OMAP_LOCALBUS_BASE, 0x1000000, addr);
3836 static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
3837 hwaddr addr)
3839 return range_covers_byte(0xe1010000, 0xe1020004 - 0xe1010000, addr);
3842 struct omap_mpu_state_s *omap310_mpu_init(MemoryRegion *system_memory,
3843 unsigned long sdram_size,
3844 const char *core)
3846 int i;
3847 struct omap_mpu_state_s *s = g_new0(struct omap_mpu_state_s, 1);
3848 qemu_irq dma_irqs[6];
3849 DriveInfo *dinfo;
3850 SysBusDevice *busdev;
3852 if (!core)
3853 core = "ti925t";
3855 /* Core */
3856 s->mpu_model = omap310;
3857 s->cpu = cpu_arm_init(core);
3858 if (s->cpu == NULL) {
3859 fprintf(stderr, "Unable to find CPU definition\n");
3860 exit(1);
3862 s->sdram_size = sdram_size;
3863 s->sram_size = OMAP15XX_SRAM_SIZE;
3865 s->wakeup = qemu_allocate_irq(omap_mpu_wakeup, s, 0);
3867 /* Clocks */
3868 omap_clk_init(s);
3870 /* Memory-mapped stuff */
3871 memory_region_allocate_system_memory(&s->emiff_ram, NULL, "omap1.dram",
3872 s->sdram_size);
3873 memory_region_add_subregion(system_memory, OMAP_EMIFF_BASE, &s->emiff_ram);
3874 memory_region_init_ram(&s->imif_ram, NULL, "omap1.sram", s->sram_size,
3875 &error_fatal);
3876 vmstate_register_ram_global(&s->imif_ram);
3877 memory_region_add_subregion(system_memory, OMAP_IMIF_BASE, &s->imif_ram);
3879 omap_clkm_init(system_memory, 0xfffece00, 0xe1008000, s);
3881 s->ih[0] = qdev_create(NULL, "omap-intc");
3882 qdev_prop_set_uint32(s->ih[0], "size", 0x100);
3883 qdev_prop_set_ptr(s->ih[0], "clk", omap_findclk(s, "arminth_ck"));
3884 qdev_init_nofail(s->ih[0]);
3885 busdev = SYS_BUS_DEVICE(s->ih[0]);
3886 sysbus_connect_irq(busdev, 0,
3887 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
3888 sysbus_connect_irq(busdev, 1,
3889 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ));
3890 sysbus_mmio_map(busdev, 0, 0xfffecb00);
3891 s->ih[1] = qdev_create(NULL, "omap-intc");
3892 qdev_prop_set_uint32(s->ih[1], "size", 0x800);
3893 qdev_prop_set_ptr(s->ih[1], "clk", omap_findclk(s, "arminth_ck"));
3894 qdev_init_nofail(s->ih[1]);
3895 busdev = SYS_BUS_DEVICE(s->ih[1]);
3896 sysbus_connect_irq(busdev, 0,
3897 qdev_get_gpio_in(s->ih[0], OMAP_INT_15XX_IH2_IRQ));
3898 /* The second interrupt controller's FIQ output is not wired up */
3899 sysbus_mmio_map(busdev, 0, 0xfffe0000);
3901 for (i = 0; i < 6; i++) {
3902 dma_irqs[i] = qdev_get_gpio_in(s->ih[omap1_dma_irq_map[i].ih],
3903 omap1_dma_irq_map[i].intr);
3905 s->dma = omap_dma_init(0xfffed800, dma_irqs, system_memory,
3906 qdev_get_gpio_in(s->ih[0], OMAP_INT_DMA_LCD),
3907 s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
3909 s->port[emiff ].addr_valid = omap_validate_emiff_addr;
3910 s->port[emifs ].addr_valid = omap_validate_emifs_addr;
3911 s->port[imif ].addr_valid = omap_validate_imif_addr;
3912 s->port[tipb ].addr_valid = omap_validate_tipb_addr;
3913 s->port[local ].addr_valid = omap_validate_local_addr;
3914 s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
3916 /* Register SDRAM and SRAM DMA ports for fast transfers. */
3917 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->emiff_ram),
3918 OMAP_EMIFF_BASE, s->sdram_size);
3919 soc_dma_port_add_mem(s->dma, memory_region_get_ram_ptr(&s->imif_ram),
3920 OMAP_IMIF_BASE, s->sram_size);
3922 s->timer[0] = omap_mpu_timer_init(system_memory, 0xfffec500,
3923 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER1),
3924 omap_findclk(s, "mputim_ck"));
3925 s->timer[1] = omap_mpu_timer_init(system_memory, 0xfffec600,
3926 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER2),
3927 omap_findclk(s, "mputim_ck"));
3928 s->timer[2] = omap_mpu_timer_init(system_memory, 0xfffec700,
3929 qdev_get_gpio_in(s->ih[0], OMAP_INT_TIMER3),
3930 omap_findclk(s, "mputim_ck"));
3932 s->wdt = omap_wd_timer_init(system_memory, 0xfffec800,
3933 qdev_get_gpio_in(s->ih[0], OMAP_INT_WD_TIMER),
3934 omap_findclk(s, "armwdt_ck"));
3936 s->os_timer = omap_os_timer_init(system_memory, 0xfffb9000,
3937 qdev_get_gpio_in(s->ih[1], OMAP_INT_OS_TIMER),
3938 omap_findclk(s, "clk32-kHz"));
3940 s->lcd = omap_lcdc_init(system_memory, 0xfffec000,
3941 qdev_get_gpio_in(s->ih[0], OMAP_INT_LCD_CTRL),
3942 omap_dma_get_lcdch(s->dma),
3943 omap_findclk(s, "lcd_ck"));
3945 omap_ulpd_pm_init(system_memory, 0xfffe0800, s);
3946 omap_pin_cfg_init(system_memory, 0xfffe1000, s);
3947 omap_id_init(system_memory, s);
3949 omap_mpui_init(system_memory, 0xfffec900, s);
3951 s->private_tipb = omap_tipb_bridge_init(system_memory, 0xfffeca00,
3952 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PRIV),
3953 omap_findclk(s, "tipb_ck"));
3954 s->public_tipb = omap_tipb_bridge_init(system_memory, 0xfffed300,
3955 qdev_get_gpio_in(s->ih[0], OMAP_INT_BRIDGE_PUB),
3956 omap_findclk(s, "tipb_ck"));
3958 omap_tcmi_init(system_memory, 0xfffecc00, s);
3960 s->uart[0] = omap_uart_init(0xfffb0000,
3961 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART1),
3962 omap_findclk(s, "uart1_ck"),
3963 omap_findclk(s, "uart1_ck"),
3964 s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
3965 "uart1",
3966 serial_hds[0]);
3967 s->uart[1] = omap_uart_init(0xfffb0800,
3968 qdev_get_gpio_in(s->ih[1], OMAP_INT_UART2),
3969 omap_findclk(s, "uart2_ck"),
3970 omap_findclk(s, "uart2_ck"),
3971 s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
3972 "uart2",
3973 serial_hds[0] ? serial_hds[1] : NULL);
3974 s->uart[2] = omap_uart_init(0xfffb9800,
3975 qdev_get_gpio_in(s->ih[0], OMAP_INT_UART3),
3976 omap_findclk(s, "uart3_ck"),
3977 omap_findclk(s, "uart3_ck"),
3978 s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
3979 "uart3",
3980 serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL);
3982 s->dpll[0] = omap_dpll_init(system_memory, 0xfffecf00,
3983 omap_findclk(s, "dpll1"));
3984 s->dpll[1] = omap_dpll_init(system_memory, 0xfffed000,
3985 omap_findclk(s, "dpll2"));
3986 s->dpll[2] = omap_dpll_init(system_memory, 0xfffed100,
3987 omap_findclk(s, "dpll3"));
3989 dinfo = drive_get(IF_SD, 0, 0);
3990 if (!dinfo) {
3991 fprintf(stderr, "qemu: missing SecureDigital device\n");
3992 exit(1);
3994 s->mmc = omap_mmc_init(0xfffb7800, system_memory,
3995 blk_by_legacy_dinfo(dinfo),
3996 qdev_get_gpio_in(s->ih[1], OMAP_INT_OQN),
3997 &s->drq[OMAP_DMA_MMC_TX],
3998 omap_findclk(s, "mmc_ck"));
4000 s->mpuio = omap_mpuio_init(system_memory, 0xfffb5000,
4001 qdev_get_gpio_in(s->ih[1], OMAP_INT_KEYBOARD),
4002 qdev_get_gpio_in(s->ih[1], OMAP_INT_MPUIO),
4003 s->wakeup, omap_findclk(s, "clk32-kHz"));
4005 s->gpio = qdev_create(NULL, "omap-gpio");
4006 qdev_prop_set_int32(s->gpio, "mpu_model", s->mpu_model);
4007 qdev_prop_set_ptr(s->gpio, "clk", omap_findclk(s, "arm_gpio_ck"));
4008 qdev_init_nofail(s->gpio);
4009 sysbus_connect_irq(SYS_BUS_DEVICE(s->gpio), 0,
4010 qdev_get_gpio_in(s->ih[0], OMAP_INT_GPIO_BANK1));
4011 sysbus_mmio_map(SYS_BUS_DEVICE(s->gpio), 0, 0xfffce000);
4013 s->microwire = omap_uwire_init(system_memory, 0xfffb3000,
4014 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireTX),
4015 qdev_get_gpio_in(s->ih[1], OMAP_INT_uWireRX),
4016 s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4018 s->pwl = omap_pwl_init(system_memory, 0xfffb5800,
4019 omap_findclk(s, "armxor_ck"));
4020 s->pwt = omap_pwt_init(system_memory, 0xfffb6000,
4021 omap_findclk(s, "armxor_ck"));
4023 s->i2c[0] = qdev_create(NULL, "omap_i2c");
4024 qdev_prop_set_uint8(s->i2c[0], "revision", 0x11);
4025 qdev_prop_set_ptr(s->i2c[0], "fclk", omap_findclk(s, "mpuper_ck"));
4026 qdev_init_nofail(s->i2c[0]);
4027 busdev = SYS_BUS_DEVICE(s->i2c[0]);
4028 sysbus_connect_irq(busdev, 0, qdev_get_gpio_in(s->ih[1], OMAP_INT_I2C));
4029 sysbus_connect_irq(busdev, 1, s->drq[OMAP_DMA_I2C_TX]);
4030 sysbus_connect_irq(busdev, 2, s->drq[OMAP_DMA_I2C_RX]);
4031 sysbus_mmio_map(busdev, 0, 0xfffb3800);
4033 s->rtc = omap_rtc_init(system_memory, 0xfffb4800,
4034 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_TIMER),
4035 qdev_get_gpio_in(s->ih[1], OMAP_INT_RTC_ALARM),
4036 omap_findclk(s, "clk32-kHz"));
4038 s->mcbsp1 = omap_mcbsp_init(system_memory, 0xfffb1800,
4039 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1TX),
4040 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP1RX),
4041 &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4042 s->mcbsp2 = omap_mcbsp_init(system_memory, 0xfffb1000,
4043 qdev_get_gpio_in(s->ih[0],
4044 OMAP_INT_310_McBSP2_TX),
4045 qdev_get_gpio_in(s->ih[0],
4046 OMAP_INT_310_McBSP2_RX),
4047 &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4048 s->mcbsp3 = omap_mcbsp_init(system_memory, 0xfffb7000,
4049 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3TX),
4050 qdev_get_gpio_in(s->ih[1], OMAP_INT_McBSP3RX),
4051 &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4053 s->led[0] = omap_lpg_init(system_memory,
4054 0xfffbd000, omap_findclk(s, "clk32-kHz"));
4055 s->led[1] = omap_lpg_init(system_memory,
4056 0xfffbd800, omap_findclk(s, "clk32-kHz"));
4058 /* Register mappings not currenlty implemented:
4059 * MCSI2 Comm fffb2000 - fffb27ff (not mapped on OMAP310)
4060 * MCSI1 Bluetooth fffb2800 - fffb2fff (not mapped on OMAP310)
4061 * USB W2FC fffb4000 - fffb47ff
4062 * Camera Interface fffb6800 - fffb6fff
4063 * USB Host fffba000 - fffba7ff
4064 * FAC fffba800 - fffbafff
4065 * HDQ/1-Wire fffbc000 - fffbc7ff
4066 * TIPB switches fffbc800 - fffbcfff
4067 * Mailbox fffcf000 - fffcf7ff
4068 * Local bus IF fffec100 - fffec1ff
4069 * Local bus MMU fffec200 - fffec2ff
4070 * DSP MMU fffed200 - fffed2ff
4073 omap_setup_dsp_mapping(system_memory, omap15xx_dsp_mm);
4074 omap_setup_mpui_io(system_memory, s);
4076 qemu_register_reset(omap1_mpu_reset, s);
4078 return s;