meson: Warn when TCI is selected but TCG backend is available
[qemu/ar7.git] / accel / kvm / kvm-all.c
blobe72a19aaf80b47af06d01f440bece2d69df0b57d
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
19 #include <linux/kvm.h>
21 #include "qemu/atomic.h"
22 #include "qemu/option.h"
23 #include "qemu/config-file.h"
24 #include "qemu/error-report.h"
25 #include "qapi/error.h"
26 #include "hw/pci/msi.h"
27 #include "hw/pci/msix.h"
28 #include "hw/s390x/adapter.h"
29 #include "exec/gdbstub.h"
30 #include "sysemu/kvm_int.h"
31 #include "sysemu/runstate.h"
32 #include "sysemu/cpus.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "qemu/main-loop.h"
40 #include "trace.h"
41 #include "hw/irq.h"
42 #include "sysemu/sev.h"
43 #include "qapi/visitor.h"
44 #include "qapi/qapi-types-common.h"
45 #include "qapi/qapi-visit-common.h"
46 #include "sysemu/reset.h"
47 #include "qemu/guest-random.h"
48 #include "sysemu/hw_accel.h"
49 #include "kvm-cpus.h"
51 #include "hw/boards.h"
53 /* This check must be after config-host.h is included */
54 #ifdef CONFIG_EVENTFD
55 #include <sys/eventfd.h>
56 #endif
58 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
59 * need to use the real host PAGE_SIZE, as that's what KVM will use.
61 #ifdef PAGE_SIZE
62 #undef PAGE_SIZE
63 #endif
64 #define PAGE_SIZE qemu_real_host_page_size
66 //#define DEBUG_KVM
68 #ifdef DEBUG_KVM
69 #define DPRINTF(fmt, ...) \
70 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
71 #else
72 #define DPRINTF(fmt, ...) \
73 do { } while (0)
74 #endif
76 #define KVM_MSI_HASHTAB_SIZE 256
78 struct KVMParkedVcpu {
79 unsigned long vcpu_id;
80 int kvm_fd;
81 QLIST_ENTRY(KVMParkedVcpu) node;
84 struct KVMState
86 AccelState parent_obj;
88 int nr_slots;
89 int fd;
90 int vmfd;
91 int coalesced_mmio;
92 int coalesced_pio;
93 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
94 bool coalesced_flush_in_progress;
95 int vcpu_events;
96 int robust_singlestep;
97 int debugregs;
98 #ifdef KVM_CAP_SET_GUEST_DEBUG
99 QTAILQ_HEAD(, kvm_sw_breakpoint) kvm_sw_breakpoints;
100 #endif
101 int max_nested_state_len;
102 int many_ioeventfds;
103 int intx_set_mask;
104 int kvm_shadow_mem;
105 bool kernel_irqchip_allowed;
106 bool kernel_irqchip_required;
107 OnOffAuto kernel_irqchip_split;
108 bool sync_mmu;
109 uint64_t manual_dirty_log_protect;
110 /* The man page (and posix) say ioctl numbers are signed int, but
111 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
112 * unsigned, and treating them as signed here can break things */
113 unsigned irq_set_ioctl;
114 unsigned int sigmask_len;
115 GHashTable *gsimap;
116 #ifdef KVM_CAP_IRQ_ROUTING
117 struct kvm_irq_routing *irq_routes;
118 int nr_allocated_irq_routes;
119 unsigned long *used_gsi_bitmap;
120 unsigned int gsi_count;
121 QTAILQ_HEAD(, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
122 #endif
123 KVMMemoryListener memory_listener;
124 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
126 /* For "info mtree -f" to tell if an MR is registered in KVM */
127 int nr_as;
128 struct KVMAs {
129 KVMMemoryListener *ml;
130 AddressSpace *as;
131 } *as;
134 KVMState *kvm_state;
135 bool kvm_kernel_irqchip;
136 bool kvm_split_irqchip;
137 bool kvm_async_interrupts_allowed;
138 bool kvm_halt_in_kernel_allowed;
139 bool kvm_eventfds_allowed;
140 bool kvm_irqfds_allowed;
141 bool kvm_resamplefds_allowed;
142 bool kvm_msi_via_irqfd_allowed;
143 bool kvm_gsi_routing_allowed;
144 bool kvm_gsi_direct_mapping;
145 bool kvm_allowed;
146 bool kvm_readonly_mem_allowed;
147 bool kvm_vm_attributes_allowed;
148 bool kvm_direct_msi_allowed;
149 bool kvm_ioeventfd_any_length_allowed;
150 bool kvm_msi_use_devid;
151 static bool kvm_immediate_exit;
152 static hwaddr kvm_max_slot_size = ~0;
154 static const KVMCapabilityInfo kvm_required_capabilites[] = {
155 KVM_CAP_INFO(USER_MEMORY),
156 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
157 KVM_CAP_INFO(JOIN_MEMORY_REGIONS_WORKS),
158 KVM_CAP_LAST_INFO
161 static NotifierList kvm_irqchip_change_notifiers =
162 NOTIFIER_LIST_INITIALIZER(kvm_irqchip_change_notifiers);
164 struct KVMResampleFd {
165 int gsi;
166 EventNotifier *resample_event;
167 QLIST_ENTRY(KVMResampleFd) node;
169 typedef struct KVMResampleFd KVMResampleFd;
172 * Only used with split irqchip where we need to do the resample fd
173 * kick for the kernel from userspace.
175 static QLIST_HEAD(, KVMResampleFd) kvm_resample_fd_list =
176 QLIST_HEAD_INITIALIZER(kvm_resample_fd_list);
178 #define kvm_slots_lock(kml) qemu_mutex_lock(&(kml)->slots_lock)
179 #define kvm_slots_unlock(kml) qemu_mutex_unlock(&(kml)->slots_lock)
181 static inline void kvm_resample_fd_remove(int gsi)
183 KVMResampleFd *rfd;
185 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
186 if (rfd->gsi == gsi) {
187 QLIST_REMOVE(rfd, node);
188 g_free(rfd);
189 break;
194 static inline void kvm_resample_fd_insert(int gsi, EventNotifier *event)
196 KVMResampleFd *rfd = g_new0(KVMResampleFd, 1);
198 rfd->gsi = gsi;
199 rfd->resample_event = event;
201 QLIST_INSERT_HEAD(&kvm_resample_fd_list, rfd, node);
204 void kvm_resample_fd_notify(int gsi)
206 KVMResampleFd *rfd;
208 QLIST_FOREACH(rfd, &kvm_resample_fd_list, node) {
209 if (rfd->gsi == gsi) {
210 event_notifier_set(rfd->resample_event);
211 trace_kvm_resample_fd_notify(gsi);
212 return;
217 int kvm_get_max_memslots(void)
219 KVMState *s = KVM_STATE(current_accel());
221 return s->nr_slots;
224 /* Called with KVMMemoryListener.slots_lock held */
225 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
227 KVMState *s = kvm_state;
228 int i;
230 for (i = 0; i < s->nr_slots; i++) {
231 if (kml->slots[i].memory_size == 0) {
232 return &kml->slots[i];
236 return NULL;
239 bool kvm_has_free_slot(MachineState *ms)
241 KVMState *s = KVM_STATE(ms->accelerator);
242 bool result;
243 KVMMemoryListener *kml = &s->memory_listener;
245 kvm_slots_lock(kml);
246 result = !!kvm_get_free_slot(kml);
247 kvm_slots_unlock(kml);
249 return result;
252 /* Called with KVMMemoryListener.slots_lock held */
253 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
255 KVMSlot *slot = kvm_get_free_slot(kml);
257 if (slot) {
258 return slot;
261 fprintf(stderr, "%s: no free slot available\n", __func__);
262 abort();
265 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
266 hwaddr start_addr,
267 hwaddr size)
269 KVMState *s = kvm_state;
270 int i;
272 for (i = 0; i < s->nr_slots; i++) {
273 KVMSlot *mem = &kml->slots[i];
275 if (start_addr == mem->start_addr && size == mem->memory_size) {
276 return mem;
280 return NULL;
284 * Calculate and align the start address and the size of the section.
285 * Return the size. If the size is 0, the aligned section is empty.
287 static hwaddr kvm_align_section(MemoryRegionSection *section,
288 hwaddr *start)
290 hwaddr size = int128_get64(section->size);
291 hwaddr delta, aligned;
293 /* kvm works in page size chunks, but the function may be called
294 with sub-page size and unaligned start address. Pad the start
295 address to next and truncate size to previous page boundary. */
296 aligned = ROUND_UP(section->offset_within_address_space,
297 qemu_real_host_page_size);
298 delta = aligned - section->offset_within_address_space;
299 *start = aligned;
300 if (delta > size) {
301 return 0;
304 return (size - delta) & qemu_real_host_page_mask;
307 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
308 hwaddr *phys_addr)
310 KVMMemoryListener *kml = &s->memory_listener;
311 int i, ret = 0;
313 kvm_slots_lock(kml);
314 for (i = 0; i < s->nr_slots; i++) {
315 KVMSlot *mem = &kml->slots[i];
317 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
318 *phys_addr = mem->start_addr + (ram - mem->ram);
319 ret = 1;
320 break;
323 kvm_slots_unlock(kml);
325 return ret;
328 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot, bool new)
330 KVMState *s = kvm_state;
331 struct kvm_userspace_memory_region mem;
332 int ret;
334 mem.slot = slot->slot | (kml->as_id << 16);
335 mem.guest_phys_addr = slot->start_addr;
336 mem.userspace_addr = (unsigned long)slot->ram;
337 mem.flags = slot->flags;
339 if (slot->memory_size && !new && (mem.flags ^ slot->old_flags) & KVM_MEM_READONLY) {
340 /* Set the slot size to 0 before setting the slot to the desired
341 * value. This is needed based on KVM commit 75d61fbc. */
342 mem.memory_size = 0;
343 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
344 if (ret < 0) {
345 goto err;
348 mem.memory_size = slot->memory_size;
349 ret = kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
350 slot->old_flags = mem.flags;
351 err:
352 trace_kvm_set_user_memory(mem.slot, mem.flags, mem.guest_phys_addr,
353 mem.memory_size, mem.userspace_addr, ret);
354 if (ret < 0) {
355 error_report("%s: KVM_SET_USER_MEMORY_REGION failed, slot=%d,"
356 " start=0x%" PRIx64 ", size=0x%" PRIx64 ": %s",
357 __func__, mem.slot, slot->start_addr,
358 (uint64_t)mem.memory_size, strerror(errno));
360 return ret;
363 static int do_kvm_destroy_vcpu(CPUState *cpu)
365 KVMState *s = kvm_state;
366 long mmap_size;
367 struct KVMParkedVcpu *vcpu = NULL;
368 int ret = 0;
370 DPRINTF("kvm_destroy_vcpu\n");
372 ret = kvm_arch_destroy_vcpu(cpu);
373 if (ret < 0) {
374 goto err;
377 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
378 if (mmap_size < 0) {
379 ret = mmap_size;
380 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
381 goto err;
384 ret = munmap(cpu->kvm_run, mmap_size);
385 if (ret < 0) {
386 goto err;
389 vcpu = g_malloc0(sizeof(*vcpu));
390 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
391 vcpu->kvm_fd = cpu->kvm_fd;
392 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
393 err:
394 return ret;
397 void kvm_destroy_vcpu(CPUState *cpu)
399 if (do_kvm_destroy_vcpu(cpu) < 0) {
400 error_report("kvm_destroy_vcpu failed");
401 exit(EXIT_FAILURE);
405 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
407 struct KVMParkedVcpu *cpu;
409 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
410 if (cpu->vcpu_id == vcpu_id) {
411 int kvm_fd;
413 QLIST_REMOVE(cpu, node);
414 kvm_fd = cpu->kvm_fd;
415 g_free(cpu);
416 return kvm_fd;
420 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
423 int kvm_init_vcpu(CPUState *cpu, Error **errp)
425 KVMState *s = kvm_state;
426 long mmap_size;
427 int ret;
429 trace_kvm_init_vcpu(cpu->cpu_index, kvm_arch_vcpu_id(cpu));
431 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
432 if (ret < 0) {
433 error_setg_errno(errp, -ret, "kvm_init_vcpu: kvm_get_vcpu failed (%lu)",
434 kvm_arch_vcpu_id(cpu));
435 goto err;
438 cpu->kvm_fd = ret;
439 cpu->kvm_state = s;
440 cpu->vcpu_dirty = true;
442 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
443 if (mmap_size < 0) {
444 ret = mmap_size;
445 error_setg_errno(errp, -mmap_size,
446 "kvm_init_vcpu: KVM_GET_VCPU_MMAP_SIZE failed");
447 goto err;
450 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
451 cpu->kvm_fd, 0);
452 if (cpu->kvm_run == MAP_FAILED) {
453 ret = -errno;
454 error_setg_errno(errp, ret,
455 "kvm_init_vcpu: mmap'ing vcpu state failed (%lu)",
456 kvm_arch_vcpu_id(cpu));
457 goto err;
460 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
461 s->coalesced_mmio_ring =
462 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
465 ret = kvm_arch_init_vcpu(cpu);
466 if (ret < 0) {
467 error_setg_errno(errp, -ret,
468 "kvm_init_vcpu: kvm_arch_init_vcpu failed (%lu)",
469 kvm_arch_vcpu_id(cpu));
471 err:
472 return ret;
476 * dirty pages logging control
479 static int kvm_mem_flags(MemoryRegion *mr)
481 bool readonly = mr->readonly || memory_region_is_romd(mr);
482 int flags = 0;
484 if (memory_region_get_dirty_log_mask(mr) != 0) {
485 flags |= KVM_MEM_LOG_DIRTY_PAGES;
487 if (readonly && kvm_readonly_mem_allowed) {
488 flags |= KVM_MEM_READONLY;
490 return flags;
493 /* Called with KVMMemoryListener.slots_lock held */
494 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
495 MemoryRegion *mr)
497 mem->flags = kvm_mem_flags(mr);
499 /* If nothing changed effectively, no need to issue ioctl */
500 if (mem->flags == mem->old_flags) {
501 return 0;
504 return kvm_set_user_memory_region(kml, mem, false);
507 static int kvm_section_update_flags(KVMMemoryListener *kml,
508 MemoryRegionSection *section)
510 hwaddr start_addr, size, slot_size;
511 KVMSlot *mem;
512 int ret = 0;
514 size = kvm_align_section(section, &start_addr);
515 if (!size) {
516 return 0;
519 kvm_slots_lock(kml);
521 while (size && !ret) {
522 slot_size = MIN(kvm_max_slot_size, size);
523 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
524 if (!mem) {
525 /* We don't have a slot if we want to trap every access. */
526 goto out;
529 ret = kvm_slot_update_flags(kml, mem, section->mr);
530 start_addr += slot_size;
531 size -= slot_size;
534 out:
535 kvm_slots_unlock(kml);
536 return ret;
539 static void kvm_log_start(MemoryListener *listener,
540 MemoryRegionSection *section,
541 int old, int new)
543 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
544 int r;
546 if (old != 0) {
547 return;
550 r = kvm_section_update_flags(kml, section);
551 if (r < 0) {
552 abort();
556 static void kvm_log_stop(MemoryListener *listener,
557 MemoryRegionSection *section,
558 int old, int new)
560 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
561 int r;
563 if (new != 0) {
564 return;
567 r = kvm_section_update_flags(kml, section);
568 if (r < 0) {
569 abort();
573 /* get kvm's dirty pages bitmap and update qemu's */
574 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
575 unsigned long *bitmap)
577 ram_addr_t start = section->offset_within_region +
578 memory_region_get_ram_addr(section->mr);
579 ram_addr_t pages = int128_get64(section->size) / qemu_real_host_page_size;
581 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
582 return 0;
585 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
587 /* Allocate the dirty bitmap for a slot */
588 static void kvm_memslot_init_dirty_bitmap(KVMSlot *mem)
591 * XXX bad kernel interface alert
592 * For dirty bitmap, kernel allocates array of size aligned to
593 * bits-per-long. But for case when the kernel is 64bits and
594 * the userspace is 32bits, userspace can't align to the same
595 * bits-per-long, since sizeof(long) is different between kernel
596 * and user space. This way, userspace will provide buffer which
597 * may be 4 bytes less than the kernel will use, resulting in
598 * userspace memory corruption (which is not detectable by valgrind
599 * too, in most cases).
600 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
601 * a hope that sizeof(long) won't become >8 any time soon.
603 hwaddr bitmap_size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
604 /*HOST_LONG_BITS*/ 64) / 8;
605 mem->dirty_bmap = g_malloc0(bitmap_size);
609 * kvm_physical_sync_dirty_bitmap - Sync dirty bitmap from kernel space
611 * This function will first try to fetch dirty bitmap from the kernel,
612 * and then updates qemu's dirty bitmap.
614 * NOTE: caller must be with kml->slots_lock held.
616 * @kml: the KVM memory listener object
617 * @section: the memory section to sync the dirty bitmap with
619 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
620 MemoryRegionSection *section)
622 KVMState *s = kvm_state;
623 struct kvm_dirty_log d = {};
624 KVMSlot *mem;
625 hwaddr start_addr, size;
626 hwaddr slot_size, slot_offset = 0;
627 int ret = 0;
629 size = kvm_align_section(section, &start_addr);
630 while (size) {
631 MemoryRegionSection subsection = *section;
633 slot_size = MIN(kvm_max_slot_size, size);
634 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
635 if (!mem) {
636 /* We don't have a slot if we want to trap every access. */
637 goto out;
640 if (!mem->dirty_bmap) {
641 /* Allocate on the first log_sync, once and for all */
642 kvm_memslot_init_dirty_bitmap(mem);
645 d.dirty_bitmap = mem->dirty_bmap;
646 d.slot = mem->slot | (kml->as_id << 16);
647 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
648 DPRINTF("ioctl failed %d\n", errno);
649 ret = -1;
650 goto out;
653 subsection.offset_within_region += slot_offset;
654 subsection.size = int128_make64(slot_size);
655 kvm_get_dirty_pages_log_range(&subsection, d.dirty_bitmap);
657 slot_offset += slot_size;
658 start_addr += slot_size;
659 size -= slot_size;
661 out:
662 return ret;
665 /* Alignment requirement for KVM_CLEAR_DIRTY_LOG - 64 pages */
666 #define KVM_CLEAR_LOG_SHIFT 6
667 #define KVM_CLEAR_LOG_ALIGN (qemu_real_host_page_size << KVM_CLEAR_LOG_SHIFT)
668 #define KVM_CLEAR_LOG_MASK (-KVM_CLEAR_LOG_ALIGN)
670 static int kvm_log_clear_one_slot(KVMSlot *mem, int as_id, uint64_t start,
671 uint64_t size)
673 KVMState *s = kvm_state;
674 uint64_t end, bmap_start, start_delta, bmap_npages;
675 struct kvm_clear_dirty_log d;
676 unsigned long *bmap_clear = NULL, psize = qemu_real_host_page_size;
677 int ret;
680 * We need to extend either the start or the size or both to
681 * satisfy the KVM interface requirement. Firstly, do the start
682 * page alignment on 64 host pages
684 bmap_start = start & KVM_CLEAR_LOG_MASK;
685 start_delta = start - bmap_start;
686 bmap_start /= psize;
689 * The kernel interface has restriction on the size too, that either:
691 * (1) the size is 64 host pages aligned (just like the start), or
692 * (2) the size fills up until the end of the KVM memslot.
694 bmap_npages = DIV_ROUND_UP(size + start_delta, KVM_CLEAR_LOG_ALIGN)
695 << KVM_CLEAR_LOG_SHIFT;
696 end = mem->memory_size / psize;
697 if (bmap_npages > end - bmap_start) {
698 bmap_npages = end - bmap_start;
700 start_delta /= psize;
703 * Prepare the bitmap to clear dirty bits. Here we must guarantee
704 * that we won't clear any unknown dirty bits otherwise we might
705 * accidentally clear some set bits which are not yet synced from
706 * the kernel into QEMU's bitmap, then we'll lose track of the
707 * guest modifications upon those pages (which can directly lead
708 * to guest data loss or panic after migration).
710 * Layout of the KVMSlot.dirty_bmap:
712 * |<-------- bmap_npages -----------..>|
713 * [1]
714 * start_delta size
715 * |----------------|-------------|------------------|------------|
716 * ^ ^ ^ ^
717 * | | | |
718 * start bmap_start (start) end
719 * of memslot of memslot
721 * [1] bmap_npages can be aligned to either 64 pages or the end of slot
724 assert(bmap_start % BITS_PER_LONG == 0);
725 /* We should never do log_clear before log_sync */
726 assert(mem->dirty_bmap);
727 if (start_delta || bmap_npages - size / psize) {
728 /* Slow path - we need to manipulate a temp bitmap */
729 bmap_clear = bitmap_new(bmap_npages);
730 bitmap_copy_with_src_offset(bmap_clear, mem->dirty_bmap,
731 bmap_start, start_delta + size / psize);
733 * We need to fill the holes at start because that was not
734 * specified by the caller and we extended the bitmap only for
735 * 64 pages alignment
737 bitmap_clear(bmap_clear, 0, start_delta);
738 d.dirty_bitmap = bmap_clear;
739 } else {
741 * Fast path - both start and size align well with BITS_PER_LONG
742 * (or the end of memory slot)
744 d.dirty_bitmap = mem->dirty_bmap + BIT_WORD(bmap_start);
747 d.first_page = bmap_start;
748 /* It should never overflow. If it happens, say something */
749 assert(bmap_npages <= UINT32_MAX);
750 d.num_pages = bmap_npages;
751 d.slot = mem->slot | (as_id << 16);
753 if (kvm_vm_ioctl(s, KVM_CLEAR_DIRTY_LOG, &d) == -1) {
754 ret = -errno;
755 error_report("%s: KVM_CLEAR_DIRTY_LOG failed, slot=%d, "
756 "start=0x%"PRIx64", size=0x%"PRIx32", errno=%d",
757 __func__, d.slot, (uint64_t)d.first_page,
758 (uint32_t)d.num_pages, ret);
759 } else {
760 ret = 0;
761 trace_kvm_clear_dirty_log(d.slot, d.first_page, d.num_pages);
765 * After we have updated the remote dirty bitmap, we update the
766 * cached bitmap as well for the memslot, then if another user
767 * clears the same region we know we shouldn't clear it again on
768 * the remote otherwise it's data loss as well.
770 bitmap_clear(mem->dirty_bmap, bmap_start + start_delta,
771 size / psize);
772 /* This handles the NULL case well */
773 g_free(bmap_clear);
774 return ret;
779 * kvm_physical_log_clear - Clear the kernel's dirty bitmap for range
781 * NOTE: this will be a no-op if we haven't enabled manual dirty log
782 * protection in the host kernel because in that case this operation
783 * will be done within log_sync().
785 * @kml: the kvm memory listener
786 * @section: the memory range to clear dirty bitmap
788 static int kvm_physical_log_clear(KVMMemoryListener *kml,
789 MemoryRegionSection *section)
791 KVMState *s = kvm_state;
792 uint64_t start, size, offset, count;
793 KVMSlot *mem;
794 int ret = 0, i;
796 if (!s->manual_dirty_log_protect) {
797 /* No need to do explicit clear */
798 return ret;
801 start = section->offset_within_address_space;
802 size = int128_get64(section->size);
804 if (!size) {
805 /* Nothing more we can do... */
806 return ret;
809 kvm_slots_lock(kml);
811 for (i = 0; i < s->nr_slots; i++) {
812 mem = &kml->slots[i];
813 /* Discard slots that are empty or do not overlap the section */
814 if (!mem->memory_size ||
815 mem->start_addr > start + size - 1 ||
816 start > mem->start_addr + mem->memory_size - 1) {
817 continue;
820 if (start >= mem->start_addr) {
821 /* The slot starts before section or is aligned to it. */
822 offset = start - mem->start_addr;
823 count = MIN(mem->memory_size - offset, size);
824 } else {
825 /* The slot starts after section. */
826 offset = 0;
827 count = MIN(mem->memory_size, size - (mem->start_addr - start));
829 ret = kvm_log_clear_one_slot(mem, kml->as_id, offset, count);
830 if (ret < 0) {
831 break;
835 kvm_slots_unlock(kml);
837 return ret;
840 static void kvm_coalesce_mmio_region(MemoryListener *listener,
841 MemoryRegionSection *secion,
842 hwaddr start, hwaddr size)
844 KVMState *s = kvm_state;
846 if (s->coalesced_mmio) {
847 struct kvm_coalesced_mmio_zone zone;
849 zone.addr = start;
850 zone.size = size;
851 zone.pad = 0;
853 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
857 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
858 MemoryRegionSection *secion,
859 hwaddr start, hwaddr size)
861 KVMState *s = kvm_state;
863 if (s->coalesced_mmio) {
864 struct kvm_coalesced_mmio_zone zone;
866 zone.addr = start;
867 zone.size = size;
868 zone.pad = 0;
870 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
874 static void kvm_coalesce_pio_add(MemoryListener *listener,
875 MemoryRegionSection *section,
876 hwaddr start, hwaddr size)
878 KVMState *s = kvm_state;
880 if (s->coalesced_pio) {
881 struct kvm_coalesced_mmio_zone zone;
883 zone.addr = start;
884 zone.size = size;
885 zone.pio = 1;
887 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
891 static void kvm_coalesce_pio_del(MemoryListener *listener,
892 MemoryRegionSection *section,
893 hwaddr start, hwaddr size)
895 KVMState *s = kvm_state;
897 if (s->coalesced_pio) {
898 struct kvm_coalesced_mmio_zone zone;
900 zone.addr = start;
901 zone.size = size;
902 zone.pio = 1;
904 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
908 static MemoryListener kvm_coalesced_pio_listener = {
909 .coalesced_io_add = kvm_coalesce_pio_add,
910 .coalesced_io_del = kvm_coalesce_pio_del,
913 int kvm_check_extension(KVMState *s, unsigned int extension)
915 int ret;
917 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
918 if (ret < 0) {
919 ret = 0;
922 return ret;
925 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
927 int ret;
929 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
930 if (ret < 0) {
931 /* VM wide version not implemented, use global one instead */
932 ret = kvm_check_extension(s, extension);
935 return ret;
938 typedef struct HWPoisonPage {
939 ram_addr_t ram_addr;
940 QLIST_ENTRY(HWPoisonPage) list;
941 } HWPoisonPage;
943 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
944 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
946 static void kvm_unpoison_all(void *param)
948 HWPoisonPage *page, *next_page;
950 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
951 QLIST_REMOVE(page, list);
952 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
953 g_free(page);
957 void kvm_hwpoison_page_add(ram_addr_t ram_addr)
959 HWPoisonPage *page;
961 QLIST_FOREACH(page, &hwpoison_page_list, list) {
962 if (page->ram_addr == ram_addr) {
963 return;
966 page = g_new(HWPoisonPage, 1);
967 page->ram_addr = ram_addr;
968 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
971 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
973 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
974 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
975 * endianness, but the memory core hands them in target endianness.
976 * For example, PPC is always treated as big-endian even if running
977 * on KVM and on PPC64LE. Correct here.
979 switch (size) {
980 case 2:
981 val = bswap16(val);
982 break;
983 case 4:
984 val = bswap32(val);
985 break;
987 #endif
988 return val;
991 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
992 bool assign, uint32_t size, bool datamatch)
994 int ret;
995 struct kvm_ioeventfd iofd = {
996 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
997 .addr = addr,
998 .len = size,
999 .flags = 0,
1000 .fd = fd,
1003 trace_kvm_set_ioeventfd_mmio(fd, (uint64_t)addr, val, assign, size,
1004 datamatch);
1005 if (!kvm_enabled()) {
1006 return -ENOSYS;
1009 if (datamatch) {
1010 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1012 if (!assign) {
1013 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1016 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
1018 if (ret < 0) {
1019 return -errno;
1022 return 0;
1025 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
1026 bool assign, uint32_t size, bool datamatch)
1028 struct kvm_ioeventfd kick = {
1029 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
1030 .addr = addr,
1031 .flags = KVM_IOEVENTFD_FLAG_PIO,
1032 .len = size,
1033 .fd = fd,
1035 int r;
1036 trace_kvm_set_ioeventfd_pio(fd, addr, val, assign, size, datamatch);
1037 if (!kvm_enabled()) {
1038 return -ENOSYS;
1040 if (datamatch) {
1041 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
1043 if (!assign) {
1044 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1046 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1047 if (r < 0) {
1048 return r;
1050 return 0;
1054 static int kvm_check_many_ioeventfds(void)
1056 /* Userspace can use ioeventfd for io notification. This requires a host
1057 * that supports eventfd(2) and an I/O thread; since eventfd does not
1058 * support SIGIO it cannot interrupt the vcpu.
1060 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
1061 * can avoid creating too many ioeventfds.
1063 #if defined(CONFIG_EVENTFD)
1064 int ioeventfds[7];
1065 int i, ret = 0;
1066 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
1067 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
1068 if (ioeventfds[i] < 0) {
1069 break;
1071 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
1072 if (ret < 0) {
1073 close(ioeventfds[i]);
1074 break;
1078 /* Decide whether many devices are supported or not */
1079 ret = i == ARRAY_SIZE(ioeventfds);
1081 while (i-- > 0) {
1082 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
1083 close(ioeventfds[i]);
1085 return ret;
1086 #else
1087 return 0;
1088 #endif
1091 static const KVMCapabilityInfo *
1092 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
1094 while (list->name) {
1095 if (!kvm_check_extension(s, list->value)) {
1096 return list;
1098 list++;
1100 return NULL;
1103 void kvm_set_max_memslot_size(hwaddr max_slot_size)
1105 g_assert(
1106 ROUND_UP(max_slot_size, qemu_real_host_page_size) == max_slot_size
1108 kvm_max_slot_size = max_slot_size;
1111 static void kvm_set_phys_mem(KVMMemoryListener *kml,
1112 MemoryRegionSection *section, bool add)
1114 KVMSlot *mem;
1115 int err;
1116 MemoryRegion *mr = section->mr;
1117 bool writeable = !mr->readonly && !mr->rom_device;
1118 hwaddr start_addr, size, slot_size;
1119 void *ram;
1121 if (!memory_region_is_ram(mr)) {
1122 if (writeable || !kvm_readonly_mem_allowed) {
1123 return;
1124 } else if (!mr->romd_mode) {
1125 /* If the memory device is not in romd_mode, then we actually want
1126 * to remove the kvm memory slot so all accesses will trap. */
1127 add = false;
1131 size = kvm_align_section(section, &start_addr);
1132 if (!size) {
1133 return;
1136 /* use aligned delta to align the ram address */
1137 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region +
1138 (start_addr - section->offset_within_address_space);
1140 kvm_slots_lock(kml);
1142 if (!add) {
1143 do {
1144 slot_size = MIN(kvm_max_slot_size, size);
1145 mem = kvm_lookup_matching_slot(kml, start_addr, slot_size);
1146 if (!mem) {
1147 goto out;
1149 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1150 kvm_physical_sync_dirty_bitmap(kml, section);
1153 /* unregister the slot */
1154 g_free(mem->dirty_bmap);
1155 mem->dirty_bmap = NULL;
1156 mem->memory_size = 0;
1157 mem->flags = 0;
1158 err = kvm_set_user_memory_region(kml, mem, false);
1159 if (err) {
1160 fprintf(stderr, "%s: error unregistering slot: %s\n",
1161 __func__, strerror(-err));
1162 abort();
1164 start_addr += slot_size;
1165 size -= slot_size;
1166 } while (size);
1167 goto out;
1170 /* register the new slot */
1171 do {
1172 slot_size = MIN(kvm_max_slot_size, size);
1173 mem = kvm_alloc_slot(kml);
1174 mem->memory_size = slot_size;
1175 mem->start_addr = start_addr;
1176 mem->ram = ram;
1177 mem->flags = kvm_mem_flags(mr);
1179 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1181 * Reallocate the bmap; it means it doesn't disappear in
1182 * middle of a migrate.
1184 kvm_memslot_init_dirty_bitmap(mem);
1186 err = kvm_set_user_memory_region(kml, mem, true);
1187 if (err) {
1188 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
1189 strerror(-err));
1190 abort();
1192 start_addr += slot_size;
1193 ram += slot_size;
1194 size -= slot_size;
1195 } while (size);
1197 out:
1198 kvm_slots_unlock(kml);
1201 static void kvm_region_add(MemoryListener *listener,
1202 MemoryRegionSection *section)
1204 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1206 memory_region_ref(section->mr);
1207 kvm_set_phys_mem(kml, section, true);
1210 static void kvm_region_del(MemoryListener *listener,
1211 MemoryRegionSection *section)
1213 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1215 kvm_set_phys_mem(kml, section, false);
1216 memory_region_unref(section->mr);
1219 static void kvm_log_sync(MemoryListener *listener,
1220 MemoryRegionSection *section)
1222 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1223 int r;
1225 kvm_slots_lock(kml);
1226 r = kvm_physical_sync_dirty_bitmap(kml, section);
1227 kvm_slots_unlock(kml);
1228 if (r < 0) {
1229 abort();
1233 static void kvm_log_clear(MemoryListener *listener,
1234 MemoryRegionSection *section)
1236 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
1237 int r;
1239 r = kvm_physical_log_clear(kml, section);
1240 if (r < 0) {
1241 error_report_once("%s: kvm log clear failed: mr=%s "
1242 "offset=%"HWADDR_PRIx" size=%"PRIx64, __func__,
1243 section->mr->name, section->offset_within_region,
1244 int128_get64(section->size));
1245 abort();
1249 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
1250 MemoryRegionSection *section,
1251 bool match_data, uint64_t data,
1252 EventNotifier *e)
1254 int fd = event_notifier_get_fd(e);
1255 int r;
1257 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1258 data, true, int128_get64(section->size),
1259 match_data);
1260 if (r < 0) {
1261 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1262 __func__, strerror(-r), -r);
1263 abort();
1267 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
1268 MemoryRegionSection *section,
1269 bool match_data, uint64_t data,
1270 EventNotifier *e)
1272 int fd = event_notifier_get_fd(e);
1273 int r;
1275 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
1276 data, false, int128_get64(section->size),
1277 match_data);
1278 if (r < 0) {
1279 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1280 __func__, strerror(-r), -r);
1281 abort();
1285 static void kvm_io_ioeventfd_add(MemoryListener *listener,
1286 MemoryRegionSection *section,
1287 bool match_data, uint64_t data,
1288 EventNotifier *e)
1290 int fd = event_notifier_get_fd(e);
1291 int r;
1293 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1294 data, true, int128_get64(section->size),
1295 match_data);
1296 if (r < 0) {
1297 fprintf(stderr, "%s: error adding ioeventfd: %s (%d)\n",
1298 __func__, strerror(-r), -r);
1299 abort();
1303 static void kvm_io_ioeventfd_del(MemoryListener *listener,
1304 MemoryRegionSection *section,
1305 bool match_data, uint64_t data,
1306 EventNotifier *e)
1309 int fd = event_notifier_get_fd(e);
1310 int r;
1312 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
1313 data, false, int128_get64(section->size),
1314 match_data);
1315 if (r < 0) {
1316 fprintf(stderr, "%s: error deleting ioeventfd: %s (%d)\n",
1317 __func__, strerror(-r), -r);
1318 abort();
1322 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
1323 AddressSpace *as, int as_id)
1325 int i;
1327 qemu_mutex_init(&kml->slots_lock);
1328 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
1329 kml->as_id = as_id;
1331 for (i = 0; i < s->nr_slots; i++) {
1332 kml->slots[i].slot = i;
1335 kml->listener.region_add = kvm_region_add;
1336 kml->listener.region_del = kvm_region_del;
1337 kml->listener.log_start = kvm_log_start;
1338 kml->listener.log_stop = kvm_log_stop;
1339 kml->listener.log_sync = kvm_log_sync;
1340 kml->listener.log_clear = kvm_log_clear;
1341 kml->listener.priority = 10;
1343 memory_listener_register(&kml->listener, as);
1345 for (i = 0; i < s->nr_as; ++i) {
1346 if (!s->as[i].as) {
1347 s->as[i].as = as;
1348 s->as[i].ml = kml;
1349 break;
1354 static MemoryListener kvm_io_listener = {
1355 .eventfd_add = kvm_io_ioeventfd_add,
1356 .eventfd_del = kvm_io_ioeventfd_del,
1357 .priority = 10,
1360 int kvm_set_irq(KVMState *s, int irq, int level)
1362 struct kvm_irq_level event;
1363 int ret;
1365 assert(kvm_async_interrupts_enabled());
1367 event.level = level;
1368 event.irq = irq;
1369 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1370 if (ret < 0) {
1371 perror("kvm_set_irq");
1372 abort();
1375 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1378 #ifdef KVM_CAP_IRQ_ROUTING
1379 typedef struct KVMMSIRoute {
1380 struct kvm_irq_routing_entry kroute;
1381 QTAILQ_ENTRY(KVMMSIRoute) entry;
1382 } KVMMSIRoute;
1384 static void set_gsi(KVMState *s, unsigned int gsi)
1386 set_bit(gsi, s->used_gsi_bitmap);
1389 static void clear_gsi(KVMState *s, unsigned int gsi)
1391 clear_bit(gsi, s->used_gsi_bitmap);
1394 void kvm_init_irq_routing(KVMState *s)
1396 int gsi_count, i;
1398 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1399 if (gsi_count > 0) {
1400 /* Round up so we can search ints using ffs */
1401 s->used_gsi_bitmap = bitmap_new(gsi_count);
1402 s->gsi_count = gsi_count;
1405 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1406 s->nr_allocated_irq_routes = 0;
1408 if (!kvm_direct_msi_allowed) {
1409 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1410 QTAILQ_INIT(&s->msi_hashtab[i]);
1414 kvm_arch_init_irq_routing(s);
1417 void kvm_irqchip_commit_routes(KVMState *s)
1419 int ret;
1421 if (kvm_gsi_direct_mapping()) {
1422 return;
1425 if (!kvm_gsi_routing_enabled()) {
1426 return;
1429 s->irq_routes->flags = 0;
1430 trace_kvm_irqchip_commit_routes();
1431 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1432 assert(ret == 0);
1435 static void kvm_add_routing_entry(KVMState *s,
1436 struct kvm_irq_routing_entry *entry)
1438 struct kvm_irq_routing_entry *new;
1439 int n, size;
1441 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1442 n = s->nr_allocated_irq_routes * 2;
1443 if (n < 64) {
1444 n = 64;
1446 size = sizeof(struct kvm_irq_routing);
1447 size += n * sizeof(*new);
1448 s->irq_routes = g_realloc(s->irq_routes, size);
1449 s->nr_allocated_irq_routes = n;
1451 n = s->irq_routes->nr++;
1452 new = &s->irq_routes->entries[n];
1454 *new = *entry;
1456 set_gsi(s, entry->gsi);
1459 static int kvm_update_routing_entry(KVMState *s,
1460 struct kvm_irq_routing_entry *new_entry)
1462 struct kvm_irq_routing_entry *entry;
1463 int n;
1465 for (n = 0; n < s->irq_routes->nr; n++) {
1466 entry = &s->irq_routes->entries[n];
1467 if (entry->gsi != new_entry->gsi) {
1468 continue;
1471 if(!memcmp(entry, new_entry, sizeof *entry)) {
1472 return 0;
1475 *entry = *new_entry;
1477 return 0;
1480 return -ESRCH;
1483 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1485 struct kvm_irq_routing_entry e = {};
1487 assert(pin < s->gsi_count);
1489 e.gsi = irq;
1490 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1491 e.flags = 0;
1492 e.u.irqchip.irqchip = irqchip;
1493 e.u.irqchip.pin = pin;
1494 kvm_add_routing_entry(s, &e);
1497 void kvm_irqchip_release_virq(KVMState *s, int virq)
1499 struct kvm_irq_routing_entry *e;
1500 int i;
1502 if (kvm_gsi_direct_mapping()) {
1503 return;
1506 for (i = 0; i < s->irq_routes->nr; i++) {
1507 e = &s->irq_routes->entries[i];
1508 if (e->gsi == virq) {
1509 s->irq_routes->nr--;
1510 *e = s->irq_routes->entries[s->irq_routes->nr];
1513 clear_gsi(s, virq);
1514 kvm_arch_release_virq_post(virq);
1515 trace_kvm_irqchip_release_virq(virq);
1518 void kvm_irqchip_add_change_notifier(Notifier *n)
1520 notifier_list_add(&kvm_irqchip_change_notifiers, n);
1523 void kvm_irqchip_remove_change_notifier(Notifier *n)
1525 notifier_remove(n);
1528 void kvm_irqchip_change_notify(void)
1530 notifier_list_notify(&kvm_irqchip_change_notifiers, NULL);
1533 static unsigned int kvm_hash_msi(uint32_t data)
1535 /* This is optimized for IA32 MSI layout. However, no other arch shall
1536 * repeat the mistake of not providing a direct MSI injection API. */
1537 return data & 0xff;
1540 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1542 KVMMSIRoute *route, *next;
1543 unsigned int hash;
1545 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1546 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1547 kvm_irqchip_release_virq(s, route->kroute.gsi);
1548 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1549 g_free(route);
1554 static int kvm_irqchip_get_virq(KVMState *s)
1556 int next_virq;
1559 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1560 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1561 * number can succeed even though a new route entry cannot be added.
1562 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1564 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1565 kvm_flush_dynamic_msi_routes(s);
1568 /* Return the lowest unused GSI in the bitmap */
1569 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1570 if (next_virq >= s->gsi_count) {
1571 return -ENOSPC;
1572 } else {
1573 return next_virq;
1577 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1579 unsigned int hash = kvm_hash_msi(msg.data);
1580 KVMMSIRoute *route;
1582 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1583 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1584 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1585 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1586 return route;
1589 return NULL;
1592 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1594 struct kvm_msi msi;
1595 KVMMSIRoute *route;
1597 if (kvm_direct_msi_allowed) {
1598 msi.address_lo = (uint32_t)msg.address;
1599 msi.address_hi = msg.address >> 32;
1600 msi.data = le32_to_cpu(msg.data);
1601 msi.flags = 0;
1602 memset(msi.pad, 0, sizeof(msi.pad));
1604 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1607 route = kvm_lookup_msi_route(s, msg);
1608 if (!route) {
1609 int virq;
1611 virq = kvm_irqchip_get_virq(s);
1612 if (virq < 0) {
1613 return virq;
1616 route = g_malloc0(sizeof(KVMMSIRoute));
1617 route->kroute.gsi = virq;
1618 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1619 route->kroute.flags = 0;
1620 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1621 route->kroute.u.msi.address_hi = msg.address >> 32;
1622 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1624 kvm_add_routing_entry(s, &route->kroute);
1625 kvm_irqchip_commit_routes(s);
1627 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1628 entry);
1631 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1633 return kvm_set_irq(s, route->kroute.gsi, 1);
1636 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1638 struct kvm_irq_routing_entry kroute = {};
1639 int virq;
1640 MSIMessage msg = {0, 0};
1642 if (pci_available && dev) {
1643 msg = pci_get_msi_message(dev, vector);
1646 if (kvm_gsi_direct_mapping()) {
1647 return kvm_arch_msi_data_to_gsi(msg.data);
1650 if (!kvm_gsi_routing_enabled()) {
1651 return -ENOSYS;
1654 virq = kvm_irqchip_get_virq(s);
1655 if (virq < 0) {
1656 return virq;
1659 kroute.gsi = virq;
1660 kroute.type = KVM_IRQ_ROUTING_MSI;
1661 kroute.flags = 0;
1662 kroute.u.msi.address_lo = (uint32_t)msg.address;
1663 kroute.u.msi.address_hi = msg.address >> 32;
1664 kroute.u.msi.data = le32_to_cpu(msg.data);
1665 if (pci_available && kvm_msi_devid_required()) {
1666 kroute.flags = KVM_MSI_VALID_DEVID;
1667 kroute.u.msi.devid = pci_requester_id(dev);
1669 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1670 kvm_irqchip_release_virq(s, virq);
1671 return -EINVAL;
1674 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1675 vector, virq);
1677 kvm_add_routing_entry(s, &kroute);
1678 kvm_arch_add_msi_route_post(&kroute, vector, dev);
1679 kvm_irqchip_commit_routes(s);
1681 return virq;
1684 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1685 PCIDevice *dev)
1687 struct kvm_irq_routing_entry kroute = {};
1689 if (kvm_gsi_direct_mapping()) {
1690 return 0;
1693 if (!kvm_irqchip_in_kernel()) {
1694 return -ENOSYS;
1697 kroute.gsi = virq;
1698 kroute.type = KVM_IRQ_ROUTING_MSI;
1699 kroute.flags = 0;
1700 kroute.u.msi.address_lo = (uint32_t)msg.address;
1701 kroute.u.msi.address_hi = msg.address >> 32;
1702 kroute.u.msi.data = le32_to_cpu(msg.data);
1703 if (pci_available && kvm_msi_devid_required()) {
1704 kroute.flags = KVM_MSI_VALID_DEVID;
1705 kroute.u.msi.devid = pci_requester_id(dev);
1707 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1708 return -EINVAL;
1711 trace_kvm_irqchip_update_msi_route(virq);
1713 return kvm_update_routing_entry(s, &kroute);
1716 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
1717 EventNotifier *resample, int virq,
1718 bool assign)
1720 int fd = event_notifier_get_fd(event);
1721 int rfd = resample ? event_notifier_get_fd(resample) : -1;
1723 struct kvm_irqfd irqfd = {
1724 .fd = fd,
1725 .gsi = virq,
1726 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1729 if (rfd != -1) {
1730 assert(assign);
1731 if (kvm_irqchip_is_split()) {
1733 * When the slow irqchip (e.g. IOAPIC) is in the
1734 * userspace, KVM kernel resamplefd will not work because
1735 * the EOI of the interrupt will be delivered to userspace
1736 * instead, so the KVM kernel resamplefd kick will be
1737 * skipped. The userspace here mimics what the kernel
1738 * provides with resamplefd, remember the resamplefd and
1739 * kick it when we receive EOI of this IRQ.
1741 * This is hackery because IOAPIC is mostly bypassed
1742 * (except EOI broadcasts) when irqfd is used. However
1743 * this can bring much performance back for split irqchip
1744 * with INTx IRQs (for VFIO, this gives 93% perf of the
1745 * full fast path, which is 46% perf boost comparing to
1746 * the INTx slow path).
1748 kvm_resample_fd_insert(virq, resample);
1749 } else {
1750 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1751 irqfd.resamplefd = rfd;
1753 } else if (!assign) {
1754 if (kvm_irqchip_is_split()) {
1755 kvm_resample_fd_remove(virq);
1759 if (!kvm_irqfds_enabled()) {
1760 return -ENOSYS;
1763 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1766 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1768 struct kvm_irq_routing_entry kroute = {};
1769 int virq;
1771 if (!kvm_gsi_routing_enabled()) {
1772 return -ENOSYS;
1775 virq = kvm_irqchip_get_virq(s);
1776 if (virq < 0) {
1777 return virq;
1780 kroute.gsi = virq;
1781 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1782 kroute.flags = 0;
1783 kroute.u.adapter.summary_addr = adapter->summary_addr;
1784 kroute.u.adapter.ind_addr = adapter->ind_addr;
1785 kroute.u.adapter.summary_offset = adapter->summary_offset;
1786 kroute.u.adapter.ind_offset = adapter->ind_offset;
1787 kroute.u.adapter.adapter_id = adapter->adapter_id;
1789 kvm_add_routing_entry(s, &kroute);
1791 return virq;
1794 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1796 struct kvm_irq_routing_entry kroute = {};
1797 int virq;
1799 if (!kvm_gsi_routing_enabled()) {
1800 return -ENOSYS;
1802 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1803 return -ENOSYS;
1805 virq = kvm_irqchip_get_virq(s);
1806 if (virq < 0) {
1807 return virq;
1810 kroute.gsi = virq;
1811 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1812 kroute.flags = 0;
1813 kroute.u.hv_sint.vcpu = vcpu;
1814 kroute.u.hv_sint.sint = sint;
1816 kvm_add_routing_entry(s, &kroute);
1817 kvm_irqchip_commit_routes(s);
1819 return virq;
1822 #else /* !KVM_CAP_IRQ_ROUTING */
1824 void kvm_init_irq_routing(KVMState *s)
1828 void kvm_irqchip_release_virq(KVMState *s, int virq)
1832 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1834 abort();
1837 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1839 return -ENOSYS;
1842 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1844 return -ENOSYS;
1847 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1849 return -ENOSYS;
1852 static int kvm_irqchip_assign_irqfd(KVMState *s, EventNotifier *event,
1853 EventNotifier *resample, int virq,
1854 bool assign)
1856 abort();
1859 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1861 return -ENOSYS;
1863 #endif /* !KVM_CAP_IRQ_ROUTING */
1865 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1866 EventNotifier *rn, int virq)
1868 return kvm_irqchip_assign_irqfd(s, n, rn, virq, true);
1871 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1872 int virq)
1874 return kvm_irqchip_assign_irqfd(s, n, NULL, virq, false);
1877 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1878 EventNotifier *rn, qemu_irq irq)
1880 gpointer key, gsi;
1881 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1883 if (!found) {
1884 return -ENXIO;
1886 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1889 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1890 qemu_irq irq)
1892 gpointer key, gsi;
1893 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1895 if (!found) {
1896 return -ENXIO;
1898 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1901 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1903 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1906 static void kvm_irqchip_create(KVMState *s)
1908 int ret;
1910 assert(s->kernel_irqchip_split != ON_OFF_AUTO_AUTO);
1911 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1913 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1914 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1915 if (ret < 0) {
1916 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1917 exit(1);
1919 } else {
1920 return;
1923 /* First probe and see if there's a arch-specific hook to create the
1924 * in-kernel irqchip for us */
1925 ret = kvm_arch_irqchip_create(s);
1926 if (ret == 0) {
1927 if (s->kernel_irqchip_split == ON_OFF_AUTO_ON) {
1928 perror("Split IRQ chip mode not supported.");
1929 exit(1);
1930 } else {
1931 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1934 if (ret < 0) {
1935 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1936 exit(1);
1939 kvm_kernel_irqchip = true;
1940 /* If we have an in-kernel IRQ chip then we must have asynchronous
1941 * interrupt delivery (though the reverse is not necessarily true)
1943 kvm_async_interrupts_allowed = true;
1944 kvm_halt_in_kernel_allowed = true;
1946 kvm_init_irq_routing(s);
1948 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1951 /* Find number of supported CPUs using the recommended
1952 * procedure from the kernel API documentation to cope with
1953 * older kernels that may be missing capabilities.
1955 static int kvm_recommended_vcpus(KVMState *s)
1957 int ret = kvm_vm_check_extension(s, KVM_CAP_NR_VCPUS);
1958 return (ret) ? ret : 4;
1961 static int kvm_max_vcpus(KVMState *s)
1963 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1964 return (ret) ? ret : kvm_recommended_vcpus(s);
1967 static int kvm_max_vcpu_id(KVMState *s)
1969 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1970 return (ret) ? ret : kvm_max_vcpus(s);
1973 bool kvm_vcpu_id_is_valid(int vcpu_id)
1975 KVMState *s = KVM_STATE(current_accel());
1976 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1979 static int kvm_init(MachineState *ms)
1981 MachineClass *mc = MACHINE_GET_CLASS(ms);
1982 static const char upgrade_note[] =
1983 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1984 "(see http://sourceforge.net/projects/kvm).\n";
1985 struct {
1986 const char *name;
1987 int num;
1988 } num_cpus[] = {
1989 { "SMP", ms->smp.cpus },
1990 { "hotpluggable", ms->smp.max_cpus },
1991 { NULL, }
1992 }, *nc = num_cpus;
1993 int soft_vcpus_limit, hard_vcpus_limit;
1994 KVMState *s;
1995 const KVMCapabilityInfo *missing_cap;
1996 int ret;
1997 int type = 0;
1998 uint64_t dirty_log_manual_caps;
2000 s = KVM_STATE(ms->accelerator);
2003 * On systems where the kernel can support different base page
2004 * sizes, host page size may be different from TARGET_PAGE_SIZE,
2005 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
2006 * page size for the system though.
2008 assert(TARGET_PAGE_SIZE <= qemu_real_host_page_size);
2010 s->sigmask_len = 8;
2012 #ifdef KVM_CAP_SET_GUEST_DEBUG
2013 QTAILQ_INIT(&s->kvm_sw_breakpoints);
2014 #endif
2015 QLIST_INIT(&s->kvm_parked_vcpus);
2016 s->vmfd = -1;
2017 s->fd = qemu_open_old("/dev/kvm", O_RDWR);
2018 if (s->fd == -1) {
2019 fprintf(stderr, "Could not access KVM kernel module: %m\n");
2020 ret = -errno;
2021 goto err;
2024 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
2025 if (ret < KVM_API_VERSION) {
2026 if (ret >= 0) {
2027 ret = -EINVAL;
2029 fprintf(stderr, "kvm version too old\n");
2030 goto err;
2033 if (ret > KVM_API_VERSION) {
2034 ret = -EINVAL;
2035 fprintf(stderr, "kvm version not supported\n");
2036 goto err;
2039 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
2040 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
2042 /* If unspecified, use the default value */
2043 if (!s->nr_slots) {
2044 s->nr_slots = 32;
2047 s->nr_as = kvm_check_extension(s, KVM_CAP_MULTI_ADDRESS_SPACE);
2048 if (s->nr_as <= 1) {
2049 s->nr_as = 1;
2051 s->as = g_new0(struct KVMAs, s->nr_as);
2053 if (object_property_find(OBJECT(current_machine), "kvm-type")) {
2054 g_autofree char *kvm_type = object_property_get_str(OBJECT(current_machine),
2055 "kvm-type",
2056 &error_abort);
2057 type = mc->kvm_type(ms, kvm_type);
2060 do {
2061 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
2062 } while (ret == -EINTR);
2064 if (ret < 0) {
2065 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
2066 strerror(-ret));
2068 #ifdef TARGET_S390X
2069 if (ret == -EINVAL) {
2070 fprintf(stderr,
2071 "Host kernel setup problem detected. Please verify:\n");
2072 fprintf(stderr, "- for kernels supporting the switch_amode or"
2073 " user_mode parameters, whether\n");
2074 fprintf(stderr,
2075 " user space is running in primary address space\n");
2076 fprintf(stderr,
2077 "- for kernels supporting the vm.allocate_pgste sysctl, "
2078 "whether it is enabled\n");
2080 #endif
2081 goto err;
2084 s->vmfd = ret;
2086 /* check the vcpu limits */
2087 soft_vcpus_limit = kvm_recommended_vcpus(s);
2088 hard_vcpus_limit = kvm_max_vcpus(s);
2090 while (nc->name) {
2091 if (nc->num > soft_vcpus_limit) {
2092 warn_report("Number of %s cpus requested (%d) exceeds "
2093 "the recommended cpus supported by KVM (%d)",
2094 nc->name, nc->num, soft_vcpus_limit);
2096 if (nc->num > hard_vcpus_limit) {
2097 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
2098 "the maximum cpus supported by KVM (%d)\n",
2099 nc->name, nc->num, hard_vcpus_limit);
2100 exit(1);
2103 nc++;
2106 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
2107 if (!missing_cap) {
2108 missing_cap =
2109 kvm_check_extension_list(s, kvm_arch_required_capabilities);
2111 if (missing_cap) {
2112 ret = -EINVAL;
2113 fprintf(stderr, "kvm does not support %s\n%s",
2114 missing_cap->name, upgrade_note);
2115 goto err;
2118 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
2119 s->coalesced_pio = s->coalesced_mmio &&
2120 kvm_check_extension(s, KVM_CAP_COALESCED_PIO);
2122 dirty_log_manual_caps =
2123 kvm_check_extension(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2);
2124 dirty_log_manual_caps &= (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE |
2125 KVM_DIRTY_LOG_INITIALLY_SET);
2126 s->manual_dirty_log_protect = dirty_log_manual_caps;
2127 if (dirty_log_manual_caps) {
2128 ret = kvm_vm_enable_cap(s, KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2, 0,
2129 dirty_log_manual_caps);
2130 if (ret) {
2131 warn_report("Trying to enable capability %"PRIu64" of "
2132 "KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2 but failed. "
2133 "Falling back to the legacy mode. ",
2134 dirty_log_manual_caps);
2135 s->manual_dirty_log_protect = 0;
2139 #ifdef KVM_CAP_VCPU_EVENTS
2140 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
2141 #endif
2143 s->robust_singlestep =
2144 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
2146 #ifdef KVM_CAP_DEBUGREGS
2147 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
2148 #endif
2150 s->max_nested_state_len = kvm_check_extension(s, KVM_CAP_NESTED_STATE);
2152 #ifdef KVM_CAP_IRQ_ROUTING
2153 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
2154 #endif
2156 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
2158 s->irq_set_ioctl = KVM_IRQ_LINE;
2159 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
2160 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
2163 kvm_readonly_mem_allowed =
2164 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
2166 kvm_eventfds_allowed =
2167 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
2169 kvm_irqfds_allowed =
2170 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
2172 kvm_resamplefds_allowed =
2173 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
2175 kvm_vm_attributes_allowed =
2176 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
2178 kvm_ioeventfd_any_length_allowed =
2179 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
2181 kvm_state = s;
2183 ret = kvm_arch_init(ms, s);
2184 if (ret < 0) {
2185 goto err;
2188 if (s->kernel_irqchip_split == ON_OFF_AUTO_AUTO) {
2189 s->kernel_irqchip_split = mc->default_kernel_irqchip_split ? ON_OFF_AUTO_ON : ON_OFF_AUTO_OFF;
2192 qemu_register_reset(kvm_unpoison_all, NULL);
2194 if (s->kernel_irqchip_allowed) {
2195 kvm_irqchip_create(s);
2198 if (kvm_eventfds_allowed) {
2199 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
2200 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
2202 s->memory_listener.listener.coalesced_io_add = kvm_coalesce_mmio_region;
2203 s->memory_listener.listener.coalesced_io_del = kvm_uncoalesce_mmio_region;
2205 kvm_memory_listener_register(s, &s->memory_listener,
2206 &address_space_memory, 0);
2207 if (kvm_eventfds_allowed) {
2208 memory_listener_register(&kvm_io_listener,
2209 &address_space_io);
2211 memory_listener_register(&kvm_coalesced_pio_listener,
2212 &address_space_io);
2214 s->many_ioeventfds = kvm_check_many_ioeventfds();
2216 s->sync_mmu = !!kvm_vm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2217 if (!s->sync_mmu) {
2218 ret = ram_block_discard_disable(true);
2219 assert(!ret);
2221 return 0;
2223 err:
2224 assert(ret < 0);
2225 if (s->vmfd >= 0) {
2226 close(s->vmfd);
2228 if (s->fd != -1) {
2229 close(s->fd);
2231 g_free(s->memory_listener.slots);
2233 return ret;
2236 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
2238 s->sigmask_len = sigmask_len;
2241 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
2242 int size, uint32_t count)
2244 int i;
2245 uint8_t *ptr = data;
2247 for (i = 0; i < count; i++) {
2248 address_space_rw(&address_space_io, port, attrs,
2249 ptr, size,
2250 direction == KVM_EXIT_IO_OUT);
2251 ptr += size;
2255 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
2257 fprintf(stderr, "KVM internal error. Suberror: %d\n",
2258 run->internal.suberror);
2260 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
2261 int i;
2263 for (i = 0; i < run->internal.ndata; ++i) {
2264 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
2265 i, (uint64_t)run->internal.data[i]);
2268 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
2269 fprintf(stderr, "emulation failure\n");
2270 if (!kvm_arch_stop_on_emulation_error(cpu)) {
2271 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2272 return EXCP_INTERRUPT;
2275 /* FIXME: Should trigger a qmp message to let management know
2276 * something went wrong.
2278 return -1;
2281 void kvm_flush_coalesced_mmio_buffer(void)
2283 KVMState *s = kvm_state;
2285 if (s->coalesced_flush_in_progress) {
2286 return;
2289 s->coalesced_flush_in_progress = true;
2291 if (s->coalesced_mmio_ring) {
2292 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
2293 while (ring->first != ring->last) {
2294 struct kvm_coalesced_mmio *ent;
2296 ent = &ring->coalesced_mmio[ring->first];
2298 if (ent->pio == 1) {
2299 address_space_write(&address_space_io, ent->phys_addr,
2300 MEMTXATTRS_UNSPECIFIED, ent->data,
2301 ent->len);
2302 } else {
2303 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
2305 smp_wmb();
2306 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
2310 s->coalesced_flush_in_progress = false;
2313 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
2315 if (!cpu->vcpu_dirty) {
2316 kvm_arch_get_registers(cpu);
2317 cpu->vcpu_dirty = true;
2321 void kvm_cpu_synchronize_state(CPUState *cpu)
2323 if (!cpu->vcpu_dirty) {
2324 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
2328 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
2330 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
2331 cpu->vcpu_dirty = false;
2334 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
2336 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
2339 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
2341 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
2342 cpu->vcpu_dirty = false;
2345 void kvm_cpu_synchronize_post_init(CPUState *cpu)
2347 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
2350 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
2352 cpu->vcpu_dirty = true;
2355 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
2357 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
2360 #ifdef KVM_HAVE_MCE_INJECTION
2361 static __thread void *pending_sigbus_addr;
2362 static __thread int pending_sigbus_code;
2363 static __thread bool have_sigbus_pending;
2364 #endif
2366 static void kvm_cpu_kick(CPUState *cpu)
2368 qatomic_set(&cpu->kvm_run->immediate_exit, 1);
2371 static void kvm_cpu_kick_self(void)
2373 if (kvm_immediate_exit) {
2374 kvm_cpu_kick(current_cpu);
2375 } else {
2376 qemu_cpu_kick_self();
2380 static void kvm_eat_signals(CPUState *cpu)
2382 struct timespec ts = { 0, 0 };
2383 siginfo_t siginfo;
2384 sigset_t waitset;
2385 sigset_t chkset;
2386 int r;
2388 if (kvm_immediate_exit) {
2389 qatomic_set(&cpu->kvm_run->immediate_exit, 0);
2390 /* Write kvm_run->immediate_exit before the cpu->exit_request
2391 * write in kvm_cpu_exec.
2393 smp_wmb();
2394 return;
2397 sigemptyset(&waitset);
2398 sigaddset(&waitset, SIG_IPI);
2400 do {
2401 r = sigtimedwait(&waitset, &siginfo, &ts);
2402 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
2403 perror("sigtimedwait");
2404 exit(1);
2407 r = sigpending(&chkset);
2408 if (r == -1) {
2409 perror("sigpending");
2410 exit(1);
2412 } while (sigismember(&chkset, SIG_IPI));
2415 int kvm_cpu_exec(CPUState *cpu)
2417 struct kvm_run *run = cpu->kvm_run;
2418 int ret, run_ret;
2420 DPRINTF("kvm_cpu_exec()\n");
2422 if (kvm_arch_process_async_events(cpu)) {
2423 qatomic_set(&cpu->exit_request, 0);
2424 return EXCP_HLT;
2427 qemu_mutex_unlock_iothread();
2428 cpu_exec_start(cpu);
2430 do {
2431 MemTxAttrs attrs;
2433 if (cpu->vcpu_dirty) {
2434 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
2435 cpu->vcpu_dirty = false;
2438 kvm_arch_pre_run(cpu, run);
2439 if (qatomic_read(&cpu->exit_request)) {
2440 DPRINTF("interrupt exit requested\n");
2442 * KVM requires us to reenter the kernel after IO exits to complete
2443 * instruction emulation. This self-signal will ensure that we
2444 * leave ASAP again.
2446 kvm_cpu_kick_self();
2449 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2450 * Matching barrier in kvm_eat_signals.
2452 smp_rmb();
2454 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2456 attrs = kvm_arch_post_run(cpu, run);
2458 #ifdef KVM_HAVE_MCE_INJECTION
2459 if (unlikely(have_sigbus_pending)) {
2460 qemu_mutex_lock_iothread();
2461 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2462 pending_sigbus_addr);
2463 have_sigbus_pending = false;
2464 qemu_mutex_unlock_iothread();
2466 #endif
2468 if (run_ret < 0) {
2469 if (run_ret == -EINTR || run_ret == -EAGAIN) {
2470 DPRINTF("io window exit\n");
2471 kvm_eat_signals(cpu);
2472 ret = EXCP_INTERRUPT;
2473 break;
2475 fprintf(stderr, "error: kvm run failed %s\n",
2476 strerror(-run_ret));
2477 #ifdef TARGET_PPC
2478 if (run_ret == -EBUSY) {
2479 fprintf(stderr,
2480 "This is probably because your SMT is enabled.\n"
2481 "VCPU can only run on primary threads with all "
2482 "secondary threads offline.\n");
2484 #endif
2485 ret = -1;
2486 break;
2489 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2490 switch (run->exit_reason) {
2491 case KVM_EXIT_IO:
2492 DPRINTF("handle_io\n");
2493 /* Called outside BQL */
2494 kvm_handle_io(run->io.port, attrs,
2495 (uint8_t *)run + run->io.data_offset,
2496 run->io.direction,
2497 run->io.size,
2498 run->io.count);
2499 ret = 0;
2500 break;
2501 case KVM_EXIT_MMIO:
2502 DPRINTF("handle_mmio\n");
2503 /* Called outside BQL */
2504 address_space_rw(&address_space_memory,
2505 run->mmio.phys_addr, attrs,
2506 run->mmio.data,
2507 run->mmio.len,
2508 run->mmio.is_write);
2509 ret = 0;
2510 break;
2511 case KVM_EXIT_IRQ_WINDOW_OPEN:
2512 DPRINTF("irq_window_open\n");
2513 ret = EXCP_INTERRUPT;
2514 break;
2515 case KVM_EXIT_SHUTDOWN:
2516 DPRINTF("shutdown\n");
2517 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2518 ret = EXCP_INTERRUPT;
2519 break;
2520 case KVM_EXIT_UNKNOWN:
2521 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2522 (uint64_t)run->hw.hardware_exit_reason);
2523 ret = -1;
2524 break;
2525 case KVM_EXIT_INTERNAL_ERROR:
2526 ret = kvm_handle_internal_error(cpu, run);
2527 break;
2528 case KVM_EXIT_SYSTEM_EVENT:
2529 switch (run->system_event.type) {
2530 case KVM_SYSTEM_EVENT_SHUTDOWN:
2531 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2532 ret = EXCP_INTERRUPT;
2533 break;
2534 case KVM_SYSTEM_EVENT_RESET:
2535 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2536 ret = EXCP_INTERRUPT;
2537 break;
2538 case KVM_SYSTEM_EVENT_CRASH:
2539 kvm_cpu_synchronize_state(cpu);
2540 qemu_mutex_lock_iothread();
2541 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2542 qemu_mutex_unlock_iothread();
2543 ret = 0;
2544 break;
2545 default:
2546 DPRINTF("kvm_arch_handle_exit\n");
2547 ret = kvm_arch_handle_exit(cpu, run);
2548 break;
2550 break;
2551 default:
2552 DPRINTF("kvm_arch_handle_exit\n");
2553 ret = kvm_arch_handle_exit(cpu, run);
2554 break;
2556 } while (ret == 0);
2558 cpu_exec_end(cpu);
2559 qemu_mutex_lock_iothread();
2561 if (ret < 0) {
2562 cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
2563 vm_stop(RUN_STATE_INTERNAL_ERROR);
2566 qatomic_set(&cpu->exit_request, 0);
2567 return ret;
2570 int kvm_ioctl(KVMState *s, int type, ...)
2572 int ret;
2573 void *arg;
2574 va_list ap;
2576 va_start(ap, type);
2577 arg = va_arg(ap, void *);
2578 va_end(ap);
2580 trace_kvm_ioctl(type, arg);
2581 ret = ioctl(s->fd, type, arg);
2582 if (ret == -1) {
2583 ret = -errno;
2585 return ret;
2588 int kvm_vm_ioctl(KVMState *s, int type, ...)
2590 int ret;
2591 void *arg;
2592 va_list ap;
2594 va_start(ap, type);
2595 arg = va_arg(ap, void *);
2596 va_end(ap);
2598 trace_kvm_vm_ioctl(type, arg);
2599 ret = ioctl(s->vmfd, type, arg);
2600 if (ret == -1) {
2601 ret = -errno;
2603 return ret;
2606 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2608 int ret;
2609 void *arg;
2610 va_list ap;
2612 va_start(ap, type);
2613 arg = va_arg(ap, void *);
2614 va_end(ap);
2616 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2617 ret = ioctl(cpu->kvm_fd, type, arg);
2618 if (ret == -1) {
2619 ret = -errno;
2621 return ret;
2624 int kvm_device_ioctl(int fd, int type, ...)
2626 int ret;
2627 void *arg;
2628 va_list ap;
2630 va_start(ap, type);
2631 arg = va_arg(ap, void *);
2632 va_end(ap);
2634 trace_kvm_device_ioctl(fd, type, arg);
2635 ret = ioctl(fd, type, arg);
2636 if (ret == -1) {
2637 ret = -errno;
2639 return ret;
2642 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2644 int ret;
2645 struct kvm_device_attr attribute = {
2646 .group = group,
2647 .attr = attr,
2650 if (!kvm_vm_attributes_allowed) {
2651 return 0;
2654 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2655 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2656 return ret ? 0 : 1;
2659 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2661 struct kvm_device_attr attribute = {
2662 .group = group,
2663 .attr = attr,
2664 .flags = 0,
2667 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2670 int kvm_device_access(int fd, int group, uint64_t attr,
2671 void *val, bool write, Error **errp)
2673 struct kvm_device_attr kvmattr;
2674 int err;
2676 kvmattr.flags = 0;
2677 kvmattr.group = group;
2678 kvmattr.attr = attr;
2679 kvmattr.addr = (uintptr_t)val;
2681 err = kvm_device_ioctl(fd,
2682 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2683 &kvmattr);
2684 if (err < 0) {
2685 error_setg_errno(errp, -err,
2686 "KVM_%s_DEVICE_ATTR failed: Group %d "
2687 "attr 0x%016" PRIx64,
2688 write ? "SET" : "GET", group, attr);
2690 return err;
2693 bool kvm_has_sync_mmu(void)
2695 return kvm_state->sync_mmu;
2698 int kvm_has_vcpu_events(void)
2700 return kvm_state->vcpu_events;
2703 int kvm_has_robust_singlestep(void)
2705 return kvm_state->robust_singlestep;
2708 int kvm_has_debugregs(void)
2710 return kvm_state->debugregs;
2713 int kvm_max_nested_state_length(void)
2715 return kvm_state->max_nested_state_len;
2718 int kvm_has_many_ioeventfds(void)
2720 if (!kvm_enabled()) {
2721 return 0;
2723 return kvm_state->many_ioeventfds;
2726 int kvm_has_gsi_routing(void)
2728 #ifdef KVM_CAP_IRQ_ROUTING
2729 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2730 #else
2731 return false;
2732 #endif
2735 int kvm_has_intx_set_mask(void)
2737 return kvm_state->intx_set_mask;
2740 bool kvm_arm_supports_user_irq(void)
2742 return kvm_check_extension(kvm_state, KVM_CAP_ARM_USER_IRQ);
2745 #ifdef KVM_CAP_SET_GUEST_DEBUG
2746 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2747 target_ulong pc)
2749 struct kvm_sw_breakpoint *bp;
2751 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2752 if (bp->pc == pc) {
2753 return bp;
2756 return NULL;
2759 int kvm_sw_breakpoints_active(CPUState *cpu)
2761 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2764 struct kvm_set_guest_debug_data {
2765 struct kvm_guest_debug dbg;
2766 int err;
2769 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2771 struct kvm_set_guest_debug_data *dbg_data =
2772 (struct kvm_set_guest_debug_data *) data.host_ptr;
2774 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2775 &dbg_data->dbg);
2778 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2780 struct kvm_set_guest_debug_data data;
2782 data.dbg.control = reinject_trap;
2784 if (cpu->singlestep_enabled) {
2785 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2787 kvm_arch_update_guest_debug(cpu, &data.dbg);
2789 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2790 RUN_ON_CPU_HOST_PTR(&data));
2791 return data.err;
2794 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2795 target_ulong len, int type)
2797 struct kvm_sw_breakpoint *bp;
2798 int err;
2800 if (type == GDB_BREAKPOINT_SW) {
2801 bp = kvm_find_sw_breakpoint(cpu, addr);
2802 if (bp) {
2803 bp->use_count++;
2804 return 0;
2807 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2808 bp->pc = addr;
2809 bp->use_count = 1;
2810 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2811 if (err) {
2812 g_free(bp);
2813 return err;
2816 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2817 } else {
2818 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2819 if (err) {
2820 return err;
2824 CPU_FOREACH(cpu) {
2825 err = kvm_update_guest_debug(cpu, 0);
2826 if (err) {
2827 return err;
2830 return 0;
2833 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2834 target_ulong len, int type)
2836 struct kvm_sw_breakpoint *bp;
2837 int err;
2839 if (type == GDB_BREAKPOINT_SW) {
2840 bp = kvm_find_sw_breakpoint(cpu, addr);
2841 if (!bp) {
2842 return -ENOENT;
2845 if (bp->use_count > 1) {
2846 bp->use_count--;
2847 return 0;
2850 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2851 if (err) {
2852 return err;
2855 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2856 g_free(bp);
2857 } else {
2858 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2859 if (err) {
2860 return err;
2864 CPU_FOREACH(cpu) {
2865 err = kvm_update_guest_debug(cpu, 0);
2866 if (err) {
2867 return err;
2870 return 0;
2873 void kvm_remove_all_breakpoints(CPUState *cpu)
2875 struct kvm_sw_breakpoint *bp, *next;
2876 KVMState *s = cpu->kvm_state;
2877 CPUState *tmpcpu;
2879 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2880 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2881 /* Try harder to find a CPU that currently sees the breakpoint. */
2882 CPU_FOREACH(tmpcpu) {
2883 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2884 break;
2888 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2889 g_free(bp);
2891 kvm_arch_remove_all_hw_breakpoints();
2893 CPU_FOREACH(cpu) {
2894 kvm_update_guest_debug(cpu, 0);
2898 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2900 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2902 return -EINVAL;
2905 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2906 target_ulong len, int type)
2908 return -EINVAL;
2911 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2912 target_ulong len, int type)
2914 return -EINVAL;
2917 void kvm_remove_all_breakpoints(CPUState *cpu)
2920 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2922 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2924 KVMState *s = kvm_state;
2925 struct kvm_signal_mask *sigmask;
2926 int r;
2928 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2930 sigmask->len = s->sigmask_len;
2931 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2932 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2933 g_free(sigmask);
2935 return r;
2938 static void kvm_ipi_signal(int sig)
2940 if (current_cpu) {
2941 assert(kvm_immediate_exit);
2942 kvm_cpu_kick(current_cpu);
2946 void kvm_init_cpu_signals(CPUState *cpu)
2948 int r;
2949 sigset_t set;
2950 struct sigaction sigact;
2952 memset(&sigact, 0, sizeof(sigact));
2953 sigact.sa_handler = kvm_ipi_signal;
2954 sigaction(SIG_IPI, &sigact, NULL);
2956 pthread_sigmask(SIG_BLOCK, NULL, &set);
2957 #if defined KVM_HAVE_MCE_INJECTION
2958 sigdelset(&set, SIGBUS);
2959 pthread_sigmask(SIG_SETMASK, &set, NULL);
2960 #endif
2961 sigdelset(&set, SIG_IPI);
2962 if (kvm_immediate_exit) {
2963 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2964 } else {
2965 r = kvm_set_signal_mask(cpu, &set);
2967 if (r) {
2968 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2969 exit(1);
2973 /* Called asynchronously in VCPU thread. */
2974 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2976 #ifdef KVM_HAVE_MCE_INJECTION
2977 if (have_sigbus_pending) {
2978 return 1;
2980 have_sigbus_pending = true;
2981 pending_sigbus_addr = addr;
2982 pending_sigbus_code = code;
2983 qatomic_set(&cpu->exit_request, 1);
2984 return 0;
2985 #else
2986 return 1;
2987 #endif
2990 /* Called synchronously (via signalfd) in main thread. */
2991 int kvm_on_sigbus(int code, void *addr)
2993 #ifdef KVM_HAVE_MCE_INJECTION
2994 /* Action required MCE kills the process if SIGBUS is blocked. Because
2995 * that's what happens in the I/O thread, where we handle MCE via signalfd,
2996 * we can only get action optional here.
2998 assert(code != BUS_MCEERR_AR);
2999 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
3000 return 0;
3001 #else
3002 return 1;
3003 #endif
3006 int kvm_create_device(KVMState *s, uint64_t type, bool test)
3008 int ret;
3009 struct kvm_create_device create_dev;
3011 create_dev.type = type;
3012 create_dev.fd = -1;
3013 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
3015 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
3016 return -ENOTSUP;
3019 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
3020 if (ret) {
3021 return ret;
3024 return test ? 0 : create_dev.fd;
3027 bool kvm_device_supported(int vmfd, uint64_t type)
3029 struct kvm_create_device create_dev = {
3030 .type = type,
3031 .fd = -1,
3032 .flags = KVM_CREATE_DEVICE_TEST,
3035 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
3036 return false;
3039 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
3042 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
3044 struct kvm_one_reg reg;
3045 int r;
3047 reg.id = id;
3048 reg.addr = (uintptr_t) source;
3049 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
3050 if (r) {
3051 trace_kvm_failed_reg_set(id, strerror(-r));
3053 return r;
3056 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
3058 struct kvm_one_reg reg;
3059 int r;
3061 reg.id = id;
3062 reg.addr = (uintptr_t) target;
3063 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
3064 if (r) {
3065 trace_kvm_failed_reg_get(id, strerror(-r));
3067 return r;
3070 static bool kvm_accel_has_memory(MachineState *ms, AddressSpace *as,
3071 hwaddr start_addr, hwaddr size)
3073 KVMState *kvm = KVM_STATE(ms->accelerator);
3074 int i;
3076 for (i = 0; i < kvm->nr_as; ++i) {
3077 if (kvm->as[i].as == as && kvm->as[i].ml) {
3078 size = MIN(kvm_max_slot_size, size);
3079 return NULL != kvm_lookup_matching_slot(kvm->as[i].ml,
3080 start_addr, size);
3084 return false;
3087 static void kvm_get_kvm_shadow_mem(Object *obj, Visitor *v,
3088 const char *name, void *opaque,
3089 Error **errp)
3091 KVMState *s = KVM_STATE(obj);
3092 int64_t value = s->kvm_shadow_mem;
3094 visit_type_int(v, name, &value, errp);
3097 static void kvm_set_kvm_shadow_mem(Object *obj, Visitor *v,
3098 const char *name, void *opaque,
3099 Error **errp)
3101 KVMState *s = KVM_STATE(obj);
3102 int64_t value;
3104 if (!visit_type_int(v, name, &value, errp)) {
3105 return;
3108 s->kvm_shadow_mem = value;
3111 static void kvm_set_kernel_irqchip(Object *obj, Visitor *v,
3112 const char *name, void *opaque,
3113 Error **errp)
3115 KVMState *s = KVM_STATE(obj);
3116 OnOffSplit mode;
3118 if (!visit_type_OnOffSplit(v, name, &mode, errp)) {
3119 return;
3121 switch (mode) {
3122 case ON_OFF_SPLIT_ON:
3123 s->kernel_irqchip_allowed = true;
3124 s->kernel_irqchip_required = true;
3125 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3126 break;
3127 case ON_OFF_SPLIT_OFF:
3128 s->kernel_irqchip_allowed = false;
3129 s->kernel_irqchip_required = false;
3130 s->kernel_irqchip_split = ON_OFF_AUTO_OFF;
3131 break;
3132 case ON_OFF_SPLIT_SPLIT:
3133 s->kernel_irqchip_allowed = true;
3134 s->kernel_irqchip_required = true;
3135 s->kernel_irqchip_split = ON_OFF_AUTO_ON;
3136 break;
3137 default:
3138 /* The value was checked in visit_type_OnOffSplit() above. If
3139 * we get here, then something is wrong in QEMU.
3141 abort();
3145 bool kvm_kernel_irqchip_allowed(void)
3147 return kvm_state->kernel_irqchip_allowed;
3150 bool kvm_kernel_irqchip_required(void)
3152 return kvm_state->kernel_irqchip_required;
3155 bool kvm_kernel_irqchip_split(void)
3157 return kvm_state->kernel_irqchip_split == ON_OFF_AUTO_ON;
3160 static void kvm_accel_instance_init(Object *obj)
3162 KVMState *s = KVM_STATE(obj);
3164 s->kvm_shadow_mem = -1;
3165 s->kernel_irqchip_allowed = true;
3166 s->kernel_irqchip_split = ON_OFF_AUTO_AUTO;
3169 static void kvm_accel_class_init(ObjectClass *oc, void *data)
3171 AccelClass *ac = ACCEL_CLASS(oc);
3172 ac->name = "KVM";
3173 ac->init_machine = kvm_init;
3174 ac->has_memory = kvm_accel_has_memory;
3175 ac->allowed = &kvm_allowed;
3177 object_class_property_add(oc, "kernel-irqchip", "on|off|split",
3178 NULL, kvm_set_kernel_irqchip,
3179 NULL, NULL);
3180 object_class_property_set_description(oc, "kernel-irqchip",
3181 "Configure KVM in-kernel irqchip");
3183 object_class_property_add(oc, "kvm-shadow-mem", "int",
3184 kvm_get_kvm_shadow_mem, kvm_set_kvm_shadow_mem,
3185 NULL, NULL);
3186 object_class_property_set_description(oc, "kvm-shadow-mem",
3187 "KVM shadow MMU size");
3190 static const TypeInfo kvm_accel_type = {
3191 .name = TYPE_KVM_ACCEL,
3192 .parent = TYPE_ACCEL,
3193 .instance_init = kvm_accel_instance_init,
3194 .class_init = kvm_accel_class_init,
3195 .instance_size = sizeof(KVMState),
3198 static void kvm_type_init(void)
3200 type_register_static(&kvm_accel_type);
3203 type_init(kvm_type_init);