Merge remote-tracking branch 'remotes/kraxel/tags/pull-vga-20160913-1' into staging
[qemu/ar7.git] / target-arm / helper.c
blobbdb842cc4583a76671d4ac10b10b3bd0cc56fcbe
1 #include "qemu/osdep.h"
2 #include "cpu.h"
3 #include "internals.h"
4 #include "exec/gdbstub.h"
5 #include "exec/helper-proto.h"
6 #include "qemu/host-utils.h"
7 #include "sysemu/arch_init.h"
8 #include "sysemu/sysemu.h"
9 #include "qemu/bitops.h"
10 #include "qemu/crc32c.h"
11 #include "exec/exec-all.h"
12 #include "exec/cpu_ldst.h"
13 #include "arm_ldst.h"
14 #include <zlib.h> /* For crc32 */
15 #include "exec/semihost.h"
16 #include "sysemu/kvm.h"
18 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
20 #ifndef CONFIG_USER_ONLY
21 static bool get_phys_addr(CPUARMState *env, target_ulong address,
22 int access_type, ARMMMUIdx mmu_idx,
23 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
24 target_ulong *page_size, uint32_t *fsr,
25 ARMMMUFaultInfo *fi);
27 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
28 int access_type, ARMMMUIdx mmu_idx,
29 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
30 target_ulong *page_size_ptr, uint32_t *fsr,
31 ARMMMUFaultInfo *fi);
33 /* Definitions for the PMCCNTR and PMCR registers */
34 #define PMCRD 0x8
35 #define PMCRC 0x4
36 #define PMCRE 0x1
37 #endif
39 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
41 int nregs;
43 /* VFP data registers are always little-endian. */
44 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
45 if (reg < nregs) {
46 stfq_le_p(buf, env->vfp.regs[reg]);
47 return 8;
49 if (arm_feature(env, ARM_FEATURE_NEON)) {
50 /* Aliases for Q regs. */
51 nregs += 16;
52 if (reg < nregs) {
53 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
54 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
55 return 16;
58 switch (reg - nregs) {
59 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
60 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
61 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
63 return 0;
66 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
68 int nregs;
70 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
71 if (reg < nregs) {
72 env->vfp.regs[reg] = ldfq_le_p(buf);
73 return 8;
75 if (arm_feature(env, ARM_FEATURE_NEON)) {
76 nregs += 16;
77 if (reg < nregs) {
78 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
79 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
80 return 16;
83 switch (reg - nregs) {
84 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
85 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
86 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
88 return 0;
91 static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
93 switch (reg) {
94 case 0 ... 31:
95 /* 128 bit FP register */
96 stfq_le_p(buf, env->vfp.regs[reg * 2]);
97 stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
98 return 16;
99 case 32:
100 /* FPSR */
101 stl_p(buf, vfp_get_fpsr(env));
102 return 4;
103 case 33:
104 /* FPCR */
105 stl_p(buf, vfp_get_fpcr(env));
106 return 4;
107 default:
108 return 0;
112 static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
114 switch (reg) {
115 case 0 ... 31:
116 /* 128 bit FP register */
117 env->vfp.regs[reg * 2] = ldfq_le_p(buf);
118 env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
119 return 16;
120 case 32:
121 /* FPSR */
122 vfp_set_fpsr(env, ldl_p(buf));
123 return 4;
124 case 33:
125 /* FPCR */
126 vfp_set_fpcr(env, ldl_p(buf));
127 return 4;
128 default:
129 return 0;
133 static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
135 assert(ri->fieldoffset);
136 if (cpreg_field_is_64bit(ri)) {
137 return CPREG_FIELD64(env, ri);
138 } else {
139 return CPREG_FIELD32(env, ri);
143 static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
144 uint64_t value)
146 assert(ri->fieldoffset);
147 if (cpreg_field_is_64bit(ri)) {
148 CPREG_FIELD64(env, ri) = value;
149 } else {
150 CPREG_FIELD32(env, ri) = value;
154 static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
156 return (char *)env + ri->fieldoffset;
159 uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
161 /* Raw read of a coprocessor register (as needed for migration, etc). */
162 if (ri->type & ARM_CP_CONST) {
163 return ri->resetvalue;
164 } else if (ri->raw_readfn) {
165 return ri->raw_readfn(env, ri);
166 } else if (ri->readfn) {
167 return ri->readfn(env, ri);
168 } else {
169 return raw_read(env, ri);
173 static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
174 uint64_t v)
176 /* Raw write of a coprocessor register (as needed for migration, etc).
177 * Note that constant registers are treated as write-ignored; the
178 * caller should check for success by whether a readback gives the
179 * value written.
181 if (ri->type & ARM_CP_CONST) {
182 return;
183 } else if (ri->raw_writefn) {
184 ri->raw_writefn(env, ri, v);
185 } else if (ri->writefn) {
186 ri->writefn(env, ri, v);
187 } else {
188 raw_write(env, ri, v);
192 static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
194 /* Return true if the regdef would cause an assertion if you called
195 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
196 * program bug for it not to have the NO_RAW flag).
197 * NB that returning false here doesn't necessarily mean that calling
198 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
199 * read/write access functions which are safe for raw use" from "has
200 * read/write access functions which have side effects but has forgotten
201 * to provide raw access functions".
202 * The tests here line up with the conditions in read/write_raw_cp_reg()
203 * and assertions in raw_read()/raw_write().
205 if ((ri->type & ARM_CP_CONST) ||
206 ri->fieldoffset ||
207 ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
208 return false;
210 return true;
213 bool write_cpustate_to_list(ARMCPU *cpu)
215 /* Write the coprocessor state from cpu->env to the (index,value) list. */
216 int i;
217 bool ok = true;
219 for (i = 0; i < cpu->cpreg_array_len; i++) {
220 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
221 const ARMCPRegInfo *ri;
223 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
224 if (!ri) {
225 ok = false;
226 continue;
228 if (ri->type & ARM_CP_NO_RAW) {
229 continue;
231 cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
233 return ok;
236 bool write_list_to_cpustate(ARMCPU *cpu)
238 int i;
239 bool ok = true;
241 for (i = 0; i < cpu->cpreg_array_len; i++) {
242 uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
243 uint64_t v = cpu->cpreg_values[i];
244 const ARMCPRegInfo *ri;
246 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
247 if (!ri) {
248 ok = false;
249 continue;
251 if (ri->type & ARM_CP_NO_RAW) {
252 continue;
254 /* Write value and confirm it reads back as written
255 * (to catch read-only registers and partially read-only
256 * registers where the incoming migration value doesn't match)
258 write_raw_cp_reg(&cpu->env, ri, v);
259 if (read_raw_cp_reg(&cpu->env, ri) != v) {
260 ok = false;
263 return ok;
266 static void add_cpreg_to_list(gpointer key, gpointer opaque)
268 ARMCPU *cpu = opaque;
269 uint64_t regidx;
270 const ARMCPRegInfo *ri;
272 regidx = *(uint32_t *)key;
273 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
275 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
276 cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
277 /* The value array need not be initialized at this point */
278 cpu->cpreg_array_len++;
282 static void count_cpreg(gpointer key, gpointer opaque)
284 ARMCPU *cpu = opaque;
285 uint64_t regidx;
286 const ARMCPRegInfo *ri;
288 regidx = *(uint32_t *)key;
289 ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
291 if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
292 cpu->cpreg_array_len++;
296 static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
298 uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
299 uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
301 if (aidx > bidx) {
302 return 1;
304 if (aidx < bidx) {
305 return -1;
307 return 0;
310 void init_cpreg_list(ARMCPU *cpu)
312 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
313 * Note that we require cpreg_tuples[] to be sorted by key ID.
315 GList *keys;
316 int arraylen;
318 keys = g_hash_table_get_keys(cpu->cp_regs);
319 keys = g_list_sort(keys, cpreg_key_compare);
321 cpu->cpreg_array_len = 0;
323 g_list_foreach(keys, count_cpreg, cpu);
325 arraylen = cpu->cpreg_array_len;
326 cpu->cpreg_indexes = g_new(uint64_t, arraylen);
327 cpu->cpreg_values = g_new(uint64_t, arraylen);
328 cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
329 cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
330 cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
331 cpu->cpreg_array_len = 0;
333 g_list_foreach(keys, add_cpreg_to_list, cpu);
335 assert(cpu->cpreg_array_len == arraylen);
337 g_list_free(keys);
341 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
342 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
344 * access_el3_aa32ns: Used to check AArch32 register views.
345 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
347 static CPAccessResult access_el3_aa32ns(CPUARMState *env,
348 const ARMCPRegInfo *ri,
349 bool isread)
351 bool secure = arm_is_secure_below_el3(env);
353 assert(!arm_el_is_aa64(env, 3));
354 if (secure) {
355 return CP_ACCESS_TRAP_UNCATEGORIZED;
357 return CP_ACCESS_OK;
360 static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
361 const ARMCPRegInfo *ri,
362 bool isread)
364 if (!arm_el_is_aa64(env, 3)) {
365 return access_el3_aa32ns(env, ri, isread);
367 return CP_ACCESS_OK;
370 /* Some secure-only AArch32 registers trap to EL3 if used from
371 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
372 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
373 * We assume that the .access field is set to PL1_RW.
375 static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
376 const ARMCPRegInfo *ri,
377 bool isread)
379 if (arm_current_el(env) == 3) {
380 return CP_ACCESS_OK;
382 if (arm_is_secure_below_el3(env)) {
383 return CP_ACCESS_TRAP_EL3;
385 /* This will be EL1 NS and EL2 NS, which just UNDEF */
386 return CP_ACCESS_TRAP_UNCATEGORIZED;
389 /* Check for traps to "powerdown debug" registers, which are controlled
390 * by MDCR.TDOSA
392 static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
393 bool isread)
395 int el = arm_current_el(env);
397 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
398 && !arm_is_secure_below_el3(env)) {
399 return CP_ACCESS_TRAP_EL2;
401 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
402 return CP_ACCESS_TRAP_EL3;
404 return CP_ACCESS_OK;
407 /* Check for traps to "debug ROM" registers, which are controlled
408 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
410 static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
411 bool isread)
413 int el = arm_current_el(env);
415 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
416 && !arm_is_secure_below_el3(env)) {
417 return CP_ACCESS_TRAP_EL2;
419 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
420 return CP_ACCESS_TRAP_EL3;
422 return CP_ACCESS_OK;
425 /* Check for traps to general debug registers, which are controlled
426 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
428 static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
429 bool isread)
431 int el = arm_current_el(env);
433 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
434 && !arm_is_secure_below_el3(env)) {
435 return CP_ACCESS_TRAP_EL2;
437 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
438 return CP_ACCESS_TRAP_EL3;
440 return CP_ACCESS_OK;
443 /* Check for traps to performance monitor registers, which are controlled
444 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
446 static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
447 bool isread)
449 int el = arm_current_el(env);
451 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
452 && !arm_is_secure_below_el3(env)) {
453 return CP_ACCESS_TRAP_EL2;
455 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
456 return CP_ACCESS_TRAP_EL3;
458 return CP_ACCESS_OK;
461 static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
463 ARMCPU *cpu = arm_env_get_cpu(env);
465 raw_write(env, ri, value);
466 tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
469 static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
471 ARMCPU *cpu = arm_env_get_cpu(env);
473 if (raw_read(env, ri) != value) {
474 /* Unlike real hardware the qemu TLB uses virtual addresses,
475 * not modified virtual addresses, so this causes a TLB flush.
477 tlb_flush(CPU(cpu), 1);
478 raw_write(env, ri, value);
482 static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
483 uint64_t value)
485 ARMCPU *cpu = arm_env_get_cpu(env);
487 if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
488 && !extended_addresses_enabled(env)) {
489 /* For VMSA (when not using the LPAE long descriptor page table
490 * format) this register includes the ASID, so do a TLB flush.
491 * For PMSA it is purely a process ID and no action is needed.
493 tlb_flush(CPU(cpu), 1);
495 raw_write(env, ri, value);
498 static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
499 uint64_t value)
501 /* Invalidate all (TLBIALL) */
502 ARMCPU *cpu = arm_env_get_cpu(env);
504 tlb_flush(CPU(cpu), 1);
507 static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
508 uint64_t value)
510 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
511 ARMCPU *cpu = arm_env_get_cpu(env);
513 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
516 static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
517 uint64_t value)
519 /* Invalidate by ASID (TLBIASID) */
520 ARMCPU *cpu = arm_env_get_cpu(env);
522 tlb_flush(CPU(cpu), value == 0);
525 static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
526 uint64_t value)
528 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
529 ARMCPU *cpu = arm_env_get_cpu(env);
531 tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
534 /* IS variants of TLB operations must affect all cores */
535 static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
536 uint64_t value)
538 CPUState *other_cs;
540 CPU_FOREACH(other_cs) {
541 tlb_flush(other_cs, 1);
545 static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
546 uint64_t value)
548 CPUState *other_cs;
550 CPU_FOREACH(other_cs) {
551 tlb_flush(other_cs, value == 0);
555 static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
556 uint64_t value)
558 CPUState *other_cs;
560 CPU_FOREACH(other_cs) {
561 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
565 static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
566 uint64_t value)
568 CPUState *other_cs;
570 CPU_FOREACH(other_cs) {
571 tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
575 static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
576 uint64_t value)
578 CPUState *cs = ENV_GET_CPU(env);
580 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
581 ARMMMUIdx_S2NS, -1);
584 static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
585 uint64_t value)
587 CPUState *other_cs;
589 CPU_FOREACH(other_cs) {
590 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
591 ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1);
595 static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
596 uint64_t value)
598 /* Invalidate by IPA. This has to invalidate any structures that
599 * contain only stage 2 translation information, but does not need
600 * to apply to structures that contain combined stage 1 and stage 2
601 * translation information.
602 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
604 CPUState *cs = ENV_GET_CPU(env);
605 uint64_t pageaddr;
607 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
608 return;
611 pageaddr = sextract64(value << 12, 0, 40);
613 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1);
616 static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
617 uint64_t value)
619 CPUState *other_cs;
620 uint64_t pageaddr;
622 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
623 return;
626 pageaddr = sextract64(value << 12, 0, 40);
628 CPU_FOREACH(other_cs) {
629 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1);
633 static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
634 uint64_t value)
636 CPUState *cs = ENV_GET_CPU(env);
638 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1);
641 static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
642 uint64_t value)
644 CPUState *other_cs;
646 CPU_FOREACH(other_cs) {
647 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1);
651 static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
652 uint64_t value)
654 CPUState *cs = ENV_GET_CPU(env);
655 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
657 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1);
660 static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
661 uint64_t value)
663 CPUState *other_cs;
664 uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
666 CPU_FOREACH(other_cs) {
667 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1);
671 static const ARMCPRegInfo cp_reginfo[] = {
672 /* Define the secure and non-secure FCSE identifier CP registers
673 * separately because there is no secure bank in V8 (no _EL3). This allows
674 * the secure register to be properly reset and migrated. There is also no
675 * v8 EL1 version of the register so the non-secure instance stands alone.
677 { .name = "FCSEIDR(NS)",
678 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
679 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
680 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
681 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
682 { .name = "FCSEIDR(S)",
683 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
684 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
685 .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
686 .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
687 /* Define the secure and non-secure context identifier CP registers
688 * separately because there is no secure bank in V8 (no _EL3). This allows
689 * the secure register to be properly reset and migrated. In the
690 * non-secure case, the 32-bit register will have reset and migration
691 * disabled during registration as it is handled by the 64-bit instance.
693 { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
694 .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
695 .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
696 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
697 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
698 { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
699 .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
700 .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
701 .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
702 .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
703 REGINFO_SENTINEL
706 static const ARMCPRegInfo not_v8_cp_reginfo[] = {
707 /* NB: Some of these registers exist in v8 but with more precise
708 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
710 /* MMU Domain access control / MPU write buffer control */
711 { .name = "DACR",
712 .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
713 .access = PL1_RW, .resetvalue = 0,
714 .writefn = dacr_write, .raw_writefn = raw_write,
715 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
716 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
717 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
718 * For v6 and v5, these mappings are overly broad.
720 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
721 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
722 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
723 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
724 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
725 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
726 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
727 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
728 /* Cache maintenance ops; some of this space may be overridden later. */
729 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
730 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
731 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
732 REGINFO_SENTINEL
735 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
736 /* Not all pre-v6 cores implemented this WFI, so this is slightly
737 * over-broad.
739 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
740 .access = PL1_W, .type = ARM_CP_WFI },
741 REGINFO_SENTINEL
744 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
745 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
746 * is UNPREDICTABLE; we choose to NOP as most implementations do).
748 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
749 .access = PL1_W, .type = ARM_CP_WFI },
750 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
751 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
752 * OMAPCP will override this space.
754 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
755 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
756 .resetvalue = 0 },
757 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
758 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
759 .resetvalue = 0 },
760 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
761 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
762 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
763 .resetvalue = 0 },
764 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
765 * implementing it as RAZ means the "debug architecture version" bits
766 * will read as a reserved value, which should cause Linux to not try
767 * to use the debug hardware.
769 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
770 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
771 /* MMU TLB control. Note that the wildcarding means we cover not just
772 * the unified TLB ops but also the dside/iside/inner-shareable variants.
774 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
775 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
776 .type = ARM_CP_NO_RAW },
777 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
778 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
779 .type = ARM_CP_NO_RAW },
780 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
781 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
782 .type = ARM_CP_NO_RAW },
783 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
784 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
785 .type = ARM_CP_NO_RAW },
786 { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
787 .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
788 { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
789 .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
790 REGINFO_SENTINEL
793 static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
794 uint64_t value)
796 uint32_t mask = 0;
798 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
799 if (!arm_feature(env, ARM_FEATURE_V8)) {
800 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
801 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
802 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
804 if (arm_feature(env, ARM_FEATURE_VFP)) {
805 /* VFP coprocessor: cp10 & cp11 [23:20] */
806 mask |= (1 << 31) | (1 << 30) | (0xf << 20);
808 if (!arm_feature(env, ARM_FEATURE_NEON)) {
809 /* ASEDIS [31] bit is RAO/WI */
810 value |= (1 << 31);
813 /* VFPv3 and upwards with NEON implement 32 double precision
814 * registers (D0-D31).
816 if (!arm_feature(env, ARM_FEATURE_NEON) ||
817 !arm_feature(env, ARM_FEATURE_VFP3)) {
818 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
819 value |= (1 << 30);
822 value &= mask;
824 env->cp15.cpacr_el1 = value;
827 static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
828 bool isread)
830 if (arm_feature(env, ARM_FEATURE_V8)) {
831 /* Check if CPACR accesses are to be trapped to EL2 */
832 if (arm_current_el(env) == 1 &&
833 (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
834 return CP_ACCESS_TRAP_EL2;
835 /* Check if CPACR accesses are to be trapped to EL3 */
836 } else if (arm_current_el(env) < 3 &&
837 (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
838 return CP_ACCESS_TRAP_EL3;
842 return CP_ACCESS_OK;
845 static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
846 bool isread)
848 /* Check if CPTR accesses are set to trap to EL3 */
849 if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
850 return CP_ACCESS_TRAP_EL3;
853 return CP_ACCESS_OK;
856 static const ARMCPRegInfo v6_cp_reginfo[] = {
857 /* prefetch by MVA in v6, NOP in v7 */
858 { .name = "MVA_prefetch",
859 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
860 .access = PL1_W, .type = ARM_CP_NOP },
861 /* We need to break the TB after ISB to execute self-modifying code
862 * correctly and also to take any pending interrupts immediately.
863 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
865 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
866 .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
867 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
868 .access = PL0_W, .type = ARM_CP_NOP },
869 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
870 .access = PL0_W, .type = ARM_CP_NOP },
871 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
872 .access = PL1_RW,
873 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
874 offsetof(CPUARMState, cp15.ifar_ns) },
875 .resetvalue = 0, },
876 /* Watchpoint Fault Address Register : should actually only be present
877 * for 1136, 1176, 11MPCore.
879 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
880 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
881 { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
882 .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
883 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
884 .resetvalue = 0, .writefn = cpacr_write },
885 REGINFO_SENTINEL
888 static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
889 bool isread)
891 /* Performance monitor registers user accessibility is controlled
892 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
893 * trapping to EL2 or EL3 for other accesses.
895 int el = arm_current_el(env);
897 if (el == 0 && !env->cp15.c9_pmuserenr) {
898 return CP_ACCESS_TRAP;
900 if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
901 && !arm_is_secure_below_el3(env)) {
902 return CP_ACCESS_TRAP_EL2;
904 if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
905 return CP_ACCESS_TRAP_EL3;
908 return CP_ACCESS_OK;
911 #ifndef CONFIG_USER_ONLY
913 static inline bool arm_ccnt_enabled(CPUARMState *env)
915 /* This does not support checking PMCCFILTR_EL0 register */
917 if (!(env->cp15.c9_pmcr & PMCRE)) {
918 return false;
921 return true;
924 void pmccntr_sync(CPUARMState *env)
926 uint64_t temp_ticks;
928 temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
929 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
931 if (env->cp15.c9_pmcr & PMCRD) {
932 /* Increment once every 64 processor clock cycles */
933 temp_ticks /= 64;
936 if (arm_ccnt_enabled(env)) {
937 env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
941 static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
942 uint64_t value)
944 pmccntr_sync(env);
946 if (value & PMCRC) {
947 /* The counter has been reset */
948 env->cp15.c15_ccnt = 0;
951 /* only the DP, X, D and E bits are writable */
952 env->cp15.c9_pmcr &= ~0x39;
953 env->cp15.c9_pmcr |= (value & 0x39);
955 pmccntr_sync(env);
958 static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
960 uint64_t total_ticks;
962 if (!arm_ccnt_enabled(env)) {
963 /* Counter is disabled, do not change value */
964 return env->cp15.c15_ccnt;
967 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
968 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
970 if (env->cp15.c9_pmcr & PMCRD) {
971 /* Increment once every 64 processor clock cycles */
972 total_ticks /= 64;
974 return total_ticks - env->cp15.c15_ccnt;
977 static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
978 uint64_t value)
980 uint64_t total_ticks;
982 if (!arm_ccnt_enabled(env)) {
983 /* Counter is disabled, set the absolute value */
984 env->cp15.c15_ccnt = value;
985 return;
988 total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
989 ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
991 if (env->cp15.c9_pmcr & PMCRD) {
992 /* Increment once every 64 processor clock cycles */
993 total_ticks /= 64;
995 env->cp15.c15_ccnt = total_ticks - value;
998 static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
999 uint64_t value)
1001 uint64_t cur_val = pmccntr_read(env, NULL);
1003 pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
1006 #else /* CONFIG_USER_ONLY */
1008 void pmccntr_sync(CPUARMState *env)
1012 #endif
1014 static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1015 uint64_t value)
1017 pmccntr_sync(env);
1018 env->cp15.pmccfiltr_el0 = value & 0x7E000000;
1019 pmccntr_sync(env);
1022 static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1023 uint64_t value)
1025 value &= (1 << 31);
1026 env->cp15.c9_pmcnten |= value;
1029 static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1030 uint64_t value)
1032 value &= (1 << 31);
1033 env->cp15.c9_pmcnten &= ~value;
1036 static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1037 uint64_t value)
1039 env->cp15.c9_pmovsr &= ~value;
1042 static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
1043 uint64_t value)
1045 env->cp15.c9_pmxevtyper = value & 0xff;
1048 static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1049 uint64_t value)
1051 env->cp15.c9_pmuserenr = value & 1;
1054 static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1055 uint64_t value)
1057 /* We have no event counters so only the C bit can be changed */
1058 value &= (1 << 31);
1059 env->cp15.c9_pminten |= value;
1062 static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1063 uint64_t value)
1065 value &= (1 << 31);
1066 env->cp15.c9_pminten &= ~value;
1069 static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
1070 uint64_t value)
1072 /* Note that even though the AArch64 view of this register has bits
1073 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1074 * architectural requirements for bits which are RES0 only in some
1075 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1076 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1078 raw_write(env, ri, value & ~0x1FULL);
1081 static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1083 /* We only mask off bits that are RES0 both for AArch64 and AArch32.
1084 * For bits that vary between AArch32/64, code needs to check the
1085 * current execution mode before directly using the feature bit.
1087 uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
1089 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1090 valid_mask &= ~SCR_HCE;
1092 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1093 * supported if EL2 exists. The bit is UNK/SBZP when
1094 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1095 * when EL2 is unavailable.
1096 * On ARMv8, this bit is always available.
1098 if (arm_feature(env, ARM_FEATURE_V7) &&
1099 !arm_feature(env, ARM_FEATURE_V8)) {
1100 valid_mask &= ~SCR_SMD;
1104 /* Clear all-context RES0 bits. */
1105 value &= valid_mask;
1106 raw_write(env, ri, value);
1109 static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1111 ARMCPU *cpu = arm_env_get_cpu(env);
1113 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1114 * bank
1116 uint32_t index = A32_BANKED_REG_GET(env, csselr,
1117 ri->secure & ARM_CP_SECSTATE_S);
1119 return cpu->ccsidr[index];
1122 static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1123 uint64_t value)
1125 raw_write(env, ri, value & 0xf);
1128 static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1130 CPUState *cs = ENV_GET_CPU(env);
1131 uint64_t ret = 0;
1133 if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
1134 ret |= CPSR_I;
1136 if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
1137 ret |= CPSR_F;
1139 /* External aborts are not possible in QEMU so A bit is always clear */
1140 return ret;
1143 static const ARMCPRegInfo v7_cp_reginfo[] = {
1144 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1145 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
1146 .access = PL1_W, .type = ARM_CP_NOP },
1147 /* Performance monitors are implementation defined in v7,
1148 * but with an ARM recommended set of registers, which we
1149 * follow (although we don't actually implement any counters)
1151 * Performance registers fall into three categories:
1152 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1153 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1154 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1155 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1156 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1158 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1159 .access = PL0_RW, .type = ARM_CP_ALIAS,
1160 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1161 .writefn = pmcntenset_write,
1162 .accessfn = pmreg_access,
1163 .raw_writefn = raw_write },
1164 { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
1165 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
1166 .access = PL0_RW, .accessfn = pmreg_access,
1167 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
1168 .writefn = pmcntenset_write, .raw_writefn = raw_write },
1169 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1170 .access = PL0_RW,
1171 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1172 .accessfn = pmreg_access,
1173 .writefn = pmcntenclr_write,
1174 .type = ARM_CP_ALIAS },
1175 { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
1176 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
1177 .access = PL0_RW, .accessfn = pmreg_access,
1178 .type = ARM_CP_ALIAS,
1179 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
1180 .writefn = pmcntenclr_write },
1181 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
1182 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1183 .accessfn = pmreg_access,
1184 .writefn = pmovsr_write,
1185 .raw_writefn = raw_write },
1186 { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
1187 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
1188 .access = PL0_RW, .accessfn = pmreg_access,
1189 .type = ARM_CP_ALIAS,
1190 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1191 .writefn = pmovsr_write,
1192 .raw_writefn = raw_write },
1193 /* Unimplemented so WI. */
1194 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1195 .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
1196 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
1197 * We choose to RAZ/WI.
1199 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1200 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1201 .accessfn = pmreg_access },
1202 #ifndef CONFIG_USER_ONLY
1203 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1204 .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
1205 .readfn = pmccntr_read, .writefn = pmccntr_write32,
1206 .accessfn = pmreg_access },
1207 { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
1208 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1209 .access = PL0_RW, .accessfn = pmreg_access,
1210 .type = ARM_CP_IO,
1211 .readfn = pmccntr_read, .writefn = pmccntr_write, },
1212 #endif
1213 { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
1214 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1215 .writefn = pmccfiltr_write,
1216 .access = PL0_RW, .accessfn = pmreg_access,
1217 .type = ARM_CP_IO,
1218 .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
1219 .resetvalue = 0, },
1220 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1221 .access = PL0_RW,
1222 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
1223 .accessfn = pmreg_access, .writefn = pmxevtyper_write,
1224 .raw_writefn = raw_write },
1225 /* Unimplemented, RAZ/WI. */
1226 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1227 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1228 .accessfn = pmreg_access },
1229 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1230 .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1231 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1232 .resetvalue = 0,
1233 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1234 { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
1235 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1236 .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1237 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
1238 .resetvalue = 0,
1239 .writefn = pmuserenr_write, .raw_writefn = raw_write },
1240 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1241 .access = PL1_RW, .accessfn = access_tpm,
1242 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1243 .resetvalue = 0,
1244 .writefn = pmintenset_write, .raw_writefn = raw_write },
1245 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1246 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1247 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1248 .writefn = pmintenclr_write, },
1249 { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
1250 .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1251 .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1252 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1253 .writefn = pmintenclr_write },
1254 { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
1255 .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
1256 .access = PL1_RW, .writefn = vbar_write,
1257 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
1258 offsetof(CPUARMState, cp15.vbar_ns) },
1259 .resetvalue = 0 },
1260 { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
1261 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1262 .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1263 { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
1264 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1265 .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
1266 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
1267 offsetof(CPUARMState, cp15.csselr_ns) } },
1268 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1269 * just RAZ for all cores:
1271 { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
1272 .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1273 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1274 /* Auxiliary fault status registers: these also are IMPDEF, and we
1275 * choose to RAZ/WI for all cores.
1277 { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
1278 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
1279 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1280 { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
1281 .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
1282 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1283 /* MAIR can just read-as-written because we don't implement caches
1284 * and so don't need to care about memory attributes.
1286 { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
1287 .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1288 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1289 .resetvalue = 0 },
1290 { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
1291 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
1292 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
1293 .resetvalue = 0 },
1294 /* For non-long-descriptor page tables these are PRRR and NMRR;
1295 * regardless they still act as reads-as-written for QEMU.
1297 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1298 * allows them to assign the correct fieldoffset based on the endianness
1299 * handled in the field definitions.
1301 { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1302 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1303 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
1304 offsetof(CPUARMState, cp15.mair0_ns) },
1305 .resetfn = arm_cp_reset_ignore },
1306 { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1307 .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1308 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
1309 offsetof(CPUARMState, cp15.mair1_ns) },
1310 .resetfn = arm_cp_reset_ignore },
1311 { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
1312 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1313 .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1314 /* 32 bit ITLB invalidates */
1315 { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1316 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1317 { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1318 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1319 { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1320 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1321 /* 32 bit DTLB invalidates */
1322 { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1323 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1324 { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1325 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1326 { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1327 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1328 /* 32 bit TLB invalidates */
1329 { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1330 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1331 { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1332 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1333 { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1334 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1335 { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1336 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1337 REGINFO_SENTINEL
1340 static const ARMCPRegInfo v7mp_cp_reginfo[] = {
1341 /* 32 bit TLB invalidates, Inner Shareable */
1342 { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1343 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1344 { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1345 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1346 { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1347 .type = ARM_CP_NO_RAW, .access = PL1_W,
1348 .writefn = tlbiasid_is_write },
1349 { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1350 .type = ARM_CP_NO_RAW, .access = PL1_W,
1351 .writefn = tlbimvaa_is_write },
1352 REGINFO_SENTINEL
1355 static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1356 uint64_t value)
1358 value &= 1;
1359 env->teecr = value;
1362 static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
1363 bool isread)
1365 if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1366 return CP_ACCESS_TRAP;
1368 return CP_ACCESS_OK;
1371 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
1372 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
1373 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
1374 .resetvalue = 0,
1375 .writefn = teecr_write },
1376 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
1377 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1378 .accessfn = teehbr_access, .resetvalue = 0 },
1379 REGINFO_SENTINEL
1382 static const ARMCPRegInfo v6k_cp_reginfo[] = {
1383 { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
1384 .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
1385 .access = PL0_RW,
1386 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1387 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
1388 .access = PL0_RW,
1389 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
1390 offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1391 .resetfn = arm_cp_reset_ignore },
1392 { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
1393 .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
1394 .access = PL0_R|PL1_W,
1395 .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
1396 .resetvalue = 0},
1397 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
1398 .access = PL0_R|PL1_W,
1399 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
1400 offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1401 .resetfn = arm_cp_reset_ignore },
1402 { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1403 .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1404 .access = PL1_RW,
1405 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
1406 { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
1407 .access = PL1_RW,
1408 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
1409 offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
1410 .resetvalue = 0 },
1411 REGINFO_SENTINEL
1414 #ifndef CONFIG_USER_ONLY
1416 static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
1417 bool isread)
1419 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1420 * Writable only at the highest implemented exception level.
1422 int el = arm_current_el(env);
1424 switch (el) {
1425 case 0:
1426 if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
1427 return CP_ACCESS_TRAP;
1429 break;
1430 case 1:
1431 if (!isread && ri->state == ARM_CP_STATE_AA32 &&
1432 arm_is_secure_below_el3(env)) {
1433 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1434 return CP_ACCESS_TRAP_UNCATEGORIZED;
1436 break;
1437 case 2:
1438 case 3:
1439 break;
1442 if (!isread && el < arm_highest_el(env)) {
1443 return CP_ACCESS_TRAP_UNCATEGORIZED;
1446 return CP_ACCESS_OK;
1449 static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
1450 bool isread)
1452 unsigned int cur_el = arm_current_el(env);
1453 bool secure = arm_is_secure(env);
1455 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1456 if (cur_el == 0 &&
1457 !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
1458 return CP_ACCESS_TRAP;
1461 if (arm_feature(env, ARM_FEATURE_EL2) &&
1462 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1463 !extract32(env->cp15.cnthctl_el2, 0, 1)) {
1464 return CP_ACCESS_TRAP_EL2;
1466 return CP_ACCESS_OK;
1469 static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
1470 bool isread)
1472 unsigned int cur_el = arm_current_el(env);
1473 bool secure = arm_is_secure(env);
1475 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1476 * EL0[PV]TEN is zero.
1478 if (cur_el == 0 &&
1479 !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
1480 return CP_ACCESS_TRAP;
1483 if (arm_feature(env, ARM_FEATURE_EL2) &&
1484 timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
1485 !extract32(env->cp15.cnthctl_el2, 1, 1)) {
1486 return CP_ACCESS_TRAP_EL2;
1488 return CP_ACCESS_OK;
1491 static CPAccessResult gt_pct_access(CPUARMState *env,
1492 const ARMCPRegInfo *ri,
1493 bool isread)
1495 return gt_counter_access(env, GTIMER_PHYS, isread);
1498 static CPAccessResult gt_vct_access(CPUARMState *env,
1499 const ARMCPRegInfo *ri,
1500 bool isread)
1502 return gt_counter_access(env, GTIMER_VIRT, isread);
1505 static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1506 bool isread)
1508 return gt_timer_access(env, GTIMER_PHYS, isread);
1511 static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
1512 bool isread)
1514 return gt_timer_access(env, GTIMER_VIRT, isread);
1517 static CPAccessResult gt_stimer_access(CPUARMState *env,
1518 const ARMCPRegInfo *ri,
1519 bool isread)
1521 /* The AArch64 register view of the secure physical timer is
1522 * always accessible from EL3, and configurably accessible from
1523 * Secure EL1.
1525 switch (arm_current_el(env)) {
1526 case 1:
1527 if (!arm_is_secure(env)) {
1528 return CP_ACCESS_TRAP;
1530 if (!(env->cp15.scr_el3 & SCR_ST)) {
1531 return CP_ACCESS_TRAP_EL3;
1533 return CP_ACCESS_OK;
1534 case 0:
1535 case 2:
1536 return CP_ACCESS_TRAP;
1537 case 3:
1538 return CP_ACCESS_OK;
1539 default:
1540 g_assert_not_reached();
1544 static uint64_t gt_get_countervalue(CPUARMState *env)
1546 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1549 static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
1551 ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
1553 if (gt->ctl & 1) {
1554 /* Timer enabled: calculate and set current ISTATUS, irq, and
1555 * reset timer to when ISTATUS next has to change
1557 uint64_t offset = timeridx == GTIMER_VIRT ?
1558 cpu->env.cp15.cntvoff_el2 : 0;
1559 uint64_t count = gt_get_countervalue(&cpu->env);
1560 /* Note that this must be unsigned 64 bit arithmetic: */
1561 int istatus = count - offset >= gt->cval;
1562 uint64_t nexttick;
1564 gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1565 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1566 (istatus && !(gt->ctl & 2)));
1567 if (istatus) {
1568 /* Next transition is when count rolls back over to zero */
1569 nexttick = UINT64_MAX;
1570 } else {
1571 /* Next transition is when we hit cval */
1572 nexttick = gt->cval + offset;
1574 /* Note that the desired next expiry time might be beyond the
1575 * signed-64-bit range of a QEMUTimer -- in this case we just
1576 * set the timer for as far in the future as possible. When the
1577 * timer expires we will reset the timer for any remaining period.
1579 if (nexttick > INT64_MAX / GTIMER_SCALE) {
1580 nexttick = INT64_MAX / GTIMER_SCALE;
1582 timer_mod(cpu->gt_timer[timeridx], nexttick);
1583 } else {
1584 /* Timer disabled: ISTATUS and timer output always clear */
1585 gt->ctl &= ~4;
1586 qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1587 timer_del(cpu->gt_timer[timeridx]);
1591 static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
1592 int timeridx)
1594 ARMCPU *cpu = arm_env_get_cpu(env);
1596 timer_del(cpu->gt_timer[timeridx]);
1599 static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1601 return gt_get_countervalue(env);
1604 static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1606 return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
1609 static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1610 int timeridx,
1611 uint64_t value)
1613 env->cp15.c14_timer[timeridx].cval = value;
1614 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1617 static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
1618 int timeridx)
1620 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1622 return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1623 (gt_get_countervalue(env) - offset));
1626 static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1627 int timeridx,
1628 uint64_t value)
1630 uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1632 env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1633 sextract64(value, 0, 32);
1634 gt_recalc_timer(arm_env_get_cpu(env), timeridx);
1637 static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1638 int timeridx,
1639 uint64_t value)
1641 ARMCPU *cpu = arm_env_get_cpu(env);
1642 uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
1644 env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1645 if ((oldval ^ value) & 1) {
1646 /* Enable toggled */
1647 gt_recalc_timer(cpu, timeridx);
1648 } else if ((oldval ^ value) & 2) {
1649 /* IMASK toggled: don't need to recalculate,
1650 * just set the interrupt line based on ISTATUS
1652 qemu_set_irq(cpu->gt_timer_outputs[timeridx],
1653 (oldval & 4) && !(value & 2));
1657 static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1659 gt_timer_reset(env, ri, GTIMER_PHYS);
1662 static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1663 uint64_t value)
1665 gt_cval_write(env, ri, GTIMER_PHYS, value);
1668 static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1670 return gt_tval_read(env, ri, GTIMER_PHYS);
1673 static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1674 uint64_t value)
1676 gt_tval_write(env, ri, GTIMER_PHYS, value);
1679 static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1680 uint64_t value)
1682 gt_ctl_write(env, ri, GTIMER_PHYS, value);
1685 static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1687 gt_timer_reset(env, ri, GTIMER_VIRT);
1690 static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1691 uint64_t value)
1693 gt_cval_write(env, ri, GTIMER_VIRT, value);
1696 static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1698 return gt_tval_read(env, ri, GTIMER_VIRT);
1701 static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1702 uint64_t value)
1704 gt_tval_write(env, ri, GTIMER_VIRT, value);
1707 static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1708 uint64_t value)
1710 gt_ctl_write(env, ri, GTIMER_VIRT, value);
1713 static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
1714 uint64_t value)
1716 ARMCPU *cpu = arm_env_get_cpu(env);
1718 raw_write(env, ri, value);
1719 gt_recalc_timer(cpu, GTIMER_VIRT);
1722 static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1724 gt_timer_reset(env, ri, GTIMER_HYP);
1727 static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1728 uint64_t value)
1730 gt_cval_write(env, ri, GTIMER_HYP, value);
1733 static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1735 return gt_tval_read(env, ri, GTIMER_HYP);
1738 static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1739 uint64_t value)
1741 gt_tval_write(env, ri, GTIMER_HYP, value);
1744 static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1745 uint64_t value)
1747 gt_ctl_write(env, ri, GTIMER_HYP, value);
1750 static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
1752 gt_timer_reset(env, ri, GTIMER_SEC);
1755 static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1756 uint64_t value)
1758 gt_cval_write(env, ri, GTIMER_SEC, value);
1761 static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
1763 return gt_tval_read(env, ri, GTIMER_SEC);
1766 static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1767 uint64_t value)
1769 gt_tval_write(env, ri, GTIMER_SEC, value);
1772 static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1773 uint64_t value)
1775 gt_ctl_write(env, ri, GTIMER_SEC, value);
1778 void arm_gt_ptimer_cb(void *opaque)
1780 ARMCPU *cpu = opaque;
1782 gt_recalc_timer(cpu, GTIMER_PHYS);
1785 void arm_gt_vtimer_cb(void *opaque)
1787 ARMCPU *cpu = opaque;
1789 gt_recalc_timer(cpu, GTIMER_VIRT);
1792 void arm_gt_htimer_cb(void *opaque)
1794 ARMCPU *cpu = opaque;
1796 gt_recalc_timer(cpu, GTIMER_HYP);
1799 void arm_gt_stimer_cb(void *opaque)
1801 ARMCPU *cpu = opaque;
1803 gt_recalc_timer(cpu, GTIMER_SEC);
1806 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1807 /* Note that CNTFRQ is purely reads-as-written for the benefit
1808 * of software; writing it doesn't actually change the timer frequency.
1809 * Our reset value matches the fixed frequency we implement the timer at.
1811 { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1812 .type = ARM_CP_ALIAS,
1813 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1814 .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
1816 { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
1817 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
1818 .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1819 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
1820 .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
1822 /* overall control: mostly access permissions */
1823 { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
1824 .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1825 .access = PL1_RW,
1826 .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
1827 .resetvalue = 0,
1829 /* per-timer control */
1830 { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1831 .secure = ARM_CP_SECSTATE_NS,
1832 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1833 .accessfn = gt_ptimer_access,
1834 .fieldoffset = offsetoflow32(CPUARMState,
1835 cp15.c14_timer[GTIMER_PHYS].ctl),
1836 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1838 { .name = "CNTP_CTL(S)",
1839 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1840 .secure = ARM_CP_SECSTATE_S,
1841 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1842 .accessfn = gt_ptimer_access,
1843 .fieldoffset = offsetoflow32(CPUARMState,
1844 cp15.c14_timer[GTIMER_SEC].ctl),
1845 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1847 { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
1848 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1849 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1850 .accessfn = gt_ptimer_access,
1851 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
1852 .resetvalue = 0,
1853 .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1855 { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1856 .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1857 .accessfn = gt_vtimer_access,
1858 .fieldoffset = offsetoflow32(CPUARMState,
1859 cp15.c14_timer[GTIMER_VIRT].ctl),
1860 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1862 { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
1863 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1864 .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1865 .accessfn = gt_vtimer_access,
1866 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
1867 .resetvalue = 0,
1868 .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1870 /* TimerValue views: a 32 bit downcounting view of the underlying state */
1871 { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1872 .secure = ARM_CP_SECSTATE_NS,
1873 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1874 .accessfn = gt_ptimer_access,
1875 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1877 { .name = "CNTP_TVAL(S)",
1878 .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1879 .secure = ARM_CP_SECSTATE_S,
1880 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1881 .accessfn = gt_ptimer_access,
1882 .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
1884 { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1885 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1886 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1887 .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
1888 .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1890 { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1891 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1892 .accessfn = gt_vtimer_access,
1893 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1895 { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
1896 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1897 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1898 .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
1899 .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1901 /* The counter itself */
1902 { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1903 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1904 .accessfn = gt_pct_access,
1905 .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
1907 { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
1908 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1909 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1910 .accessfn = gt_pct_access, .readfn = gt_cnt_read,
1912 { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1913 .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1914 .accessfn = gt_vct_access,
1915 .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
1917 { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
1918 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1919 .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1920 .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
1922 /* Comparison value, indicating when the timer goes off */
1923 { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
1924 .secure = ARM_CP_SECSTATE_NS,
1925 .access = PL1_RW | PL0_R,
1926 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1927 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1928 .accessfn = gt_ptimer_access,
1929 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1931 { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
1932 .secure = ARM_CP_SECSTATE_S,
1933 .access = PL1_RW | PL0_R,
1934 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1935 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1936 .accessfn = gt_ptimer_access,
1937 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1939 { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1940 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
1941 .access = PL1_RW | PL0_R,
1942 .type = ARM_CP_IO,
1943 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1944 .resetvalue = 0, .accessfn = gt_ptimer_access,
1945 .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1947 { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
1948 .access = PL1_RW | PL0_R,
1949 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1950 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1951 .accessfn = gt_vtimer_access,
1952 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
1954 { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
1955 .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
1956 .access = PL1_RW | PL0_R,
1957 .type = ARM_CP_IO,
1958 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1959 .resetvalue = 0, .accessfn = gt_vtimer_access,
1960 .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
1962 /* Secure timer -- this is actually restricted to only EL3
1963 * and configurably Secure-EL1 via the accessfn.
1965 { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
1966 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
1967 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
1968 .accessfn = gt_stimer_access,
1969 .readfn = gt_sec_tval_read,
1970 .writefn = gt_sec_tval_write,
1971 .resetfn = gt_sec_timer_reset,
1973 { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
1974 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
1975 .type = ARM_CP_IO, .access = PL1_RW,
1976 .accessfn = gt_stimer_access,
1977 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
1978 .resetvalue = 0,
1979 .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
1981 { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
1982 .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
1983 .type = ARM_CP_IO, .access = PL1_RW,
1984 .accessfn = gt_stimer_access,
1985 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
1986 .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
1988 REGINFO_SENTINEL
1991 #else
1992 /* In user-mode none of the generic timer registers are accessible,
1993 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1994 * so instead just don't register any of them.
1996 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
1997 REGINFO_SENTINEL
2000 #endif
2002 static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2004 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2005 raw_write(env, ri, value);
2006 } else if (arm_feature(env, ARM_FEATURE_V7)) {
2007 raw_write(env, ri, value & 0xfffff6ff);
2008 } else {
2009 raw_write(env, ri, value & 0xfffff1ff);
2013 #ifndef CONFIG_USER_ONLY
2014 /* get_phys_addr() isn't present for user-mode-only targets */
2016 static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
2017 bool isread)
2019 if (ri->opc2 & 4) {
2020 /* The ATS12NSO* operations must trap to EL3 if executed in
2021 * Secure EL1 (which can only happen if EL3 is AArch64).
2022 * They are simply UNDEF if executed from NS EL1.
2023 * They function normally from EL2 or EL3.
2025 if (arm_current_el(env) == 1) {
2026 if (arm_is_secure_below_el3(env)) {
2027 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
2029 return CP_ACCESS_TRAP_UNCATEGORIZED;
2032 return CP_ACCESS_OK;
2035 static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2036 int access_type, ARMMMUIdx mmu_idx)
2038 hwaddr phys_addr;
2039 target_ulong page_size;
2040 int prot;
2041 uint32_t fsr;
2042 bool ret;
2043 uint64_t par64;
2044 MemTxAttrs attrs = {};
2045 ARMMMUFaultInfo fi = {};
2047 ret = get_phys_addr(env, value, access_type, mmu_idx,
2048 &phys_addr, &attrs, &prot, &page_size, &fsr, &fi);
2049 if (extended_addresses_enabled(env)) {
2050 /* fsr is a DFSR/IFSR value for the long descriptor
2051 * translation table format, but with WnR always clear.
2052 * Convert it to a 64-bit PAR.
2054 par64 = (1 << 11); /* LPAE bit always set */
2055 if (!ret) {
2056 par64 |= phys_addr & ~0xfffULL;
2057 if (!attrs.secure) {
2058 par64 |= (1 << 9); /* NS */
2060 /* We don't set the ATTR or SH fields in the PAR. */
2061 } else {
2062 par64 |= 1; /* F */
2063 par64 |= (fsr & 0x3f) << 1; /* FS */
2064 /* Note that S2WLK and FSTAGE are always zero, because we don't
2065 * implement virtualization and therefore there can't be a stage 2
2066 * fault.
2069 } else {
2070 /* fsr is a DFSR/IFSR value for the short descriptor
2071 * translation table format (with WnR always clear).
2072 * Convert it to a 32-bit PAR.
2074 if (!ret) {
2075 /* We do not set any attribute bits in the PAR */
2076 if (page_size == (1 << 24)
2077 && arm_feature(env, ARM_FEATURE_V7)) {
2078 par64 = (phys_addr & 0xff000000) | (1 << 1);
2079 } else {
2080 par64 = phys_addr & 0xfffff000;
2082 if (!attrs.secure) {
2083 par64 |= (1 << 9); /* NS */
2085 } else {
2086 par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
2087 ((fsr & 0xf) << 1) | 1;
2090 return par64;
2093 static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2095 int access_type = ri->opc2 & 1;
2096 uint64_t par64;
2097 ARMMMUIdx mmu_idx;
2098 int el = arm_current_el(env);
2099 bool secure = arm_is_secure_below_el3(env);
2101 switch (ri->opc2 & 6) {
2102 case 0:
2103 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2104 switch (el) {
2105 case 3:
2106 mmu_idx = ARMMMUIdx_S1E3;
2107 break;
2108 case 2:
2109 mmu_idx = ARMMMUIdx_S1NSE1;
2110 break;
2111 case 1:
2112 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2113 break;
2114 default:
2115 g_assert_not_reached();
2117 break;
2118 case 2:
2119 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2120 switch (el) {
2121 case 3:
2122 mmu_idx = ARMMMUIdx_S1SE0;
2123 break;
2124 case 2:
2125 mmu_idx = ARMMMUIdx_S1NSE0;
2126 break;
2127 case 1:
2128 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2129 break;
2130 default:
2131 g_assert_not_reached();
2133 break;
2134 case 4:
2135 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2136 mmu_idx = ARMMMUIdx_S12NSE1;
2137 break;
2138 case 6:
2139 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2140 mmu_idx = ARMMMUIdx_S12NSE0;
2141 break;
2142 default:
2143 g_assert_not_reached();
2146 par64 = do_ats_write(env, value, access_type, mmu_idx);
2148 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2151 static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
2152 uint64_t value)
2154 int access_type = ri->opc2 & 1;
2155 uint64_t par64;
2157 par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
2159 A32_BANKED_CURRENT_REG_SET(env, par, par64);
2162 static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
2163 bool isread)
2165 if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
2166 return CP_ACCESS_TRAP;
2168 return CP_ACCESS_OK;
2171 static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
2172 uint64_t value)
2174 int access_type = ri->opc2 & 1;
2175 ARMMMUIdx mmu_idx;
2176 int secure = arm_is_secure_below_el3(env);
2178 switch (ri->opc2 & 6) {
2179 case 0:
2180 switch (ri->opc1) {
2181 case 0: /* AT S1E1R, AT S1E1W */
2182 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
2183 break;
2184 case 4: /* AT S1E2R, AT S1E2W */
2185 mmu_idx = ARMMMUIdx_S1E2;
2186 break;
2187 case 6: /* AT S1E3R, AT S1E3W */
2188 mmu_idx = ARMMMUIdx_S1E3;
2189 break;
2190 default:
2191 g_assert_not_reached();
2193 break;
2194 case 2: /* AT S1E0R, AT S1E0W */
2195 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
2196 break;
2197 case 4: /* AT S12E1R, AT S12E1W */
2198 mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2199 break;
2200 case 6: /* AT S12E0R, AT S12E0W */
2201 mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2202 break;
2203 default:
2204 g_assert_not_reached();
2207 env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2209 #endif
2211 static const ARMCPRegInfo vapa_cp_reginfo[] = {
2212 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
2213 .access = PL1_RW, .resetvalue = 0,
2214 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
2215 offsetoflow32(CPUARMState, cp15.par_ns) },
2216 .writefn = par_write },
2217 #ifndef CONFIG_USER_ONLY
2218 /* This underdecoding is safe because the reginfo is NO_RAW. */
2219 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2220 .access = PL1_W, .accessfn = ats_access,
2221 .writefn = ats_write, .type = ARM_CP_NO_RAW },
2222 #endif
2223 REGINFO_SENTINEL
2226 /* Return basic MPU access permission bits. */
2227 static uint32_t simple_mpu_ap_bits(uint32_t val)
2229 uint32_t ret;
2230 uint32_t mask;
2231 int i;
2232 ret = 0;
2233 mask = 3;
2234 for (i = 0; i < 16; i += 2) {
2235 ret |= (val >> i) & mask;
2236 mask <<= 2;
2238 return ret;
2241 /* Pad basic MPU access permission bits to extended format. */
2242 static uint32_t extended_mpu_ap_bits(uint32_t val)
2244 uint32_t ret;
2245 uint32_t mask;
2246 int i;
2247 ret = 0;
2248 mask = 3;
2249 for (i = 0; i < 16; i += 2) {
2250 ret |= (val & mask) << i;
2251 mask <<= 2;
2253 return ret;
2256 static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2257 uint64_t value)
2259 env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2262 static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2264 return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2267 static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2268 uint64_t value)
2270 env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2273 static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2275 return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2278 static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
2280 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2282 if (!u32p) {
2283 return 0;
2286 u32p += env->cp15.c6_rgnr;
2287 return *u32p;
2290 static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
2291 uint64_t value)
2293 ARMCPU *cpu = arm_env_get_cpu(env);
2294 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2296 if (!u32p) {
2297 return;
2300 u32p += env->cp15.c6_rgnr;
2301 tlb_flush(CPU(cpu), 1); /* Mappings may have changed - purge! */
2302 *u32p = value;
2305 static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2307 ARMCPU *cpu = arm_env_get_cpu(env);
2308 uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
2310 if (!u32p) {
2311 return;
2314 memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
2317 static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2318 uint64_t value)
2320 ARMCPU *cpu = arm_env_get_cpu(env);
2321 uint32_t nrgs = cpu->pmsav7_dregion;
2323 if (value >= nrgs) {
2324 qemu_log_mask(LOG_GUEST_ERROR,
2325 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2326 " > %" PRIu32 "\n", (uint32_t)value, nrgs);
2327 return;
2330 raw_write(env, ri, value);
2333 static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2334 { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
2335 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2336 .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2337 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2338 { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
2339 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2340 .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2341 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2342 { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
2343 .access = PL1_RW, .type = ARM_CP_NO_RAW,
2344 .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2345 .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
2346 { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
2347 .access = PL1_RW,
2348 .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
2349 .writefn = pmsav7_rgnr_write },
2350 REGINFO_SENTINEL
2353 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
2354 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2355 .access = PL1_RW, .type = ARM_CP_ALIAS,
2356 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2357 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
2358 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2359 .access = PL1_RW, .type = ARM_CP_ALIAS,
2360 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2361 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
2362 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
2363 .access = PL1_RW,
2364 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2365 .resetvalue = 0, },
2366 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
2367 .access = PL1_RW,
2368 .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2369 .resetvalue = 0, },
2370 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
2371 .access = PL1_RW,
2372 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
2373 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
2374 .access = PL1_RW,
2375 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2376 /* Protection region base and size registers */
2377 { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
2378 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2379 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
2380 { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
2381 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2382 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
2383 { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
2384 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2385 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
2386 { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
2387 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2388 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
2389 { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
2390 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2391 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
2392 { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
2393 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2394 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
2395 { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
2396 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2397 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
2398 { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
2399 .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
2400 .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2401 REGINFO_SENTINEL
2404 static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
2405 uint64_t value)
2407 TCR *tcr = raw_ptr(env, ri);
2408 int maskshift = extract32(value, 0, 3);
2410 if (!arm_feature(env, ARM_FEATURE_V8)) {
2411 if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
2412 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2413 * using Long-desciptor translation table format */
2414 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
2415 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
2416 /* In an implementation that includes the Security Extensions
2417 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2418 * Short-descriptor translation table format.
2420 value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
2421 } else {
2422 value &= TTBCR_N;
2426 /* Update the masks corresponding to the TCR bank being written
2427 * Note that we always calculate mask and base_mask, but
2428 * they are only used for short-descriptor tables (ie if EAE is 0);
2429 * for long-descriptor tables the TCR fields are used differently
2430 * and the mask and base_mask values are meaningless.
2432 tcr->raw_tcr = value;
2433 tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
2434 tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2437 static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2438 uint64_t value)
2440 ARMCPU *cpu = arm_env_get_cpu(env);
2442 if (arm_feature(env, ARM_FEATURE_LPAE)) {
2443 /* With LPAE the TTBCR could result in a change of ASID
2444 * via the TTBCR.A1 bit, so do a TLB flush.
2446 tlb_flush(CPU(cpu), 1);
2448 vmsa_ttbcr_raw_write(env, ri, value);
2451 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2453 TCR *tcr = raw_ptr(env, ri);
2455 /* Reset both the TCR as well as the masks corresponding to the bank of
2456 * the TCR being reset.
2458 tcr->raw_tcr = 0;
2459 tcr->mask = 0;
2460 tcr->base_mask = 0xffffc000u;
2463 static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2464 uint64_t value)
2466 ARMCPU *cpu = arm_env_get_cpu(env);
2467 TCR *tcr = raw_ptr(env, ri);
2469 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2470 tlb_flush(CPU(cpu), 1);
2471 tcr->raw_tcr = value;
2474 static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2475 uint64_t value)
2477 /* 64 bit accesses to the TTBRs can change the ASID and so we
2478 * must flush the TLB.
2480 if (cpreg_field_is_64bit(ri)) {
2481 ARMCPU *cpu = arm_env_get_cpu(env);
2483 tlb_flush(CPU(cpu), 1);
2485 raw_write(env, ri, value);
2488 static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2489 uint64_t value)
2491 ARMCPU *cpu = arm_env_get_cpu(env);
2492 CPUState *cs = CPU(cpu);
2494 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2495 if (raw_read(env, ri) != value) {
2496 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2497 ARMMMUIdx_S2NS, -1);
2498 raw_write(env, ri, value);
2502 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2503 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2504 .access = PL1_RW, .type = ARM_CP_ALIAS,
2505 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2506 offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2507 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2508 .access = PL1_RW, .resetvalue = 0,
2509 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
2510 offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2511 { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
2512 .access = PL1_RW, .resetvalue = 0,
2513 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
2514 offsetof(CPUARMState, cp15.dfar_ns) } },
2515 { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
2516 .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
2517 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
2518 .resetvalue = 0, },
2519 REGINFO_SENTINEL
2522 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2523 { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
2524 .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
2525 .access = PL1_RW,
2526 .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2527 { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2528 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
2529 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2530 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2531 offsetof(CPUARMState, cp15.ttbr0_ns) } },
2532 { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2533 .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
2534 .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
2535 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2536 offsetof(CPUARMState, cp15.ttbr1_ns) } },
2537 { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
2538 .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2539 .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
2540 .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2541 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2542 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2543 .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2544 .raw_writefn = vmsa_ttbcr_raw_write,
2545 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
2546 offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2547 REGINFO_SENTINEL
2550 static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
2551 uint64_t value)
2553 env->cp15.c15_ticonfig = value & 0xe7;
2554 /* The OS_TYPE bit in this register changes the reported CPUID! */
2555 env->cp15.c0_cpuid = (value & (1 << 5)) ?
2556 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
2559 static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
2560 uint64_t value)
2562 env->cp15.c15_threadid = value & 0xffff;
2565 static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
2566 uint64_t value)
2568 /* Wait-for-interrupt (deprecated) */
2569 cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2572 static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
2573 uint64_t value)
2575 /* On OMAP there are registers indicating the max/min index of dcache lines
2576 * containing a dirty line; cache flush operations have to reset these.
2578 env->cp15.c15_i_max = 0x000;
2579 env->cp15.c15_i_min = 0xff0;
2582 static const ARMCPRegInfo omap_cp_reginfo[] = {
2583 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
2584 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2585 .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2586 .resetvalue = 0, },
2587 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
2588 .access = PL1_RW, .type = ARM_CP_NOP },
2589 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
2590 .access = PL1_RW,
2591 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
2592 .writefn = omap_ticonfig_write },
2593 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
2594 .access = PL1_RW,
2595 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
2596 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
2597 .access = PL1_RW, .resetvalue = 0xff0,
2598 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
2599 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
2600 .access = PL1_RW,
2601 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
2602 .writefn = omap_threadid_write },
2603 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
2604 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2605 .type = ARM_CP_NO_RAW,
2606 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
2607 /* TODO: Peripheral port remap register:
2608 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2609 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2610 * when MMU is off.
2612 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2613 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2614 .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2615 .writefn = omap_cachemaint_write },
2616 { .name = "C9", .cp = 15, .crn = 9,
2617 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
2618 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2619 REGINFO_SENTINEL
2622 static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
2623 uint64_t value)
2625 env->cp15.c15_cpar = value & 0x3fff;
2628 static const ARMCPRegInfo xscale_cp_reginfo[] = {
2629 { .name = "XSCALE_CPAR",
2630 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2631 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
2632 .writefn = xscale_cpar_write, },
2633 { .name = "XSCALE_AUXCR",
2634 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
2635 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
2636 .resetvalue = 0, },
2637 /* XScale specific cache-lockdown: since we have no cache we NOP these
2638 * and hope the guest does not really rely on cache behaviour.
2640 { .name = "XSCALE_LOCK_ICACHE_LINE",
2641 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
2642 .access = PL1_W, .type = ARM_CP_NOP },
2643 { .name = "XSCALE_UNLOCK_ICACHE",
2644 .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
2645 .access = PL1_W, .type = ARM_CP_NOP },
2646 { .name = "XSCALE_DCACHE_LOCK",
2647 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
2648 .access = PL1_RW, .type = ARM_CP_NOP },
2649 { .name = "XSCALE_UNLOCK_DCACHE",
2650 .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
2651 .access = PL1_W, .type = ARM_CP_NOP },
2652 REGINFO_SENTINEL
2655 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
2656 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2657 * implementation of this implementation-defined space.
2658 * Ideally this should eventually disappear in favour of actually
2659 * implementing the correct behaviour for all cores.
2661 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
2662 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2663 .access = PL1_RW,
2664 .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2665 .resetvalue = 0 },
2666 REGINFO_SENTINEL
2669 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
2670 /* Cache status: RAZ because we have no cache so it's always clean */
2671 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2672 .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2673 .resetvalue = 0 },
2674 REGINFO_SENTINEL
2677 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
2678 /* We never have a a block transfer operation in progress */
2679 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2680 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2681 .resetvalue = 0 },
2682 /* The cache ops themselves: these all NOP for QEMU */
2683 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
2684 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2685 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
2686 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2687 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
2688 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2689 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
2690 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2691 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
2692 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2693 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
2694 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2695 REGINFO_SENTINEL
2698 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
2699 /* The cache test-and-clean instructions always return (1 << 30)
2700 * to indicate that there are no dirty cache lines.
2702 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2703 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2704 .resetvalue = (1 << 30) },
2705 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2706 .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2707 .resetvalue = (1 << 30) },
2708 REGINFO_SENTINEL
2711 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
2712 /* Ignore ReadBuffer accesses */
2713 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
2714 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2715 .access = PL1_RW, .resetvalue = 0,
2716 .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2717 REGINFO_SENTINEL
2720 static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2722 ARMCPU *cpu = arm_env_get_cpu(env);
2723 unsigned int cur_el = arm_current_el(env);
2724 bool secure = arm_is_secure(env);
2726 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2727 return env->cp15.vpidr_el2;
2729 return raw_read(env, ri);
2732 static uint64_t mpidr_read_val(CPUARMState *env)
2734 ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
2735 uint64_t mpidr = cpu->mp_affinity;
2737 if (arm_feature(env, ARM_FEATURE_V7MP)) {
2738 mpidr |= (1U << 31);
2739 /* Cores which are uniprocessor (non-coherent)
2740 * but still implement the MP extensions set
2741 * bit 30. (For instance, Cortex-R5).
2743 if (cpu->mp_is_up) {
2744 mpidr |= (1u << 30);
2747 return mpidr;
2750 static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2752 unsigned int cur_el = arm_current_el(env);
2753 bool secure = arm_is_secure(env);
2755 if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
2756 return env->cp15.vmpidr_el2;
2758 return mpidr_read_val(env);
2761 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2762 { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
2763 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2764 .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
2765 REGINFO_SENTINEL
2768 static const ARMCPRegInfo lpae_cp_reginfo[] = {
2769 /* NOP AMAIR0/1 */
2770 { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
2771 .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2772 .access = PL1_RW, .type = ARM_CP_CONST,
2773 .resetvalue = 0 },
2774 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2775 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2776 .access = PL1_RW, .type = ARM_CP_CONST,
2777 .resetvalue = 0 },
2778 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2779 .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
2780 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
2781 offsetof(CPUARMState, cp15.par_ns)} },
2782 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2783 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2784 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
2785 offsetof(CPUARMState, cp15.ttbr0_ns) },
2786 .writefn = vmsa_ttbr_write, },
2787 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2788 .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2789 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
2790 offsetof(CPUARMState, cp15.ttbr1_ns) },
2791 .writefn = vmsa_ttbr_write, },
2792 REGINFO_SENTINEL
2795 static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2797 return vfp_get_fpcr(env);
2800 static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2801 uint64_t value)
2803 vfp_set_fpcr(env, value);
2806 static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2808 return vfp_get_fpsr(env);
2811 static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2812 uint64_t value)
2814 vfp_set_fpsr(env, value);
2817 static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
2818 bool isread)
2820 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2821 return CP_ACCESS_TRAP;
2823 return CP_ACCESS_OK;
2826 static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
2827 uint64_t value)
2829 env->daif = value & PSTATE_DAIF;
2832 static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2833 const ARMCPRegInfo *ri,
2834 bool isread)
2836 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
2837 * SCTLR_EL1.UCI is set.
2839 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2840 return CP_ACCESS_TRAP;
2842 return CP_ACCESS_OK;
2845 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
2846 * Page D4-1736 (DDI0487A.b)
2849 static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2850 uint64_t value)
2852 ARMCPU *cpu = arm_env_get_cpu(env);
2853 CPUState *cs = CPU(cpu);
2855 if (arm_is_secure_below_el3(env)) {
2856 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2857 } else {
2858 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2862 static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2863 uint64_t value)
2865 bool sec = arm_is_secure_below_el3(env);
2866 CPUState *other_cs;
2868 CPU_FOREACH(other_cs) {
2869 if (sec) {
2870 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2871 } else {
2872 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2873 ARMMMUIdx_S12NSE0, -1);
2878 static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2879 uint64_t value)
2881 /* Note that the 'ALL' scope must invalidate both stage 1 and
2882 * stage 2 translations, whereas most other scopes only invalidate
2883 * stage 1 translations.
2885 ARMCPU *cpu = arm_env_get_cpu(env);
2886 CPUState *cs = CPU(cpu);
2888 if (arm_is_secure_below_el3(env)) {
2889 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2890 } else {
2891 if (arm_feature(env, ARM_FEATURE_EL2)) {
2892 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
2893 ARMMMUIdx_S2NS, -1);
2894 } else {
2895 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
2900 static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2901 uint64_t value)
2903 ARMCPU *cpu = arm_env_get_cpu(env);
2904 CPUState *cs = CPU(cpu);
2906 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1);
2909 static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2910 uint64_t value)
2912 ARMCPU *cpu = arm_env_get_cpu(env);
2913 CPUState *cs = CPU(cpu);
2915 tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E3, -1);
2918 static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2919 uint64_t value)
2921 /* Note that the 'ALL' scope must invalidate both stage 1 and
2922 * stage 2 translations, whereas most other scopes only invalidate
2923 * stage 1 translations.
2925 bool sec = arm_is_secure_below_el3(env);
2926 bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
2927 CPUState *other_cs;
2929 CPU_FOREACH(other_cs) {
2930 if (sec) {
2931 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
2932 } else if (has_el2) {
2933 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2934 ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1);
2935 } else {
2936 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
2937 ARMMMUIdx_S12NSE0, -1);
2942 static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2943 uint64_t value)
2945 CPUState *other_cs;
2947 CPU_FOREACH(other_cs) {
2948 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1);
2952 static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
2953 uint64_t value)
2955 CPUState *other_cs;
2957 CPU_FOREACH(other_cs) {
2958 tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E3, -1);
2962 static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2963 uint64_t value)
2965 /* Invalidate by VA, EL1&0 (AArch64 version).
2966 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
2967 * since we don't support flush-for-specific-ASID-only or
2968 * flush-last-level-only.
2970 ARMCPU *cpu = arm_env_get_cpu(env);
2971 CPUState *cs = CPU(cpu);
2972 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2974 if (arm_is_secure_below_el3(env)) {
2975 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1SE1,
2976 ARMMMUIdx_S1SE0, -1);
2977 } else {
2978 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S12NSE1,
2979 ARMMMUIdx_S12NSE0, -1);
2983 static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2984 uint64_t value)
2986 /* Invalidate by VA, EL2
2987 * Currently handles both VAE2 and VALE2, since we don't support
2988 * flush-last-level-only.
2990 ARMCPU *cpu = arm_env_get_cpu(env);
2991 CPUState *cs = CPU(cpu);
2992 uint64_t pageaddr = sextract64(value << 12, 0, 56);
2994 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1);
2997 static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2998 uint64_t value)
3000 /* Invalidate by VA, EL3
3001 * Currently handles both VAE3 and VALE3, since we don't support
3002 * flush-last-level-only.
3004 ARMCPU *cpu = arm_env_get_cpu(env);
3005 CPUState *cs = CPU(cpu);
3006 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3008 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E3, -1);
3011 static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3012 uint64_t value)
3014 bool sec = arm_is_secure_below_el3(env);
3015 CPUState *other_cs;
3016 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3018 CPU_FOREACH(other_cs) {
3019 if (sec) {
3020 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1SE1,
3021 ARMMMUIdx_S1SE0, -1);
3022 } else {
3023 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S12NSE1,
3024 ARMMMUIdx_S12NSE0, -1);
3029 static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3030 uint64_t value)
3032 CPUState *other_cs;
3033 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3035 CPU_FOREACH(other_cs) {
3036 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1);
3040 static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3041 uint64_t value)
3043 CPUState *other_cs;
3044 uint64_t pageaddr = sextract64(value << 12, 0, 56);
3046 CPU_FOREACH(other_cs) {
3047 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E3, -1);
3051 static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
3052 uint64_t value)
3054 /* Invalidate by IPA. This has to invalidate any structures that
3055 * contain only stage 2 translation information, but does not need
3056 * to apply to structures that contain combined stage 1 and stage 2
3057 * translation information.
3058 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3060 ARMCPU *cpu = arm_env_get_cpu(env);
3061 CPUState *cs = CPU(cpu);
3062 uint64_t pageaddr;
3064 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3065 return;
3068 pageaddr = sextract64(value << 12, 0, 48);
3070 tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1);
3073 static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
3074 uint64_t value)
3076 CPUState *other_cs;
3077 uint64_t pageaddr;
3079 if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
3080 return;
3083 pageaddr = sextract64(value << 12, 0, 48);
3085 CPU_FOREACH(other_cs) {
3086 tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1);
3090 static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
3091 bool isread)
3093 /* We don't implement EL2, so the only control on DC ZVA is the
3094 * bit in the SCTLR which can prohibit access for EL0.
3096 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3097 return CP_ACCESS_TRAP;
3099 return CP_ACCESS_OK;
3102 static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
3104 ARMCPU *cpu = arm_env_get_cpu(env);
3105 int dzp_bit = 1 << 4;
3107 /* DZP indicates whether DC ZVA access is allowed */
3108 if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3109 dzp_bit = 0;
3111 return cpu->dcz_blocksize | dzp_bit;
3114 static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3115 bool isread)
3117 if (!(env->pstate & PSTATE_SP)) {
3118 /* Access to SP_EL0 is undefined if it's being used as
3119 * the stack pointer.
3121 return CP_ACCESS_TRAP_UNCATEGORIZED;
3123 return CP_ACCESS_OK;
3126 static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
3128 return env->pstate & PSTATE_SP;
3131 static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
3133 update_spsel(env, val);
3136 static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3137 uint64_t value)
3139 ARMCPU *cpu = arm_env_get_cpu(env);
3141 if (raw_read(env, ri) == value) {
3142 /* Skip the TLB flush if nothing actually changed; Linux likes
3143 * to do a lot of pointless SCTLR writes.
3145 return;
3148 raw_write(env, ri, value);
3149 /* ??? Lots of these bits are not implemented. */
3150 /* This may enable/disable the MMU, so do a TLB flush. */
3151 tlb_flush(CPU(cpu), 1);
3154 static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
3155 bool isread)
3157 if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3158 return CP_ACCESS_TRAP_FP_EL2;
3160 if (env->cp15.cptr_el[3] & CPTR_TFP) {
3161 return CP_ACCESS_TRAP_FP_EL3;
3163 return CP_ACCESS_OK;
3166 static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
3167 uint64_t value)
3169 env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
3172 static const ARMCPRegInfo v8_cp_reginfo[] = {
3173 /* Minimal set of EL0-visible registers. This will need to be expanded
3174 * significantly for system emulation of AArch64 CPUs.
3176 { .name = "NZCV", .state = ARM_CP_STATE_AA64,
3177 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
3178 .access = PL0_RW, .type = ARM_CP_NZCV },
3179 { .name = "DAIF", .state = ARM_CP_STATE_AA64,
3180 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3181 .type = ARM_CP_NO_RAW,
3182 .access = PL0_RW, .accessfn = aa64_daif_access,
3183 .fieldoffset = offsetof(CPUARMState, daif),
3184 .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3185 { .name = "FPCR", .state = ARM_CP_STATE_AA64,
3186 .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3187 .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3188 { .name = "FPSR", .state = ARM_CP_STATE_AA64,
3189 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3190 .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3191 { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
3192 .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3193 .access = PL0_R, .type = ARM_CP_NO_RAW,
3194 .readfn = aa64_dczid_read },
3195 { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
3196 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
3197 .access = PL0_W, .type = ARM_CP_DC_ZVA,
3198 #ifndef CONFIG_USER_ONLY
3199 /* Avoid overhead of an access check that always passes in user-mode */
3200 .accessfn = aa64_zva_access,
3201 #endif
3203 { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
3204 .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
3205 .access = PL1_R, .type = ARM_CP_CURRENTEL },
3206 /* Cache ops: all NOPs since we don't emulate caches */
3207 { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
3208 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3209 .access = PL1_W, .type = ARM_CP_NOP },
3210 { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
3211 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3212 .access = PL1_W, .type = ARM_CP_NOP },
3213 { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
3214 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
3215 .access = PL0_W, .type = ARM_CP_NOP,
3216 .accessfn = aa64_cacheop_access },
3217 { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
3218 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3219 .access = PL1_W, .type = ARM_CP_NOP },
3220 { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
3221 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3222 .access = PL1_W, .type = ARM_CP_NOP },
3223 { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
3224 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
3225 .access = PL0_W, .type = ARM_CP_NOP,
3226 .accessfn = aa64_cacheop_access },
3227 { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
3228 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3229 .access = PL1_W, .type = ARM_CP_NOP },
3230 { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
3231 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
3232 .access = PL0_W, .type = ARM_CP_NOP,
3233 .accessfn = aa64_cacheop_access },
3234 { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
3235 .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
3236 .access = PL0_W, .type = ARM_CP_NOP,
3237 .accessfn = aa64_cacheop_access },
3238 { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
3239 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3240 .access = PL1_W, .type = ARM_CP_NOP },
3241 /* TLBI operations */
3242 { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3243 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3244 .access = PL1_W, .type = ARM_CP_NO_RAW,
3245 .writefn = tlbi_aa64_vmalle1is_write },
3246 { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3247 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3248 .access = PL1_W, .type = ARM_CP_NO_RAW,
3249 .writefn = tlbi_aa64_vae1is_write },
3250 { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3251 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3252 .access = PL1_W, .type = ARM_CP_NO_RAW,
3253 .writefn = tlbi_aa64_vmalle1is_write },
3254 { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3255 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3256 .access = PL1_W, .type = ARM_CP_NO_RAW,
3257 .writefn = tlbi_aa64_vae1is_write },
3258 { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3259 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3260 .access = PL1_W, .type = ARM_CP_NO_RAW,
3261 .writefn = tlbi_aa64_vae1is_write },
3262 { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3263 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3264 .access = PL1_W, .type = ARM_CP_NO_RAW,
3265 .writefn = tlbi_aa64_vae1is_write },
3266 { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3267 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3268 .access = PL1_W, .type = ARM_CP_NO_RAW,
3269 .writefn = tlbi_aa64_vmalle1_write },
3270 { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3271 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3272 .access = PL1_W, .type = ARM_CP_NO_RAW,
3273 .writefn = tlbi_aa64_vae1_write },
3274 { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3275 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3276 .access = PL1_W, .type = ARM_CP_NO_RAW,
3277 .writefn = tlbi_aa64_vmalle1_write },
3278 { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3279 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3280 .access = PL1_W, .type = ARM_CP_NO_RAW,
3281 .writefn = tlbi_aa64_vae1_write },
3282 { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3283 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3284 .access = PL1_W, .type = ARM_CP_NO_RAW,
3285 .writefn = tlbi_aa64_vae1_write },
3286 { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3287 .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3288 .access = PL1_W, .type = ARM_CP_NO_RAW,
3289 .writefn = tlbi_aa64_vae1_write },
3290 { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
3291 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3292 .access = PL2_W, .type = ARM_CP_NO_RAW,
3293 .writefn = tlbi_aa64_ipas2e1is_write },
3294 { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
3295 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3296 .access = PL2_W, .type = ARM_CP_NO_RAW,
3297 .writefn = tlbi_aa64_ipas2e1is_write },
3298 { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
3299 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3300 .access = PL2_W, .type = ARM_CP_NO_RAW,
3301 .writefn = tlbi_aa64_alle1is_write },
3302 { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
3303 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
3304 .access = PL2_W, .type = ARM_CP_NO_RAW,
3305 .writefn = tlbi_aa64_alle1is_write },
3306 { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
3307 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3308 .access = PL2_W, .type = ARM_CP_NO_RAW,
3309 .writefn = tlbi_aa64_ipas2e1_write },
3310 { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
3311 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3312 .access = PL2_W, .type = ARM_CP_NO_RAW,
3313 .writefn = tlbi_aa64_ipas2e1_write },
3314 { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
3315 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3316 .access = PL2_W, .type = ARM_CP_NO_RAW,
3317 .writefn = tlbi_aa64_alle1_write },
3318 { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
3319 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
3320 .access = PL2_W, .type = ARM_CP_NO_RAW,
3321 .writefn = tlbi_aa64_alle1is_write },
3322 #ifndef CONFIG_USER_ONLY
3323 /* 64 bit address translation operations */
3324 { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
3325 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3326 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3327 { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
3328 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3329 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3330 { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
3331 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3332 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3333 { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
3334 .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3335 .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3336 { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3337 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3338 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3339 { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3340 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3341 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3342 { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3343 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3344 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3345 { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3346 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3347 .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3348 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3349 { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
3350 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
3351 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3352 { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
3353 .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
3354 .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3355 { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
3356 .type = ARM_CP_ALIAS,
3357 .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
3358 .access = PL1_RW, .resetvalue = 0,
3359 .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
3360 .writefn = par_write },
3361 #endif
3362 /* TLB invalidate last level of translation table walk */
3363 { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3364 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3365 { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3366 .type = ARM_CP_NO_RAW, .access = PL1_W,
3367 .writefn = tlbimvaa_is_write },
3368 { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3369 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3370 { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3371 .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3372 { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3373 .type = ARM_CP_NO_RAW, .access = PL2_W,
3374 .writefn = tlbimva_hyp_write },
3375 { .name = "TLBIMVALHIS",
3376 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3377 .type = ARM_CP_NO_RAW, .access = PL2_W,
3378 .writefn = tlbimva_hyp_is_write },
3379 { .name = "TLBIIPAS2",
3380 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
3381 .type = ARM_CP_NO_RAW, .access = PL2_W,
3382 .writefn = tlbiipas2_write },
3383 { .name = "TLBIIPAS2IS",
3384 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
3385 .type = ARM_CP_NO_RAW, .access = PL2_W,
3386 .writefn = tlbiipas2_is_write },
3387 { .name = "TLBIIPAS2L",
3388 .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
3389 .type = ARM_CP_NO_RAW, .access = PL2_W,
3390 .writefn = tlbiipas2_write },
3391 { .name = "TLBIIPAS2LIS",
3392 .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
3393 .type = ARM_CP_NO_RAW, .access = PL2_W,
3394 .writefn = tlbiipas2_is_write },
3395 /* 32 bit cache operations */
3396 { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
3397 .type = ARM_CP_NOP, .access = PL1_W },
3398 { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
3399 .type = ARM_CP_NOP, .access = PL1_W },
3400 { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
3401 .type = ARM_CP_NOP, .access = PL1_W },
3402 { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
3403 .type = ARM_CP_NOP, .access = PL1_W },
3404 { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
3405 .type = ARM_CP_NOP, .access = PL1_W },
3406 { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
3407 .type = ARM_CP_NOP, .access = PL1_W },
3408 { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
3409 .type = ARM_CP_NOP, .access = PL1_W },
3410 { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
3411 .type = ARM_CP_NOP, .access = PL1_W },
3412 { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
3413 .type = ARM_CP_NOP, .access = PL1_W },
3414 { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
3415 .type = ARM_CP_NOP, .access = PL1_W },
3416 { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
3417 .type = ARM_CP_NOP, .access = PL1_W },
3418 { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
3419 .type = ARM_CP_NOP, .access = PL1_W },
3420 { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
3421 .type = ARM_CP_NOP, .access = PL1_W },
3422 /* MMU Domain access control / MPU write buffer control */
3423 { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
3424 .access = PL1_RW, .resetvalue = 0,
3425 .writefn = dacr_write, .raw_writefn = raw_write,
3426 .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
3427 offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3428 { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3429 .type = ARM_CP_ALIAS,
3430 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3431 .access = PL1_RW,
3432 .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3433 { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3434 .type = ARM_CP_ALIAS,
3435 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3436 .access = PL1_RW,
3437 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3438 /* We rely on the access checks not allowing the guest to write to the
3439 * state field when SPSel indicates that it's being used as the stack
3440 * pointer.
3442 { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
3443 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
3444 .access = PL1_RW, .accessfn = sp_el0_access,
3445 .type = ARM_CP_ALIAS,
3446 .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3447 { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
3448 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3449 .access = PL2_RW, .type = ARM_CP_ALIAS,
3450 .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3451 { .name = "SPSel", .state = ARM_CP_STATE_AA64,
3452 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3453 .type = ARM_CP_NO_RAW,
3454 .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3455 { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
3456 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
3457 .type = ARM_CP_ALIAS,
3458 .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
3459 .access = PL2_RW, .accessfn = fpexc32_access },
3460 { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
3461 .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
3462 .access = PL2_RW, .resetvalue = 0,
3463 .writefn = dacr_write, .raw_writefn = raw_write,
3464 .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
3465 { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
3466 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
3467 .access = PL2_RW, .resetvalue = 0,
3468 .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
3469 { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
3470 .type = ARM_CP_ALIAS,
3471 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
3472 .access = PL2_RW,
3473 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
3474 { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
3475 .type = ARM_CP_ALIAS,
3476 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
3477 .access = PL2_RW,
3478 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
3479 { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
3480 .type = ARM_CP_ALIAS,
3481 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
3482 .access = PL2_RW,
3483 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
3484 { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
3485 .type = ARM_CP_ALIAS,
3486 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
3487 .access = PL2_RW,
3488 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3489 { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
3490 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
3491 .resetvalue = 0,
3492 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
3493 { .name = "SDCR", .type = ARM_CP_ALIAS,
3494 .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
3495 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3496 .writefn = sdcr_write,
3497 .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3498 REGINFO_SENTINEL
3501 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3502 static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3503 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3504 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3505 .access = PL2_RW,
3506 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3507 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3508 .type = ARM_CP_NO_RAW,
3509 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3510 .access = PL2_RW,
3511 .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3512 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3513 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3514 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3515 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3516 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3517 .access = PL2_RW, .type = ARM_CP_CONST,
3518 .resetvalue = 0 },
3519 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3520 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3521 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3522 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3523 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3524 .access = PL2_RW, .type = ARM_CP_CONST,
3525 .resetvalue = 0 },
3526 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3527 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3528 .access = PL2_RW, .type = ARM_CP_CONST,
3529 .resetvalue = 0 },
3530 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3531 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3532 .access = PL2_RW, .type = ARM_CP_CONST,
3533 .resetvalue = 0 },
3534 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3535 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3536 .access = PL2_RW, .type = ARM_CP_CONST,
3537 .resetvalue = 0 },
3538 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3539 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3540 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3541 { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
3542 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3543 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3544 .type = ARM_CP_CONST, .resetvalue = 0 },
3545 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3546 .cp = 15, .opc1 = 6, .crm = 2,
3547 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3548 .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
3549 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3550 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3551 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3552 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3553 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3554 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3555 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3556 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3557 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3558 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3559 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3560 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3561 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3562 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3563 .resetvalue = 0 },
3564 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3565 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3566 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3567 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3568 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3569 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3570 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3571 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3572 .resetvalue = 0 },
3573 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3574 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3575 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3576 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3577 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
3578 .resetvalue = 0 },
3579 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3580 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3581 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3582 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3583 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3584 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3585 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3586 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3587 .access = PL2_RW, .accessfn = access_tda,
3588 .type = ARM_CP_CONST, .resetvalue = 0 },
3589 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
3590 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3591 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
3592 .type = ARM_CP_CONST, .resetvalue = 0 },
3593 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3594 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3595 .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3596 REGINFO_SENTINEL
3599 static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
3601 ARMCPU *cpu = arm_env_get_cpu(env);
3602 uint64_t valid_mask = HCR_MASK;
3604 if (arm_feature(env, ARM_FEATURE_EL3)) {
3605 valid_mask &= ~HCR_HCD;
3606 } else {
3607 valid_mask &= ~HCR_TSC;
3610 /* Clear RES0 bits. */
3611 value &= valid_mask;
3613 /* These bits change the MMU setup:
3614 * HCR_VM enables stage 2 translation
3615 * HCR_PTW forbids certain page-table setups
3616 * HCR_DC Disables stage1 and enables stage2 translation
3618 if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3619 tlb_flush(CPU(cpu), 1);
3621 raw_write(env, ri, value);
3624 static const ARMCPRegInfo el2_cp_reginfo[] = {
3625 { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3626 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
3627 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
3628 .writefn = hcr_write },
3629 { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3630 .type = ARM_CP_ALIAS,
3631 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
3632 .access = PL2_RW,
3633 .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3634 { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
3635 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
3636 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3637 { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
3638 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
3639 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3640 { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3641 .type = ARM_CP_ALIAS,
3642 .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3643 .access = PL2_RW,
3644 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3645 { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
3646 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
3647 .access = PL2_RW, .writefn = vbar_write,
3648 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
3649 .resetvalue = 0 },
3650 { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
3651 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3652 .access = PL3_RW, .type = ARM_CP_ALIAS,
3653 .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3654 { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
3655 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
3656 .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
3657 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3658 { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
3659 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
3660 .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
3661 .resetvalue = 0 },
3662 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3663 .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
3664 .access = PL2_RW, .type = ARM_CP_ALIAS,
3665 .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3666 { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
3667 .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
3668 .access = PL2_RW, .type = ARM_CP_CONST,
3669 .resetvalue = 0 },
3670 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
3671 { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
3672 .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
3673 .access = PL2_RW, .type = ARM_CP_CONST,
3674 .resetvalue = 0 },
3675 { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
3676 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
3677 .access = PL2_RW, .type = ARM_CP_CONST,
3678 .resetvalue = 0 },
3679 { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
3680 .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
3681 .access = PL2_RW, .type = ARM_CP_CONST,
3682 .resetvalue = 0 },
3683 { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
3684 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3685 .access = PL2_RW,
3686 /* no .writefn needed as this can't cause an ASID change;
3687 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3689 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3690 { .name = "VTCR", .state = ARM_CP_STATE_AA32,
3691 .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3692 .type = ARM_CP_ALIAS,
3693 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3694 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3695 { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
3696 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3697 .access = PL2_RW,
3698 /* no .writefn needed as this can't cause an ASID change;
3699 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
3701 .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3702 { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
3703 .cp = 15, .opc1 = 6, .crm = 2,
3704 .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3705 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3706 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
3707 .writefn = vttbr_write },
3708 { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
3709 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
3710 .access = PL2_RW, .writefn = vttbr_write,
3711 .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3712 { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
3713 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
3714 .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
3715 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3716 { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
3717 .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
3718 .access = PL2_RW, .resetvalue = 0,
3719 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3720 { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
3721 .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
3722 .access = PL2_RW, .resetvalue = 0,
3723 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3724 { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
3725 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
3726 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3727 { .name = "TLBIALLNSNH",
3728 .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
3729 .type = ARM_CP_NO_RAW, .access = PL2_W,
3730 .writefn = tlbiall_nsnh_write },
3731 { .name = "TLBIALLNSNHIS",
3732 .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
3733 .type = ARM_CP_NO_RAW, .access = PL2_W,
3734 .writefn = tlbiall_nsnh_is_write },
3735 { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3736 .type = ARM_CP_NO_RAW, .access = PL2_W,
3737 .writefn = tlbiall_hyp_write },
3738 { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3739 .type = ARM_CP_NO_RAW, .access = PL2_W,
3740 .writefn = tlbiall_hyp_is_write },
3741 { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3742 .type = ARM_CP_NO_RAW, .access = PL2_W,
3743 .writefn = tlbimva_hyp_write },
3744 { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3745 .type = ARM_CP_NO_RAW, .access = PL2_W,
3746 .writefn = tlbimva_hyp_is_write },
3747 { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
3748 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
3749 .type = ARM_CP_NO_RAW, .access = PL2_W,
3750 .writefn = tlbi_aa64_alle2_write },
3751 { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
3752 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
3753 .type = ARM_CP_NO_RAW, .access = PL2_W,
3754 .writefn = tlbi_aa64_vae2_write },
3755 { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
3756 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
3757 .access = PL2_W, .type = ARM_CP_NO_RAW,
3758 .writefn = tlbi_aa64_vae2_write },
3759 { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
3760 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
3761 .access = PL2_W, .type = ARM_CP_NO_RAW,
3762 .writefn = tlbi_aa64_alle2is_write },
3763 { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
3764 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
3765 .type = ARM_CP_NO_RAW, .access = PL2_W,
3766 .writefn = tlbi_aa64_vae2is_write },
3767 { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
3768 .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
3769 .access = PL2_W, .type = ARM_CP_NO_RAW,
3770 .writefn = tlbi_aa64_vae2is_write },
3771 #ifndef CONFIG_USER_ONLY
3772 /* Unlike the other EL2-related AT operations, these must
3773 * UNDEF from EL3 if EL2 is not implemented, which is why we
3774 * define them here rather than with the rest of the AT ops.
3776 { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
3777 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3778 .access = PL2_W, .accessfn = at_s1e2_access,
3779 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3780 { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
3781 .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3782 .access = PL2_W, .accessfn = at_s1e2_access,
3783 .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3784 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
3785 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
3786 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
3787 * to behave as if SCR.NS was 1.
3789 { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
3790 .access = PL2_W,
3791 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3792 { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
3793 .access = PL2_W,
3794 .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3795 { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
3796 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
3797 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
3798 * reset values as IMPDEF. We choose to reset to 3 to comply with
3799 * both ARMv7 and ARMv8.
3801 .access = PL2_RW, .resetvalue = 3,
3802 .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3803 { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
3804 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
3805 .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
3806 .writefn = gt_cntvoff_write,
3807 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3808 { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
3809 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
3810 .writefn = gt_cntvoff_write,
3811 .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3812 { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
3813 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
3814 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3815 .type = ARM_CP_IO, .access = PL2_RW,
3816 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3817 { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
3818 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
3819 .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
3820 .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
3821 { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
3822 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3823 .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
3824 .resetfn = gt_hyp_timer_reset,
3825 .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
3826 { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
3827 .type = ARM_CP_IO,
3828 .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
3829 .access = PL2_RW,
3830 .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
3831 .resetvalue = 0,
3832 .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
3833 #endif
3834 /* The only field of MDCR_EL2 that has a defined architectural reset value
3835 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
3836 * don't impelment any PMU event counters, so using zero as a reset
3837 * value for MDCR_EL2 is okay
3839 { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
3840 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3841 .access = PL2_RW, .resetvalue = 0,
3842 .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
3843 { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
3844 .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3845 .access = PL2_RW, .accessfn = access_el3_aa32ns,
3846 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3847 { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
3848 .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
3849 .access = PL2_RW,
3850 .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3851 { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
3852 .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
3853 .access = PL2_RW,
3854 .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
3855 REGINFO_SENTINEL
3858 static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
3859 bool isread)
3861 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
3862 * At Secure EL1 it traps to EL3.
3864 if (arm_current_el(env) == 3) {
3865 return CP_ACCESS_OK;
3867 if (arm_is_secure_below_el3(env)) {
3868 return CP_ACCESS_TRAP_EL3;
3870 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
3871 if (isread) {
3872 return CP_ACCESS_OK;
3874 return CP_ACCESS_TRAP_UNCATEGORIZED;
3877 static const ARMCPRegInfo el3_cp_reginfo[] = {
3878 { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
3879 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
3880 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
3881 .resetvalue = 0, .writefn = scr_write },
3882 { .name = "SCR", .type = ARM_CP_ALIAS,
3883 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
3884 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3885 .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
3886 .writefn = scr_write },
3887 { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
3888 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
3889 .access = PL3_RW, .resetvalue = 0,
3890 .fieldoffset = offsetof(CPUARMState, cp15.sder) },
3891 { .name = "SDER",
3892 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
3893 .access = PL3_RW, .resetvalue = 0,
3894 .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
3895 { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
3896 .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
3897 .writefn = vbar_write, .resetvalue = 0,
3898 .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
3899 { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
3900 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
3901 .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
3902 .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
3903 { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
3904 .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
3905 .access = PL3_RW,
3906 /* no .writefn needed as this can't cause an ASID change;
3907 * we must provide a .raw_writefn and .resetfn because we handle
3908 * reset and migration for the AArch32 TTBCR(S), which might be
3909 * using mask and base_mask.
3911 .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
3912 .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
3913 { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
3914 .type = ARM_CP_ALIAS,
3915 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
3916 .access = PL3_RW,
3917 .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
3918 { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
3919 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
3920 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
3921 { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
3922 .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
3923 .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
3924 { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
3925 .type = ARM_CP_ALIAS,
3926 .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
3927 .access = PL3_RW,
3928 .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
3929 { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
3930 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
3931 .access = PL3_RW, .writefn = vbar_write,
3932 .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
3933 .resetvalue = 0 },
3934 { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
3935 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
3936 .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
3937 .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
3938 { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
3939 .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
3940 .access = PL3_RW, .resetvalue = 0,
3941 .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
3942 { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
3943 .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
3944 .access = PL3_RW, .type = ARM_CP_CONST,
3945 .resetvalue = 0 },
3946 { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
3947 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
3948 .access = PL3_RW, .type = ARM_CP_CONST,
3949 .resetvalue = 0 },
3950 { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
3951 .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
3952 .access = PL3_RW, .type = ARM_CP_CONST,
3953 .resetvalue = 0 },
3954 { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
3955 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
3956 .access = PL3_W, .type = ARM_CP_NO_RAW,
3957 .writefn = tlbi_aa64_alle3is_write },
3958 { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
3959 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
3960 .access = PL3_W, .type = ARM_CP_NO_RAW,
3961 .writefn = tlbi_aa64_vae3is_write },
3962 { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
3963 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
3964 .access = PL3_W, .type = ARM_CP_NO_RAW,
3965 .writefn = tlbi_aa64_vae3is_write },
3966 { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
3967 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
3968 .access = PL3_W, .type = ARM_CP_NO_RAW,
3969 .writefn = tlbi_aa64_alle3_write },
3970 { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
3971 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
3972 .access = PL3_W, .type = ARM_CP_NO_RAW,
3973 .writefn = tlbi_aa64_vae3_write },
3974 { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
3975 .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
3976 .access = PL3_W, .type = ARM_CP_NO_RAW,
3977 .writefn = tlbi_aa64_vae3_write },
3978 REGINFO_SENTINEL
3981 static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
3982 bool isread)
3984 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
3985 * but the AArch32 CTR has its own reginfo struct)
3987 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
3988 return CP_ACCESS_TRAP;
3990 return CP_ACCESS_OK;
3993 static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
3994 uint64_t value)
3996 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
3997 * read via a bit in OSLSR_EL1.
3999 int oslock;
4001 if (ri->state == ARM_CP_STATE_AA32) {
4002 oslock = (value == 0xC5ACCE55);
4003 } else {
4004 oslock = value & 1;
4007 env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
4010 static const ARMCPRegInfo debug_cp_reginfo[] = {
4011 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4012 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4013 * unlike DBGDRAR it is never accessible from EL0.
4014 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4015 * accessor.
4017 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4018 .access = PL0_R, .accessfn = access_tdra,
4019 .type = ARM_CP_CONST, .resetvalue = 0 },
4020 { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
4021 .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4022 .access = PL1_R, .accessfn = access_tdra,
4023 .type = ARM_CP_CONST, .resetvalue = 0 },
4024 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4025 .access = PL0_R, .accessfn = access_tdra,
4026 .type = ARM_CP_CONST, .resetvalue = 0 },
4027 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4028 { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
4029 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4030 .access = PL1_RW, .accessfn = access_tda,
4031 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
4032 .resetvalue = 0 },
4033 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4034 * We don't implement the configurable EL0 access.
4036 { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
4037 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4038 .type = ARM_CP_ALIAS,
4039 .access = PL1_R, .accessfn = access_tda,
4040 .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4041 { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
4042 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4043 .access = PL1_W, .type = ARM_CP_NO_RAW,
4044 .accessfn = access_tdosa,
4045 .writefn = oslar_write },
4046 { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
4047 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
4048 .access = PL1_R, .resetvalue = 10,
4049 .accessfn = access_tdosa,
4050 .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4051 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4052 { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
4053 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4054 .access = PL1_RW, .accessfn = access_tdosa,
4055 .type = ARM_CP_NOP },
4056 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4057 * implement vector catch debug events yet.
4059 { .name = "DBGVCR",
4060 .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4061 .access = PL1_RW, .accessfn = access_tda,
4062 .type = ARM_CP_NOP },
4063 REGINFO_SENTINEL
4066 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
4067 /* 64 bit access versions of the (dummy) debug registers */
4068 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
4069 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4070 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
4071 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
4072 REGINFO_SENTINEL
4075 void hw_watchpoint_update(ARMCPU *cpu, int n)
4077 CPUARMState *env = &cpu->env;
4078 vaddr len = 0;
4079 vaddr wvr = env->cp15.dbgwvr[n];
4080 uint64_t wcr = env->cp15.dbgwcr[n];
4081 int mask;
4082 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
4084 if (env->cpu_watchpoint[n]) {
4085 cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
4086 env->cpu_watchpoint[n] = NULL;
4089 if (!extract64(wcr, 0, 1)) {
4090 /* E bit clear : watchpoint disabled */
4091 return;
4094 switch (extract64(wcr, 3, 2)) {
4095 case 0:
4096 /* LSC 00 is reserved and must behave as if the wp is disabled */
4097 return;
4098 case 1:
4099 flags |= BP_MEM_READ;
4100 break;
4101 case 2:
4102 flags |= BP_MEM_WRITE;
4103 break;
4104 case 3:
4105 flags |= BP_MEM_ACCESS;
4106 break;
4109 /* Attempts to use both MASK and BAS fields simultaneously are
4110 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4111 * thus generating a watchpoint for every byte in the masked region.
4113 mask = extract64(wcr, 24, 4);
4114 if (mask == 1 || mask == 2) {
4115 /* Reserved values of MASK; we must act as if the mask value was
4116 * some non-reserved value, or as if the watchpoint were disabled.
4117 * We choose the latter.
4119 return;
4120 } else if (mask) {
4121 /* Watchpoint covers an aligned area up to 2GB in size */
4122 len = 1ULL << mask;
4123 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4124 * whether the watchpoint fires when the unmasked bits match; we opt
4125 * to generate the exceptions.
4127 wvr &= ~(len - 1);
4128 } else {
4129 /* Watchpoint covers bytes defined by the byte address select bits */
4130 int bas = extract64(wcr, 5, 8);
4131 int basstart;
4133 if (bas == 0) {
4134 /* This must act as if the watchpoint is disabled */
4135 return;
4138 if (extract64(wvr, 2, 1)) {
4139 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4140 * ignored, and BAS[3:0] define which bytes to watch.
4142 bas &= 0xf;
4144 /* The BAS bits are supposed to be programmed to indicate a contiguous
4145 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4146 * we fire for each byte in the word/doubleword addressed by the WVR.
4147 * We choose to ignore any non-zero bits after the first range of 1s.
4149 basstart = ctz32(bas);
4150 len = cto32(bas >> basstart);
4151 wvr += basstart;
4154 cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
4155 &env->cpu_watchpoint[n]);
4158 void hw_watchpoint_update_all(ARMCPU *cpu)
4160 int i;
4161 CPUARMState *env = &cpu->env;
4163 /* Completely clear out existing QEMU watchpoints and our array, to
4164 * avoid possible stale entries following migration load.
4166 cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
4167 memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
4169 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
4170 hw_watchpoint_update(cpu, i);
4174 static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4175 uint64_t value)
4177 ARMCPU *cpu = arm_env_get_cpu(env);
4178 int i = ri->crm;
4180 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4181 * register reads and behaves as if values written are sign extended.
4182 * Bits [1:0] are RES0.
4184 value = sextract64(value, 0, 49) & ~3ULL;
4186 raw_write(env, ri, value);
4187 hw_watchpoint_update(cpu, i);
4190 static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4191 uint64_t value)
4193 ARMCPU *cpu = arm_env_get_cpu(env);
4194 int i = ri->crm;
4196 raw_write(env, ri, value);
4197 hw_watchpoint_update(cpu, i);
4200 void hw_breakpoint_update(ARMCPU *cpu, int n)
4202 CPUARMState *env = &cpu->env;
4203 uint64_t bvr = env->cp15.dbgbvr[n];
4204 uint64_t bcr = env->cp15.dbgbcr[n];
4205 vaddr addr;
4206 int bt;
4207 int flags = BP_CPU;
4209 if (env->cpu_breakpoint[n]) {
4210 cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
4211 env->cpu_breakpoint[n] = NULL;
4214 if (!extract64(bcr, 0, 1)) {
4215 /* E bit clear : watchpoint disabled */
4216 return;
4219 bt = extract64(bcr, 20, 4);
4221 switch (bt) {
4222 case 4: /* unlinked address mismatch (reserved if AArch64) */
4223 case 5: /* linked address mismatch (reserved if AArch64) */
4224 qemu_log_mask(LOG_UNIMP,
4225 "arm: address mismatch breakpoint types not implemented");
4226 return;
4227 case 0: /* unlinked address match */
4228 case 1: /* linked address match */
4230 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4231 * we behave as if the register was sign extended. Bits [1:0] are
4232 * RES0. The BAS field is used to allow setting breakpoints on 16
4233 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4234 * a bp will fire if the addresses covered by the bp and the addresses
4235 * covered by the insn overlap but the insn doesn't start at the
4236 * start of the bp address range. We choose to require the insn and
4237 * the bp to have the same address. The constraints on writing to
4238 * BAS enforced in dbgbcr_write mean we have only four cases:
4239 * 0b0000 => no breakpoint
4240 * 0b0011 => breakpoint on addr
4241 * 0b1100 => breakpoint on addr + 2
4242 * 0b1111 => breakpoint on addr
4243 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4245 int bas = extract64(bcr, 5, 4);
4246 addr = sextract64(bvr, 0, 49) & ~3ULL;
4247 if (bas == 0) {
4248 return;
4250 if (bas == 0xc) {
4251 addr += 2;
4253 break;
4255 case 2: /* unlinked context ID match */
4256 case 8: /* unlinked VMID match (reserved if no EL2) */
4257 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4258 qemu_log_mask(LOG_UNIMP,
4259 "arm: unlinked context breakpoint types not implemented");
4260 return;
4261 case 9: /* linked VMID match (reserved if no EL2) */
4262 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4263 case 3: /* linked context ID match */
4264 default:
4265 /* We must generate no events for Linked context matches (unless
4266 * they are linked to by some other bp/wp, which is handled in
4267 * updates for the linking bp/wp). We choose to also generate no events
4268 * for reserved values.
4270 return;
4273 cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
4276 void hw_breakpoint_update_all(ARMCPU *cpu)
4278 int i;
4279 CPUARMState *env = &cpu->env;
4281 /* Completely clear out existing QEMU breakpoints and our array, to
4282 * avoid possible stale entries following migration load.
4284 cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
4285 memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
4287 for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
4288 hw_breakpoint_update(cpu, i);
4292 static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4293 uint64_t value)
4295 ARMCPU *cpu = arm_env_get_cpu(env);
4296 int i = ri->crm;
4298 raw_write(env, ri, value);
4299 hw_breakpoint_update(cpu, i);
4302 static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
4303 uint64_t value)
4305 ARMCPU *cpu = arm_env_get_cpu(env);
4306 int i = ri->crm;
4308 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4309 * copy of BAS[0].
4311 value = deposit64(value, 6, 1, extract64(value, 5, 1));
4312 value = deposit64(value, 8, 1, extract64(value, 7, 1));
4314 raw_write(env, ri, value);
4315 hw_breakpoint_update(cpu, i);
4318 static void define_debug_regs(ARMCPU *cpu)
4320 /* Define v7 and v8 architectural debug registers.
4321 * These are just dummy implementations for now.
4323 int i;
4324 int wrps, brps, ctx_cmps;
4325 ARMCPRegInfo dbgdidr = {
4326 .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4327 .access = PL0_R, .accessfn = access_tda,
4328 .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4331 /* Note that all these register fields hold "number of Xs minus 1". */
4332 brps = extract32(cpu->dbgdidr, 24, 4);
4333 wrps = extract32(cpu->dbgdidr, 28, 4);
4334 ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
4336 assert(ctx_cmps <= brps);
4338 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4339 * of the debug registers such as number of breakpoints;
4340 * check that if they both exist then they agree.
4342 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
4343 assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
4344 assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4345 assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4348 define_one_arm_cp_reg(cpu, &dbgdidr);
4349 define_arm_cp_regs(cpu, debug_cp_reginfo);
4351 if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
4352 define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
4355 for (i = 0; i < brps + 1; i++) {
4356 ARMCPRegInfo dbgregs[] = {
4357 { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
4358 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4359 .access = PL1_RW, .accessfn = access_tda,
4360 .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
4361 .writefn = dbgbvr_write, .raw_writefn = raw_write
4363 { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
4364 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4365 .access = PL1_RW, .accessfn = access_tda,
4366 .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
4367 .writefn = dbgbcr_write, .raw_writefn = raw_write
4369 REGINFO_SENTINEL
4371 define_arm_cp_regs(cpu, dbgregs);
4374 for (i = 0; i < wrps + 1; i++) {
4375 ARMCPRegInfo dbgregs[] = {
4376 { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
4377 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4378 .access = PL1_RW, .accessfn = access_tda,
4379 .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
4380 .writefn = dbgwvr_write, .raw_writefn = raw_write
4382 { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
4383 .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4384 .access = PL1_RW, .accessfn = access_tda,
4385 .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
4386 .writefn = dbgwcr_write, .raw_writefn = raw_write
4388 REGINFO_SENTINEL
4390 define_arm_cp_regs(cpu, dbgregs);
4394 void register_cp_regs_for_features(ARMCPU *cpu)
4396 /* Register all the coprocessor registers based on feature bits */
4397 CPUARMState *env = &cpu->env;
4398 if (arm_feature(env, ARM_FEATURE_M)) {
4399 /* M profile has no coprocessor registers */
4400 return;
4403 define_arm_cp_regs(cpu, cp_reginfo);
4404 if (!arm_feature(env, ARM_FEATURE_V8)) {
4405 /* Must go early as it is full of wildcards that may be
4406 * overridden by later definitions.
4408 define_arm_cp_regs(cpu, not_v8_cp_reginfo);
4411 if (arm_feature(env, ARM_FEATURE_V6)) {
4412 /* The ID registers all have impdef reset values */
4413 ARMCPRegInfo v6_idregs[] = {
4414 { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
4415 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4416 .access = PL1_R, .type = ARM_CP_CONST,
4417 .resetvalue = cpu->id_pfr0 },
4418 { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
4419 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4420 .access = PL1_R, .type = ARM_CP_CONST,
4421 .resetvalue = cpu->id_pfr1 },
4422 { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
4423 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
4424 .access = PL1_R, .type = ARM_CP_CONST,
4425 .resetvalue = cpu->id_dfr0 },
4426 { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
4427 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
4428 .access = PL1_R, .type = ARM_CP_CONST,
4429 .resetvalue = cpu->id_afr0 },
4430 { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
4431 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
4432 .access = PL1_R, .type = ARM_CP_CONST,
4433 .resetvalue = cpu->id_mmfr0 },
4434 { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
4435 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
4436 .access = PL1_R, .type = ARM_CP_CONST,
4437 .resetvalue = cpu->id_mmfr1 },
4438 { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
4439 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
4440 .access = PL1_R, .type = ARM_CP_CONST,
4441 .resetvalue = cpu->id_mmfr2 },
4442 { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
4443 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
4444 .access = PL1_R, .type = ARM_CP_CONST,
4445 .resetvalue = cpu->id_mmfr3 },
4446 { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
4447 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
4448 .access = PL1_R, .type = ARM_CP_CONST,
4449 .resetvalue = cpu->id_isar0 },
4450 { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
4451 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
4452 .access = PL1_R, .type = ARM_CP_CONST,
4453 .resetvalue = cpu->id_isar1 },
4454 { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
4455 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4456 .access = PL1_R, .type = ARM_CP_CONST,
4457 .resetvalue = cpu->id_isar2 },
4458 { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
4459 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
4460 .access = PL1_R, .type = ARM_CP_CONST,
4461 .resetvalue = cpu->id_isar3 },
4462 { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
4463 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
4464 .access = PL1_R, .type = ARM_CP_CONST,
4465 .resetvalue = cpu->id_isar4 },
4466 { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
4467 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
4468 .access = PL1_R, .type = ARM_CP_CONST,
4469 .resetvalue = cpu->id_isar5 },
4470 { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
4471 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
4472 .access = PL1_R, .type = ARM_CP_CONST,
4473 .resetvalue = cpu->id_mmfr4 },
4474 /* 7 is as yet unallocated and must RAZ */
4475 { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
4476 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
4477 .access = PL1_R, .type = ARM_CP_CONST,
4478 .resetvalue = 0 },
4479 REGINFO_SENTINEL
4481 define_arm_cp_regs(cpu, v6_idregs);
4482 define_arm_cp_regs(cpu, v6_cp_reginfo);
4483 } else {
4484 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
4486 if (arm_feature(env, ARM_FEATURE_V6K)) {
4487 define_arm_cp_regs(cpu, v6k_cp_reginfo);
4489 if (arm_feature(env, ARM_FEATURE_V7MP) &&
4490 !arm_feature(env, ARM_FEATURE_MPU)) {
4491 define_arm_cp_regs(cpu, v7mp_cp_reginfo);
4493 if (arm_feature(env, ARM_FEATURE_V7)) {
4494 /* v7 performance monitor control register: same implementor
4495 * field as main ID register, and we implement only the cycle
4496 * count register.
4498 #ifndef CONFIG_USER_ONLY
4499 ARMCPRegInfo pmcr = {
4500 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4501 .access = PL0_RW,
4502 .type = ARM_CP_IO | ARM_CP_ALIAS,
4503 .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4504 .accessfn = pmreg_access, .writefn = pmcr_write,
4505 .raw_writefn = raw_write,
4507 ARMCPRegInfo pmcr64 = {
4508 .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
4509 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
4510 .access = PL0_RW, .accessfn = pmreg_access,
4511 .type = ARM_CP_IO,
4512 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
4513 .resetvalue = cpu->midr & 0xff000000,
4514 .writefn = pmcr_write, .raw_writefn = raw_write,
4516 define_one_arm_cp_reg(cpu, &pmcr);
4517 define_one_arm_cp_reg(cpu, &pmcr64);
4518 #endif
4519 ARMCPRegInfo clidr = {
4520 .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
4521 .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4522 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
4524 define_one_arm_cp_reg(cpu, &clidr);
4525 define_arm_cp_regs(cpu, v7_cp_reginfo);
4526 define_debug_regs(cpu);
4527 } else {
4528 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4530 if (arm_feature(env, ARM_FEATURE_V8)) {
4531 /* AArch64 ID registers, which all have impdef reset values.
4532 * Note that within the ID register ranges the unused slots
4533 * must all RAZ, not UNDEF; future architecture versions may
4534 * define new registers here.
4536 ARMCPRegInfo v8_idregs[] = {
4537 { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
4538 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4539 .access = PL1_R, .type = ARM_CP_CONST,
4540 .resetvalue = cpu->id_aa64pfr0 },
4541 { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
4542 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
4543 .access = PL1_R, .type = ARM_CP_CONST,
4544 .resetvalue = cpu->id_aa64pfr1},
4545 { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4546 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
4547 .access = PL1_R, .type = ARM_CP_CONST,
4548 .resetvalue = 0 },
4549 { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4550 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
4551 .access = PL1_R, .type = ARM_CP_CONST,
4552 .resetvalue = 0 },
4553 { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4554 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
4555 .access = PL1_R, .type = ARM_CP_CONST,
4556 .resetvalue = 0 },
4557 { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4558 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
4559 .access = PL1_R, .type = ARM_CP_CONST,
4560 .resetvalue = 0 },
4561 { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4562 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
4563 .access = PL1_R, .type = ARM_CP_CONST,
4564 .resetvalue = 0 },
4565 { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4566 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
4567 .access = PL1_R, .type = ARM_CP_CONST,
4568 .resetvalue = 0 },
4569 { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
4570 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
4571 .access = PL1_R, .type = ARM_CP_CONST,
4572 /* We mask out the PMUVer field, because we don't currently
4573 * implement the PMU. Not advertising it prevents the guest
4574 * from trying to use it and getting UNDEFs on registers we
4575 * don't implement.
4577 .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
4578 { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
4579 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
4580 .access = PL1_R, .type = ARM_CP_CONST,
4581 .resetvalue = cpu->id_aa64dfr1 },
4582 { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4583 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
4584 .access = PL1_R, .type = ARM_CP_CONST,
4585 .resetvalue = 0 },
4586 { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4587 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
4588 .access = PL1_R, .type = ARM_CP_CONST,
4589 .resetvalue = 0 },
4590 { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
4591 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
4592 .access = PL1_R, .type = ARM_CP_CONST,
4593 .resetvalue = cpu->id_aa64afr0 },
4594 { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
4595 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
4596 .access = PL1_R, .type = ARM_CP_CONST,
4597 .resetvalue = cpu->id_aa64afr1 },
4598 { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4599 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
4600 .access = PL1_R, .type = ARM_CP_CONST,
4601 .resetvalue = 0 },
4602 { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4603 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
4604 .access = PL1_R, .type = ARM_CP_CONST,
4605 .resetvalue = 0 },
4606 { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
4607 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
4608 .access = PL1_R, .type = ARM_CP_CONST,
4609 .resetvalue = cpu->id_aa64isar0 },
4610 { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
4611 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
4612 .access = PL1_R, .type = ARM_CP_CONST,
4613 .resetvalue = cpu->id_aa64isar1 },
4614 { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4615 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
4616 .access = PL1_R, .type = ARM_CP_CONST,
4617 .resetvalue = 0 },
4618 { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4619 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
4620 .access = PL1_R, .type = ARM_CP_CONST,
4621 .resetvalue = 0 },
4622 { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4623 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
4624 .access = PL1_R, .type = ARM_CP_CONST,
4625 .resetvalue = 0 },
4626 { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4627 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
4628 .access = PL1_R, .type = ARM_CP_CONST,
4629 .resetvalue = 0 },
4630 { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4631 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
4632 .access = PL1_R, .type = ARM_CP_CONST,
4633 .resetvalue = 0 },
4634 { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4635 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
4636 .access = PL1_R, .type = ARM_CP_CONST,
4637 .resetvalue = 0 },
4638 { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
4639 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4640 .access = PL1_R, .type = ARM_CP_CONST,
4641 .resetvalue = cpu->id_aa64mmfr0 },
4642 { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
4643 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
4644 .access = PL1_R, .type = ARM_CP_CONST,
4645 .resetvalue = cpu->id_aa64mmfr1 },
4646 { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4647 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
4648 .access = PL1_R, .type = ARM_CP_CONST,
4649 .resetvalue = 0 },
4650 { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4651 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
4652 .access = PL1_R, .type = ARM_CP_CONST,
4653 .resetvalue = 0 },
4654 { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4655 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
4656 .access = PL1_R, .type = ARM_CP_CONST,
4657 .resetvalue = 0 },
4658 { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4659 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
4660 .access = PL1_R, .type = ARM_CP_CONST,
4661 .resetvalue = 0 },
4662 { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4663 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
4664 .access = PL1_R, .type = ARM_CP_CONST,
4665 .resetvalue = 0 },
4666 { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4667 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
4668 .access = PL1_R, .type = ARM_CP_CONST,
4669 .resetvalue = 0 },
4670 { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
4671 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
4672 .access = PL1_R, .type = ARM_CP_CONST,
4673 .resetvalue = cpu->mvfr0 },
4674 { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
4675 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
4676 .access = PL1_R, .type = ARM_CP_CONST,
4677 .resetvalue = cpu->mvfr1 },
4678 { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
4679 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
4680 .access = PL1_R, .type = ARM_CP_CONST,
4681 .resetvalue = cpu->mvfr2 },
4682 { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4683 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
4684 .access = PL1_R, .type = ARM_CP_CONST,
4685 .resetvalue = 0 },
4686 { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4687 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
4688 .access = PL1_R, .type = ARM_CP_CONST,
4689 .resetvalue = 0 },
4690 { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4691 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
4692 .access = PL1_R, .type = ARM_CP_CONST,
4693 .resetvalue = 0 },
4694 { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4695 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
4696 .access = PL1_R, .type = ARM_CP_CONST,
4697 .resetvalue = 0 },
4698 { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
4699 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
4700 .access = PL1_R, .type = ARM_CP_CONST,
4701 .resetvalue = 0 },
4702 { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
4703 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
4704 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4705 .resetvalue = cpu->pmceid0 },
4706 { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
4707 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
4708 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4709 .resetvalue = cpu->pmceid0 },
4710 { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
4711 .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
4712 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4713 .resetvalue = cpu->pmceid1 },
4714 { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
4715 .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
4716 .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
4717 .resetvalue = cpu->pmceid1 },
4718 REGINFO_SENTINEL
4720 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
4721 if (!arm_feature(env, ARM_FEATURE_EL3) &&
4722 !arm_feature(env, ARM_FEATURE_EL2)) {
4723 ARMCPRegInfo rvbar = {
4724 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
4725 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4726 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
4728 define_one_arm_cp_reg(cpu, &rvbar);
4730 define_arm_cp_regs(cpu, v8_idregs);
4731 define_arm_cp_regs(cpu, v8_cp_reginfo);
4733 if (arm_feature(env, ARM_FEATURE_EL2)) {
4734 uint64_t vmpidr_def = mpidr_read_val(env);
4735 ARMCPRegInfo vpidr_regs[] = {
4736 { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
4737 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4738 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4739 .resetvalue = cpu->midr,
4740 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4741 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
4742 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4743 .access = PL2_RW, .resetvalue = cpu->midr,
4744 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4745 { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
4746 .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4747 .access = PL2_RW, .accessfn = access_el3_aa32ns,
4748 .resetvalue = vmpidr_def,
4749 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4750 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
4751 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4752 .access = PL2_RW,
4753 .resetvalue = vmpidr_def,
4754 .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4755 REGINFO_SENTINEL
4757 define_arm_cp_regs(cpu, vpidr_regs);
4758 define_arm_cp_regs(cpu, el2_cp_reginfo);
4759 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
4760 if (!arm_feature(env, ARM_FEATURE_EL3)) {
4761 ARMCPRegInfo rvbar = {
4762 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
4763 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
4764 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
4766 define_one_arm_cp_reg(cpu, &rvbar);
4768 } else {
4769 /* If EL2 is missing but higher ELs are enabled, we need to
4770 * register the no_el2 reginfos.
4772 if (arm_feature(env, ARM_FEATURE_EL3)) {
4773 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
4774 * of MIDR_EL1 and MPIDR_EL1.
4776 ARMCPRegInfo vpidr_regs[] = {
4777 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4778 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
4779 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4780 .type = ARM_CP_CONST, .resetvalue = cpu->midr,
4781 .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4782 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
4783 .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
4784 .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
4785 .type = ARM_CP_NO_RAW,
4786 .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
4787 REGINFO_SENTINEL
4789 define_arm_cp_regs(cpu, vpidr_regs);
4790 define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
4793 if (arm_feature(env, ARM_FEATURE_EL3)) {
4794 define_arm_cp_regs(cpu, el3_cp_reginfo);
4795 ARMCPRegInfo el3_regs[] = {
4796 { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
4797 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
4798 .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
4799 { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
4800 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
4801 .access = PL3_RW,
4802 .raw_writefn = raw_write, .writefn = sctlr_write,
4803 .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
4804 .resetvalue = cpu->reset_sctlr },
4805 REGINFO_SENTINEL
4808 define_arm_cp_regs(cpu, el3_regs);
4810 /* The behaviour of NSACR is sufficiently various that we don't
4811 * try to describe it in a single reginfo:
4812 * if EL3 is 64 bit, then trap to EL3 from S EL1,
4813 * reads as constant 0xc00 from NS EL1 and NS EL2
4814 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
4815 * if v7 without EL3, register doesn't exist
4816 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
4818 if (arm_feature(env, ARM_FEATURE_EL3)) {
4819 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
4820 ARMCPRegInfo nsacr = {
4821 .name = "NSACR", .type = ARM_CP_CONST,
4822 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4823 .access = PL1_RW, .accessfn = nsacr_access,
4824 .resetvalue = 0xc00
4826 define_one_arm_cp_reg(cpu, &nsacr);
4827 } else {
4828 ARMCPRegInfo nsacr = {
4829 .name = "NSACR",
4830 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4831 .access = PL3_RW | PL1_R,
4832 .resetvalue = 0,
4833 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
4835 define_one_arm_cp_reg(cpu, &nsacr);
4837 } else {
4838 if (arm_feature(env, ARM_FEATURE_V8)) {
4839 ARMCPRegInfo nsacr = {
4840 .name = "NSACR", .type = ARM_CP_CONST,
4841 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
4842 .access = PL1_R,
4843 .resetvalue = 0xc00
4845 define_one_arm_cp_reg(cpu, &nsacr);
4849 if (arm_feature(env, ARM_FEATURE_MPU)) {
4850 if (arm_feature(env, ARM_FEATURE_V6)) {
4851 /* PMSAv6 not implemented */
4852 assert(arm_feature(env, ARM_FEATURE_V7));
4853 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4854 define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
4855 } else {
4856 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
4858 } else {
4859 define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4860 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
4862 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
4863 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
4865 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
4866 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
4868 if (arm_feature(env, ARM_FEATURE_VAPA)) {
4869 define_arm_cp_regs(cpu, vapa_cp_reginfo);
4871 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
4872 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
4874 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
4875 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
4877 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
4878 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
4880 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
4881 define_arm_cp_regs(cpu, omap_cp_reginfo);
4883 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
4884 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
4886 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
4887 define_arm_cp_regs(cpu, xscale_cp_reginfo);
4889 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
4890 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
4892 if (arm_feature(env, ARM_FEATURE_LPAE)) {
4893 define_arm_cp_regs(cpu, lpae_cp_reginfo);
4895 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
4896 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
4897 * be read-only (ie write causes UNDEF exception).
4900 ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
4901 /* Pre-v8 MIDR space.
4902 * Note that the MIDR isn't a simple constant register because
4903 * of the TI925 behaviour where writes to another register can
4904 * cause the MIDR value to change.
4906 * Unimplemented registers in the c15 0 0 0 space default to
4907 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
4908 * and friends override accordingly.
4910 { .name = "MIDR",
4911 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
4912 .access = PL1_R, .resetvalue = cpu->midr,
4913 .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
4914 .readfn = midr_read,
4915 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4916 .type = ARM_CP_OVERRIDE },
4917 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
4918 { .name = "DUMMY",
4919 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
4920 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4921 { .name = "DUMMY",
4922 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
4923 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4924 { .name = "DUMMY",
4925 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
4926 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4927 { .name = "DUMMY",
4928 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
4929 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4930 { .name = "DUMMY",
4931 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
4932 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4933 REGINFO_SENTINEL
4935 ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
4936 { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
4937 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
4938 .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
4939 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
4940 .readfn = midr_read },
4941 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
4942 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4943 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4944 .access = PL1_R, .resetvalue = cpu->midr },
4945 { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
4946 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
4947 .access = PL1_R, .resetvalue = cpu->midr },
4948 { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
4949 .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
4950 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
4951 REGINFO_SENTINEL
4953 ARMCPRegInfo id_cp_reginfo[] = {
4954 /* These are common to v8 and pre-v8 */
4955 { .name = "CTR",
4956 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
4957 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4958 { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
4959 .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
4960 .access = PL0_R, .accessfn = ctr_el0_access,
4961 .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
4962 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
4963 { .name = "TCMTR",
4964 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
4965 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
4966 REGINFO_SENTINEL
4968 /* TLBTR is specific to VMSA */
4969 ARMCPRegInfo id_tlbtr_reginfo = {
4970 .name = "TLBTR",
4971 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
4972 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
4974 /* MPUIR is specific to PMSA V6+ */
4975 ARMCPRegInfo id_mpuir_reginfo = {
4976 .name = "MPUIR",
4977 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
4978 .access = PL1_R, .type = ARM_CP_CONST,
4979 .resetvalue = cpu->pmsav7_dregion << 8
4981 ARMCPRegInfo crn0_wi_reginfo = {
4982 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
4983 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
4984 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
4986 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
4987 arm_feature(env, ARM_FEATURE_STRONGARM)) {
4988 ARMCPRegInfo *r;
4989 /* Register the blanket "writes ignored" value first to cover the
4990 * whole space. Then update the specific ID registers to allow write
4991 * access, so that they ignore writes rather than causing them to
4992 * UNDEF.
4994 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
4995 for (r = id_pre_v8_midr_cp_reginfo;
4996 r->type != ARM_CP_SENTINEL; r++) {
4997 r->access = PL1_RW;
4999 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
5000 r->access = PL1_RW;
5002 id_tlbtr_reginfo.access = PL1_RW;
5003 id_tlbtr_reginfo.access = PL1_RW;
5005 if (arm_feature(env, ARM_FEATURE_V8)) {
5006 define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
5007 } else {
5008 define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
5010 define_arm_cp_regs(cpu, id_cp_reginfo);
5011 if (!arm_feature(env, ARM_FEATURE_MPU)) {
5012 define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5013 } else if (arm_feature(env, ARM_FEATURE_V7)) {
5014 define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5018 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
5019 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
5022 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5023 ARMCPRegInfo auxcr_reginfo[] = {
5024 { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
5025 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
5026 .access = PL1_RW, .type = ARM_CP_CONST,
5027 .resetvalue = cpu->reset_auxcr },
5028 { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
5029 .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
5030 .access = PL2_RW, .type = ARM_CP_CONST,
5031 .resetvalue = 0 },
5032 { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
5033 .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
5034 .access = PL3_RW, .type = ARM_CP_CONST,
5035 .resetvalue = 0 },
5036 REGINFO_SENTINEL
5038 define_arm_cp_regs(cpu, auxcr_reginfo);
5041 if (arm_feature(env, ARM_FEATURE_CBAR)) {
5042 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5043 /* 32 bit view is [31:18] 0...0 [43:32]. */
5044 uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
5045 | extract64(cpu->reset_cbar, 32, 12);
5046 ARMCPRegInfo cbar_reginfo[] = {
5047 { .name = "CBAR",
5048 .type = ARM_CP_CONST,
5049 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5050 .access = PL1_R, .resetvalue = cpu->reset_cbar },
5051 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
5052 .type = ARM_CP_CONST,
5053 .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
5054 .access = PL1_R, .resetvalue = cbar32 },
5055 REGINFO_SENTINEL
5057 /* We don't implement a r/w 64 bit CBAR currently */
5058 assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
5059 define_arm_cp_regs(cpu, cbar_reginfo);
5060 } else {
5061 ARMCPRegInfo cbar = {
5062 .name = "CBAR",
5063 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
5064 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
5065 .fieldoffset = offsetof(CPUARMState,
5066 cp15.c15_config_base_address)
5068 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
5069 cbar.access = PL1_R;
5070 cbar.fieldoffset = 0;
5071 cbar.type = ARM_CP_CONST;
5073 define_one_arm_cp_reg(cpu, &cbar);
5077 /* Generic registers whose values depend on the implementation */
5079 ARMCPRegInfo sctlr = {
5080 .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5081 .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
5082 .access = PL1_RW,
5083 .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
5084 offsetof(CPUARMState, cp15.sctlr_ns) },
5085 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
5086 .raw_writefn = raw_write,
5088 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
5089 /* Normally we would always end the TB on an SCTLR write, but Linux
5090 * arch/arm/mach-pxa/sleep.S expects two instructions following
5091 * an MMU enable to execute from cache. Imitate this behaviour.
5093 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
5095 define_one_arm_cp_reg(cpu, &sctlr);
5099 ARMCPU *cpu_arm_init(const char *cpu_model)
5101 return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
5104 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
5106 CPUState *cs = CPU(cpu);
5107 CPUARMState *env = &cpu->env;
5109 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
5110 gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
5111 aarch64_fpu_gdb_set_reg,
5112 34, "aarch64-fpu.xml", 0);
5113 } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5114 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5115 51, "arm-neon.xml", 0);
5116 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5117 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5118 35, "arm-vfp3.xml", 0);
5119 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5120 gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5121 19, "arm-vfp.xml", 0);
5125 /* Sort alphabetically by type name, except for "any". */
5126 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
5128 ObjectClass *class_a = (ObjectClass *)a;
5129 ObjectClass *class_b = (ObjectClass *)b;
5130 const char *name_a, *name_b;
5132 name_a = object_class_get_name(class_a);
5133 name_b = object_class_get_name(class_b);
5134 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5135 return 1;
5136 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5137 return -1;
5138 } else {
5139 return strcmp(name_a, name_b);
5143 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
5145 ObjectClass *oc = data;
5146 CPUListState *s = user_data;
5147 const char *typename;
5148 char *name;
5150 typename = object_class_get_name(oc);
5151 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5152 (*s->cpu_fprintf)(s->file, " %s\n",
5153 name);
5154 g_free(name);
5157 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
5159 CPUListState s = {
5160 .file = f,
5161 .cpu_fprintf = cpu_fprintf,
5163 GSList *list;
5165 list = object_class_get_list(TYPE_ARM_CPU, false);
5166 list = g_slist_sort(list, arm_cpu_list_compare);
5167 (*cpu_fprintf)(f, "Available CPUs:\n");
5168 g_slist_foreach(list, arm_cpu_list_entry, &s);
5169 g_slist_free(list);
5170 #ifdef CONFIG_KVM
5171 /* The 'host' CPU type is dynamically registered only if KVM is
5172 * enabled, so we have to special-case it here:
5174 (*cpu_fprintf)(f, " host (only available in KVM mode)\n");
5175 #endif
5178 static void arm_cpu_add_definition(gpointer data, gpointer user_data)
5180 ObjectClass *oc = data;
5181 CpuDefinitionInfoList **cpu_list = user_data;
5182 CpuDefinitionInfoList *entry;
5183 CpuDefinitionInfo *info;
5184 const char *typename;
5186 typename = object_class_get_name(oc);
5187 info = g_malloc0(sizeof(*info));
5188 info->name = g_strndup(typename,
5189 strlen(typename) - strlen("-" TYPE_ARM_CPU));
5191 entry = g_malloc0(sizeof(*entry));
5192 entry->value = info;
5193 entry->next = *cpu_list;
5194 *cpu_list = entry;
5197 CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
5199 CpuDefinitionInfoList *cpu_list = NULL;
5200 GSList *list;
5202 list = object_class_get_list(TYPE_ARM_CPU, false);
5203 g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
5204 g_slist_free(list);
5206 return cpu_list;
5209 static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5210 void *opaque, int state, int secstate,
5211 int crm, int opc1, int opc2)
5213 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5214 * add a single reginfo struct to the hash table.
5216 uint32_t *key = g_new(uint32_t, 1);
5217 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
5218 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5219 int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
5221 /* Reset the secure state to the specific incoming state. This is
5222 * necessary as the register may have been defined with both states.
5224 r2->secure = secstate;
5226 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5227 /* Register is banked (using both entries in array).
5228 * Overwriting fieldoffset as the array is only used to define
5229 * banked registers but later only fieldoffset is used.
5231 r2->fieldoffset = r->bank_fieldoffsets[ns];
5234 if (state == ARM_CP_STATE_AA32) {
5235 if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
5236 /* If the register is banked then we don't need to migrate or
5237 * reset the 32-bit instance in certain cases:
5239 * 1) If the register has both 32-bit and 64-bit instances then we
5240 * can count on the 64-bit instance taking care of the
5241 * non-secure bank.
5242 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5243 * taking care of the secure bank. This requires that separate
5244 * 32 and 64-bit definitions are provided.
5246 if ((r->state == ARM_CP_STATE_BOTH && ns) ||
5247 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5248 r2->type |= ARM_CP_ALIAS;
5250 } else if ((secstate != r->secure) && !ns) {
5251 /* The register is not banked so we only want to allow migration of
5252 * the non-secure instance.
5254 r2->type |= ARM_CP_ALIAS;
5257 if (r->state == ARM_CP_STATE_BOTH) {
5258 /* We assume it is a cp15 register if the .cp field is left unset.
5260 if (r2->cp == 0) {
5261 r2->cp = 15;
5264 #ifdef HOST_WORDS_BIGENDIAN
5265 if (r2->fieldoffset) {
5266 r2->fieldoffset += sizeof(uint32_t);
5268 #endif
5271 if (state == ARM_CP_STATE_AA64) {
5272 /* To allow abbreviation of ARMCPRegInfo
5273 * definitions, we treat cp == 0 as equivalent to
5274 * the value for "standard guest-visible sysreg".
5275 * STATE_BOTH definitions are also always "standard
5276 * sysreg" in their AArch64 view (the .cp value may
5277 * be non-zero for the benefit of the AArch32 view).
5279 if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5280 r2->cp = CP_REG_ARM64_SYSREG_CP;
5282 *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
5283 r2->opc0, opc1, opc2);
5284 } else {
5285 *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5287 if (opaque) {
5288 r2->opaque = opaque;
5290 /* reginfo passed to helpers is correct for the actual access,
5291 * and is never ARM_CP_STATE_BOTH:
5293 r2->state = state;
5294 /* Make sure reginfo passed to helpers for wildcarded regs
5295 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
5297 r2->crm = crm;
5298 r2->opc1 = opc1;
5299 r2->opc2 = opc2;
5300 /* By convention, for wildcarded registers only the first
5301 * entry is used for migration; the others are marked as
5302 * ALIAS so we don't try to transfer the register
5303 * multiple times. Special registers (ie NOP/WFI) are
5304 * never migratable and not even raw-accessible.
5306 if ((r->type & ARM_CP_SPECIAL)) {
5307 r2->type |= ARM_CP_NO_RAW;
5309 if (((r->crm == CP_ANY) && crm != 0) ||
5310 ((r->opc1 == CP_ANY) && opc1 != 0) ||
5311 ((r->opc2 == CP_ANY) && opc2 != 0)) {
5312 r2->type |= ARM_CP_ALIAS;
5315 /* Check that raw accesses are either forbidden or handled. Note that
5316 * we can't assert this earlier because the setup of fieldoffset for
5317 * banked registers has to be done first.
5319 if (!(r2->type & ARM_CP_NO_RAW)) {
5320 assert(!raw_accessors_invalid(r2));
5323 /* Overriding of an existing definition must be explicitly
5324 * requested.
5326 if (!(r->type & ARM_CP_OVERRIDE)) {
5327 ARMCPRegInfo *oldreg;
5328 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
5329 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
5330 fprintf(stderr, "Register redefined: cp=%d %d bit "
5331 "crn=%d crm=%d opc1=%d opc2=%d, "
5332 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
5333 r2->crn, r2->crm, r2->opc1, r2->opc2,
5334 oldreg->name, r2->name);
5335 g_assert_not_reached();
5338 g_hash_table_insert(cpu->cp_regs, key, r2);
5342 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
5343 const ARMCPRegInfo *r, void *opaque)
5345 /* Define implementations of coprocessor registers.
5346 * We store these in a hashtable because typically
5347 * there are less than 150 registers in a space which
5348 * is 16*16*16*8*8 = 262144 in size.
5349 * Wildcarding is supported for the crm, opc1 and opc2 fields.
5350 * If a register is defined twice then the second definition is
5351 * used, so this can be used to define some generic registers and
5352 * then override them with implementation specific variations.
5353 * At least one of the original and the second definition should
5354 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
5355 * against accidental use.
5357 * The state field defines whether the register is to be
5358 * visible in the AArch32 or AArch64 execution state. If the
5359 * state is set to ARM_CP_STATE_BOTH then we synthesise a
5360 * reginfo structure for the AArch32 view, which sees the lower
5361 * 32 bits of the 64 bit register.
5363 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
5364 * be wildcarded. AArch64 registers are always considered to be 64
5365 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
5366 * the register, if any.
5368 int crm, opc1, opc2, state;
5369 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
5370 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
5371 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
5372 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
5373 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
5374 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
5375 /* 64 bit registers have only CRm and Opc1 fields */
5376 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5377 /* op0 only exists in the AArch64 encodings */
5378 assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
5379 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
5380 assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
5381 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
5382 * encodes a minimum access level for the register. We roll this
5383 * runtime check into our general permission check code, so check
5384 * here that the reginfo's specified permissions are strict enough
5385 * to encompass the generic architectural permission check.
5387 if (r->state != ARM_CP_STATE_AA32) {
5388 int mask = 0;
5389 switch (r->opc1) {
5390 case 0: case 1: case 2:
5391 /* min_EL EL1 */
5392 mask = PL1_RW;
5393 break;
5394 case 3:
5395 /* min_EL EL0 */
5396 mask = PL0_RW;
5397 break;
5398 case 4:
5399 /* min_EL EL2 */
5400 mask = PL2_RW;
5401 break;
5402 case 5:
5403 /* unallocated encoding, so not possible */
5404 assert(false);
5405 break;
5406 case 6:
5407 /* min_EL EL3 */
5408 mask = PL3_RW;
5409 break;
5410 case 7:
5411 /* min_EL EL1, secure mode only (we don't check the latter) */
5412 mask = PL1_RW;
5413 break;
5414 default:
5415 /* broken reginfo with out-of-range opc1 */
5416 assert(false);
5417 break;
5419 /* assert our permissions are not too lax (stricter is fine) */
5420 assert((r->access & ~mask) == 0);
5423 /* Check that the register definition has enough info to handle
5424 * reads and writes if they are permitted.
5426 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
5427 if (r->access & PL3_R) {
5428 assert((r->fieldoffset ||
5429 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5430 r->readfn);
5432 if (r->access & PL3_W) {
5433 assert((r->fieldoffset ||
5434 (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
5435 r->writefn);
5438 /* Bad type field probably means missing sentinel at end of reg list */
5439 assert(cptype_valid(r->type));
5440 for (crm = crmmin; crm <= crmmax; crm++) {
5441 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
5442 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5443 for (state = ARM_CP_STATE_AA32;
5444 state <= ARM_CP_STATE_AA64; state++) {
5445 if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
5446 continue;
5448 if (state == ARM_CP_STATE_AA32) {
5449 /* Under AArch32 CP registers can be common
5450 * (same for secure and non-secure world) or banked.
5452 switch (r->secure) {
5453 case ARM_CP_SECSTATE_S:
5454 case ARM_CP_SECSTATE_NS:
5455 add_cpreg_to_hashtable(cpu, r, opaque, state,
5456 r->secure, crm, opc1, opc2);
5457 break;
5458 default:
5459 add_cpreg_to_hashtable(cpu, r, opaque, state,
5460 ARM_CP_SECSTATE_S,
5461 crm, opc1, opc2);
5462 add_cpreg_to_hashtable(cpu, r, opaque, state,
5463 ARM_CP_SECSTATE_NS,
5464 crm, opc1, opc2);
5465 break;
5467 } else {
5468 /* AArch64 registers get mapped to non-secure instance
5469 * of AArch32 */
5470 add_cpreg_to_hashtable(cpu, r, opaque, state,
5471 ARM_CP_SECSTATE_NS,
5472 crm, opc1, opc2);
5480 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
5481 const ARMCPRegInfo *regs, void *opaque)
5483 /* Define a whole list of registers */
5484 const ARMCPRegInfo *r;
5485 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
5486 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
5490 const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5492 return g_hash_table_lookup(cpregs, &encoded_cp);
5495 void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
5496 uint64_t value)
5498 /* Helper coprocessor write function for write-ignore registers */
5501 uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5503 /* Helper coprocessor write function for read-as-zero registers */
5504 return 0;
5507 void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
5509 /* Helper coprocessor reset function for do-nothing-on-reset registers */
5512 static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5514 /* Return true if it is not valid for us to switch to
5515 * this CPU mode (ie all the UNPREDICTABLE cases in
5516 * the ARM ARM CPSRWriteByInstr pseudocode).
5519 /* Changes to or from Hyp via MSR and CPS are illegal. */
5520 if (write_type == CPSRWriteByInstr &&
5521 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
5522 mode == ARM_CPU_MODE_HYP)) {
5523 return 1;
5526 switch (mode) {
5527 case ARM_CPU_MODE_USR:
5528 return 0;
5529 case ARM_CPU_MODE_SYS:
5530 case ARM_CPU_MODE_SVC:
5531 case ARM_CPU_MODE_ABT:
5532 case ARM_CPU_MODE_UND:
5533 case ARM_CPU_MODE_IRQ:
5534 case ARM_CPU_MODE_FIQ:
5535 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
5536 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
5538 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
5539 * and CPS are treated as illegal mode changes.
5541 if (write_type == CPSRWriteByInstr &&
5542 (env->cp15.hcr_el2 & HCR_TGE) &&
5543 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
5544 !arm_is_secure_below_el3(env)) {
5545 return 1;
5547 return 0;
5548 case ARM_CPU_MODE_HYP:
5549 return !arm_feature(env, ARM_FEATURE_EL2)
5550 || arm_current_el(env) < 2 || arm_is_secure(env);
5551 case ARM_CPU_MODE_MON:
5552 return arm_current_el(env) < 3;
5553 default:
5554 return 1;
5558 uint32_t cpsr_read(CPUARMState *env)
5560 int ZF;
5561 ZF = (env->ZF == 0);
5562 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5563 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
5564 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
5565 | ((env->condexec_bits & 0xfc) << 8)
5566 | (env->GE << 16) | (env->daif & CPSR_AIF);
5569 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
5570 CPSRWriteType write_type)
5572 uint32_t changed_daif;
5574 if (mask & CPSR_NZCV) {
5575 env->ZF = (~val) & CPSR_Z;
5576 env->NF = val;
5577 env->CF = (val >> 29) & 1;
5578 env->VF = (val << 3) & 0x80000000;
5580 if (mask & CPSR_Q)
5581 env->QF = ((val & CPSR_Q) != 0);
5582 if (mask & CPSR_T)
5583 env->thumb = ((val & CPSR_T) != 0);
5584 if (mask & CPSR_IT_0_1) {
5585 env->condexec_bits &= ~3;
5586 env->condexec_bits |= (val >> 25) & 3;
5588 if (mask & CPSR_IT_2_7) {
5589 env->condexec_bits &= 3;
5590 env->condexec_bits |= (val >> 8) & 0xfc;
5592 if (mask & CPSR_GE) {
5593 env->GE = (val >> 16) & 0xf;
5596 /* In a V7 implementation that includes the security extensions but does
5597 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
5598 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
5599 * bits respectively.
5601 * In a V8 implementation, it is permitted for privileged software to
5602 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
5604 if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
5605 arm_feature(env, ARM_FEATURE_EL3) &&
5606 !arm_feature(env, ARM_FEATURE_EL2) &&
5607 !arm_is_secure(env)) {
5609 changed_daif = (env->daif ^ val) & mask;
5611 if (changed_daif & CPSR_A) {
5612 /* Check to see if we are allowed to change the masking of async
5613 * abort exceptions from a non-secure state.
5615 if (!(env->cp15.scr_el3 & SCR_AW)) {
5616 qemu_log_mask(LOG_GUEST_ERROR,
5617 "Ignoring attempt to switch CPSR_A flag from "
5618 "non-secure world with SCR.AW bit clear\n");
5619 mask &= ~CPSR_A;
5623 if (changed_daif & CPSR_F) {
5624 /* Check to see if we are allowed to change the masking of FIQ
5625 * exceptions from a non-secure state.
5627 if (!(env->cp15.scr_el3 & SCR_FW)) {
5628 qemu_log_mask(LOG_GUEST_ERROR,
5629 "Ignoring attempt to switch CPSR_F flag from "
5630 "non-secure world with SCR.FW bit clear\n");
5631 mask &= ~CPSR_F;
5634 /* Check whether non-maskable FIQ (NMFI) support is enabled.
5635 * If this bit is set software is not allowed to mask
5636 * FIQs, but is allowed to set CPSR_F to 0.
5638 if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
5639 (val & CPSR_F)) {
5640 qemu_log_mask(LOG_GUEST_ERROR,
5641 "Ignoring attempt to enable CPSR_F flag "
5642 "(non-maskable FIQ [NMFI] support enabled)\n");
5643 mask &= ~CPSR_F;
5648 env->daif &= ~(CPSR_AIF & mask);
5649 env->daif |= val & CPSR_AIF & mask;
5651 if (write_type != CPSRWriteRaw &&
5652 ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
5653 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
5654 /* Note that we can only get here in USR mode if this is a
5655 * gdb stub write; for this case we follow the architectural
5656 * behaviour for guest writes in USR mode of ignoring an attempt
5657 * to switch mode. (Those are caught by translate.c for writes
5658 * triggered by guest instructions.)
5660 mask &= ~CPSR_M;
5661 } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
5662 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
5663 * v7, and has defined behaviour in v8:
5664 * + leave CPSR.M untouched
5665 * + allow changes to the other CPSR fields
5666 * + set PSTATE.IL
5667 * For user changes via the GDB stub, we don't set PSTATE.IL,
5668 * as this would be unnecessarily harsh for a user error.
5670 mask &= ~CPSR_M;
5671 if (write_type != CPSRWriteByGDBStub &&
5672 arm_feature(env, ARM_FEATURE_V8)) {
5673 mask |= CPSR_IL;
5674 val |= CPSR_IL;
5676 } else {
5677 switch_mode(env, val & CPSR_M);
5680 mask &= ~CACHED_CPSR_BITS;
5681 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
5684 /* Sign/zero extend */
5685 uint32_t HELPER(sxtb16)(uint32_t x)
5687 uint32_t res;
5688 res = (uint16_t)(int8_t)x;
5689 res |= (uint32_t)(int8_t)(x >> 16) << 16;
5690 return res;
5693 uint32_t HELPER(uxtb16)(uint32_t x)
5695 uint32_t res;
5696 res = (uint16_t)(uint8_t)x;
5697 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
5698 return res;
5701 uint32_t HELPER(clz)(uint32_t x)
5703 return clz32(x);
5706 int32_t HELPER(sdiv)(int32_t num, int32_t den)
5708 if (den == 0)
5709 return 0;
5710 if (num == INT_MIN && den == -1)
5711 return INT_MIN;
5712 return num / den;
5715 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
5717 if (den == 0)
5718 return 0;
5719 return num / den;
5722 uint32_t HELPER(rbit)(uint32_t x)
5724 return revbit32(x);
5727 #if defined(CONFIG_USER_ONLY)
5729 /* These should probably raise undefined insn exceptions. */
5730 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
5732 ARMCPU *cpu = arm_env_get_cpu(env);
5734 cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
5737 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
5739 ARMCPU *cpu = arm_env_get_cpu(env);
5741 cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
5742 return 0;
5745 void switch_mode(CPUARMState *env, int mode)
5747 ARMCPU *cpu = arm_env_get_cpu(env);
5749 if (mode != ARM_CPU_MODE_USR) {
5750 cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
5754 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5755 uint32_t cur_el, bool secure)
5757 return 1;
5760 void aarch64_sync_64_to_32(CPUARMState *env)
5762 g_assert_not_reached();
5765 #else
5767 void switch_mode(CPUARMState *env, int mode)
5769 int old_mode;
5770 int i;
5772 old_mode = env->uncached_cpsr & CPSR_M;
5773 if (mode == old_mode)
5774 return;
5776 if (old_mode == ARM_CPU_MODE_FIQ) {
5777 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
5778 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
5779 } else if (mode == ARM_CPU_MODE_FIQ) {
5780 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
5781 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
5784 i = bank_number(old_mode);
5785 env->banked_r13[i] = env->regs[13];
5786 env->banked_r14[i] = env->regs[14];
5787 env->banked_spsr[i] = env->spsr;
5789 i = bank_number(mode);
5790 env->regs[13] = env->banked_r13[i];
5791 env->regs[14] = env->banked_r14[i];
5792 env->spsr = env->banked_spsr[i];
5795 /* Physical Interrupt Target EL Lookup Table
5797 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
5799 * The below multi-dimensional table is used for looking up the target
5800 * exception level given numerous condition criteria. Specifically, the
5801 * target EL is based on SCR and HCR routing controls as well as the
5802 * currently executing EL and secure state.
5804 * Dimensions:
5805 * target_el_table[2][2][2][2][2][4]
5806 * | | | | | +--- Current EL
5807 * | | | | +------ Non-secure(0)/Secure(1)
5808 * | | | +--------- HCR mask override
5809 * | | +------------ SCR exec state control
5810 * | +--------------- SCR mask override
5811 * +------------------ 32-bit(0)/64-bit(1) EL3
5813 * The table values are as such:
5814 * 0-3 = EL0-EL3
5815 * -1 = Cannot occur
5817 * The ARM ARM target EL table includes entries indicating that an "exception
5818 * is not taken". The two cases where this is applicable are:
5819 * 1) An exception is taken from EL3 but the SCR does not have the exception
5820 * routed to EL3.
5821 * 2) An exception is taken from EL2 but the HCR does not have the exception
5822 * routed to EL2.
5823 * In these two cases, the below table contain a target of EL1. This value is
5824 * returned as it is expected that the consumer of the table data will check
5825 * for "target EL >= current EL" to ensure the exception is not taken.
5827 * SCR HCR
5828 * 64 EA AMO From
5829 * BIT IRQ IMO Non-secure Secure
5830 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
5832 static const int8_t target_el_table[2][2][2][2][2][4] = {
5833 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5834 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
5835 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
5836 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
5837 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5838 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
5839 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
5840 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
5841 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
5842 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
5843 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
5844 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
5845 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5846 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
5847 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
5848 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
5852 * Determine the target EL for physical exceptions
5854 uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
5855 uint32_t cur_el, bool secure)
5857 CPUARMState *env = cs->env_ptr;
5858 int rw;
5859 int scr;
5860 int hcr;
5861 int target_el;
5862 /* Is the highest EL AArch64? */
5863 int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
5865 if (arm_feature(env, ARM_FEATURE_EL3)) {
5866 rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
5867 } else {
5868 /* Either EL2 is the highest EL (and so the EL2 register width
5869 * is given by is64); or there is no EL2 or EL3, in which case
5870 * the value of 'rw' does not affect the table lookup anyway.
5872 rw = is64;
5875 switch (excp_idx) {
5876 case EXCP_IRQ:
5877 scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
5878 hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
5879 break;
5880 case EXCP_FIQ:
5881 scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
5882 hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
5883 break;
5884 default:
5885 scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
5886 hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
5887 break;
5890 /* If HCR.TGE is set then HCR is treated as being 1 */
5891 hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
5893 /* Perform a table-lookup for the target EL given the current state */
5894 target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
5896 assert(target_el > 0);
5898 return target_el;
5901 static void v7m_push(CPUARMState *env, uint32_t val)
5903 CPUState *cs = CPU(arm_env_get_cpu(env));
5905 env->regs[13] -= 4;
5906 stl_phys(cs->as, env->regs[13], val);
5909 static uint32_t v7m_pop(CPUARMState *env)
5911 CPUState *cs = CPU(arm_env_get_cpu(env));
5912 uint32_t val;
5914 val = ldl_phys(cs->as, env->regs[13]);
5915 env->regs[13] += 4;
5916 return val;
5919 /* Switch to V7M main or process stack pointer. */
5920 static void switch_v7m_sp(CPUARMState *env, int process)
5922 uint32_t tmp;
5923 if (env->v7m.current_sp != process) {
5924 tmp = env->v7m.other_sp;
5925 env->v7m.other_sp = env->regs[13];
5926 env->regs[13] = tmp;
5927 env->v7m.current_sp = process;
5931 static void do_v7m_exception_exit(CPUARMState *env)
5933 uint32_t type;
5934 uint32_t xpsr;
5936 type = env->regs[15];
5937 if (env->v7m.exception != 0)
5938 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
5940 /* Switch to the target stack. */
5941 switch_v7m_sp(env, (type & 4) != 0);
5942 /* Pop registers. */
5943 env->regs[0] = v7m_pop(env);
5944 env->regs[1] = v7m_pop(env);
5945 env->regs[2] = v7m_pop(env);
5946 env->regs[3] = v7m_pop(env);
5947 env->regs[12] = v7m_pop(env);
5948 env->regs[14] = v7m_pop(env);
5949 env->regs[15] = v7m_pop(env);
5950 if (env->regs[15] & 1) {
5951 qemu_log_mask(LOG_GUEST_ERROR,
5952 "M profile return from interrupt with misaligned "
5953 "PC is UNPREDICTABLE\n");
5954 /* Actual hardware seems to ignore the lsbit, and there are several
5955 * RTOSes out there which incorrectly assume the r15 in the stack
5956 * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
5958 env->regs[15] &= ~1U;
5960 xpsr = v7m_pop(env);
5961 xpsr_write(env, xpsr, 0xfffffdff);
5962 /* Undo stack alignment. */
5963 if (xpsr & 0x200)
5964 env->regs[13] |= 4;
5965 /* ??? The exception return type specifies Thread/Handler mode. However
5966 this is also implied by the xPSR value. Not sure what to do
5967 if there is a mismatch. */
5968 /* ??? Likewise for mismatches between the CONTROL register and the stack
5969 pointer. */
5972 static void arm_log_exception(int idx)
5974 if (qemu_loglevel_mask(CPU_LOG_INT)) {
5975 const char *exc = NULL;
5977 if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
5978 exc = excnames[idx];
5980 if (!exc) {
5981 exc = "unknown";
5983 qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
5987 void arm_v7m_cpu_do_interrupt(CPUState *cs)
5989 ARMCPU *cpu = ARM_CPU(cs);
5990 CPUARMState *env = &cpu->env;
5991 uint32_t xpsr = xpsr_read(env);
5992 uint32_t lr;
5993 uint32_t addr;
5995 arm_log_exception(cs->exception_index);
5997 lr = 0xfffffff1;
5998 if (env->v7m.current_sp)
5999 lr |= 4;
6000 if (env->v7m.exception == 0)
6001 lr |= 8;
6003 /* For exceptions we just mark as pending on the NVIC, and let that
6004 handle it. */
6005 /* TODO: Need to escalate if the current priority is higher than the
6006 one we're raising. */
6007 switch (cs->exception_index) {
6008 case EXCP_UDEF:
6009 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6010 return;
6011 case EXCP_SWI:
6012 /* The PC already points to the next instruction. */
6013 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
6014 return;
6015 case EXCP_PREFETCH_ABORT:
6016 case EXCP_DATA_ABORT:
6017 /* TODO: if we implemented the MPU registers, this is where we
6018 * should set the MMFAR, etc from exception.fsr and exception.vaddress.
6020 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
6021 return;
6022 case EXCP_BKPT:
6023 if (semihosting_enabled()) {
6024 int nr;
6025 nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
6026 if (nr == 0xab) {
6027 env->regs[15] += 2;
6028 qemu_log_mask(CPU_LOG_INT,
6029 "...handling as semihosting call 0x%x\n",
6030 env->regs[0]);
6031 env->regs[0] = do_arm_semihosting(env);
6032 return;
6035 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
6036 return;
6037 case EXCP_IRQ:
6038 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
6039 break;
6040 case EXCP_EXCEPTION_EXIT:
6041 do_v7m_exception_exit(env);
6042 return;
6043 default:
6044 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6045 return; /* Never happens. Keep compiler happy. */
6048 /* Align stack pointer. */
6049 /* ??? Should only do this if Configuration Control Register
6050 STACKALIGN bit is set. */
6051 if (env->regs[13] & 4) {
6052 env->regs[13] -= 4;
6053 xpsr |= 0x200;
6055 /* Switch to the handler mode. */
6056 v7m_push(env, xpsr);
6057 v7m_push(env, env->regs[15]);
6058 v7m_push(env, env->regs[14]);
6059 v7m_push(env, env->regs[12]);
6060 v7m_push(env, env->regs[3]);
6061 v7m_push(env, env->regs[2]);
6062 v7m_push(env, env->regs[1]);
6063 v7m_push(env, env->regs[0]);
6064 switch_v7m_sp(env, 0);
6065 /* Clear IT bits */
6066 env->condexec_bits = 0;
6067 env->regs[14] = lr;
6068 addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
6069 env->regs[15] = addr & 0xfffffffe;
6070 env->thumb = addr & 1;
6073 /* Function used to synchronize QEMU's AArch64 register set with AArch32
6074 * register set. This is necessary when switching between AArch32 and AArch64
6075 * execution state.
6077 void aarch64_sync_32_to_64(CPUARMState *env)
6079 int i;
6080 uint32_t mode = env->uncached_cpsr & CPSR_M;
6082 /* We can blanket copy R[0:7] to X[0:7] */
6083 for (i = 0; i < 8; i++) {
6084 env->xregs[i] = env->regs[i];
6087 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
6088 * Otherwise, they come from the banked user regs.
6090 if (mode == ARM_CPU_MODE_FIQ) {
6091 for (i = 8; i < 13; i++) {
6092 env->xregs[i] = env->usr_regs[i - 8];
6094 } else {
6095 for (i = 8; i < 13; i++) {
6096 env->xregs[i] = env->regs[i];
6100 /* Registers x13-x23 are the various mode SP and FP registers. Registers
6101 * r13 and r14 are only copied if we are in that mode, otherwise we copy
6102 * from the mode banked register.
6104 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6105 env->xregs[13] = env->regs[13];
6106 env->xregs[14] = env->regs[14];
6107 } else {
6108 env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
6109 /* HYP is an exception in that it is copied from r14 */
6110 if (mode == ARM_CPU_MODE_HYP) {
6111 env->xregs[14] = env->regs[14];
6112 } else {
6113 env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
6117 if (mode == ARM_CPU_MODE_HYP) {
6118 env->xregs[15] = env->regs[13];
6119 } else {
6120 env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
6123 if (mode == ARM_CPU_MODE_IRQ) {
6124 env->xregs[16] = env->regs[14];
6125 env->xregs[17] = env->regs[13];
6126 } else {
6127 env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
6128 env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
6131 if (mode == ARM_CPU_MODE_SVC) {
6132 env->xregs[18] = env->regs[14];
6133 env->xregs[19] = env->regs[13];
6134 } else {
6135 env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
6136 env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
6139 if (mode == ARM_CPU_MODE_ABT) {
6140 env->xregs[20] = env->regs[14];
6141 env->xregs[21] = env->regs[13];
6142 } else {
6143 env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
6144 env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
6147 if (mode == ARM_CPU_MODE_UND) {
6148 env->xregs[22] = env->regs[14];
6149 env->xregs[23] = env->regs[13];
6150 } else {
6151 env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
6152 env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
6155 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6156 * mode, then we can copy from r8-r14. Otherwise, we copy from the
6157 * FIQ bank for r8-r14.
6159 if (mode == ARM_CPU_MODE_FIQ) {
6160 for (i = 24; i < 31; i++) {
6161 env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
6163 } else {
6164 for (i = 24; i < 29; i++) {
6165 env->xregs[i] = env->fiq_regs[i - 24];
6167 env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
6168 env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
6171 env->pc = env->regs[15];
6174 /* Function used to synchronize QEMU's AArch32 register set with AArch64
6175 * register set. This is necessary when switching between AArch32 and AArch64
6176 * execution state.
6178 void aarch64_sync_64_to_32(CPUARMState *env)
6180 int i;
6181 uint32_t mode = env->uncached_cpsr & CPSR_M;
6183 /* We can blanket copy X[0:7] to R[0:7] */
6184 for (i = 0; i < 8; i++) {
6185 env->regs[i] = env->xregs[i];
6188 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
6189 * Otherwise, we copy x8-x12 into the banked user regs.
6191 if (mode == ARM_CPU_MODE_FIQ) {
6192 for (i = 8; i < 13; i++) {
6193 env->usr_regs[i - 8] = env->xregs[i];
6195 } else {
6196 for (i = 8; i < 13; i++) {
6197 env->regs[i] = env->xregs[i];
6201 /* Registers r13 & r14 depend on the current mode.
6202 * If we are in a given mode, we copy the corresponding x registers to r13
6203 * and r14. Otherwise, we copy the x register to the banked r13 and r14
6204 * for the mode.
6206 if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
6207 env->regs[13] = env->xregs[13];
6208 env->regs[14] = env->xregs[14];
6209 } else {
6210 env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
6212 /* HYP is an exception in that it does not have its own banked r14 but
6213 * shares the USR r14
6215 if (mode == ARM_CPU_MODE_HYP) {
6216 env->regs[14] = env->xregs[14];
6217 } else {
6218 env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
6222 if (mode == ARM_CPU_MODE_HYP) {
6223 env->regs[13] = env->xregs[15];
6224 } else {
6225 env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
6228 if (mode == ARM_CPU_MODE_IRQ) {
6229 env->regs[14] = env->xregs[16];
6230 env->regs[13] = env->xregs[17];
6231 } else {
6232 env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
6233 env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
6236 if (mode == ARM_CPU_MODE_SVC) {
6237 env->regs[14] = env->xregs[18];
6238 env->regs[13] = env->xregs[19];
6239 } else {
6240 env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
6241 env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
6244 if (mode == ARM_CPU_MODE_ABT) {
6245 env->regs[14] = env->xregs[20];
6246 env->regs[13] = env->xregs[21];
6247 } else {
6248 env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
6249 env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
6252 if (mode == ARM_CPU_MODE_UND) {
6253 env->regs[14] = env->xregs[22];
6254 env->regs[13] = env->xregs[23];
6255 } else {
6256 env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
6257 env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
6260 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
6261 * mode, then we can copy to r8-r14. Otherwise, we copy to the
6262 * FIQ bank for r8-r14.
6264 if (mode == ARM_CPU_MODE_FIQ) {
6265 for (i = 24; i < 31; i++) {
6266 env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
6268 } else {
6269 for (i = 24; i < 29; i++) {
6270 env->fiq_regs[i - 24] = env->xregs[i];
6272 env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
6273 env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
6276 env->regs[15] = env->pc;
6279 static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
6281 ARMCPU *cpu = ARM_CPU(cs);
6282 CPUARMState *env = &cpu->env;
6283 uint32_t addr;
6284 uint32_t mask;
6285 int new_mode;
6286 uint32_t offset;
6287 uint32_t moe;
6289 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
6290 switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
6291 case EC_BREAKPOINT:
6292 case EC_BREAKPOINT_SAME_EL:
6293 moe = 1;
6294 break;
6295 case EC_WATCHPOINT:
6296 case EC_WATCHPOINT_SAME_EL:
6297 moe = 10;
6298 break;
6299 case EC_AA32_BKPT:
6300 moe = 3;
6301 break;
6302 case EC_VECTORCATCH:
6303 moe = 5;
6304 break;
6305 default:
6306 moe = 0;
6307 break;
6310 if (moe) {
6311 env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
6314 /* TODO: Vectored interrupt controller. */
6315 switch (cs->exception_index) {
6316 case EXCP_UDEF:
6317 new_mode = ARM_CPU_MODE_UND;
6318 addr = 0x04;
6319 mask = CPSR_I;
6320 if (env->thumb)
6321 offset = 2;
6322 else
6323 offset = 4;
6324 break;
6325 case EXCP_SWI:
6326 new_mode = ARM_CPU_MODE_SVC;
6327 addr = 0x08;
6328 mask = CPSR_I;
6329 /* The PC already points to the next instruction. */
6330 offset = 0;
6331 break;
6332 case EXCP_BKPT:
6333 env->exception.fsr = 2;
6334 /* Fall through to prefetch abort. */
6335 case EXCP_PREFETCH_ABORT:
6336 A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
6337 A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
6338 qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
6339 env->exception.fsr, (uint32_t)env->exception.vaddress);
6340 new_mode = ARM_CPU_MODE_ABT;
6341 addr = 0x0c;
6342 mask = CPSR_A | CPSR_I;
6343 offset = 4;
6344 break;
6345 case EXCP_DATA_ABORT:
6346 A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
6347 A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
6348 qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
6349 env->exception.fsr,
6350 (uint32_t)env->exception.vaddress);
6351 new_mode = ARM_CPU_MODE_ABT;
6352 addr = 0x10;
6353 mask = CPSR_A | CPSR_I;
6354 offset = 8;
6355 break;
6356 case EXCP_IRQ:
6357 new_mode = ARM_CPU_MODE_IRQ;
6358 addr = 0x18;
6359 /* Disable IRQ and imprecise data aborts. */
6360 mask = CPSR_A | CPSR_I;
6361 offset = 4;
6362 if (env->cp15.scr_el3 & SCR_IRQ) {
6363 /* IRQ routed to monitor mode */
6364 new_mode = ARM_CPU_MODE_MON;
6365 mask |= CPSR_F;
6367 break;
6368 case EXCP_FIQ:
6369 new_mode = ARM_CPU_MODE_FIQ;
6370 addr = 0x1c;
6371 /* Disable FIQ, IRQ and imprecise data aborts. */
6372 mask = CPSR_A | CPSR_I | CPSR_F;
6373 if (env->cp15.scr_el3 & SCR_FIQ) {
6374 /* FIQ routed to monitor mode */
6375 new_mode = ARM_CPU_MODE_MON;
6377 offset = 4;
6378 break;
6379 case EXCP_SMC:
6380 new_mode = ARM_CPU_MODE_MON;
6381 addr = 0x08;
6382 mask = CPSR_A | CPSR_I | CPSR_F;
6383 offset = 0;
6384 break;
6385 default:
6386 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6387 return; /* Never happens. Keep compiler happy. */
6390 if (new_mode == ARM_CPU_MODE_MON) {
6391 addr += env->cp15.mvbar;
6392 } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
6393 /* High vectors. When enabled, base address cannot be remapped. */
6394 addr += 0xffff0000;
6395 } else {
6396 /* ARM v7 architectures provide a vector base address register to remap
6397 * the interrupt vector table.
6398 * This register is only followed in non-monitor mode, and is banked.
6399 * Note: only bits 31:5 are valid.
6401 addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
6404 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
6405 env->cp15.scr_el3 &= ~SCR_NS;
6408 switch_mode (env, new_mode);
6409 /* For exceptions taken to AArch32 we must clear the SS bit in both
6410 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
6412 env->uncached_cpsr &= ~PSTATE_SS;
6413 env->spsr = cpsr_read(env);
6414 /* Clear IT bits. */
6415 env->condexec_bits = 0;
6416 /* Switch to the new mode, and to the correct instruction set. */
6417 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
6418 /* Set new mode endianness */
6419 env->uncached_cpsr &= ~CPSR_E;
6420 if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
6421 env->uncached_cpsr |= ~CPSR_E;
6423 env->daif |= mask;
6424 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
6425 * and we should just guard the thumb mode on V4 */
6426 if (arm_feature(env, ARM_FEATURE_V4T)) {
6427 env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
6429 env->regs[14] = env->regs[15] + offset;
6430 env->regs[15] = addr;
6433 /* Handle exception entry to a target EL which is using AArch64 */
6434 static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
6436 ARMCPU *cpu = ARM_CPU(cs);
6437 CPUARMState *env = &cpu->env;
6438 unsigned int new_el = env->exception.target_el;
6439 target_ulong addr = env->cp15.vbar_el[new_el];
6440 unsigned int new_mode = aarch64_pstate_mode(new_el, true);
6442 if (arm_current_el(env) < new_el) {
6443 /* Entry vector offset depends on whether the implemented EL
6444 * immediately lower than the target level is using AArch32 or AArch64
6446 bool is_aa64;
6448 switch (new_el) {
6449 case 3:
6450 is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
6451 break;
6452 case 2:
6453 is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
6454 break;
6455 case 1:
6456 is_aa64 = is_a64(env);
6457 break;
6458 default:
6459 g_assert_not_reached();
6462 if (is_aa64) {
6463 addr += 0x400;
6464 } else {
6465 addr += 0x600;
6467 } else if (pstate_read(env) & PSTATE_SP) {
6468 addr += 0x200;
6471 switch (cs->exception_index) {
6472 case EXCP_PREFETCH_ABORT:
6473 case EXCP_DATA_ABORT:
6474 env->cp15.far_el[new_el] = env->exception.vaddress;
6475 qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
6476 env->cp15.far_el[new_el]);
6477 /* fall through */
6478 case EXCP_BKPT:
6479 case EXCP_UDEF:
6480 case EXCP_SWI:
6481 case EXCP_HVC:
6482 case EXCP_HYP_TRAP:
6483 case EXCP_SMC:
6484 env->cp15.esr_el[new_el] = env->exception.syndrome;
6485 break;
6486 case EXCP_IRQ:
6487 case EXCP_VIRQ:
6488 addr += 0x80;
6489 break;
6490 case EXCP_FIQ:
6491 case EXCP_VFIQ:
6492 addr += 0x100;
6493 break;
6494 case EXCP_SEMIHOST:
6495 qemu_log_mask(CPU_LOG_INT,
6496 "...handling as semihosting call 0x%" PRIx64 "\n",
6497 env->xregs[0]);
6498 env->xregs[0] = do_arm_semihosting(env);
6499 return;
6500 default:
6501 cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6504 if (is_a64(env)) {
6505 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
6506 aarch64_save_sp(env, arm_current_el(env));
6507 env->elr_el[new_el] = env->pc;
6508 } else {
6509 env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
6510 env->elr_el[new_el] = env->regs[15];
6512 aarch64_sync_32_to_64(env);
6514 env->condexec_bits = 0;
6516 qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
6517 env->elr_el[new_el]);
6519 pstate_write(env, PSTATE_DAIF | new_mode);
6520 env->aarch64 = 1;
6521 aarch64_restore_sp(env, new_el);
6523 env->pc = addr;
6525 qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
6526 new_el, env->pc, pstate_read(env));
6529 static inline bool check_for_semihosting(CPUState *cs)
6531 /* Check whether this exception is a semihosting call; if so
6532 * then handle it and return true; otherwise return false.
6534 ARMCPU *cpu = ARM_CPU(cs);
6535 CPUARMState *env = &cpu->env;
6537 if (is_a64(env)) {
6538 if (cs->exception_index == EXCP_SEMIHOST) {
6539 /* This is always the 64-bit semihosting exception.
6540 * The "is this usermode" and "is semihosting enabled"
6541 * checks have been done at translate time.
6543 qemu_log_mask(CPU_LOG_INT,
6544 "...handling as semihosting call 0x%" PRIx64 "\n",
6545 env->xregs[0]);
6546 env->xregs[0] = do_arm_semihosting(env);
6547 return true;
6549 return false;
6550 } else {
6551 uint32_t imm;
6553 /* Only intercept calls from privileged modes, to provide some
6554 * semblance of security.
6556 if (!semihosting_enabled() ||
6557 ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR)) {
6558 return false;
6561 switch (cs->exception_index) {
6562 case EXCP_SWI:
6563 /* Check for semihosting interrupt. */
6564 if (env->thumb) {
6565 imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
6566 & 0xff;
6567 if (imm == 0xab) {
6568 break;
6570 } else {
6571 imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
6572 & 0xffffff;
6573 if (imm == 0x123456) {
6574 break;
6577 return false;
6578 case EXCP_BKPT:
6579 /* See if this is a semihosting syscall. */
6580 if (env->thumb) {
6581 imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
6582 & 0xff;
6583 if (imm == 0xab) {
6584 env->regs[15] += 2;
6585 break;
6588 return false;
6589 default:
6590 return false;
6593 qemu_log_mask(CPU_LOG_INT,
6594 "...handling as semihosting call 0x%x\n",
6595 env->regs[0]);
6596 env->regs[0] = do_arm_semihosting(env);
6597 return true;
6601 /* Handle a CPU exception for A and R profile CPUs.
6602 * Do any appropriate logging, handle PSCI calls, and then hand off
6603 * to the AArch64-entry or AArch32-entry function depending on the
6604 * target exception level's register width.
6606 void arm_cpu_do_interrupt(CPUState *cs)
6608 ARMCPU *cpu = ARM_CPU(cs);
6609 CPUARMState *env = &cpu->env;
6610 unsigned int new_el = env->exception.target_el;
6612 assert(!IS_M(env));
6614 arm_log_exception(cs->exception_index);
6615 qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
6616 new_el);
6617 if (qemu_loglevel_mask(CPU_LOG_INT)
6618 && !excp_is_internal(cs->exception_index)) {
6619 qemu_log_mask(CPU_LOG_INT, "...with ESR %x/0x%" PRIx32 "\n",
6620 env->exception.syndrome >> ARM_EL_EC_SHIFT,
6621 env->exception.syndrome);
6624 if (arm_is_psci_call(cpu, cs->exception_index)) {
6625 arm_handle_psci_call(cpu);
6626 qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
6627 return;
6630 /* Semihosting semantics depend on the register width of the
6631 * code that caused the exception, not the target exception level,
6632 * so must be handled here.
6634 if (check_for_semihosting(cs)) {
6635 return;
6638 assert(!excp_is_internal(cs->exception_index));
6639 if (arm_el_is_aa64(env, new_el)) {
6640 arm_cpu_do_interrupt_aarch64(cs);
6641 } else {
6642 arm_cpu_do_interrupt_aarch32(cs);
6645 arm_call_el_change_hook(cpu);
6647 if (!kvm_enabled()) {
6648 cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
6652 /* Return the exception level which controls this address translation regime */
6653 static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
6655 switch (mmu_idx) {
6656 case ARMMMUIdx_S2NS:
6657 case ARMMMUIdx_S1E2:
6658 return 2;
6659 case ARMMMUIdx_S1E3:
6660 return 3;
6661 case ARMMMUIdx_S1SE0:
6662 return arm_el_is_aa64(env, 3) ? 1 : 3;
6663 case ARMMMUIdx_S1SE1:
6664 case ARMMMUIdx_S1NSE0:
6665 case ARMMMUIdx_S1NSE1:
6666 return 1;
6667 default:
6668 g_assert_not_reached();
6672 /* Return true if this address translation regime is secure */
6673 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
6675 switch (mmu_idx) {
6676 case ARMMMUIdx_S12NSE0:
6677 case ARMMMUIdx_S12NSE1:
6678 case ARMMMUIdx_S1NSE0:
6679 case ARMMMUIdx_S1NSE1:
6680 case ARMMMUIdx_S1E2:
6681 case ARMMMUIdx_S2NS:
6682 return false;
6683 case ARMMMUIdx_S1E3:
6684 case ARMMMUIdx_S1SE0:
6685 case ARMMMUIdx_S1SE1:
6686 return true;
6687 default:
6688 g_assert_not_reached();
6692 /* Return the SCTLR value which controls this address translation regime */
6693 static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
6695 return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
6698 /* Return true if the specified stage of address translation is disabled */
6699 static inline bool regime_translation_disabled(CPUARMState *env,
6700 ARMMMUIdx mmu_idx)
6702 if (mmu_idx == ARMMMUIdx_S2NS) {
6703 return (env->cp15.hcr_el2 & HCR_VM) == 0;
6705 return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
6708 static inline bool regime_translation_big_endian(CPUARMState *env,
6709 ARMMMUIdx mmu_idx)
6711 return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
6714 /* Return the TCR controlling this translation regime */
6715 static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
6717 if (mmu_idx == ARMMMUIdx_S2NS) {
6718 return &env->cp15.vtcr_el2;
6720 return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
6723 /* Return the TTBR associated with this translation regime */
6724 static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
6725 int ttbrn)
6727 if (mmu_idx == ARMMMUIdx_S2NS) {
6728 return env->cp15.vttbr_el2;
6730 if (ttbrn == 0) {
6731 return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
6732 } else {
6733 return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
6737 /* Return true if the translation regime is using LPAE format page tables */
6738 static inline bool regime_using_lpae_format(CPUARMState *env,
6739 ARMMMUIdx mmu_idx)
6741 int el = regime_el(env, mmu_idx);
6742 if (el == 2 || arm_el_is_aa64(env, el)) {
6743 return true;
6745 if (arm_feature(env, ARM_FEATURE_LPAE)
6746 && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
6747 return true;
6749 return false;
6752 /* Returns true if the stage 1 translation regime is using LPAE format page
6753 * tables. Used when raising alignment exceptions, whose FSR changes depending
6754 * on whether the long or short descriptor format is in use. */
6755 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
6757 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
6758 mmu_idx += ARMMMUIdx_S1NSE0;
6761 return regime_using_lpae_format(env, mmu_idx);
6764 static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
6766 switch (mmu_idx) {
6767 case ARMMMUIdx_S1SE0:
6768 case ARMMMUIdx_S1NSE0:
6769 return true;
6770 default:
6771 return false;
6772 case ARMMMUIdx_S12NSE0:
6773 case ARMMMUIdx_S12NSE1:
6774 g_assert_not_reached();
6778 /* Translate section/page access permissions to page
6779 * R/W protection flags
6781 * @env: CPUARMState
6782 * @mmu_idx: MMU index indicating required translation regime
6783 * @ap: The 3-bit access permissions (AP[2:0])
6784 * @domain_prot: The 2-bit domain access permissions
6786 static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
6787 int ap, int domain_prot)
6789 bool is_user = regime_is_user(env, mmu_idx);
6791 if (domain_prot == 3) {
6792 return PAGE_READ | PAGE_WRITE;
6795 switch (ap) {
6796 case 0:
6797 if (arm_feature(env, ARM_FEATURE_V7)) {
6798 return 0;
6800 switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
6801 case SCTLR_S:
6802 return is_user ? 0 : PAGE_READ;
6803 case SCTLR_R:
6804 return PAGE_READ;
6805 default:
6806 return 0;
6808 case 1:
6809 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
6810 case 2:
6811 if (is_user) {
6812 return PAGE_READ;
6813 } else {
6814 return PAGE_READ | PAGE_WRITE;
6816 case 3:
6817 return PAGE_READ | PAGE_WRITE;
6818 case 4: /* Reserved. */
6819 return 0;
6820 case 5:
6821 return is_user ? 0 : PAGE_READ;
6822 case 6:
6823 return PAGE_READ;
6824 case 7:
6825 if (!arm_feature(env, ARM_FEATURE_V6K)) {
6826 return 0;
6828 return PAGE_READ;
6829 default:
6830 g_assert_not_reached();
6834 /* Translate section/page access permissions to page
6835 * R/W protection flags.
6837 * @ap: The 2-bit simple AP (AP[2:1])
6838 * @is_user: TRUE if accessing from PL0
6840 static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
6842 switch (ap) {
6843 case 0:
6844 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
6845 case 1:
6846 return PAGE_READ | PAGE_WRITE;
6847 case 2:
6848 return is_user ? 0 : PAGE_READ;
6849 case 3:
6850 return PAGE_READ;
6851 default:
6852 g_assert_not_reached();
6856 static inline int
6857 simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
6859 return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
6862 /* Translate S2 section/page access permissions to protection flags
6864 * @env: CPUARMState
6865 * @s2ap: The 2-bit stage2 access permissions (S2AP)
6866 * @xn: XN (execute-never) bit
6868 static int get_S2prot(CPUARMState *env, int s2ap, int xn)
6870 int prot = 0;
6872 if (s2ap & 1) {
6873 prot |= PAGE_READ;
6875 if (s2ap & 2) {
6876 prot |= PAGE_WRITE;
6878 if (!xn) {
6879 if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
6880 prot |= PAGE_EXEC;
6883 return prot;
6886 /* Translate section/page access permissions to protection flags
6888 * @env: CPUARMState
6889 * @mmu_idx: MMU index indicating required translation regime
6890 * @is_aa64: TRUE if AArch64
6891 * @ap: The 2-bit simple AP (AP[2:1])
6892 * @ns: NS (non-secure) bit
6893 * @xn: XN (execute-never) bit
6894 * @pxn: PXN (privileged execute-never) bit
6896 static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
6897 int ap, int ns, int xn, int pxn)
6899 bool is_user = regime_is_user(env, mmu_idx);
6900 int prot_rw, user_rw;
6901 bool have_wxn;
6902 int wxn = 0;
6904 assert(mmu_idx != ARMMMUIdx_S2NS);
6906 user_rw = simple_ap_to_rw_prot_is_user(ap, true);
6907 if (is_user) {
6908 prot_rw = user_rw;
6909 } else {
6910 prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
6913 if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
6914 return prot_rw;
6917 /* TODO have_wxn should be replaced with
6918 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
6919 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
6920 * compatible processors have EL2, which is required for [U]WXN.
6922 have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
6924 if (have_wxn) {
6925 wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
6928 if (is_aa64) {
6929 switch (regime_el(env, mmu_idx)) {
6930 case 1:
6931 if (!is_user) {
6932 xn = pxn || (user_rw & PAGE_WRITE);
6934 break;
6935 case 2:
6936 case 3:
6937 break;
6939 } else if (arm_feature(env, ARM_FEATURE_V7)) {
6940 switch (regime_el(env, mmu_idx)) {
6941 case 1:
6942 case 3:
6943 if (is_user) {
6944 xn = xn || !(user_rw & PAGE_READ);
6945 } else {
6946 int uwxn = 0;
6947 if (have_wxn) {
6948 uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
6950 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
6951 (uwxn && (user_rw & PAGE_WRITE));
6953 break;
6954 case 2:
6955 break;
6957 } else {
6958 xn = wxn = 0;
6961 if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
6962 return prot_rw;
6964 return prot_rw | PAGE_EXEC;
6967 static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
6968 uint32_t *table, uint32_t address)
6970 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
6971 TCR *tcr = regime_tcr(env, mmu_idx);
6973 if (address & tcr->mask) {
6974 if (tcr->raw_tcr & TTBCR_PD1) {
6975 /* Translation table walk disabled for TTBR1 */
6976 return false;
6978 *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
6979 } else {
6980 if (tcr->raw_tcr & TTBCR_PD0) {
6981 /* Translation table walk disabled for TTBR0 */
6982 return false;
6984 *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
6986 *table |= (address >> 18) & 0x3ffc;
6987 return true;
6990 /* Translate a S1 pagetable walk through S2 if needed. */
6991 static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
6992 hwaddr addr, MemTxAttrs txattrs,
6993 uint32_t *fsr,
6994 ARMMMUFaultInfo *fi)
6996 if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
6997 !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
6998 target_ulong s2size;
6999 hwaddr s2pa;
7000 int s2prot;
7001 int ret;
7003 ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
7004 &txattrs, &s2prot, &s2size, fsr, fi);
7005 if (ret) {
7006 fi->s2addr = addr;
7007 fi->stage2 = true;
7008 fi->s1ptw = true;
7009 return ~0;
7011 addr = s2pa;
7013 return addr;
7016 /* All loads done in the course of a page table walk go through here.
7017 * TODO: rather than ignoring errors from physical memory reads (which
7018 * are external aborts in ARM terminology) we should propagate this
7019 * error out so that we can turn it into a Data Abort if this walk
7020 * was being done for a CPU load/store or an address translation instruction
7021 * (but not if it was for a debug access).
7023 static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7024 ARMMMUIdx mmu_idx, uint32_t *fsr,
7025 ARMMMUFaultInfo *fi)
7027 ARMCPU *cpu = ARM_CPU(cs);
7028 CPUARMState *env = &cpu->env;
7029 MemTxAttrs attrs = {};
7030 AddressSpace *as;
7032 attrs.secure = is_secure;
7033 as = arm_addressspace(cs, attrs);
7034 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7035 if (fi->s1ptw) {
7036 return 0;
7038 if (regime_translation_big_endian(env, mmu_idx)) {
7039 return address_space_ldl_be(as, addr, attrs, NULL);
7040 } else {
7041 return address_space_ldl_le(as, addr, attrs, NULL);
7045 static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
7046 ARMMMUIdx mmu_idx, uint32_t *fsr,
7047 ARMMMUFaultInfo *fi)
7049 ARMCPU *cpu = ARM_CPU(cs);
7050 CPUARMState *env = &cpu->env;
7051 MemTxAttrs attrs = {};
7052 AddressSpace *as;
7054 attrs.secure = is_secure;
7055 as = arm_addressspace(cs, attrs);
7056 addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
7057 if (fi->s1ptw) {
7058 return 0;
7060 if (regime_translation_big_endian(env, mmu_idx)) {
7061 return address_space_ldq_be(as, addr, attrs, NULL);
7062 } else {
7063 return address_space_ldq_le(as, addr, attrs, NULL);
7067 static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
7068 int access_type, ARMMMUIdx mmu_idx,
7069 hwaddr *phys_ptr, int *prot,
7070 target_ulong *page_size, uint32_t *fsr,
7071 ARMMMUFaultInfo *fi)
7073 CPUState *cs = CPU(arm_env_get_cpu(env));
7074 int code;
7075 uint32_t table;
7076 uint32_t desc;
7077 int type;
7078 int ap;
7079 int domain = 0;
7080 int domain_prot;
7081 hwaddr phys_addr;
7082 uint32_t dacr;
7084 /* Pagetable walk. */
7085 /* Lookup l1 descriptor. */
7086 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7087 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7088 code = 5;
7089 goto do_fault;
7091 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7092 mmu_idx, fsr, fi);
7093 type = (desc & 3);
7094 domain = (desc >> 5) & 0x0f;
7095 if (regime_el(env, mmu_idx) == 1) {
7096 dacr = env->cp15.dacr_ns;
7097 } else {
7098 dacr = env->cp15.dacr_s;
7100 domain_prot = (dacr >> (domain * 2)) & 3;
7101 if (type == 0) {
7102 /* Section translation fault. */
7103 code = 5;
7104 goto do_fault;
7106 if (domain_prot == 0 || domain_prot == 2) {
7107 if (type == 2)
7108 code = 9; /* Section domain fault. */
7109 else
7110 code = 11; /* Page domain fault. */
7111 goto do_fault;
7113 if (type == 2) {
7114 /* 1Mb section. */
7115 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7116 ap = (desc >> 10) & 3;
7117 code = 13;
7118 *page_size = 1024 * 1024;
7119 } else {
7120 /* Lookup l2 entry. */
7121 if (type == 1) {
7122 /* Coarse pagetable. */
7123 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7124 } else {
7125 /* Fine pagetable. */
7126 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
7128 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7129 mmu_idx, fsr, fi);
7130 switch (desc & 3) {
7131 case 0: /* Page translation fault. */
7132 code = 7;
7133 goto do_fault;
7134 case 1: /* 64k page. */
7135 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7136 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
7137 *page_size = 0x10000;
7138 break;
7139 case 2: /* 4k page. */
7140 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7141 ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
7142 *page_size = 0x1000;
7143 break;
7144 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
7145 if (type == 1) {
7146 /* ARMv6/XScale extended small page format */
7147 if (arm_feature(env, ARM_FEATURE_XSCALE)
7148 || arm_feature(env, ARM_FEATURE_V6)) {
7149 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7150 *page_size = 0x1000;
7151 } else {
7152 /* UNPREDICTABLE in ARMv5; we choose to take a
7153 * page translation fault.
7155 code = 7;
7156 goto do_fault;
7158 } else {
7159 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
7160 *page_size = 0x400;
7162 ap = (desc >> 4) & 3;
7163 break;
7164 default:
7165 /* Never happens, but compiler isn't smart enough to tell. */
7166 abort();
7168 code = 15;
7170 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7171 *prot |= *prot ? PAGE_EXEC : 0;
7172 if (!(*prot & (1 << access_type))) {
7173 /* Access permission fault. */
7174 goto do_fault;
7176 *phys_ptr = phys_addr;
7177 return false;
7178 do_fault:
7179 *fsr = code | (domain << 4);
7180 return true;
7183 static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
7184 int access_type, ARMMMUIdx mmu_idx,
7185 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
7186 target_ulong *page_size, uint32_t *fsr,
7187 ARMMMUFaultInfo *fi)
7189 CPUState *cs = CPU(arm_env_get_cpu(env));
7190 int code;
7191 uint32_t table;
7192 uint32_t desc;
7193 uint32_t xn;
7194 uint32_t pxn = 0;
7195 int type;
7196 int ap;
7197 int domain = 0;
7198 int domain_prot;
7199 hwaddr phys_addr;
7200 uint32_t dacr;
7201 bool ns;
7203 /* Pagetable walk. */
7204 /* Lookup l1 descriptor. */
7205 if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7206 /* Section translation fault if page walk is disabled by PD0 or PD1 */
7207 code = 5;
7208 goto do_fault;
7210 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7211 mmu_idx, fsr, fi);
7212 type = (desc & 3);
7213 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
7214 /* Section translation fault, or attempt to use the encoding
7215 * which is Reserved on implementations without PXN.
7217 code = 5;
7218 goto do_fault;
7220 if ((type == 1) || !(desc & (1 << 18))) {
7221 /* Page or Section. */
7222 domain = (desc >> 5) & 0x0f;
7224 if (regime_el(env, mmu_idx) == 1) {
7225 dacr = env->cp15.dacr_ns;
7226 } else {
7227 dacr = env->cp15.dacr_s;
7229 domain_prot = (dacr >> (domain * 2)) & 3;
7230 if (domain_prot == 0 || domain_prot == 2) {
7231 if (type != 1) {
7232 code = 9; /* Section domain fault. */
7233 } else {
7234 code = 11; /* Page domain fault. */
7236 goto do_fault;
7238 if (type != 1) {
7239 if (desc & (1 << 18)) {
7240 /* Supersection. */
7241 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
7242 phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
7243 phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
7244 *page_size = 0x1000000;
7245 } else {
7246 /* Section. */
7247 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
7248 *page_size = 0x100000;
7250 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
7251 xn = desc & (1 << 4);
7252 pxn = desc & 1;
7253 code = 13;
7254 ns = extract32(desc, 19, 1);
7255 } else {
7256 if (arm_feature(env, ARM_FEATURE_PXN)) {
7257 pxn = (desc >> 2) & 1;
7259 ns = extract32(desc, 3, 1);
7260 /* Lookup l2 entry. */
7261 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7262 desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
7263 mmu_idx, fsr, fi);
7264 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
7265 switch (desc & 3) {
7266 case 0: /* Page translation fault. */
7267 code = 7;
7268 goto do_fault;
7269 case 1: /* 64k page. */
7270 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
7271 xn = desc & (1 << 15);
7272 *page_size = 0x10000;
7273 break;
7274 case 2: case 3: /* 4k page. */
7275 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7276 xn = desc & 1;
7277 *page_size = 0x1000;
7278 break;
7279 default:
7280 /* Never happens, but compiler isn't smart enough to tell. */
7281 abort();
7283 code = 15;
7285 if (domain_prot == 3) {
7286 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
7287 } else {
7288 if (pxn && !regime_is_user(env, mmu_idx)) {
7289 xn = 1;
7291 if (xn && access_type == 2)
7292 goto do_fault;
7294 if (arm_feature(env, ARM_FEATURE_V6K) &&
7295 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
7296 /* The simplified model uses AP[0] as an access control bit. */
7297 if ((ap & 1) == 0) {
7298 /* Access flag fault. */
7299 code = (code == 15) ? 6 : 3;
7300 goto do_fault;
7302 *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
7303 } else {
7304 *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7306 if (*prot && !xn) {
7307 *prot |= PAGE_EXEC;
7309 if (!(*prot & (1 << access_type))) {
7310 /* Access permission fault. */
7311 goto do_fault;
7314 if (ns) {
7315 /* The NS bit will (as required by the architecture) have no effect if
7316 * the CPU doesn't support TZ or this is a non-secure translation
7317 * regime, because the attribute will already be non-secure.
7319 attrs->secure = false;
7321 *phys_ptr = phys_addr;
7322 return false;
7323 do_fault:
7324 *fsr = code | (domain << 4);
7325 return true;
7328 /* Fault type for long-descriptor MMU fault reporting; this corresponds
7329 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
7331 typedef enum {
7332 translation_fault = 1,
7333 access_fault = 2,
7334 permission_fault = 3,
7335 } MMUFaultType;
7338 * check_s2_mmu_setup
7339 * @cpu: ARMCPU
7340 * @is_aa64: True if the translation regime is in AArch64 state
7341 * @startlevel: Suggested starting level
7342 * @inputsize: Bitsize of IPAs
7343 * @stride: Page-table stride (See the ARM ARM)
7345 * Returns true if the suggested S2 translation parameters are OK and
7346 * false otherwise.
7348 static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
7349 int inputsize, int stride)
7351 const int grainsize = stride + 3;
7352 int startsizecheck;
7354 /* Negative levels are never allowed. */
7355 if (level < 0) {
7356 return false;
7359 startsizecheck = inputsize - ((3 - level) * stride + grainsize);
7360 if (startsizecheck < 1 || startsizecheck > stride + 4) {
7361 return false;
7364 if (is_aa64) {
7365 CPUARMState *env = &cpu->env;
7366 unsigned int pamax = arm_pamax(cpu);
7368 switch (stride) {
7369 case 13: /* 64KB Pages. */
7370 if (level == 0 || (level == 1 && pamax <= 42)) {
7371 return false;
7373 break;
7374 case 11: /* 16KB Pages. */
7375 if (level == 0 || (level == 1 && pamax <= 40)) {
7376 return false;
7378 break;
7379 case 9: /* 4KB Pages. */
7380 if (level == 0 && pamax <= 42) {
7381 return false;
7383 break;
7384 default:
7385 g_assert_not_reached();
7388 /* Inputsize checks. */
7389 if (inputsize > pamax &&
7390 (arm_el_is_aa64(env, 1) || inputsize > 40)) {
7391 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
7392 return false;
7394 } else {
7395 /* AArch32 only supports 4KB pages. Assert on that. */
7396 assert(stride == 9);
7398 if (level == 0) {
7399 return false;
7402 return true;
7405 static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
7406 int access_type, ARMMMUIdx mmu_idx,
7407 hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
7408 target_ulong *page_size_ptr, uint32_t *fsr,
7409 ARMMMUFaultInfo *fi)
7411 ARMCPU *cpu = arm_env_get_cpu(env);
7412 CPUState *cs = CPU(cpu);
7413 /* Read an LPAE long-descriptor translation table. */
7414 MMUFaultType fault_type = translation_fault;
7415 uint32_t level;
7416 uint32_t epd = 0;
7417 int32_t t0sz, t1sz;
7418 uint32_t tg;
7419 uint64_t ttbr;
7420 int ttbr_select;
7421 hwaddr descaddr, indexmask, indexmask_grainsize;
7422 uint32_t tableattrs;
7423 target_ulong page_size;
7424 uint32_t attrs;
7425 int32_t stride = 9;
7426 int32_t addrsize;
7427 int inputsize;
7428 int32_t tbi = 0;
7429 TCR *tcr = regime_tcr(env, mmu_idx);
7430 int ap, ns, xn, pxn;
7431 uint32_t el = regime_el(env, mmu_idx);
7432 bool ttbr1_valid = true;
7433 uint64_t descaddrmask;
7434 bool aarch64 = arm_el_is_aa64(env, el);
7436 /* TODO:
7437 * This code does not handle the different format TCR for VTCR_EL2.
7438 * This code also does not support shareability levels.
7439 * Attribute and permission bit handling should also be checked when adding
7440 * support for those page table walks.
7442 if (aarch64) {
7443 level = 0;
7444 addrsize = 64;
7445 if (el > 1) {
7446 if (mmu_idx != ARMMMUIdx_S2NS) {
7447 tbi = extract64(tcr->raw_tcr, 20, 1);
7449 } else {
7450 if (extract64(address, 55, 1)) {
7451 tbi = extract64(tcr->raw_tcr, 38, 1);
7452 } else {
7453 tbi = extract64(tcr->raw_tcr, 37, 1);
7456 tbi *= 8;
7458 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
7459 * invalid.
7461 if (el > 1) {
7462 ttbr1_valid = false;
7464 } else {
7465 level = 1;
7466 addrsize = 32;
7467 /* There is no TTBR1 for EL2 */
7468 if (el == 2) {
7469 ttbr1_valid = false;
7473 /* Determine whether this address is in the region controlled by
7474 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
7475 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
7476 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
7478 if (aarch64) {
7479 /* AArch64 translation. */
7480 t0sz = extract32(tcr->raw_tcr, 0, 6);
7481 t0sz = MIN(t0sz, 39);
7482 t0sz = MAX(t0sz, 16);
7483 } else if (mmu_idx != ARMMMUIdx_S2NS) {
7484 /* AArch32 stage 1 translation. */
7485 t0sz = extract32(tcr->raw_tcr, 0, 3);
7486 } else {
7487 /* AArch32 stage 2 translation. */
7488 bool sext = extract32(tcr->raw_tcr, 4, 1);
7489 bool sign = extract32(tcr->raw_tcr, 3, 1);
7490 /* Address size is 40-bit for a stage 2 translation,
7491 * and t0sz can be negative (from -8 to 7),
7492 * so we need to adjust it to use the TTBR selecting logic below.
7494 addrsize = 40;
7495 t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
7497 /* If the sign-extend bit is not the same as t0sz[3], the result
7498 * is unpredictable. Flag this as a guest error. */
7499 if (sign != sext) {
7500 qemu_log_mask(LOG_GUEST_ERROR,
7501 "AArch32: VTCR.S / VTCR.T0SZ[3] missmatch\n");
7504 t1sz = extract32(tcr->raw_tcr, 16, 6);
7505 if (aarch64) {
7506 t1sz = MIN(t1sz, 39);
7507 t1sz = MAX(t1sz, 16);
7509 if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
7510 /* there is a ttbr0 region and we are in it (high bits all zero) */
7511 ttbr_select = 0;
7512 } else if (ttbr1_valid && t1sz &&
7513 !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
7514 /* there is a ttbr1 region and we are in it (high bits all one) */
7515 ttbr_select = 1;
7516 } else if (!t0sz) {
7517 /* ttbr0 region is "everything not in the ttbr1 region" */
7518 ttbr_select = 0;
7519 } else if (!t1sz && ttbr1_valid) {
7520 /* ttbr1 region is "everything not in the ttbr0 region" */
7521 ttbr_select = 1;
7522 } else {
7523 /* in the gap between the two regions, this is a Translation fault */
7524 fault_type = translation_fault;
7525 goto do_fault;
7528 /* Note that QEMU ignores shareability and cacheability attributes,
7529 * so we don't need to do anything with the SH, ORGN, IRGN fields
7530 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
7531 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
7532 * implement any ASID-like capability so we can ignore it (instead
7533 * we will always flush the TLB any time the ASID is changed).
7535 if (ttbr_select == 0) {
7536 ttbr = regime_ttbr(env, mmu_idx, 0);
7537 if (el < 2) {
7538 epd = extract32(tcr->raw_tcr, 7, 1);
7540 inputsize = addrsize - t0sz;
7542 tg = extract32(tcr->raw_tcr, 14, 2);
7543 if (tg == 1) { /* 64KB pages */
7544 stride = 13;
7546 if (tg == 2) { /* 16KB pages */
7547 stride = 11;
7549 } else {
7550 /* We should only be here if TTBR1 is valid */
7551 assert(ttbr1_valid);
7553 ttbr = regime_ttbr(env, mmu_idx, 1);
7554 epd = extract32(tcr->raw_tcr, 23, 1);
7555 inputsize = addrsize - t1sz;
7557 tg = extract32(tcr->raw_tcr, 30, 2);
7558 if (tg == 3) { /* 64KB pages */
7559 stride = 13;
7561 if (tg == 1) { /* 16KB pages */
7562 stride = 11;
7566 /* Here we should have set up all the parameters for the translation:
7567 * inputsize, ttbr, epd, stride, tbi
7570 if (epd) {
7571 /* Translation table walk disabled => Translation fault on TLB miss
7572 * Note: This is always 0 on 64-bit EL2 and EL3.
7574 goto do_fault;
7577 if (mmu_idx != ARMMMUIdx_S2NS) {
7578 /* The starting level depends on the virtual address size (which can
7579 * be up to 48 bits) and the translation granule size. It indicates
7580 * the number of strides (stride bits at a time) needed to
7581 * consume the bits of the input address. In the pseudocode this is:
7582 * level = 4 - RoundUp((inputsize - grainsize) / stride)
7583 * where their 'inputsize' is our 'inputsize', 'grainsize' is
7584 * our 'stride + 3' and 'stride' is our 'stride'.
7585 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
7586 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
7587 * = 4 - (inputsize - 4) / stride;
7589 level = 4 - (inputsize - 4) / stride;
7590 } else {
7591 /* For stage 2 translations the starting level is specified by the
7592 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
7594 uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
7595 uint32_t startlevel;
7596 bool ok;
7598 if (!aarch64 || stride == 9) {
7599 /* AArch32 or 4KB pages */
7600 startlevel = 2 - sl0;
7601 } else {
7602 /* 16KB or 64KB pages */
7603 startlevel = 3 - sl0;
7606 /* Check that the starting level is valid. */
7607 ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
7608 inputsize, stride);
7609 if (!ok) {
7610 fault_type = translation_fault;
7611 goto do_fault;
7613 level = startlevel;
7616 indexmask_grainsize = (1ULL << (stride + 3)) - 1;
7617 indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
7619 /* Now we can extract the actual base address from the TTBR */
7620 descaddr = extract64(ttbr, 0, 48);
7621 descaddr &= ~indexmask;
7623 /* The address field in the descriptor goes up to bit 39 for ARMv7
7624 * but up to bit 47 for ARMv8, but we use the descaddrmask
7625 * up to bit 39 for AArch32, because we don't need other bits in that case
7626 * to construct next descriptor address (anyway they should be all zeroes).
7628 descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
7629 ~indexmask_grainsize;
7631 /* Secure accesses start with the page table in secure memory and
7632 * can be downgraded to non-secure at any step. Non-secure accesses
7633 * remain non-secure. We implement this by just ORing in the NSTable/NS
7634 * bits at each step.
7636 tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
7637 for (;;) {
7638 uint64_t descriptor;
7639 bool nstable;
7641 descaddr |= (address >> (stride * (4 - level))) & indexmask;
7642 descaddr &= ~7ULL;
7643 nstable = extract32(tableattrs, 4, 1);
7644 descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
7645 if (fi->s1ptw) {
7646 goto do_fault;
7649 if (!(descriptor & 1) ||
7650 (!(descriptor & 2) && (level == 3))) {
7651 /* Invalid, or the Reserved level 3 encoding */
7652 goto do_fault;
7654 descaddr = descriptor & descaddrmask;
7656 if ((descriptor & 2) && (level < 3)) {
7657 /* Table entry. The top five bits are attributes which may
7658 * propagate down through lower levels of the table (and
7659 * which are all arranged so that 0 means "no effect", so
7660 * we can gather them up by ORing in the bits at each level).
7662 tableattrs |= extract64(descriptor, 59, 5);
7663 level++;
7664 indexmask = indexmask_grainsize;
7665 continue;
7667 /* Block entry at level 1 or 2, or page entry at level 3.
7668 * These are basically the same thing, although the number
7669 * of bits we pull in from the vaddr varies.
7671 page_size = (1ULL << ((stride * (4 - level)) + 3));
7672 descaddr |= (address & (page_size - 1));
7673 /* Extract attributes from the descriptor */
7674 attrs = extract64(descriptor, 2, 10)
7675 | (extract64(descriptor, 52, 12) << 10);
7677 if (mmu_idx == ARMMMUIdx_S2NS) {
7678 /* Stage 2 table descriptors do not include any attribute fields */
7679 break;
7681 /* Merge in attributes from table descriptors */
7682 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
7683 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
7684 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
7685 * means "force PL1 access only", which means forcing AP[1] to 0.
7687 if (extract32(tableattrs, 2, 1)) {
7688 attrs &= ~(1 << 4);
7690 attrs |= nstable << 3; /* NS */
7691 break;
7693 /* Here descaddr is the final physical address, and attributes
7694 * are all in attrs.
7696 fault_type = access_fault;
7697 if ((attrs & (1 << 8)) == 0) {
7698 /* Access flag */
7699 goto do_fault;
7702 ap = extract32(attrs, 4, 2);
7703 xn = extract32(attrs, 12, 1);
7705 if (mmu_idx == ARMMMUIdx_S2NS) {
7706 ns = true;
7707 *prot = get_S2prot(env, ap, xn);
7708 } else {
7709 ns = extract32(attrs, 3, 1);
7710 pxn = extract32(attrs, 11, 1);
7711 *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
7714 fault_type = permission_fault;
7715 if (!(*prot & (1 << access_type))) {
7716 goto do_fault;
7719 if (ns) {
7720 /* The NS bit will (as required by the architecture) have no effect if
7721 * the CPU doesn't support TZ or this is a non-secure translation
7722 * regime, because the attribute will already be non-secure.
7724 txattrs->secure = false;
7726 *phys_ptr = descaddr;
7727 *page_size_ptr = page_size;
7728 return false;
7730 do_fault:
7731 /* Long-descriptor format IFSR/DFSR value */
7732 *fsr = (1 << 9) | (fault_type << 2) | level;
7733 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
7734 fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
7735 return true;
7738 static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
7739 ARMMMUIdx mmu_idx,
7740 int32_t address, int *prot)
7742 *prot = PAGE_READ | PAGE_WRITE;
7743 switch (address) {
7744 case 0xF0000000 ... 0xFFFFFFFF:
7745 if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */
7746 *prot |= PAGE_EXEC;
7748 break;
7749 case 0x00000000 ... 0x7FFFFFFF:
7750 *prot |= PAGE_EXEC;
7751 break;
7756 static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
7757 int access_type, ARMMMUIdx mmu_idx,
7758 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
7760 ARMCPU *cpu = arm_env_get_cpu(env);
7761 int n;
7762 bool is_user = regime_is_user(env, mmu_idx);
7764 *phys_ptr = address;
7765 *prot = 0;
7767 if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
7768 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
7769 } else { /* MPU enabled */
7770 for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
7771 /* region search */
7772 uint32_t base = env->pmsav7.drbar[n];
7773 uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
7774 uint32_t rmask;
7775 bool srdis = false;
7777 if (!(env->pmsav7.drsr[n] & 0x1)) {
7778 continue;
7781 if (!rsize) {
7782 qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0");
7783 continue;
7785 rsize++;
7786 rmask = (1ull << rsize) - 1;
7788 if (base & rmask) {
7789 qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned "
7790 "to DRSR region size, mask = %" PRIx32,
7791 base, rmask);
7792 continue;
7795 if (address < base || address > base + rmask) {
7796 continue;
7799 /* Region matched */
7801 if (rsize >= 8) { /* no subregions for regions < 256 bytes */
7802 int i, snd;
7803 uint32_t srdis_mask;
7805 rsize -= 3; /* sub region size (power of 2) */
7806 snd = ((address - base) >> rsize) & 0x7;
7807 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
7809 srdis_mask = srdis ? 0x3 : 0x0;
7810 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
7811 /* This will check in groups of 2, 4 and then 8, whether
7812 * the subregion bits are consistent. rsize is incremented
7813 * back up to give the region size, considering consistent
7814 * adjacent subregions as one region. Stop testing if rsize
7815 * is already big enough for an entire QEMU page.
7817 int snd_rounded = snd & ~(i - 1);
7818 uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
7819 snd_rounded + 8, i);
7820 if (srdis_mask ^ srdis_multi) {
7821 break;
7823 srdis_mask = (srdis_mask << i) | srdis_mask;
7824 rsize++;
7827 if (rsize < TARGET_PAGE_BITS) {
7828 qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region"
7829 "alignment of %" PRIu32 " bits. Minimum is %d\n",
7830 rsize, TARGET_PAGE_BITS);
7831 continue;
7833 if (srdis) {
7834 continue;
7836 break;
7839 if (n == -1) { /* no hits */
7840 if (cpu->pmsav7_dregion &&
7841 (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) {
7842 /* background fault */
7843 *fsr = 0;
7844 return true;
7846 get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
7847 } else { /* a MPU hit! */
7848 uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
7850 if (is_user) { /* User mode AP bit decoding */
7851 switch (ap) {
7852 case 0:
7853 case 1:
7854 case 5:
7855 break; /* no access */
7856 case 3:
7857 *prot |= PAGE_WRITE;
7858 /* fall through */
7859 case 2:
7860 case 6:
7861 *prot |= PAGE_READ | PAGE_EXEC;
7862 break;
7863 default:
7864 qemu_log_mask(LOG_GUEST_ERROR,
7865 "Bad value for AP bits in DRACR %"
7866 PRIx32 "\n", ap);
7868 } else { /* Priv. mode AP bits decoding */
7869 switch (ap) {
7870 case 0:
7871 break; /* no access */
7872 case 1:
7873 case 2:
7874 case 3:
7875 *prot |= PAGE_WRITE;
7876 /* fall through */
7877 case 5:
7878 case 6:
7879 *prot |= PAGE_READ | PAGE_EXEC;
7880 break;
7881 default:
7882 qemu_log_mask(LOG_GUEST_ERROR,
7883 "Bad value for AP bits in DRACR %"
7884 PRIx32 "\n", ap);
7888 /* execute never */
7889 if (env->pmsav7.dracr[n] & (1 << 12)) {
7890 *prot &= ~PAGE_EXEC;
7895 *fsr = 0x00d; /* Permission fault */
7896 return !(*prot & (1 << access_type));
7899 static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
7900 int access_type, ARMMMUIdx mmu_idx,
7901 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
7903 int n;
7904 uint32_t mask;
7905 uint32_t base;
7906 bool is_user = regime_is_user(env, mmu_idx);
7908 *phys_ptr = address;
7909 for (n = 7; n >= 0; n--) {
7910 base = env->cp15.c6_region[n];
7911 if ((base & 1) == 0) {
7912 continue;
7914 mask = 1 << ((base >> 1) & 0x1f);
7915 /* Keep this shift separate from the above to avoid an
7916 (undefined) << 32. */
7917 mask = (mask << 1) - 1;
7918 if (((base ^ address) & ~mask) == 0) {
7919 break;
7922 if (n < 0) {
7923 *fsr = 2;
7924 return true;
7927 if (access_type == 2) {
7928 mask = env->cp15.pmsav5_insn_ap;
7929 } else {
7930 mask = env->cp15.pmsav5_data_ap;
7932 mask = (mask >> (n * 4)) & 0xf;
7933 switch (mask) {
7934 case 0:
7935 *fsr = 1;
7936 return true;
7937 case 1:
7938 if (is_user) {
7939 *fsr = 1;
7940 return true;
7942 *prot = PAGE_READ | PAGE_WRITE;
7943 break;
7944 case 2:
7945 *prot = PAGE_READ;
7946 if (!is_user) {
7947 *prot |= PAGE_WRITE;
7949 break;
7950 case 3:
7951 *prot = PAGE_READ | PAGE_WRITE;
7952 break;
7953 case 5:
7954 if (is_user) {
7955 *fsr = 1;
7956 return true;
7958 *prot = PAGE_READ;
7959 break;
7960 case 6:
7961 *prot = PAGE_READ;
7962 break;
7963 default:
7964 /* Bad permission. */
7965 *fsr = 1;
7966 return true;
7968 *prot |= PAGE_EXEC;
7969 return false;
7972 /* get_phys_addr - get the physical address for this virtual address
7974 * Find the physical address corresponding to the given virtual address,
7975 * by doing a translation table walk on MMU based systems or using the
7976 * MPU state on MPU based systems.
7978 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
7979 * prot and page_size may not be filled in, and the populated fsr value provides
7980 * information on why the translation aborted, in the format of a
7981 * DFSR/IFSR fault register, with the following caveats:
7982 * * we honour the short vs long DFSR format differences.
7983 * * the WnR bit is never set (the caller must do this).
7984 * * for PSMAv5 based systems we don't bother to return a full FSR format
7985 * value.
7987 * @env: CPUARMState
7988 * @address: virtual address to get physical address for
7989 * @access_type: 0 for read, 1 for write, 2 for execute
7990 * @mmu_idx: MMU index indicating required translation regime
7991 * @phys_ptr: set to the physical address corresponding to the virtual address
7992 * @attrs: set to the memory transaction attributes to use
7993 * @prot: set to the permissions for the page containing phys_ptr
7994 * @page_size: set to the size of the page containing phys_ptr
7995 * @fsr: set to the DFSR/IFSR value on failure
7997 static bool get_phys_addr(CPUARMState *env, target_ulong address,
7998 int access_type, ARMMMUIdx mmu_idx,
7999 hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8000 target_ulong *page_size, uint32_t *fsr,
8001 ARMMMUFaultInfo *fi)
8003 if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8004 /* Call ourselves recursively to do the stage 1 and then stage 2
8005 * translations.
8007 if (arm_feature(env, ARM_FEATURE_EL2)) {
8008 hwaddr ipa;
8009 int s2_prot;
8010 int ret;
8012 ret = get_phys_addr(env, address, access_type,
8013 mmu_idx + ARMMMUIdx_S1NSE0, &ipa, attrs,
8014 prot, page_size, fsr, fi);
8016 /* If S1 fails or S2 is disabled, return early. */
8017 if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
8018 *phys_ptr = ipa;
8019 return ret;
8022 /* S1 is done. Now do S2 translation. */
8023 ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
8024 phys_ptr, attrs, &s2_prot,
8025 page_size, fsr, fi);
8026 fi->s2addr = ipa;
8027 /* Combine the S1 and S2 perms. */
8028 *prot &= s2_prot;
8029 return ret;
8030 } else {
8032 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
8034 mmu_idx += ARMMMUIdx_S1NSE0;
8038 /* The page table entries may downgrade secure to non-secure, but
8039 * cannot upgrade an non-secure translation regime's attributes
8040 * to secure.
8042 attrs->secure = regime_is_secure(env, mmu_idx);
8043 attrs->user = regime_is_user(env, mmu_idx);
8045 /* Fast Context Switch Extension. This doesn't exist at all in v8.
8046 * In v7 and earlier it affects all stage 1 translations.
8048 if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
8049 && !arm_feature(env, ARM_FEATURE_V8)) {
8050 if (regime_el(env, mmu_idx) == 3) {
8051 address += env->cp15.fcseidr_s;
8052 } else {
8053 address += env->cp15.fcseidr_ns;
8057 /* pmsav7 has special handling for when MPU is disabled so call it before
8058 * the common MMU/MPU disabled check below.
8060 if (arm_feature(env, ARM_FEATURE_MPU) &&
8061 arm_feature(env, ARM_FEATURE_V7)) {
8062 *page_size = TARGET_PAGE_SIZE;
8063 return get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
8064 phys_ptr, prot, fsr);
8067 if (regime_translation_disabled(env, mmu_idx)) {
8068 /* MMU/MPU disabled. */
8069 *phys_ptr = address;
8070 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
8071 *page_size = TARGET_PAGE_SIZE;
8072 return 0;
8075 if (arm_feature(env, ARM_FEATURE_MPU)) {
8076 /* Pre-v7 MPU */
8077 *page_size = TARGET_PAGE_SIZE;
8078 return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
8079 phys_ptr, prot, fsr);
8082 if (regime_using_lpae_format(env, mmu_idx)) {
8083 return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
8084 attrs, prot, page_size, fsr, fi);
8085 } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
8086 return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
8087 attrs, prot, page_size, fsr, fi);
8088 } else {
8089 return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
8090 prot, page_size, fsr, fi);
8094 /* Walk the page table and (if the mapping exists) add the page
8095 * to the TLB. Return false on success, or true on failure. Populate
8096 * fsr with ARM DFSR/IFSR fault register format value on failure.
8098 bool arm_tlb_fill(CPUState *cs, vaddr address,
8099 int access_type, int mmu_idx, uint32_t *fsr,
8100 ARMMMUFaultInfo *fi)
8102 ARMCPU *cpu = ARM_CPU(cs);
8103 CPUARMState *env = &cpu->env;
8104 hwaddr phys_addr;
8105 target_ulong page_size;
8106 int prot;
8107 int ret;
8108 MemTxAttrs attrs = {};
8110 ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
8111 &attrs, &prot, &page_size, fsr, fi);
8112 if (!ret) {
8113 /* Map a single [sub]page. */
8114 phys_addr &= TARGET_PAGE_MASK;
8115 address &= TARGET_PAGE_MASK;
8116 tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
8117 prot, mmu_idx, page_size);
8118 return 0;
8121 return ret;
8124 hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
8125 MemTxAttrs *attrs)
8127 ARMCPU *cpu = ARM_CPU(cs);
8128 CPUARMState *env = &cpu->env;
8129 hwaddr phys_addr;
8130 target_ulong page_size;
8131 int prot;
8132 bool ret;
8133 uint32_t fsr;
8134 ARMMMUFaultInfo fi = {};
8136 *attrs = (MemTxAttrs) {};
8138 ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr,
8139 attrs, &prot, &page_size, &fsr, &fi);
8141 if (ret) {
8142 return -1;
8144 return phys_addr;
8147 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
8149 ARMCPU *cpu = arm_env_get_cpu(env);
8151 switch (reg) {
8152 case 0: /* APSR */
8153 return xpsr_read(env) & 0xf8000000;
8154 case 1: /* IAPSR */
8155 return xpsr_read(env) & 0xf80001ff;
8156 case 2: /* EAPSR */
8157 return xpsr_read(env) & 0xff00fc00;
8158 case 3: /* xPSR */
8159 return xpsr_read(env) & 0xff00fdff;
8160 case 5: /* IPSR */
8161 return xpsr_read(env) & 0x000001ff;
8162 case 6: /* EPSR */
8163 return xpsr_read(env) & 0x0700fc00;
8164 case 7: /* IEPSR */
8165 return xpsr_read(env) & 0x0700edff;
8166 case 8: /* MSP */
8167 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
8168 case 9: /* PSP */
8169 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
8170 case 16: /* PRIMASK */
8171 return (env->daif & PSTATE_I) != 0;
8172 case 17: /* BASEPRI */
8173 case 18: /* BASEPRI_MAX */
8174 return env->v7m.basepri;
8175 case 19: /* FAULTMASK */
8176 return (env->daif & PSTATE_F) != 0;
8177 case 20: /* CONTROL */
8178 return env->v7m.control;
8179 default:
8180 /* ??? For debugging only. */
8181 cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
8182 return 0;
8186 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
8188 ARMCPU *cpu = arm_env_get_cpu(env);
8190 switch (reg) {
8191 case 0: /* APSR */
8192 xpsr_write(env, val, 0xf8000000);
8193 break;
8194 case 1: /* IAPSR */
8195 xpsr_write(env, val, 0xf8000000);
8196 break;
8197 case 2: /* EAPSR */
8198 xpsr_write(env, val, 0xfe00fc00);
8199 break;
8200 case 3: /* xPSR */
8201 xpsr_write(env, val, 0xfe00fc00);
8202 break;
8203 case 5: /* IPSR */
8204 /* IPSR bits are readonly. */
8205 break;
8206 case 6: /* EPSR */
8207 xpsr_write(env, val, 0x0600fc00);
8208 break;
8209 case 7: /* IEPSR */
8210 xpsr_write(env, val, 0x0600fc00);
8211 break;
8212 case 8: /* MSP */
8213 if (env->v7m.current_sp)
8214 env->v7m.other_sp = val;
8215 else
8216 env->regs[13] = val;
8217 break;
8218 case 9: /* PSP */
8219 if (env->v7m.current_sp)
8220 env->regs[13] = val;
8221 else
8222 env->v7m.other_sp = val;
8223 break;
8224 case 16: /* PRIMASK */
8225 if (val & 1) {
8226 env->daif |= PSTATE_I;
8227 } else {
8228 env->daif &= ~PSTATE_I;
8230 break;
8231 case 17: /* BASEPRI */
8232 env->v7m.basepri = val & 0xff;
8233 break;
8234 case 18: /* BASEPRI_MAX */
8235 val &= 0xff;
8236 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
8237 env->v7m.basepri = val;
8238 break;
8239 case 19: /* FAULTMASK */
8240 if (val & 1) {
8241 env->daif |= PSTATE_F;
8242 } else {
8243 env->daif &= ~PSTATE_F;
8245 break;
8246 case 20: /* CONTROL */
8247 env->v7m.control = val & 3;
8248 switch_v7m_sp(env, (val & 2) != 0);
8249 break;
8250 default:
8251 /* ??? For debugging only. */
8252 cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
8253 return;
8257 #endif
8259 void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
8261 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
8262 * Note that we do not implement the (architecturally mandated)
8263 * alignment fault for attempts to use this on Device memory
8264 * (which matches the usual QEMU behaviour of not implementing either
8265 * alignment faults or any memory attribute handling).
8268 ARMCPU *cpu = arm_env_get_cpu(env);
8269 uint64_t blocklen = 4 << cpu->dcz_blocksize;
8270 uint64_t vaddr = vaddr_in & ~(blocklen - 1);
8272 #ifndef CONFIG_USER_ONLY
8274 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
8275 * the block size so we might have to do more than one TLB lookup.
8276 * We know that in fact for any v8 CPU the page size is at least 4K
8277 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
8278 * 1K as an artefact of legacy v5 subpage support being present in the
8279 * same QEMU executable.
8281 int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
8282 void *hostaddr[maxidx];
8283 int try, i;
8284 unsigned mmu_idx = cpu_mmu_index(env, false);
8285 TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
8287 for (try = 0; try < 2; try++) {
8289 for (i = 0; i < maxidx; i++) {
8290 hostaddr[i] = tlb_vaddr_to_host(env,
8291 vaddr + TARGET_PAGE_SIZE * i,
8292 1, mmu_idx);
8293 if (!hostaddr[i]) {
8294 break;
8297 if (i == maxidx) {
8298 /* If it's all in the TLB it's fair game for just writing to;
8299 * we know we don't need to update dirty status, etc.
8301 for (i = 0; i < maxidx - 1; i++) {
8302 memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
8304 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
8305 return;
8307 /* OK, try a store and see if we can populate the tlb. This
8308 * might cause an exception if the memory isn't writable,
8309 * in which case we will longjmp out of here. We must for
8310 * this purpose use the actual register value passed to us
8311 * so that we get the fault address right.
8313 helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA());
8314 /* Now we can populate the other TLB entries, if any */
8315 for (i = 0; i < maxidx; i++) {
8316 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
8317 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
8318 helper_ret_stb_mmu(env, va, 0, oi, GETRA());
8323 /* Slow path (probably attempt to do this to an I/O device or
8324 * similar, or clearing of a block of code we have translations
8325 * cached for). Just do a series of byte writes as the architecture
8326 * demands. It's not worth trying to use a cpu_physical_memory_map(),
8327 * memset(), unmap() sequence here because:
8328 * + we'd need to account for the blocksize being larger than a page
8329 * + the direct-RAM access case is almost always going to be dealt
8330 * with in the fastpath code above, so there's no speed benefit
8331 * + we would have to deal with the map returning NULL because the
8332 * bounce buffer was in use
8334 for (i = 0; i < blocklen; i++) {
8335 helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA());
8338 #else
8339 memset(g2h(vaddr), 0, blocklen);
8340 #endif
8343 /* Note that signed overflow is undefined in C. The following routines are
8344 careful to use unsigned types where modulo arithmetic is required.
8345 Failure to do so _will_ break on newer gcc. */
8347 /* Signed saturating arithmetic. */
8349 /* Perform 16-bit signed saturating addition. */
8350 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
8352 uint16_t res;
8354 res = a + b;
8355 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
8356 if (a & 0x8000)
8357 res = 0x8000;
8358 else
8359 res = 0x7fff;
8361 return res;
8364 /* Perform 8-bit signed saturating addition. */
8365 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
8367 uint8_t res;
8369 res = a + b;
8370 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
8371 if (a & 0x80)
8372 res = 0x80;
8373 else
8374 res = 0x7f;
8376 return res;
8379 /* Perform 16-bit signed saturating subtraction. */
8380 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
8382 uint16_t res;
8384 res = a - b;
8385 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
8386 if (a & 0x8000)
8387 res = 0x8000;
8388 else
8389 res = 0x7fff;
8391 return res;
8394 /* Perform 8-bit signed saturating subtraction. */
8395 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
8397 uint8_t res;
8399 res = a - b;
8400 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
8401 if (a & 0x80)
8402 res = 0x80;
8403 else
8404 res = 0x7f;
8406 return res;
8409 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
8410 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
8411 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
8412 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
8413 #define PFX q
8415 #include "op_addsub.h"
8417 /* Unsigned saturating arithmetic. */
8418 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
8420 uint16_t res;
8421 res = a + b;
8422 if (res < a)
8423 res = 0xffff;
8424 return res;
8427 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
8429 if (a > b)
8430 return a - b;
8431 else
8432 return 0;
8435 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
8437 uint8_t res;
8438 res = a + b;
8439 if (res < a)
8440 res = 0xff;
8441 return res;
8444 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
8446 if (a > b)
8447 return a - b;
8448 else
8449 return 0;
8452 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
8453 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
8454 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
8455 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
8456 #define PFX uq
8458 #include "op_addsub.h"
8460 /* Signed modulo arithmetic. */
8461 #define SARITH16(a, b, n, op) do { \
8462 int32_t sum; \
8463 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
8464 RESULT(sum, n, 16); \
8465 if (sum >= 0) \
8466 ge |= 3 << (n * 2); \
8467 } while(0)
8469 #define SARITH8(a, b, n, op) do { \
8470 int32_t sum; \
8471 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
8472 RESULT(sum, n, 8); \
8473 if (sum >= 0) \
8474 ge |= 1 << n; \
8475 } while(0)
8478 #define ADD16(a, b, n) SARITH16(a, b, n, +)
8479 #define SUB16(a, b, n) SARITH16(a, b, n, -)
8480 #define ADD8(a, b, n) SARITH8(a, b, n, +)
8481 #define SUB8(a, b, n) SARITH8(a, b, n, -)
8482 #define PFX s
8483 #define ARITH_GE
8485 #include "op_addsub.h"
8487 /* Unsigned modulo arithmetic. */
8488 #define ADD16(a, b, n) do { \
8489 uint32_t sum; \
8490 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
8491 RESULT(sum, n, 16); \
8492 if ((sum >> 16) == 1) \
8493 ge |= 3 << (n * 2); \
8494 } while(0)
8496 #define ADD8(a, b, n) do { \
8497 uint32_t sum; \
8498 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
8499 RESULT(sum, n, 8); \
8500 if ((sum >> 8) == 1) \
8501 ge |= 1 << n; \
8502 } while(0)
8504 #define SUB16(a, b, n) do { \
8505 uint32_t sum; \
8506 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
8507 RESULT(sum, n, 16); \
8508 if ((sum >> 16) == 0) \
8509 ge |= 3 << (n * 2); \
8510 } while(0)
8512 #define SUB8(a, b, n) do { \
8513 uint32_t sum; \
8514 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
8515 RESULT(sum, n, 8); \
8516 if ((sum >> 8) == 0) \
8517 ge |= 1 << n; \
8518 } while(0)
8520 #define PFX u
8521 #define ARITH_GE
8523 #include "op_addsub.h"
8525 /* Halved signed arithmetic. */
8526 #define ADD16(a, b, n) \
8527 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
8528 #define SUB16(a, b, n) \
8529 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
8530 #define ADD8(a, b, n) \
8531 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
8532 #define SUB8(a, b, n) \
8533 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
8534 #define PFX sh
8536 #include "op_addsub.h"
8538 /* Halved unsigned arithmetic. */
8539 #define ADD16(a, b, n) \
8540 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8541 #define SUB16(a, b, n) \
8542 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
8543 #define ADD8(a, b, n) \
8544 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8545 #define SUB8(a, b, n) \
8546 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
8547 #define PFX uh
8549 #include "op_addsub.h"
8551 static inline uint8_t do_usad(uint8_t a, uint8_t b)
8553 if (a > b)
8554 return a - b;
8555 else
8556 return b - a;
8559 /* Unsigned sum of absolute byte differences. */
8560 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
8562 uint32_t sum;
8563 sum = do_usad(a, b);
8564 sum += do_usad(a >> 8, b >> 8);
8565 sum += do_usad(a >> 16, b >>16);
8566 sum += do_usad(a >> 24, b >> 24);
8567 return sum;
8570 /* For ARMv6 SEL instruction. */
8571 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
8573 uint32_t mask;
8575 mask = 0;
8576 if (flags & 1)
8577 mask |= 0xff;
8578 if (flags & 2)
8579 mask |= 0xff00;
8580 if (flags & 4)
8581 mask |= 0xff0000;
8582 if (flags & 8)
8583 mask |= 0xff000000;
8584 return (a & mask) | (b & ~mask);
8587 /* VFP support. We follow the convention used for VFP instructions:
8588 Single precision routines have a "s" suffix, double precision a
8589 "d" suffix. */
8591 /* Convert host exception flags to vfp form. */
8592 static inline int vfp_exceptbits_from_host(int host_bits)
8594 int target_bits = 0;
8596 if (host_bits & float_flag_invalid)
8597 target_bits |= 1;
8598 if (host_bits & float_flag_divbyzero)
8599 target_bits |= 2;
8600 if (host_bits & float_flag_overflow)
8601 target_bits |= 4;
8602 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
8603 target_bits |= 8;
8604 if (host_bits & float_flag_inexact)
8605 target_bits |= 0x10;
8606 if (host_bits & float_flag_input_denormal)
8607 target_bits |= 0x80;
8608 return target_bits;
8611 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
8613 int i;
8614 uint32_t fpscr;
8616 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
8617 | (env->vfp.vec_len << 16)
8618 | (env->vfp.vec_stride << 20);
8619 i = get_float_exception_flags(&env->vfp.fp_status);
8620 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
8621 fpscr |= vfp_exceptbits_from_host(i);
8622 return fpscr;
8625 uint32_t vfp_get_fpscr(CPUARMState *env)
8627 return HELPER(vfp_get_fpscr)(env);
8630 /* Convert vfp exception flags to target form. */
8631 static inline int vfp_exceptbits_to_host(int target_bits)
8633 int host_bits = 0;
8635 if (target_bits & 1)
8636 host_bits |= float_flag_invalid;
8637 if (target_bits & 2)
8638 host_bits |= float_flag_divbyzero;
8639 if (target_bits & 4)
8640 host_bits |= float_flag_overflow;
8641 if (target_bits & 8)
8642 host_bits |= float_flag_underflow;
8643 if (target_bits & 0x10)
8644 host_bits |= float_flag_inexact;
8645 if (target_bits & 0x80)
8646 host_bits |= float_flag_input_denormal;
8647 return host_bits;
8650 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
8652 int i;
8653 uint32_t changed;
8655 changed = env->vfp.xregs[ARM_VFP_FPSCR];
8656 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
8657 env->vfp.vec_len = (val >> 16) & 7;
8658 env->vfp.vec_stride = (val >> 20) & 3;
8660 changed ^= val;
8661 if (changed & (3 << 22)) {
8662 i = (val >> 22) & 3;
8663 switch (i) {
8664 case FPROUNDING_TIEEVEN:
8665 i = float_round_nearest_even;
8666 break;
8667 case FPROUNDING_POSINF:
8668 i = float_round_up;
8669 break;
8670 case FPROUNDING_NEGINF:
8671 i = float_round_down;
8672 break;
8673 case FPROUNDING_ZERO:
8674 i = float_round_to_zero;
8675 break;
8677 set_float_rounding_mode(i, &env->vfp.fp_status);
8679 if (changed & (1 << 24)) {
8680 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
8681 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
8683 if (changed & (1 << 25))
8684 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
8686 i = vfp_exceptbits_to_host(val);
8687 set_float_exception_flags(i, &env->vfp.fp_status);
8688 set_float_exception_flags(0, &env->vfp.standard_fp_status);
8691 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
8693 HELPER(vfp_set_fpscr)(env, val);
8696 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
8698 #define VFP_BINOP(name) \
8699 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
8701 float_status *fpst = fpstp; \
8702 return float32_ ## name(a, b, fpst); \
8704 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
8706 float_status *fpst = fpstp; \
8707 return float64_ ## name(a, b, fpst); \
8709 VFP_BINOP(add)
8710 VFP_BINOP(sub)
8711 VFP_BINOP(mul)
8712 VFP_BINOP(div)
8713 VFP_BINOP(min)
8714 VFP_BINOP(max)
8715 VFP_BINOP(minnum)
8716 VFP_BINOP(maxnum)
8717 #undef VFP_BINOP
8719 float32 VFP_HELPER(neg, s)(float32 a)
8721 return float32_chs(a);
8724 float64 VFP_HELPER(neg, d)(float64 a)
8726 return float64_chs(a);
8729 float32 VFP_HELPER(abs, s)(float32 a)
8731 return float32_abs(a);
8734 float64 VFP_HELPER(abs, d)(float64 a)
8736 return float64_abs(a);
8739 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
8741 return float32_sqrt(a, &env->vfp.fp_status);
8744 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
8746 return float64_sqrt(a, &env->vfp.fp_status);
8749 /* XXX: check quiet/signaling case */
8750 #define DO_VFP_cmp(p, type) \
8751 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
8753 uint32_t flags; \
8754 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
8755 case 0: flags = 0x6; break; \
8756 case -1: flags = 0x8; break; \
8757 case 1: flags = 0x2; break; \
8758 default: case 2: flags = 0x3; break; \
8760 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8761 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8763 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
8765 uint32_t flags; \
8766 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
8767 case 0: flags = 0x6; break; \
8768 case -1: flags = 0x8; break; \
8769 case 1: flags = 0x2; break; \
8770 default: case 2: flags = 0x3; break; \
8772 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
8773 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
8775 DO_VFP_cmp(s, float32)
8776 DO_VFP_cmp(d, float64)
8777 #undef DO_VFP_cmp
8779 /* Integer to float and float to integer conversions */
8781 #define CONV_ITOF(name, fsz, sign) \
8782 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
8784 float_status *fpst = fpstp; \
8785 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
8788 #define CONV_FTOI(name, fsz, sign, round) \
8789 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
8791 float_status *fpst = fpstp; \
8792 if (float##fsz##_is_any_nan(x)) { \
8793 float_raise(float_flag_invalid, fpst); \
8794 return 0; \
8796 return float##fsz##_to_##sign##int32##round(x, fpst); \
8799 #define FLOAT_CONVS(name, p, fsz, sign) \
8800 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
8801 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
8802 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
8804 FLOAT_CONVS(si, s, 32, )
8805 FLOAT_CONVS(si, d, 64, )
8806 FLOAT_CONVS(ui, s, 32, u)
8807 FLOAT_CONVS(ui, d, 64, u)
8809 #undef CONV_ITOF
8810 #undef CONV_FTOI
8811 #undef FLOAT_CONVS
8813 /* floating point conversion */
8814 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
8816 float64 r = float32_to_float64(x, &env->vfp.fp_status);
8817 /* ARM requires that S<->D conversion of any kind of NaN generates
8818 * a quiet NaN by forcing the most significant frac bit to 1.
8820 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
8823 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
8825 float32 r = float64_to_float32(x, &env->vfp.fp_status);
8826 /* ARM requires that S<->D conversion of any kind of NaN generates
8827 * a quiet NaN by forcing the most significant frac bit to 1.
8829 return float32_maybe_silence_nan(r, &env->vfp.fp_status);
8832 /* VFP3 fixed point conversion. */
8833 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8834 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
8835 void *fpstp) \
8837 float_status *fpst = fpstp; \
8838 float##fsz tmp; \
8839 tmp = itype##_to_##float##fsz(x, fpst); \
8840 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
8843 /* Notice that we want only input-denormal exception flags from the
8844 * scalbn operation: the other possible flags (overflow+inexact if
8845 * we overflow to infinity, output-denormal) aren't correct for the
8846 * complete scale-and-convert operation.
8848 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
8849 uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
8850 uint32_t shift, \
8851 void *fpstp) \
8853 float_status *fpst = fpstp; \
8854 int old_exc_flags = get_float_exception_flags(fpst); \
8855 float##fsz tmp; \
8856 if (float##fsz##_is_any_nan(x)) { \
8857 float_raise(float_flag_invalid, fpst); \
8858 return 0; \
8860 tmp = float##fsz##_scalbn(x, shift, fpst); \
8861 old_exc_flags |= get_float_exception_flags(fpst) \
8862 & float_flag_input_denormal; \
8863 set_float_exception_flags(old_exc_flags, fpst); \
8864 return float##fsz##_to_##itype##round(tmp, fpst); \
8867 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
8868 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8869 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
8870 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
8872 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
8873 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8874 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
8876 VFP_CONV_FIX(sh, d, 64, 64, int16)
8877 VFP_CONV_FIX(sl, d, 64, 64, int32)
8878 VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
8879 VFP_CONV_FIX(uh, d, 64, 64, uint16)
8880 VFP_CONV_FIX(ul, d, 64, 64, uint32)
8881 VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
8882 VFP_CONV_FIX(sh, s, 32, 32, int16)
8883 VFP_CONV_FIX(sl, s, 32, 32, int32)
8884 VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
8885 VFP_CONV_FIX(uh, s, 32, 32, uint16)
8886 VFP_CONV_FIX(ul, s, 32, 32, uint32)
8887 VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
8888 #undef VFP_CONV_FIX
8889 #undef VFP_CONV_FIX_FLOAT
8890 #undef VFP_CONV_FLOAT_FIX_ROUND
8892 /* Set the current fp rounding mode and return the old one.
8893 * The argument is a softfloat float_round_ value.
8895 uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
8897 float_status *fp_status = &env->vfp.fp_status;
8899 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
8900 set_float_rounding_mode(rmode, fp_status);
8902 return prev_rmode;
8905 /* Set the current fp rounding mode in the standard fp status and return
8906 * the old one. This is for NEON instructions that need to change the
8907 * rounding mode but wish to use the standard FPSCR values for everything
8908 * else. Always set the rounding mode back to the correct value after
8909 * modifying it.
8910 * The argument is a softfloat float_round_ value.
8912 uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
8914 float_status *fp_status = &env->vfp.standard_fp_status;
8916 uint32_t prev_rmode = get_float_rounding_mode(fp_status);
8917 set_float_rounding_mode(rmode, fp_status);
8919 return prev_rmode;
8922 /* Half precision conversions. */
8923 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
8925 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
8926 float32 r = float16_to_float32(make_float16(a), ieee, s);
8927 if (ieee) {
8928 return float32_maybe_silence_nan(r, s);
8930 return r;
8933 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
8935 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
8936 float16 r = float32_to_float16(a, ieee, s);
8937 if (ieee) {
8938 r = float16_maybe_silence_nan(r, s);
8940 return float16_val(r);
8943 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
8945 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
8948 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
8950 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
8953 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
8955 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
8958 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
8960 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
8963 float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
8965 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
8966 float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
8967 if (ieee) {
8968 return float64_maybe_silence_nan(r, &env->vfp.fp_status);
8970 return r;
8973 uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
8975 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
8976 float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
8977 if (ieee) {
8978 r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
8980 return float16_val(r);
8983 #define float32_two make_float32(0x40000000)
8984 #define float32_three make_float32(0x40400000)
8985 #define float32_one_point_five make_float32(0x3fc00000)
8987 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
8989 float_status *s = &env->vfp.standard_fp_status;
8990 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
8991 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
8992 if (!(float32_is_zero(a) || float32_is_zero(b))) {
8993 float_raise(float_flag_input_denormal, s);
8995 return float32_two;
8997 return float32_sub(float32_two, float32_mul(a, b, s), s);
9000 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
9002 float_status *s = &env->vfp.standard_fp_status;
9003 float32 product;
9004 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
9005 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
9006 if (!(float32_is_zero(a) || float32_is_zero(b))) {
9007 float_raise(float_flag_input_denormal, s);
9009 return float32_one_point_five;
9011 product = float32_mul(a, b, s);
9012 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
9015 /* NEON helpers. */
9017 /* Constants 256 and 512 are used in some helpers; we avoid relying on
9018 * int->float conversions at run-time. */
9019 #define float64_256 make_float64(0x4070000000000000LL)
9020 #define float64_512 make_float64(0x4080000000000000LL)
9021 #define float32_maxnorm make_float32(0x7f7fffff)
9022 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
9024 /* Reciprocal functions
9026 * The algorithm that must be used to calculate the estimate
9027 * is specified by the ARM ARM, see FPRecipEstimate()
9030 static float64 recip_estimate(float64 a, float_status *real_fp_status)
9032 /* These calculations mustn't set any fp exception flags,
9033 * so we use a local copy of the fp_status.
9035 float_status dummy_status = *real_fp_status;
9036 float_status *s = &dummy_status;
9037 /* q = (int)(a * 512.0) */
9038 float64 q = float64_mul(float64_512, a, s);
9039 int64_t q_int = float64_to_int64_round_to_zero(q, s);
9041 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
9042 q = int64_to_float64(q_int, s);
9043 q = float64_add(q, float64_half, s);
9044 q = float64_div(q, float64_512, s);
9045 q = float64_div(float64_one, q, s);
9047 /* s = (int)(256.0 * r + 0.5) */
9048 q = float64_mul(q, float64_256, s);
9049 q = float64_add(q, float64_half, s);
9050 q_int = float64_to_int64_round_to_zero(q, s);
9052 /* return (double)s / 256.0 */
9053 return float64_div(int64_to_float64(q_int, s), float64_256, s);
9056 /* Common wrapper to call recip_estimate */
9057 static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
9059 uint64_t val64 = float64_val(num);
9060 uint64_t frac = extract64(val64, 0, 52);
9061 int64_t exp = extract64(val64, 52, 11);
9062 uint64_t sbit;
9063 float64 scaled, estimate;
9065 /* Generate the scaled number for the estimate function */
9066 if (exp == 0) {
9067 if (extract64(frac, 51, 1) == 0) {
9068 exp = -1;
9069 frac = extract64(frac, 0, 50) << 2;
9070 } else {
9071 frac = extract64(frac, 0, 51) << 1;
9075 /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
9076 scaled = make_float64((0x3feULL << 52)
9077 | extract64(frac, 44, 8) << 44);
9079 estimate = recip_estimate(scaled, fpst);
9081 /* Build new result */
9082 val64 = float64_val(estimate);
9083 sbit = 0x8000000000000000ULL & val64;
9084 exp = off - exp;
9085 frac = extract64(val64, 0, 52);
9087 if (exp == 0) {
9088 frac = 1ULL << 51 | extract64(frac, 1, 51);
9089 } else if (exp == -1) {
9090 frac = 1ULL << 50 | extract64(frac, 2, 50);
9091 exp = 0;
9094 return make_float64(sbit | (exp << 52) | frac);
9097 static bool round_to_inf(float_status *fpst, bool sign_bit)
9099 switch (fpst->float_rounding_mode) {
9100 case float_round_nearest_even: /* Round to Nearest */
9101 return true;
9102 case float_round_up: /* Round to +Inf */
9103 return !sign_bit;
9104 case float_round_down: /* Round to -Inf */
9105 return sign_bit;
9106 case float_round_to_zero: /* Round to Zero */
9107 return false;
9110 g_assert_not_reached();
9113 float32 HELPER(recpe_f32)(float32 input, void *fpstp)
9115 float_status *fpst = fpstp;
9116 float32 f32 = float32_squash_input_denormal(input, fpst);
9117 uint32_t f32_val = float32_val(f32);
9118 uint32_t f32_sbit = 0x80000000ULL & f32_val;
9119 int32_t f32_exp = extract32(f32_val, 23, 8);
9120 uint32_t f32_frac = extract32(f32_val, 0, 23);
9121 float64 f64, r64;
9122 uint64_t r64_val;
9123 int64_t r64_exp;
9124 uint64_t r64_frac;
9126 if (float32_is_any_nan(f32)) {
9127 float32 nan = f32;
9128 if (float32_is_signaling_nan(f32, fpst)) {
9129 float_raise(float_flag_invalid, fpst);
9130 nan = float32_maybe_silence_nan(f32, fpst);
9132 if (fpst->default_nan_mode) {
9133 nan = float32_default_nan(fpst);
9135 return nan;
9136 } else if (float32_is_infinity(f32)) {
9137 return float32_set_sign(float32_zero, float32_is_neg(f32));
9138 } else if (float32_is_zero(f32)) {
9139 float_raise(float_flag_divbyzero, fpst);
9140 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9141 } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
9142 /* Abs(value) < 2.0^-128 */
9143 float_raise(float_flag_overflow | float_flag_inexact, fpst);
9144 if (round_to_inf(fpst, f32_sbit)) {
9145 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9146 } else {
9147 return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
9149 } else if (f32_exp >= 253 && fpst->flush_to_zero) {
9150 float_raise(float_flag_underflow, fpst);
9151 return float32_set_sign(float32_zero, float32_is_neg(f32));
9155 f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
9156 r64 = call_recip_estimate(f64, 253, fpst);
9157 r64_val = float64_val(r64);
9158 r64_exp = extract64(r64_val, 52, 11);
9159 r64_frac = extract64(r64_val, 0, 52);
9161 /* result = sign : result_exp<7:0> : fraction<51:29>; */
9162 return make_float32(f32_sbit |
9163 (r64_exp & 0xff) << 23 |
9164 extract64(r64_frac, 29, 24));
9167 float64 HELPER(recpe_f64)(float64 input, void *fpstp)
9169 float_status *fpst = fpstp;
9170 float64 f64 = float64_squash_input_denormal(input, fpst);
9171 uint64_t f64_val = float64_val(f64);
9172 uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
9173 int64_t f64_exp = extract64(f64_val, 52, 11);
9174 float64 r64;
9175 uint64_t r64_val;
9176 int64_t r64_exp;
9177 uint64_t r64_frac;
9179 /* Deal with any special cases */
9180 if (float64_is_any_nan(f64)) {
9181 float64 nan = f64;
9182 if (float64_is_signaling_nan(f64, fpst)) {
9183 float_raise(float_flag_invalid, fpst);
9184 nan = float64_maybe_silence_nan(f64, fpst);
9186 if (fpst->default_nan_mode) {
9187 nan = float64_default_nan(fpst);
9189 return nan;
9190 } else if (float64_is_infinity(f64)) {
9191 return float64_set_sign(float64_zero, float64_is_neg(f64));
9192 } else if (float64_is_zero(f64)) {
9193 float_raise(float_flag_divbyzero, fpst);
9194 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9195 } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
9196 /* Abs(value) < 2.0^-1024 */
9197 float_raise(float_flag_overflow | float_flag_inexact, fpst);
9198 if (round_to_inf(fpst, f64_sbit)) {
9199 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9200 } else {
9201 return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
9203 } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
9204 float_raise(float_flag_underflow, fpst);
9205 return float64_set_sign(float64_zero, float64_is_neg(f64));
9208 r64 = call_recip_estimate(f64, 2045, fpst);
9209 r64_val = float64_val(r64);
9210 r64_exp = extract64(r64_val, 52, 11);
9211 r64_frac = extract64(r64_val, 0, 52);
9213 /* result = sign : result_exp<10:0> : fraction<51:0> */
9214 return make_float64(f64_sbit |
9215 ((r64_exp & 0x7ff) << 52) |
9216 r64_frac);
9219 /* The algorithm that must be used to calculate the estimate
9220 * is specified by the ARM ARM.
9222 static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
9224 /* These calculations mustn't set any fp exception flags,
9225 * so we use a local copy of the fp_status.
9227 float_status dummy_status = *real_fp_status;
9228 float_status *s = &dummy_status;
9229 float64 q;
9230 int64_t q_int;
9232 if (float64_lt(a, float64_half, s)) {
9233 /* range 0.25 <= a < 0.5 */
9235 /* a in units of 1/512 rounded down */
9236 /* q0 = (int)(a * 512.0); */
9237 q = float64_mul(float64_512, a, s);
9238 q_int = float64_to_int64_round_to_zero(q, s);
9240 /* reciprocal root r */
9241 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
9242 q = int64_to_float64(q_int, s);
9243 q = float64_add(q, float64_half, s);
9244 q = float64_div(q, float64_512, s);
9245 q = float64_sqrt(q, s);
9246 q = float64_div(float64_one, q, s);
9247 } else {
9248 /* range 0.5 <= a < 1.0 */
9250 /* a in units of 1/256 rounded down */
9251 /* q1 = (int)(a * 256.0); */
9252 q = float64_mul(float64_256, a, s);
9253 int64_t q_int = float64_to_int64_round_to_zero(q, s);
9255 /* reciprocal root r */
9256 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
9257 q = int64_to_float64(q_int, s);
9258 q = float64_add(q, float64_half, s);
9259 q = float64_div(q, float64_256, s);
9260 q = float64_sqrt(q, s);
9261 q = float64_div(float64_one, q, s);
9263 /* r in units of 1/256 rounded to nearest */
9264 /* s = (int)(256.0 * r + 0.5); */
9266 q = float64_mul(q, float64_256,s );
9267 q = float64_add(q, float64_half, s);
9268 q_int = float64_to_int64_round_to_zero(q, s);
9270 /* return (double)s / 256.0;*/
9271 return float64_div(int64_to_float64(q_int, s), float64_256, s);
9274 float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
9276 float_status *s = fpstp;
9277 float32 f32 = float32_squash_input_denormal(input, s);
9278 uint32_t val = float32_val(f32);
9279 uint32_t f32_sbit = 0x80000000 & val;
9280 int32_t f32_exp = extract32(val, 23, 8);
9281 uint32_t f32_frac = extract32(val, 0, 23);
9282 uint64_t f64_frac;
9283 uint64_t val64;
9284 int result_exp;
9285 float64 f64;
9287 if (float32_is_any_nan(f32)) {
9288 float32 nan = f32;
9289 if (float32_is_signaling_nan(f32, s)) {
9290 float_raise(float_flag_invalid, s);
9291 nan = float32_maybe_silence_nan(f32, s);
9293 if (s->default_nan_mode) {
9294 nan = float32_default_nan(s);
9296 return nan;
9297 } else if (float32_is_zero(f32)) {
9298 float_raise(float_flag_divbyzero, s);
9299 return float32_set_sign(float32_infinity, float32_is_neg(f32));
9300 } else if (float32_is_neg(f32)) {
9301 float_raise(float_flag_invalid, s);
9302 return float32_default_nan(s);
9303 } else if (float32_is_infinity(f32)) {
9304 return float32_zero;
9307 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9308 * preserving the parity of the exponent. */
9310 f64_frac = ((uint64_t) f32_frac) << 29;
9311 if (f32_exp == 0) {
9312 while (extract64(f64_frac, 51, 1) == 0) {
9313 f64_frac = f64_frac << 1;
9314 f32_exp = f32_exp-1;
9316 f64_frac = extract64(f64_frac, 0, 51) << 1;
9319 if (extract64(f32_exp, 0, 1) == 0) {
9320 f64 = make_float64(((uint64_t) f32_sbit) << 32
9321 | (0x3feULL << 52)
9322 | f64_frac);
9323 } else {
9324 f64 = make_float64(((uint64_t) f32_sbit) << 32
9325 | (0x3fdULL << 52)
9326 | f64_frac);
9329 result_exp = (380 - f32_exp) / 2;
9331 f64 = recip_sqrt_estimate(f64, s);
9333 val64 = float64_val(f64);
9335 val = ((result_exp & 0xff) << 23)
9336 | ((val64 >> 29) & 0x7fffff);
9337 return make_float32(val);
9340 float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
9342 float_status *s = fpstp;
9343 float64 f64 = float64_squash_input_denormal(input, s);
9344 uint64_t val = float64_val(f64);
9345 uint64_t f64_sbit = 0x8000000000000000ULL & val;
9346 int64_t f64_exp = extract64(val, 52, 11);
9347 uint64_t f64_frac = extract64(val, 0, 52);
9348 int64_t result_exp;
9349 uint64_t result_frac;
9351 if (float64_is_any_nan(f64)) {
9352 float64 nan = f64;
9353 if (float64_is_signaling_nan(f64, s)) {
9354 float_raise(float_flag_invalid, s);
9355 nan = float64_maybe_silence_nan(f64, s);
9357 if (s->default_nan_mode) {
9358 nan = float64_default_nan(s);
9360 return nan;
9361 } else if (float64_is_zero(f64)) {
9362 float_raise(float_flag_divbyzero, s);
9363 return float64_set_sign(float64_infinity, float64_is_neg(f64));
9364 } else if (float64_is_neg(f64)) {
9365 float_raise(float_flag_invalid, s);
9366 return float64_default_nan(s);
9367 } else if (float64_is_infinity(f64)) {
9368 return float64_zero;
9371 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9372 * preserving the parity of the exponent. */
9374 if (f64_exp == 0) {
9375 while (extract64(f64_frac, 51, 1) == 0) {
9376 f64_frac = f64_frac << 1;
9377 f64_exp = f64_exp - 1;
9379 f64_frac = extract64(f64_frac, 0, 51) << 1;
9382 if (extract64(f64_exp, 0, 1) == 0) {
9383 f64 = make_float64(f64_sbit
9384 | (0x3feULL << 52)
9385 | f64_frac);
9386 } else {
9387 f64 = make_float64(f64_sbit
9388 | (0x3fdULL << 52)
9389 | f64_frac);
9392 result_exp = (3068 - f64_exp) / 2;
9394 f64 = recip_sqrt_estimate(f64, s);
9396 result_frac = extract64(float64_val(f64), 0, 52);
9398 return make_float64(f64_sbit |
9399 ((result_exp & 0x7ff) << 52) |
9400 result_frac);
9403 uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
9405 float_status *s = fpstp;
9406 float64 f64;
9408 if ((a & 0x80000000) == 0) {
9409 return 0xffffffff;
9412 f64 = make_float64((0x3feULL << 52)
9413 | ((int64_t)(a & 0x7fffffff) << 21));
9415 f64 = recip_estimate(f64, s);
9417 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
9420 uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
9422 float_status *fpst = fpstp;
9423 float64 f64;
9425 if ((a & 0xc0000000) == 0) {
9426 return 0xffffffff;
9429 if (a & 0x80000000) {
9430 f64 = make_float64((0x3feULL << 52)
9431 | ((uint64_t)(a & 0x7fffffff) << 21));
9432 } else { /* bits 31-30 == '01' */
9433 f64 = make_float64((0x3fdULL << 52)
9434 | ((uint64_t)(a & 0x3fffffff) << 22));
9437 f64 = recip_sqrt_estimate(f64, fpst);
9439 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
9442 /* VFPv4 fused multiply-accumulate */
9443 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
9445 float_status *fpst = fpstp;
9446 return float32_muladd(a, b, c, 0, fpst);
9449 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
9451 float_status *fpst = fpstp;
9452 return float64_muladd(a, b, c, 0, fpst);
9455 /* ARMv8 round to integral */
9456 float32 HELPER(rints_exact)(float32 x, void *fp_status)
9458 return float32_round_to_int(x, fp_status);
9461 float64 HELPER(rintd_exact)(float64 x, void *fp_status)
9463 return float64_round_to_int(x, fp_status);
9466 float32 HELPER(rints)(float32 x, void *fp_status)
9468 int old_flags = get_float_exception_flags(fp_status), new_flags;
9469 float32 ret;
9471 ret = float32_round_to_int(x, fp_status);
9473 /* Suppress any inexact exceptions the conversion produced */
9474 if (!(old_flags & float_flag_inexact)) {
9475 new_flags = get_float_exception_flags(fp_status);
9476 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
9479 return ret;
9482 float64 HELPER(rintd)(float64 x, void *fp_status)
9484 int old_flags = get_float_exception_flags(fp_status), new_flags;
9485 float64 ret;
9487 ret = float64_round_to_int(x, fp_status);
9489 new_flags = get_float_exception_flags(fp_status);
9491 /* Suppress any inexact exceptions the conversion produced */
9492 if (!(old_flags & float_flag_inexact)) {
9493 new_flags = get_float_exception_flags(fp_status);
9494 set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
9497 return ret;
9500 /* Convert ARM rounding mode to softfloat */
9501 int arm_rmode_to_sf(int rmode)
9503 switch (rmode) {
9504 case FPROUNDING_TIEAWAY:
9505 rmode = float_round_ties_away;
9506 break;
9507 case FPROUNDING_ODD:
9508 /* FIXME: add support for TIEAWAY and ODD */
9509 qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
9510 rmode);
9511 case FPROUNDING_TIEEVEN:
9512 default:
9513 rmode = float_round_nearest_even;
9514 break;
9515 case FPROUNDING_POSINF:
9516 rmode = float_round_up;
9517 break;
9518 case FPROUNDING_NEGINF:
9519 rmode = float_round_down;
9520 break;
9521 case FPROUNDING_ZERO:
9522 rmode = float_round_to_zero;
9523 break;
9525 return rmode;
9528 /* CRC helpers.
9529 * The upper bytes of val (above the number specified by 'bytes') must have
9530 * been zeroed out by the caller.
9532 uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
9534 uint8_t buf[4];
9536 stl_le_p(buf, val);
9538 /* zlib crc32 converts the accumulator and output to one's complement. */
9539 return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
9542 uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
9544 uint8_t buf[4];
9546 stl_le_p(buf, val);
9548 /* Linux crc32c converts the output to one's complement. */
9549 return crc32c(acc, buf, bytes) ^ 0xffffffff;