2 * QEMU Floppy disk emulator (Intel 82078)
4 * Copyright (c) 2003, 2007 Jocelyn Mayer
5 * Copyright (c) 2008 Hervé Poussineau
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * The controller is used in Sun4m systems in a slightly different
27 * way. There are changes in DOR register and DMA is not available.
30 #include "qemu/osdep.h"
32 #include "hw/block/fdc.h"
33 #include "qapi/error.h"
34 #include "qemu/error-report.h"
35 #include "qemu/timer.h"
36 #include "hw/isa/isa.h"
37 #include "hw/sysbus.h"
38 #include "hw/block/block.h"
39 #include "sysemu/block-backend.h"
40 #include "sysemu/blockdev.h"
41 #include "sysemu/sysemu.h"
45 /********************************************************/
46 /* debug Floppy devices */
48 #define DEBUG_FLOPPY 0
50 #define FLOPPY_DPRINTF(fmt, ...) \
53 fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__); \
58 /********************************************************/
61 #define TYPE_FLOPPY_BUS "floppy-bus"
62 #define FLOPPY_BUS(obj) OBJECT_CHECK(FloppyBus, (obj), TYPE_FLOPPY_BUS)
64 typedef struct FDCtrl FDCtrl
;
65 typedef struct FDrive FDrive
;
66 static FDrive
*get_drv(FDCtrl
*fdctrl
, int unit
);
68 typedef struct FloppyBus
{
73 static const TypeInfo floppy_bus_info
= {
74 .name
= TYPE_FLOPPY_BUS
,
76 .instance_size
= sizeof(FloppyBus
),
79 static void floppy_bus_create(FDCtrl
*fdc
, FloppyBus
*bus
, DeviceState
*dev
)
81 qbus_create_inplace(bus
, sizeof(FloppyBus
), TYPE_FLOPPY_BUS
, dev
, NULL
);
86 /********************************************************/
87 /* Floppy drive emulation */
89 typedef enum FDriveRate
{
90 FDRIVE_RATE_500K
= 0x00, /* 500 Kbps */
91 FDRIVE_RATE_300K
= 0x01, /* 300 Kbps */
92 FDRIVE_RATE_250K
= 0x02, /* 250 Kbps */
93 FDRIVE_RATE_1M
= 0x03, /* 1 Mbps */
96 typedef enum FDriveSize
{
102 typedef struct FDFormat
{
103 FloppyDriveType drive
;
110 /* In many cases, the total sector size of a format is enough to uniquely
111 * identify it. However, there are some total sector collisions between
112 * formats of different physical size, and these are noted below by
113 * highlighting the total sector size for entries with collisions. */
114 static const FDFormat fd_formats
[] = {
115 /* First entry is default format */
116 /* 1.44 MB 3"1/2 floppy disks */
117 { FLOPPY_DRIVE_TYPE_144
, 18, 80, 1, FDRIVE_RATE_500K
, }, /* 3.5" 2880 */
118 { FLOPPY_DRIVE_TYPE_144
, 20, 80, 1, FDRIVE_RATE_500K
, }, /* 3.5" 3200 */
119 { FLOPPY_DRIVE_TYPE_144
, 21, 80, 1, FDRIVE_RATE_500K
, },
120 { FLOPPY_DRIVE_TYPE_144
, 21, 82, 1, FDRIVE_RATE_500K
, },
121 { FLOPPY_DRIVE_TYPE_144
, 21, 83, 1, FDRIVE_RATE_500K
, },
122 { FLOPPY_DRIVE_TYPE_144
, 22, 80, 1, FDRIVE_RATE_500K
, },
123 { FLOPPY_DRIVE_TYPE_144
, 23, 80, 1, FDRIVE_RATE_500K
, },
124 { FLOPPY_DRIVE_TYPE_144
, 24, 80, 1, FDRIVE_RATE_500K
, },
125 /* 2.88 MB 3"1/2 floppy disks */
126 { FLOPPY_DRIVE_TYPE_288
, 36, 80, 1, FDRIVE_RATE_1M
, },
127 { FLOPPY_DRIVE_TYPE_288
, 39, 80, 1, FDRIVE_RATE_1M
, },
128 { FLOPPY_DRIVE_TYPE_288
, 40, 80, 1, FDRIVE_RATE_1M
, },
129 { FLOPPY_DRIVE_TYPE_288
, 44, 80, 1, FDRIVE_RATE_1M
, },
130 { FLOPPY_DRIVE_TYPE_288
, 48, 80, 1, FDRIVE_RATE_1M
, },
131 /* 720 kB 3"1/2 floppy disks */
132 { FLOPPY_DRIVE_TYPE_144
, 9, 80, 1, FDRIVE_RATE_250K
, }, /* 3.5" 1440 */
133 { FLOPPY_DRIVE_TYPE_144
, 10, 80, 1, FDRIVE_RATE_250K
, },
134 { FLOPPY_DRIVE_TYPE_144
, 10, 82, 1, FDRIVE_RATE_250K
, },
135 { FLOPPY_DRIVE_TYPE_144
, 10, 83, 1, FDRIVE_RATE_250K
, },
136 { FLOPPY_DRIVE_TYPE_144
, 13, 80, 1, FDRIVE_RATE_250K
, },
137 { FLOPPY_DRIVE_TYPE_144
, 14, 80, 1, FDRIVE_RATE_250K
, },
138 /* 1.2 MB 5"1/4 floppy disks */
139 { FLOPPY_DRIVE_TYPE_120
, 15, 80, 1, FDRIVE_RATE_500K
, },
140 { FLOPPY_DRIVE_TYPE_120
, 18, 80, 1, FDRIVE_RATE_500K
, }, /* 5.25" 2880 */
141 { FLOPPY_DRIVE_TYPE_120
, 18, 82, 1, FDRIVE_RATE_500K
, },
142 { FLOPPY_DRIVE_TYPE_120
, 18, 83, 1, FDRIVE_RATE_500K
, },
143 { FLOPPY_DRIVE_TYPE_120
, 20, 80, 1, FDRIVE_RATE_500K
, }, /* 5.25" 3200 */
144 /* 720 kB 5"1/4 floppy disks */
145 { FLOPPY_DRIVE_TYPE_120
, 9, 80, 1, FDRIVE_RATE_250K
, }, /* 5.25" 1440 */
146 { FLOPPY_DRIVE_TYPE_120
, 11, 80, 1, FDRIVE_RATE_250K
, },
147 /* 360 kB 5"1/4 floppy disks */
148 { FLOPPY_DRIVE_TYPE_120
, 9, 40, 1, FDRIVE_RATE_300K
, }, /* 5.25" 720 */
149 { FLOPPY_DRIVE_TYPE_120
, 9, 40, 0, FDRIVE_RATE_300K
, },
150 { FLOPPY_DRIVE_TYPE_120
, 10, 41, 1, FDRIVE_RATE_300K
, },
151 { FLOPPY_DRIVE_TYPE_120
, 10, 42, 1, FDRIVE_RATE_300K
, },
152 /* 320 kB 5"1/4 floppy disks */
153 { FLOPPY_DRIVE_TYPE_120
, 8, 40, 1, FDRIVE_RATE_250K
, },
154 { FLOPPY_DRIVE_TYPE_120
, 8, 40, 0, FDRIVE_RATE_250K
, },
155 /* 360 kB must match 5"1/4 better than 3"1/2... */
156 { FLOPPY_DRIVE_TYPE_144
, 9, 80, 0, FDRIVE_RATE_250K
, }, /* 3.5" 720 */
158 { FLOPPY_DRIVE_TYPE_NONE
, -1, -1, 0, 0, },
161 static FDriveSize
drive_size(FloppyDriveType drive
)
164 case FLOPPY_DRIVE_TYPE_120
:
165 return FDRIVE_SIZE_525
;
166 case FLOPPY_DRIVE_TYPE_144
:
167 case FLOPPY_DRIVE_TYPE_288
:
168 return FDRIVE_SIZE_350
;
170 return FDRIVE_SIZE_UNKNOWN
;
174 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
175 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
177 /* Will always be a fixed parameter for us */
178 #define FD_SECTOR_LEN 512
179 #define FD_SECTOR_SC 2 /* Sector size code */
180 #define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */
182 /* Floppy disk drive emulation */
183 typedef enum FDiskFlags
{
184 FDISK_DBL_SIDES
= 0x01,
192 FloppyDriveType drive
; /* CMOS drive type */
193 uint8_t perpendicular
; /* 2.88 MB access mode */
199 FloppyDriveType disk
; /* Current disk type */
201 uint8_t last_sect
; /* Nb sector per track */
202 uint8_t max_track
; /* Nb of tracks */
203 uint16_t bps
; /* Bytes per sector */
204 uint8_t ro
; /* Is read-only */
205 uint8_t media_changed
; /* Is media changed */
206 uint8_t media_rate
; /* Data rate of medium */
208 bool media_validated
; /* Have we validated the media? */
212 static FloppyDriveType
get_fallback_drive_type(FDrive
*drv
);
214 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
215 * currently goes through some pains to keep seeks within the bounds
216 * established by last_sect and max_track. Correcting this is difficult,
217 * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
219 * For now: allow empty drives to have large bounds so we can seek around,
220 * with the understanding that when a diskette is inserted, the bounds will
221 * properly tighten to match the geometry of that inserted medium.
223 static void fd_empty_seek_hack(FDrive
*drv
)
225 drv
->last_sect
= 0xFF;
226 drv
->max_track
= 0xFF;
229 static void fd_init(FDrive
*drv
)
232 drv
->perpendicular
= 0;
234 drv
->disk
= FLOPPY_DRIVE_TYPE_NONE
;
238 drv
->media_changed
= 1;
241 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
243 static int fd_sector_calc(uint8_t head
, uint8_t track
, uint8_t sect
,
244 uint8_t last_sect
, uint8_t num_sides
)
246 return (((track
* num_sides
) + head
) * last_sect
) + sect
- 1;
249 /* Returns current position, in sectors, for given drive */
250 static int fd_sector(FDrive
*drv
)
252 return fd_sector_calc(drv
->head
, drv
->track
, drv
->sect
, drv
->last_sect
,
256 /* Returns current position, in bytes, for given drive */
257 static int fd_offset(FDrive
*drv
)
259 g_assert(fd_sector(drv
) < INT_MAX
>> BDRV_SECTOR_BITS
);
260 return fd_sector(drv
) << BDRV_SECTOR_BITS
;
263 /* Seek to a new position:
264 * returns 0 if already on right track
265 * returns 1 if track changed
266 * returns 2 if track is invalid
267 * returns 3 if sector is invalid
268 * returns 4 if seek is disabled
270 static int fd_seek(FDrive
*drv
, uint8_t head
, uint8_t track
, uint8_t sect
,
276 if (track
> drv
->max_track
||
277 (head
!= 0 && (drv
->flags
& FDISK_DBL_SIDES
) == 0)) {
278 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
279 head
, track
, sect
, 1,
280 (drv
->flags
& FDISK_DBL_SIDES
) == 0 ? 0 : 1,
281 drv
->max_track
, drv
->last_sect
);
284 if (sect
> drv
->last_sect
) {
285 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
286 head
, track
, sect
, 1,
287 (drv
->flags
& FDISK_DBL_SIDES
) == 0 ? 0 : 1,
288 drv
->max_track
, drv
->last_sect
);
291 sector
= fd_sector_calc(head
, track
, sect
, drv
->last_sect
, NUM_SIDES(drv
));
293 if (sector
!= fd_sector(drv
)) {
296 FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
297 " (max=%d %02x %02x)\n",
298 head
, track
, sect
, 1, drv
->max_track
,
304 if (drv
->track
!= track
) {
305 if (drv
->blk
!= NULL
&& blk_is_inserted(drv
->blk
)) {
306 drv
->media_changed
= 0;
314 if (drv
->blk
== NULL
|| !blk_is_inserted(drv
->blk
)) {
321 /* Set drive back to track 0 */
322 static void fd_recalibrate(FDrive
*drv
)
324 FLOPPY_DPRINTF("recalibrate\n");
325 fd_seek(drv
, 0, 0, 1, 1);
329 * Determine geometry based on inserted diskette.
330 * Will not operate on an empty drive.
332 * @return: 0 on success, -1 if the drive is empty.
334 static int pick_geometry(FDrive
*drv
)
336 BlockBackend
*blk
= drv
->blk
;
337 const FDFormat
*parse
;
338 uint64_t nb_sectors
, size
;
340 int match
, size_match
, type_match
;
341 bool magic
= drv
->drive
== FLOPPY_DRIVE_TYPE_AUTO
;
343 /* We can only pick a geometry if we have a diskette. */
344 if (!drv
->blk
|| !blk_is_inserted(drv
->blk
) ||
345 drv
->drive
== FLOPPY_DRIVE_TYPE_NONE
)
350 /* We need to determine the likely geometry of the inserted medium.
351 * In order of preference, we look for:
352 * (1) The same drive type and number of sectors,
353 * (2) The same diskette size and number of sectors,
354 * (3) The same drive type.
356 * In all cases, matches that occur higher in the drive table will take
357 * precedence over matches that occur later in the table.
359 blk_get_geometry(blk
, &nb_sectors
);
360 match
= size_match
= type_match
= -1;
362 parse
= &fd_formats
[i
];
363 if (parse
->drive
== FLOPPY_DRIVE_TYPE_NONE
) {
366 size
= (parse
->max_head
+ 1) * parse
->max_track
* parse
->last_sect
;
367 if (nb_sectors
== size
) {
368 if (magic
|| parse
->drive
== drv
->drive
) {
369 /* (1) perfect match -- nb_sectors and drive type */
371 } else if (drive_size(parse
->drive
) == drive_size(drv
->drive
)) {
372 /* (2) size match -- nb_sectors and physical medium size */
373 match
= (match
== -1) ? i
: match
;
375 /* This is suspicious -- Did the user misconfigure? */
376 size_match
= (size_match
== -1) ? i
: size_match
;
378 } else if (type_match
== -1) {
379 if ((parse
->drive
== drv
->drive
) ||
380 (magic
&& (parse
->drive
== get_fallback_drive_type(drv
)))) {
381 /* (3) type match -- nb_sectors mismatch, but matches the type
382 * specified explicitly by the user, or matches the fallback
383 * default type when using the drive autodetect mechanism */
389 /* No exact match found */
391 if (size_match
!= -1) {
392 parse
= &fd_formats
[size_match
];
393 FLOPPY_DPRINTF("User requested floppy drive type '%s', "
394 "but inserted medium appears to be a "
395 "%"PRId64
" sector '%s' type\n",
396 FloppyDriveType_str(drv
->drive
),
398 FloppyDriveType_str(parse
->drive
));
400 assert(type_match
!= -1 && "misconfigured fd_format");
403 parse
= &(fd_formats
[match
]);
406 if (parse
->max_head
== 0) {
407 drv
->flags
&= ~FDISK_DBL_SIDES
;
409 drv
->flags
|= FDISK_DBL_SIDES
;
411 drv
->max_track
= parse
->max_track
;
412 drv
->last_sect
= parse
->last_sect
;
413 drv
->disk
= parse
->drive
;
414 drv
->media_rate
= parse
->rate
;
418 static void pick_drive_type(FDrive
*drv
)
420 if (drv
->drive
!= FLOPPY_DRIVE_TYPE_AUTO
) {
424 if (pick_geometry(drv
) == 0) {
425 drv
->drive
= drv
->disk
;
427 drv
->drive
= get_fallback_drive_type(drv
);
430 g_assert(drv
->drive
!= FLOPPY_DRIVE_TYPE_AUTO
);
433 /* Revalidate a disk drive after a disk change */
434 static void fd_revalidate(FDrive
*drv
)
438 FLOPPY_DPRINTF("revalidate\n");
439 if (drv
->blk
!= NULL
) {
440 drv
->ro
= blk_is_read_only(drv
->blk
);
441 if (!blk_is_inserted(drv
->blk
)) {
442 FLOPPY_DPRINTF("No disk in drive\n");
443 drv
->disk
= FLOPPY_DRIVE_TYPE_NONE
;
444 fd_empty_seek_hack(drv
);
445 } else if (!drv
->media_validated
) {
446 rc
= pick_geometry(drv
);
448 FLOPPY_DPRINTF("Could not validate floppy drive media");
450 drv
->media_validated
= true;
451 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
452 (drv
->flags
& FDISK_DBL_SIDES
) ? 2 : 1,
453 drv
->max_track
, drv
->last_sect
,
454 drv
->ro
? "ro" : "rw");
458 FLOPPY_DPRINTF("No drive connected\n");
461 drv
->flags
&= ~FDISK_DBL_SIDES
;
462 drv
->drive
= FLOPPY_DRIVE_TYPE_NONE
;
463 drv
->disk
= FLOPPY_DRIVE_TYPE_NONE
;
467 static void fd_change_cb(void *opaque
, bool load
, Error
**errp
)
469 FDrive
*drive
= opaque
;
472 blk_set_perm(drive
->blk
, 0, BLK_PERM_ALL
, &error_abort
);
474 if (!blkconf_apply_backend_options(drive
->conf
,
475 blk_is_read_only(drive
->blk
), false,
481 drive
->media_changed
= 1;
482 drive
->media_validated
= false;
483 fd_revalidate(drive
);
486 static const BlockDevOps fd_block_ops
= {
487 .change_media_cb
= fd_change_cb
,
491 #define TYPE_FLOPPY_DRIVE "floppy"
492 #define FLOPPY_DRIVE(obj) \
493 OBJECT_CHECK(FloppyDrive, (obj), TYPE_FLOPPY_DRIVE)
495 typedef struct FloppyDrive
{
499 FloppyDriveType type
;
502 static Property floppy_drive_properties
[] = {
503 DEFINE_PROP_UINT32("unit", FloppyDrive
, unit
, -1),
504 DEFINE_BLOCK_PROPERTIES(FloppyDrive
, conf
),
505 DEFINE_PROP_SIGNED("drive-type", FloppyDrive
, type
,
506 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
508 DEFINE_PROP_END_OF_LIST(),
511 static void floppy_drive_realize(DeviceState
*qdev
, Error
**errp
)
513 FloppyDrive
*dev
= FLOPPY_DRIVE(qdev
);
514 FloppyBus
*bus
= FLOPPY_BUS(qdev
->parent_bus
);
518 if (dev
->unit
== -1) {
519 for (dev
->unit
= 0; dev
->unit
< MAX_FD
; dev
->unit
++) {
520 drive
= get_drv(bus
->fdc
, dev
->unit
);
527 if (dev
->unit
>= MAX_FD
) {
528 error_setg(errp
, "Can't create floppy unit %d, bus supports "
529 "only %d units", dev
->unit
, MAX_FD
);
533 drive
= get_drv(bus
->fdc
, dev
->unit
);
535 error_setg(errp
, "Floppy unit %d is in use", dev
->unit
);
539 if (!dev
->conf
.blk
) {
540 /* Anonymous BlockBackend for an empty drive */
541 dev
->conf
.blk
= blk_new(0, BLK_PERM_ALL
);
542 ret
= blk_attach_dev(dev
->conf
.blk
, qdev
);
546 blkconf_blocksizes(&dev
->conf
);
547 if (dev
->conf
.logical_block_size
!= 512 ||
548 dev
->conf
.physical_block_size
!= 512)
550 error_setg(errp
, "Physical and logical block size must "
551 "be 512 for floppy");
555 /* rerror/werror aren't supported by fdc and therefore not even registered
556 * with qdev. So set the defaults manually before they are used in
557 * blkconf_apply_backend_options(). */
558 dev
->conf
.rerror
= BLOCKDEV_ON_ERROR_AUTO
;
559 dev
->conf
.werror
= BLOCKDEV_ON_ERROR_AUTO
;
561 if (!blkconf_apply_backend_options(&dev
->conf
,
562 blk_is_read_only(dev
->conf
.blk
),
567 /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us
568 * for empty drives. */
569 if (blk_get_on_error(dev
->conf
.blk
, 0) != BLOCKDEV_ON_ERROR_ENOSPC
&&
570 blk_get_on_error(dev
->conf
.blk
, 0) != BLOCKDEV_ON_ERROR_REPORT
) {
571 error_setg(errp
, "fdc doesn't support drive option werror");
574 if (blk_get_on_error(dev
->conf
.blk
, 1) != BLOCKDEV_ON_ERROR_REPORT
) {
575 error_setg(errp
, "fdc doesn't support drive option rerror");
579 drive
->conf
= &dev
->conf
;
580 drive
->blk
= dev
->conf
.blk
;
581 drive
->fdctrl
= bus
->fdc
;
584 blk_set_dev_ops(drive
->blk
, &fd_block_ops
, drive
);
586 /* Keep 'type' qdev property and FDrive->drive in sync */
587 drive
->drive
= dev
->type
;
588 pick_drive_type(drive
);
589 dev
->type
= drive
->drive
;
591 fd_revalidate(drive
);
594 static void floppy_drive_class_init(ObjectClass
*klass
, void *data
)
596 DeviceClass
*k
= DEVICE_CLASS(klass
);
597 k
->realize
= floppy_drive_realize
;
598 set_bit(DEVICE_CATEGORY_STORAGE
, k
->categories
);
599 k
->bus_type
= TYPE_FLOPPY_BUS
;
600 k
->props
= floppy_drive_properties
;
601 k
->desc
= "virtual floppy drive";
604 static const TypeInfo floppy_drive_info
= {
605 .name
= TYPE_FLOPPY_DRIVE
,
606 .parent
= TYPE_DEVICE
,
607 .instance_size
= sizeof(FloppyDrive
),
608 .class_init
= floppy_drive_class_init
,
611 /********************************************************/
612 /* Intel 82078 floppy disk controller emulation */
614 static void fdctrl_reset(FDCtrl
*fdctrl
, int do_irq
);
615 static void fdctrl_to_command_phase(FDCtrl
*fdctrl
);
616 static int fdctrl_transfer_handler (void *opaque
, int nchan
,
617 int dma_pos
, int dma_len
);
618 static void fdctrl_raise_irq(FDCtrl
*fdctrl
);
619 static FDrive
*get_cur_drv(FDCtrl
*fdctrl
);
621 static uint32_t fdctrl_read_statusA(FDCtrl
*fdctrl
);
622 static uint32_t fdctrl_read_statusB(FDCtrl
*fdctrl
);
623 static uint32_t fdctrl_read_dor(FDCtrl
*fdctrl
);
624 static void fdctrl_write_dor(FDCtrl
*fdctrl
, uint32_t value
);
625 static uint32_t fdctrl_read_tape(FDCtrl
*fdctrl
);
626 static void fdctrl_write_tape(FDCtrl
*fdctrl
, uint32_t value
);
627 static uint32_t fdctrl_read_main_status(FDCtrl
*fdctrl
);
628 static void fdctrl_write_rate(FDCtrl
*fdctrl
, uint32_t value
);
629 static uint32_t fdctrl_read_data(FDCtrl
*fdctrl
);
630 static void fdctrl_write_data(FDCtrl
*fdctrl
, uint32_t value
);
631 static uint32_t fdctrl_read_dir(FDCtrl
*fdctrl
);
632 static void fdctrl_write_ccr(FDCtrl
*fdctrl
, uint32_t value
);
644 FD_STATE_MULTI
= 0x01, /* multi track flag */
645 FD_STATE_FORMAT
= 0x02, /* format flag */
661 FD_CMD_READ_TRACK
= 0x02,
662 FD_CMD_SPECIFY
= 0x03,
663 FD_CMD_SENSE_DRIVE_STATUS
= 0x04,
666 FD_CMD_RECALIBRATE
= 0x07,
667 FD_CMD_SENSE_INTERRUPT_STATUS
= 0x08,
668 FD_CMD_WRITE_DELETED
= 0x09,
669 FD_CMD_READ_ID
= 0x0a,
670 FD_CMD_READ_DELETED
= 0x0c,
671 FD_CMD_FORMAT_TRACK
= 0x0d,
672 FD_CMD_DUMPREG
= 0x0e,
674 FD_CMD_VERSION
= 0x10,
675 FD_CMD_SCAN_EQUAL
= 0x11,
676 FD_CMD_PERPENDICULAR_MODE
= 0x12,
677 FD_CMD_CONFIGURE
= 0x13,
679 FD_CMD_VERIFY
= 0x16,
680 FD_CMD_POWERDOWN_MODE
= 0x17,
681 FD_CMD_PART_ID
= 0x18,
682 FD_CMD_SCAN_LOW_OR_EQUAL
= 0x19,
683 FD_CMD_SCAN_HIGH_OR_EQUAL
= 0x1d,
685 FD_CMD_OPTION
= 0x33,
686 FD_CMD_RESTORE
= 0x4e,
687 FD_CMD_DRIVE_SPECIFICATION_COMMAND
= 0x8e,
688 FD_CMD_RELATIVE_SEEK_OUT
= 0x8f,
689 FD_CMD_FORMAT_AND_WRITE
= 0xcd,
690 FD_CMD_RELATIVE_SEEK_IN
= 0xcf,
694 FD_CONFIG_PRETRK
= 0xff, /* Pre-compensation set to track 0 */
695 FD_CONFIG_FIFOTHR
= 0x0f, /* FIFO threshold set to 1 byte */
696 FD_CONFIG_POLL
= 0x10, /* Poll enabled */
697 FD_CONFIG_EFIFO
= 0x20, /* FIFO disabled */
698 FD_CONFIG_EIS
= 0x40, /* No implied seeks */
707 FD_SR0_ABNTERM
= 0x40,
708 FD_SR0_INVCMD
= 0x80,
709 FD_SR0_RDYCHG
= 0xc0,
713 FD_SR1_MA
= 0x01, /* Missing address mark */
714 FD_SR1_NW
= 0x02, /* Not writable */
715 FD_SR1_EC
= 0x80, /* End of cylinder */
719 FD_SR2_SNS
= 0x04, /* Scan not satisfied */
720 FD_SR2_SEH
= 0x08, /* Scan equal hit */
731 FD_SRA_INTPEND
= 0x80,
745 FD_DOR_SELMASK
= 0x03,
747 FD_DOR_SELMASK
= 0x01,
749 FD_DOR_nRESET
= 0x04,
751 FD_DOR_MOTEN0
= 0x10,
752 FD_DOR_MOTEN1
= 0x20,
753 FD_DOR_MOTEN2
= 0x40,
754 FD_DOR_MOTEN3
= 0x80,
759 FD_TDR_BOOTSEL
= 0x0c,
761 FD_TDR_BOOTSEL
= 0x04,
766 FD_DSR_DRATEMASK
= 0x03,
767 FD_DSR_PWRDOWN
= 0x40,
768 FD_DSR_SWRESET
= 0x80,
772 FD_MSR_DRV0BUSY
= 0x01,
773 FD_MSR_DRV1BUSY
= 0x02,
774 FD_MSR_DRV2BUSY
= 0x04,
775 FD_MSR_DRV3BUSY
= 0x08,
776 FD_MSR_CMDBUSY
= 0x10,
777 FD_MSR_NONDMA
= 0x20,
783 FD_DIR_DSKCHG
= 0x80,
787 * See chapter 5.0 "Controller phases" of the spec:
790 * The host writes a command and its parameters into the FIFO. The command
791 * phase is completed when all parameters for the command have been supplied,
792 * and execution phase is entered.
795 * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
796 * contains the payload now, otherwise it's unused. When all bytes of the
797 * required data have been transferred, the state is switched to either result
798 * phase (if the command produces status bytes) or directly back into the
799 * command phase for the next command.
802 * The host reads out the FIFO, which contains one or more result bytes now.
805 /* Only for migration: reconstruct phase from registers like qemu 2.3 */
806 FD_PHASE_RECONSTRUCT
= 0,
808 FD_PHASE_COMMAND
= 1,
809 FD_PHASE_EXECUTION
= 2,
813 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
814 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
819 /* Controller state */
820 QEMUTimer
*result_timer
;
824 /* Controller's identification */
830 uint8_t dor_vmstate
; /* only used as temp during vmstate */
845 uint8_t eot
; /* last wanted sector */
846 /* States kept only to be returned back */
847 /* precompensation */
851 /* Power down config (also with status regB access mode */
855 uint8_t num_floppies
;
856 FDrive drives
[MAX_FD
];
859 FloppyDriveType type
;
860 } qdev_for_drives
[MAX_FD
];
862 uint32_t check_media_rate
;
863 FloppyDriveType fallback
; /* type=auto failure fallback */
867 PortioList portio_list
;
870 static FloppyDriveType
get_fallback_drive_type(FDrive
*drv
)
872 return drv
->fdctrl
->fallback
;
875 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
876 #define SYSBUS_FDC(obj) OBJECT_CHECK(FDCtrlSysBus, (obj), TYPE_SYSBUS_FDC)
878 typedef struct FDCtrlSysBus
{
880 SysBusDevice parent_obj
;
886 #define ISA_FDC(obj) OBJECT_CHECK(FDCtrlISABus, (obj), TYPE_ISA_FDC)
888 typedef struct FDCtrlISABus
{
889 ISADevice parent_obj
;
899 static uint32_t fdctrl_read (void *opaque
, uint32_t reg
)
901 FDCtrl
*fdctrl
= opaque
;
907 retval
= fdctrl_read_statusA(fdctrl
);
910 retval
= fdctrl_read_statusB(fdctrl
);
913 retval
= fdctrl_read_dor(fdctrl
);
916 retval
= fdctrl_read_tape(fdctrl
);
919 retval
= fdctrl_read_main_status(fdctrl
);
922 retval
= fdctrl_read_data(fdctrl
);
925 retval
= fdctrl_read_dir(fdctrl
);
928 retval
= (uint32_t)(-1);
931 trace_fdc_ioport_read(reg
, retval
);
936 static void fdctrl_write (void *opaque
, uint32_t reg
, uint32_t value
)
938 FDCtrl
*fdctrl
= opaque
;
941 trace_fdc_ioport_write(reg
, value
);
944 fdctrl_write_dor(fdctrl
, value
);
947 fdctrl_write_tape(fdctrl
, value
);
950 fdctrl_write_rate(fdctrl
, value
);
953 fdctrl_write_data(fdctrl
, value
);
956 fdctrl_write_ccr(fdctrl
, value
);
963 static uint64_t fdctrl_read_mem (void *opaque
, hwaddr reg
,
966 return fdctrl_read(opaque
, (uint32_t)reg
);
969 static void fdctrl_write_mem (void *opaque
, hwaddr reg
,
970 uint64_t value
, unsigned size
)
972 fdctrl_write(opaque
, (uint32_t)reg
, value
);
975 static const MemoryRegionOps fdctrl_mem_ops
= {
976 .read
= fdctrl_read_mem
,
977 .write
= fdctrl_write_mem
,
978 .endianness
= DEVICE_NATIVE_ENDIAN
,
981 static const MemoryRegionOps fdctrl_mem_strict_ops
= {
982 .read
= fdctrl_read_mem
,
983 .write
= fdctrl_write_mem
,
984 .endianness
= DEVICE_NATIVE_ENDIAN
,
986 .min_access_size
= 1,
987 .max_access_size
= 1,
991 static bool fdrive_media_changed_needed(void *opaque
)
993 FDrive
*drive
= opaque
;
995 return (drive
->blk
!= NULL
&& drive
->media_changed
!= 1);
998 static const VMStateDescription vmstate_fdrive_media_changed
= {
999 .name
= "fdrive/media_changed",
1001 .minimum_version_id
= 1,
1002 .needed
= fdrive_media_changed_needed
,
1003 .fields
= (VMStateField
[]) {
1004 VMSTATE_UINT8(media_changed
, FDrive
),
1005 VMSTATE_END_OF_LIST()
1009 static bool fdrive_media_rate_needed(void *opaque
)
1011 FDrive
*drive
= opaque
;
1013 return drive
->fdctrl
->check_media_rate
;
1016 static const VMStateDescription vmstate_fdrive_media_rate
= {
1017 .name
= "fdrive/media_rate",
1019 .minimum_version_id
= 1,
1020 .needed
= fdrive_media_rate_needed
,
1021 .fields
= (VMStateField
[]) {
1022 VMSTATE_UINT8(media_rate
, FDrive
),
1023 VMSTATE_END_OF_LIST()
1027 static bool fdrive_perpendicular_needed(void *opaque
)
1029 FDrive
*drive
= opaque
;
1031 return drive
->perpendicular
!= 0;
1034 static const VMStateDescription vmstate_fdrive_perpendicular
= {
1035 .name
= "fdrive/perpendicular",
1037 .minimum_version_id
= 1,
1038 .needed
= fdrive_perpendicular_needed
,
1039 .fields
= (VMStateField
[]) {
1040 VMSTATE_UINT8(perpendicular
, FDrive
),
1041 VMSTATE_END_OF_LIST()
1045 static int fdrive_post_load(void *opaque
, int version_id
)
1047 fd_revalidate(opaque
);
1051 static const VMStateDescription vmstate_fdrive
= {
1054 .minimum_version_id
= 1,
1055 .post_load
= fdrive_post_load
,
1056 .fields
= (VMStateField
[]) {
1057 VMSTATE_UINT8(head
, FDrive
),
1058 VMSTATE_UINT8(track
, FDrive
),
1059 VMSTATE_UINT8(sect
, FDrive
),
1060 VMSTATE_END_OF_LIST()
1062 .subsections
= (const VMStateDescription
*[]) {
1063 &vmstate_fdrive_media_changed
,
1064 &vmstate_fdrive_media_rate
,
1065 &vmstate_fdrive_perpendicular
,
1071 * Reconstructs the phase from register values according to the logic that was
1072 * implemented in qemu 2.3. This is the default value that is used if the phase
1073 * subsection is not present on migration.
1075 * Don't change this function to reflect newer qemu versions, it is part of
1076 * the migration ABI.
1078 static int reconstruct_phase(FDCtrl
*fdctrl
)
1080 if (fdctrl
->msr
& FD_MSR_NONDMA
) {
1081 return FD_PHASE_EXECUTION
;
1082 } else if ((fdctrl
->msr
& FD_MSR_RQM
) == 0) {
1083 /* qemu 2.3 disabled RQM only during DMA transfers */
1084 return FD_PHASE_EXECUTION
;
1085 } else if (fdctrl
->msr
& FD_MSR_DIO
) {
1086 return FD_PHASE_RESULT
;
1088 return FD_PHASE_COMMAND
;
1092 static int fdc_pre_save(void *opaque
)
1096 s
->dor_vmstate
= s
->dor
| GET_CUR_DRV(s
);
1101 static int fdc_pre_load(void *opaque
)
1104 s
->phase
= FD_PHASE_RECONSTRUCT
;
1108 static int fdc_post_load(void *opaque
, int version_id
)
1112 SET_CUR_DRV(s
, s
->dor_vmstate
& FD_DOR_SELMASK
);
1113 s
->dor
= s
->dor_vmstate
& ~FD_DOR_SELMASK
;
1115 if (s
->phase
== FD_PHASE_RECONSTRUCT
) {
1116 s
->phase
= reconstruct_phase(s
);
1122 static bool fdc_reset_sensei_needed(void *opaque
)
1126 return s
->reset_sensei
!= 0;
1129 static const VMStateDescription vmstate_fdc_reset_sensei
= {
1130 .name
= "fdc/reset_sensei",
1132 .minimum_version_id
= 1,
1133 .needed
= fdc_reset_sensei_needed
,
1134 .fields
= (VMStateField
[]) {
1135 VMSTATE_INT32(reset_sensei
, FDCtrl
),
1136 VMSTATE_END_OF_LIST()
1140 static bool fdc_result_timer_needed(void *opaque
)
1144 return timer_pending(s
->result_timer
);
1147 static const VMStateDescription vmstate_fdc_result_timer
= {
1148 .name
= "fdc/result_timer",
1150 .minimum_version_id
= 1,
1151 .needed
= fdc_result_timer_needed
,
1152 .fields
= (VMStateField
[]) {
1153 VMSTATE_TIMER_PTR(result_timer
, FDCtrl
),
1154 VMSTATE_END_OF_LIST()
1158 static bool fdc_phase_needed(void *opaque
)
1160 FDCtrl
*fdctrl
= opaque
;
1162 return reconstruct_phase(fdctrl
) != fdctrl
->phase
;
1165 static const VMStateDescription vmstate_fdc_phase
= {
1166 .name
= "fdc/phase",
1168 .minimum_version_id
= 1,
1169 .needed
= fdc_phase_needed
,
1170 .fields
= (VMStateField
[]) {
1171 VMSTATE_UINT8(phase
, FDCtrl
),
1172 VMSTATE_END_OF_LIST()
1176 static const VMStateDescription vmstate_fdc
= {
1179 .minimum_version_id
= 2,
1180 .pre_save
= fdc_pre_save
,
1181 .pre_load
= fdc_pre_load
,
1182 .post_load
= fdc_post_load
,
1183 .fields
= (VMStateField
[]) {
1184 /* Controller State */
1185 VMSTATE_UINT8(sra
, FDCtrl
),
1186 VMSTATE_UINT8(srb
, FDCtrl
),
1187 VMSTATE_UINT8(dor_vmstate
, FDCtrl
),
1188 VMSTATE_UINT8(tdr
, FDCtrl
),
1189 VMSTATE_UINT8(dsr
, FDCtrl
),
1190 VMSTATE_UINT8(msr
, FDCtrl
),
1191 VMSTATE_UINT8(status0
, FDCtrl
),
1192 VMSTATE_UINT8(status1
, FDCtrl
),
1193 VMSTATE_UINT8(status2
, FDCtrl
),
1195 VMSTATE_VARRAY_INT32(fifo
, FDCtrl
, fifo_size
, 0, vmstate_info_uint8
,
1197 VMSTATE_UINT32(data_pos
, FDCtrl
),
1198 VMSTATE_UINT32(data_len
, FDCtrl
),
1199 VMSTATE_UINT8(data_state
, FDCtrl
),
1200 VMSTATE_UINT8(data_dir
, FDCtrl
),
1201 VMSTATE_UINT8(eot
, FDCtrl
),
1202 /* States kept only to be returned back */
1203 VMSTATE_UINT8(timer0
, FDCtrl
),
1204 VMSTATE_UINT8(timer1
, FDCtrl
),
1205 VMSTATE_UINT8(precomp_trk
, FDCtrl
),
1206 VMSTATE_UINT8(config
, FDCtrl
),
1207 VMSTATE_UINT8(lock
, FDCtrl
),
1208 VMSTATE_UINT8(pwrd
, FDCtrl
),
1209 VMSTATE_UINT8_EQUAL(num_floppies
, FDCtrl
, NULL
),
1210 VMSTATE_STRUCT_ARRAY(drives
, FDCtrl
, MAX_FD
, 1,
1211 vmstate_fdrive
, FDrive
),
1212 VMSTATE_END_OF_LIST()
1214 .subsections
= (const VMStateDescription
*[]) {
1215 &vmstate_fdc_reset_sensei
,
1216 &vmstate_fdc_result_timer
,
1222 static void fdctrl_external_reset_sysbus(DeviceState
*d
)
1224 FDCtrlSysBus
*sys
= SYSBUS_FDC(d
);
1225 FDCtrl
*s
= &sys
->state
;
1230 static void fdctrl_external_reset_isa(DeviceState
*d
)
1232 FDCtrlISABus
*isa
= ISA_FDC(d
);
1233 FDCtrl
*s
= &isa
->state
;
1238 static void fdctrl_handle_tc(void *opaque
, int irq
, int level
)
1240 //FDCtrl *s = opaque;
1244 FLOPPY_DPRINTF("TC pulsed\n");
1248 /* Change IRQ state */
1249 static void fdctrl_reset_irq(FDCtrl
*fdctrl
)
1251 fdctrl
->status0
= 0;
1252 if (!(fdctrl
->sra
& FD_SRA_INTPEND
))
1254 FLOPPY_DPRINTF("Reset interrupt\n");
1255 qemu_set_irq(fdctrl
->irq
, 0);
1256 fdctrl
->sra
&= ~FD_SRA_INTPEND
;
1259 static void fdctrl_raise_irq(FDCtrl
*fdctrl
)
1261 if (!(fdctrl
->sra
& FD_SRA_INTPEND
)) {
1262 qemu_set_irq(fdctrl
->irq
, 1);
1263 fdctrl
->sra
|= FD_SRA_INTPEND
;
1266 fdctrl
->reset_sensei
= 0;
1267 FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl
->status0
);
1270 /* Reset controller */
1271 static void fdctrl_reset(FDCtrl
*fdctrl
, int do_irq
)
1275 FLOPPY_DPRINTF("reset controller\n");
1276 fdctrl_reset_irq(fdctrl
);
1277 /* Initialise controller */
1280 if (!fdctrl
->drives
[1].blk
) {
1281 fdctrl
->sra
|= FD_SRA_nDRV2
;
1283 fdctrl
->cur_drv
= 0;
1284 fdctrl
->dor
= FD_DOR_nRESET
;
1285 fdctrl
->dor
|= (fdctrl
->dma_chann
!= -1) ? FD_DOR_DMAEN
: 0;
1286 fdctrl
->msr
= FD_MSR_RQM
;
1287 fdctrl
->reset_sensei
= 0;
1288 timer_del(fdctrl
->result_timer
);
1290 fdctrl
->data_pos
= 0;
1291 fdctrl
->data_len
= 0;
1292 fdctrl
->data_state
= 0;
1293 fdctrl
->data_dir
= FD_DIR_WRITE
;
1294 for (i
= 0; i
< MAX_FD
; i
++)
1295 fd_recalibrate(&fdctrl
->drives
[i
]);
1296 fdctrl_to_command_phase(fdctrl
);
1298 fdctrl
->status0
|= FD_SR0_RDYCHG
;
1299 fdctrl_raise_irq(fdctrl
);
1300 fdctrl
->reset_sensei
= FD_RESET_SENSEI_COUNT
;
1304 static inline FDrive
*drv0(FDCtrl
*fdctrl
)
1306 return &fdctrl
->drives
[(fdctrl
->tdr
& FD_TDR_BOOTSEL
) >> 2];
1309 static inline FDrive
*drv1(FDCtrl
*fdctrl
)
1311 if ((fdctrl
->tdr
& FD_TDR_BOOTSEL
) < (1 << 2))
1312 return &fdctrl
->drives
[1];
1314 return &fdctrl
->drives
[0];
1318 static inline FDrive
*drv2(FDCtrl
*fdctrl
)
1320 if ((fdctrl
->tdr
& FD_TDR_BOOTSEL
) < (2 << 2))
1321 return &fdctrl
->drives
[2];
1323 return &fdctrl
->drives
[1];
1326 static inline FDrive
*drv3(FDCtrl
*fdctrl
)
1328 if ((fdctrl
->tdr
& FD_TDR_BOOTSEL
) < (3 << 2))
1329 return &fdctrl
->drives
[3];
1331 return &fdctrl
->drives
[2];
1335 static FDrive
*get_drv(FDCtrl
*fdctrl
, int unit
)
1338 case 0: return drv0(fdctrl
);
1339 case 1: return drv1(fdctrl
);
1341 case 2: return drv2(fdctrl
);
1342 case 3: return drv3(fdctrl
);
1344 default: return NULL
;
1348 static FDrive
*get_cur_drv(FDCtrl
*fdctrl
)
1350 return get_drv(fdctrl
, fdctrl
->cur_drv
);
1353 /* Status A register : 0x00 (read-only) */
1354 static uint32_t fdctrl_read_statusA(FDCtrl
*fdctrl
)
1356 uint32_t retval
= fdctrl
->sra
;
1358 FLOPPY_DPRINTF("status register A: 0x%02x\n", retval
);
1363 /* Status B register : 0x01 (read-only) */
1364 static uint32_t fdctrl_read_statusB(FDCtrl
*fdctrl
)
1366 uint32_t retval
= fdctrl
->srb
;
1368 FLOPPY_DPRINTF("status register B: 0x%02x\n", retval
);
1373 /* Digital output register : 0x02 */
1374 static uint32_t fdctrl_read_dor(FDCtrl
*fdctrl
)
1376 uint32_t retval
= fdctrl
->dor
;
1378 /* Selected drive */
1379 retval
|= fdctrl
->cur_drv
;
1380 FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval
);
1385 static void fdctrl_write_dor(FDCtrl
*fdctrl
, uint32_t value
)
1387 FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value
);
1390 if (value
& FD_DOR_MOTEN0
)
1391 fdctrl
->srb
|= FD_SRB_MTR0
;
1393 fdctrl
->srb
&= ~FD_SRB_MTR0
;
1394 if (value
& FD_DOR_MOTEN1
)
1395 fdctrl
->srb
|= FD_SRB_MTR1
;
1397 fdctrl
->srb
&= ~FD_SRB_MTR1
;
1401 fdctrl
->srb
|= FD_SRB_DR0
;
1403 fdctrl
->srb
&= ~FD_SRB_DR0
;
1406 if (!(value
& FD_DOR_nRESET
)) {
1407 if (fdctrl
->dor
& FD_DOR_nRESET
) {
1408 FLOPPY_DPRINTF("controller enter RESET state\n");
1411 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
1412 FLOPPY_DPRINTF("controller out of RESET state\n");
1413 fdctrl_reset(fdctrl
, 1);
1414 fdctrl
->dsr
&= ~FD_DSR_PWRDOWN
;
1417 /* Selected drive */
1418 fdctrl
->cur_drv
= value
& FD_DOR_SELMASK
;
1420 fdctrl
->dor
= value
;
1423 /* Tape drive register : 0x03 */
1424 static uint32_t fdctrl_read_tape(FDCtrl
*fdctrl
)
1426 uint32_t retval
= fdctrl
->tdr
;
1428 FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval
);
1433 static void fdctrl_write_tape(FDCtrl
*fdctrl
, uint32_t value
)
1436 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
1437 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1440 FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value
);
1441 /* Disk boot selection indicator */
1442 fdctrl
->tdr
= value
& FD_TDR_BOOTSEL
;
1443 /* Tape indicators: never allow */
1446 /* Main status register : 0x04 (read) */
1447 static uint32_t fdctrl_read_main_status(FDCtrl
*fdctrl
)
1449 uint32_t retval
= fdctrl
->msr
;
1451 fdctrl
->dsr
&= ~FD_DSR_PWRDOWN
;
1452 fdctrl
->dor
|= FD_DOR_nRESET
;
1454 FLOPPY_DPRINTF("main status register: 0x%02x\n", retval
);
1459 /* Data select rate register : 0x04 (write) */
1460 static void fdctrl_write_rate(FDCtrl
*fdctrl
, uint32_t value
)
1463 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
1464 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1467 FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value
);
1468 /* Reset: autoclear */
1469 if (value
& FD_DSR_SWRESET
) {
1470 fdctrl
->dor
&= ~FD_DOR_nRESET
;
1471 fdctrl_reset(fdctrl
, 1);
1472 fdctrl
->dor
|= FD_DOR_nRESET
;
1474 if (value
& FD_DSR_PWRDOWN
) {
1475 fdctrl_reset(fdctrl
, 1);
1477 fdctrl
->dsr
= value
;
1480 /* Configuration control register: 0x07 (write) */
1481 static void fdctrl_write_ccr(FDCtrl
*fdctrl
, uint32_t value
)
1484 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
1485 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1488 FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value
);
1490 /* Only the rate selection bits used in AT mode, and we
1491 * store those in the DSR.
1493 fdctrl
->dsr
= (fdctrl
->dsr
& ~FD_DSR_DRATEMASK
) |
1494 (value
& FD_DSR_DRATEMASK
);
1497 static int fdctrl_media_changed(FDrive
*drv
)
1499 return drv
->media_changed
;
1502 /* Digital input register : 0x07 (read-only) */
1503 static uint32_t fdctrl_read_dir(FDCtrl
*fdctrl
)
1505 uint32_t retval
= 0;
1507 if (fdctrl_media_changed(get_cur_drv(fdctrl
))) {
1508 retval
|= FD_DIR_DSKCHG
;
1511 FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval
);
1517 /* Clear the FIFO and update the state for receiving the next command */
1518 static void fdctrl_to_command_phase(FDCtrl
*fdctrl
)
1520 fdctrl
->phase
= FD_PHASE_COMMAND
;
1521 fdctrl
->data_dir
= FD_DIR_WRITE
;
1522 fdctrl
->data_pos
= 0;
1523 fdctrl
->data_len
= 1; /* Accept command byte, adjust for params later */
1524 fdctrl
->msr
&= ~(FD_MSR_CMDBUSY
| FD_MSR_DIO
);
1525 fdctrl
->msr
|= FD_MSR_RQM
;
1528 /* Update the state to allow the guest to read out the command status.
1529 * @fifo_len is the number of result bytes to be read out. */
1530 static void fdctrl_to_result_phase(FDCtrl
*fdctrl
, int fifo_len
)
1532 fdctrl
->phase
= FD_PHASE_RESULT
;
1533 fdctrl
->data_dir
= FD_DIR_READ
;
1534 fdctrl
->data_len
= fifo_len
;
1535 fdctrl
->data_pos
= 0;
1536 fdctrl
->msr
|= FD_MSR_CMDBUSY
| FD_MSR_RQM
| FD_MSR_DIO
;
1539 /* Set an error: unimplemented/unknown command */
1540 static void fdctrl_unimplemented(FDCtrl
*fdctrl
, int direction
)
1542 qemu_log_mask(LOG_UNIMP
, "fdc: unimplemented command 0x%02x\n",
1544 fdctrl
->fifo
[0] = FD_SR0_INVCMD
;
1545 fdctrl_to_result_phase(fdctrl
, 1);
1548 /* Seek to next sector
1549 * returns 0 when end of track reached (for DBL_SIDES on head 1)
1550 * otherwise returns 1
1552 static int fdctrl_seek_to_next_sect(FDCtrl
*fdctrl
, FDrive
*cur_drv
)
1554 FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1555 cur_drv
->head
, cur_drv
->track
, cur_drv
->sect
,
1556 fd_sector(cur_drv
));
1557 /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1559 uint8_t new_head
= cur_drv
->head
;
1560 uint8_t new_track
= cur_drv
->track
;
1561 uint8_t new_sect
= cur_drv
->sect
;
1565 if (new_sect
>= cur_drv
->last_sect
||
1566 new_sect
== fdctrl
->eot
) {
1568 if (FD_MULTI_TRACK(fdctrl
->data_state
)) {
1569 if (new_head
== 0 &&
1570 (cur_drv
->flags
& FDISK_DBL_SIDES
) != 0) {
1575 fdctrl
->status0
|= FD_SR0_SEEK
;
1576 if ((cur_drv
->flags
& FDISK_DBL_SIDES
) == 0) {
1581 fdctrl
->status0
|= FD_SR0_SEEK
;
1586 FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1587 new_head
, new_track
, new_sect
, fd_sector(cur_drv
));
1592 fd_seek(cur_drv
, new_head
, new_track
, new_sect
, 1);
1596 /* Callback for transfer end (stop or abort) */
1597 static void fdctrl_stop_transfer(FDCtrl
*fdctrl
, uint8_t status0
,
1598 uint8_t status1
, uint8_t status2
)
1601 cur_drv
= get_cur_drv(fdctrl
);
1603 fdctrl
->status0
&= ~(FD_SR0_DS0
| FD_SR0_DS1
| FD_SR0_HEAD
);
1604 fdctrl
->status0
|= GET_CUR_DRV(fdctrl
);
1605 if (cur_drv
->head
) {
1606 fdctrl
->status0
|= FD_SR0_HEAD
;
1608 fdctrl
->status0
|= status0
;
1610 FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1611 status0
, status1
, status2
, fdctrl
->status0
);
1612 fdctrl
->fifo
[0] = fdctrl
->status0
;
1613 fdctrl
->fifo
[1] = status1
;
1614 fdctrl
->fifo
[2] = status2
;
1615 fdctrl
->fifo
[3] = cur_drv
->track
;
1616 fdctrl
->fifo
[4] = cur_drv
->head
;
1617 fdctrl
->fifo
[5] = cur_drv
->sect
;
1618 fdctrl
->fifo
[6] = FD_SECTOR_SC
;
1619 fdctrl
->data_dir
= FD_DIR_READ
;
1620 if (fdctrl
->dma_chann
!= -1 && !(fdctrl
->msr
& FD_MSR_NONDMA
)) {
1621 IsaDmaClass
*k
= ISADMA_GET_CLASS(fdctrl
->dma
);
1622 k
->release_DREQ(fdctrl
->dma
, fdctrl
->dma_chann
);
1624 fdctrl
->msr
|= FD_MSR_RQM
| FD_MSR_DIO
;
1625 fdctrl
->msr
&= ~FD_MSR_NONDMA
;
1627 fdctrl_to_result_phase(fdctrl
, 7);
1628 fdctrl_raise_irq(fdctrl
);
1631 /* Prepare a data transfer (either DMA or FIFO) */
1632 static void fdctrl_start_transfer(FDCtrl
*fdctrl
, int direction
)
1637 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
1638 cur_drv
= get_cur_drv(fdctrl
);
1639 kt
= fdctrl
->fifo
[2];
1640 kh
= fdctrl
->fifo
[3];
1641 ks
= fdctrl
->fifo
[4];
1642 FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1643 GET_CUR_DRV(fdctrl
), kh
, kt
, ks
,
1644 fd_sector_calc(kh
, kt
, ks
, cur_drv
->last_sect
,
1645 NUM_SIDES(cur_drv
)));
1646 switch (fd_seek(cur_drv
, kh
, kt
, ks
, fdctrl
->config
& FD_CONFIG_EIS
)) {
1649 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
1650 fdctrl
->fifo
[3] = kt
;
1651 fdctrl
->fifo
[4] = kh
;
1652 fdctrl
->fifo
[5] = ks
;
1656 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, FD_SR1_EC
, 0x00);
1657 fdctrl
->fifo
[3] = kt
;
1658 fdctrl
->fifo
[4] = kh
;
1659 fdctrl
->fifo
[5] = ks
;
1662 /* No seek enabled */
1663 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
1664 fdctrl
->fifo
[3] = kt
;
1665 fdctrl
->fifo
[4] = kh
;
1666 fdctrl
->fifo
[5] = ks
;
1669 fdctrl
->status0
|= FD_SR0_SEEK
;
1675 /* Check the data rate. If the programmed data rate does not match
1676 * the currently inserted medium, the operation has to fail. */
1677 if (fdctrl
->check_media_rate
&&
1678 (fdctrl
->dsr
& FD_DSR_DRATEMASK
) != cur_drv
->media_rate
) {
1679 FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1680 fdctrl
->dsr
& FD_DSR_DRATEMASK
, cur_drv
->media_rate
);
1681 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, FD_SR1_MA
, 0x00);
1682 fdctrl
->fifo
[3] = kt
;
1683 fdctrl
->fifo
[4] = kh
;
1684 fdctrl
->fifo
[5] = ks
;
1688 /* Set the FIFO state */
1689 fdctrl
->data_dir
= direction
;
1690 fdctrl
->data_pos
= 0;
1691 assert(fdctrl
->msr
& FD_MSR_CMDBUSY
);
1692 if (fdctrl
->fifo
[0] & 0x80)
1693 fdctrl
->data_state
|= FD_STATE_MULTI
;
1695 fdctrl
->data_state
&= ~FD_STATE_MULTI
;
1696 if (fdctrl
->fifo
[5] == 0) {
1697 fdctrl
->data_len
= fdctrl
->fifo
[8];
1700 fdctrl
->data_len
= 128 << (fdctrl
->fifo
[5] > 7 ? 7 : fdctrl
->fifo
[5]);
1701 tmp
= (fdctrl
->fifo
[6] - ks
+ 1);
1702 if (fdctrl
->fifo
[0] & 0x80)
1703 tmp
+= fdctrl
->fifo
[6];
1704 fdctrl
->data_len
*= tmp
;
1706 fdctrl
->eot
= fdctrl
->fifo
[6];
1707 if (fdctrl
->dor
& FD_DOR_DMAEN
) {
1708 IsaDmaTransferMode dma_mode
;
1709 IsaDmaClass
*k
= ISADMA_GET_CLASS(fdctrl
->dma
);
1711 /* DMA transfer are enabled. Check if DMA channel is well programmed */
1712 dma_mode
= k
->get_transfer_mode(fdctrl
->dma
, fdctrl
->dma_chann
);
1713 FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n",
1714 dma_mode
, direction
,
1715 (128 << fdctrl
->fifo
[5]) *
1716 (cur_drv
->last_sect
- ks
+ 1), fdctrl
->data_len
);
1717 switch (direction
) {
1721 dma_mode_ok
= (dma_mode
== ISADMA_TRANSFER_VERIFY
);
1724 dma_mode_ok
= (dma_mode
== ISADMA_TRANSFER_WRITE
);
1727 dma_mode_ok
= (dma_mode
== ISADMA_TRANSFER_READ
);
1733 dma_mode_ok
= false;
1737 /* No access is allowed until DMA transfer has completed */
1738 fdctrl
->msr
&= ~FD_MSR_RQM
;
1739 if (direction
!= FD_DIR_VERIFY
) {
1740 /* Now, we just have to wait for the DMA controller to
1743 k
->hold_DREQ(fdctrl
->dma
, fdctrl
->dma_chann
);
1744 k
->schedule(fdctrl
->dma
);
1746 /* Start transfer */
1747 fdctrl_transfer_handler(fdctrl
, fdctrl
->dma_chann
, 0,
1752 FLOPPY_DPRINTF("bad dma_mode=%d direction=%d\n", dma_mode
,
1756 FLOPPY_DPRINTF("start non-DMA transfer\n");
1757 fdctrl
->msr
|= FD_MSR_NONDMA
| FD_MSR_RQM
;
1758 if (direction
!= FD_DIR_WRITE
)
1759 fdctrl
->msr
|= FD_MSR_DIO
;
1760 /* IO based transfer: calculate len */
1761 fdctrl_raise_irq(fdctrl
);
1764 /* Prepare a transfer of deleted data */
1765 static void fdctrl_start_transfer_del(FDCtrl
*fdctrl
, int direction
)
1767 qemu_log_mask(LOG_UNIMP
, "fdctrl_start_transfer_del() unimplemented\n");
1769 /* We don't handle deleted data,
1770 * so we don't return *ANYTHING*
1772 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
| FD_SR0_SEEK
, 0x00, 0x00);
1775 /* handlers for DMA transfers */
1776 static int fdctrl_transfer_handler (void *opaque
, int nchan
,
1777 int dma_pos
, int dma_len
)
1781 int len
, start_pos
, rel_pos
;
1782 uint8_t status0
= 0x00, status1
= 0x00, status2
= 0x00;
1786 if (fdctrl
->msr
& FD_MSR_RQM
) {
1787 FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1790 k
= ISADMA_GET_CLASS(fdctrl
->dma
);
1791 cur_drv
= get_cur_drv(fdctrl
);
1792 if (fdctrl
->data_dir
== FD_DIR_SCANE
|| fdctrl
->data_dir
== FD_DIR_SCANL
||
1793 fdctrl
->data_dir
== FD_DIR_SCANH
)
1794 status2
= FD_SR2_SNS
;
1795 if (dma_len
> fdctrl
->data_len
)
1796 dma_len
= fdctrl
->data_len
;
1797 if (cur_drv
->blk
== NULL
) {
1798 if (fdctrl
->data_dir
== FD_DIR_WRITE
)
1799 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
| FD_SR0_SEEK
, 0x00, 0x00);
1801 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
1803 goto transfer_error
;
1805 rel_pos
= fdctrl
->data_pos
% FD_SECTOR_LEN
;
1806 for (start_pos
= fdctrl
->data_pos
; fdctrl
->data_pos
< dma_len
;) {
1807 len
= dma_len
- fdctrl
->data_pos
;
1808 if (len
+ rel_pos
> FD_SECTOR_LEN
)
1809 len
= FD_SECTOR_LEN
- rel_pos
;
1810 FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1811 "(%d-0x%08x 0x%08x)\n", len
, dma_len
, fdctrl
->data_pos
,
1812 fdctrl
->data_len
, GET_CUR_DRV(fdctrl
), cur_drv
->head
,
1813 cur_drv
->track
, cur_drv
->sect
, fd_sector(cur_drv
),
1814 fd_sector(cur_drv
) * FD_SECTOR_LEN
);
1815 if (fdctrl
->data_dir
!= FD_DIR_WRITE
||
1816 len
< FD_SECTOR_LEN
|| rel_pos
!= 0) {
1817 /* READ & SCAN commands and realign to a sector for WRITE */
1818 if (blk_pread(cur_drv
->blk
, fd_offset(cur_drv
),
1819 fdctrl
->fifo
, BDRV_SECTOR_SIZE
) < 0) {
1820 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1821 fd_sector(cur_drv
));
1822 /* Sure, image size is too small... */
1823 memset(fdctrl
->fifo
, 0, FD_SECTOR_LEN
);
1826 switch (fdctrl
->data_dir
) {
1829 k
->write_memory(fdctrl
->dma
, nchan
, fdctrl
->fifo
+ rel_pos
,
1830 fdctrl
->data_pos
, len
);
1833 /* WRITE commands */
1835 /* Handle readonly medium early, no need to do DMA, touch the
1836 * LED or attempt any writes. A real floppy doesn't attempt
1837 * to write to readonly media either. */
1838 fdctrl_stop_transfer(fdctrl
,
1839 FD_SR0_ABNTERM
| FD_SR0_SEEK
, FD_SR1_NW
,
1841 goto transfer_error
;
1844 k
->read_memory(fdctrl
->dma
, nchan
, fdctrl
->fifo
+ rel_pos
,
1845 fdctrl
->data_pos
, len
);
1846 if (blk_pwrite(cur_drv
->blk
, fd_offset(cur_drv
),
1847 fdctrl
->fifo
, BDRV_SECTOR_SIZE
, 0) < 0) {
1848 FLOPPY_DPRINTF("error writing sector %d\n",
1849 fd_sector(cur_drv
));
1850 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
| FD_SR0_SEEK
, 0x00, 0x00);
1851 goto transfer_error
;
1855 /* VERIFY commands */
1860 uint8_t tmpbuf
[FD_SECTOR_LEN
];
1862 k
->read_memory(fdctrl
->dma
, nchan
, tmpbuf
, fdctrl
->data_pos
,
1864 ret
= memcmp(tmpbuf
, fdctrl
->fifo
+ rel_pos
, len
);
1866 status2
= FD_SR2_SEH
;
1869 if ((ret
< 0 && fdctrl
->data_dir
== FD_DIR_SCANL
) ||
1870 (ret
> 0 && fdctrl
->data_dir
== FD_DIR_SCANH
)) {
1877 fdctrl
->data_pos
+= len
;
1878 rel_pos
= fdctrl
->data_pos
% FD_SECTOR_LEN
;
1880 /* Seek to next sector */
1881 if (!fdctrl_seek_to_next_sect(fdctrl
, cur_drv
))
1886 len
= fdctrl
->data_pos
- start_pos
;
1887 FLOPPY_DPRINTF("end transfer %d %d %d\n",
1888 fdctrl
->data_pos
, len
, fdctrl
->data_len
);
1889 if (fdctrl
->data_dir
== FD_DIR_SCANE
||
1890 fdctrl
->data_dir
== FD_DIR_SCANL
||
1891 fdctrl
->data_dir
== FD_DIR_SCANH
)
1892 status2
= FD_SR2_SEH
;
1893 fdctrl
->data_len
-= len
;
1894 fdctrl_stop_transfer(fdctrl
, status0
, status1
, status2
);
1900 /* Data register : 0x05 */
1901 static uint32_t fdctrl_read_data(FDCtrl
*fdctrl
)
1904 uint32_t retval
= 0;
1907 cur_drv
= get_cur_drv(fdctrl
);
1908 fdctrl
->dsr
&= ~FD_DSR_PWRDOWN
;
1909 if (!(fdctrl
->msr
& FD_MSR_RQM
) || !(fdctrl
->msr
& FD_MSR_DIO
)) {
1910 FLOPPY_DPRINTF("error: controller not ready for reading\n");
1914 /* If data_len spans multiple sectors, the current position in the FIFO
1915 * wraps around while fdctrl->data_pos is the real position in the whole
1917 pos
= fdctrl
->data_pos
;
1918 pos
%= FD_SECTOR_LEN
;
1920 switch (fdctrl
->phase
) {
1921 case FD_PHASE_EXECUTION
:
1922 assert(fdctrl
->msr
& FD_MSR_NONDMA
);
1924 if (fdctrl
->data_pos
!= 0)
1925 if (!fdctrl_seek_to_next_sect(fdctrl
, cur_drv
)) {
1926 FLOPPY_DPRINTF("error seeking to next sector %d\n",
1927 fd_sector(cur_drv
));
1930 if (blk_pread(cur_drv
->blk
, fd_offset(cur_drv
), fdctrl
->fifo
,
1933 FLOPPY_DPRINTF("error getting sector %d\n",
1934 fd_sector(cur_drv
));
1935 /* Sure, image size is too small... */
1936 memset(fdctrl
->fifo
, 0, FD_SECTOR_LEN
);
1940 if (++fdctrl
->data_pos
== fdctrl
->data_len
) {
1941 fdctrl
->msr
&= ~FD_MSR_RQM
;
1942 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
1946 case FD_PHASE_RESULT
:
1947 assert(!(fdctrl
->msr
& FD_MSR_NONDMA
));
1948 if (++fdctrl
->data_pos
== fdctrl
->data_len
) {
1949 fdctrl
->msr
&= ~FD_MSR_RQM
;
1950 fdctrl_to_command_phase(fdctrl
);
1951 fdctrl_reset_irq(fdctrl
);
1955 case FD_PHASE_COMMAND
:
1960 retval
= fdctrl
->fifo
[pos
];
1961 FLOPPY_DPRINTF("data register: 0x%02x\n", retval
);
1966 static void fdctrl_format_sector(FDCtrl
*fdctrl
)
1971 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
1972 cur_drv
= get_cur_drv(fdctrl
);
1973 kt
= fdctrl
->fifo
[6];
1974 kh
= fdctrl
->fifo
[7];
1975 ks
= fdctrl
->fifo
[8];
1976 FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1977 GET_CUR_DRV(fdctrl
), kh
, kt
, ks
,
1978 fd_sector_calc(kh
, kt
, ks
, cur_drv
->last_sect
,
1979 NUM_SIDES(cur_drv
)));
1980 switch (fd_seek(cur_drv
, kh
, kt
, ks
, fdctrl
->config
& FD_CONFIG_EIS
)) {
1983 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
1984 fdctrl
->fifo
[3] = kt
;
1985 fdctrl
->fifo
[4] = kh
;
1986 fdctrl
->fifo
[5] = ks
;
1990 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, FD_SR1_EC
, 0x00);
1991 fdctrl
->fifo
[3] = kt
;
1992 fdctrl
->fifo
[4] = kh
;
1993 fdctrl
->fifo
[5] = ks
;
1996 /* No seek enabled */
1997 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
1998 fdctrl
->fifo
[3] = kt
;
1999 fdctrl
->fifo
[4] = kh
;
2000 fdctrl
->fifo
[5] = ks
;
2003 fdctrl
->status0
|= FD_SR0_SEEK
;
2008 memset(fdctrl
->fifo
, 0, FD_SECTOR_LEN
);
2009 if (cur_drv
->blk
== NULL
||
2010 blk_pwrite(cur_drv
->blk
, fd_offset(cur_drv
), fdctrl
->fifo
,
2011 BDRV_SECTOR_SIZE
, 0) < 0) {
2012 FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv
));
2013 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
| FD_SR0_SEEK
, 0x00, 0x00);
2015 if (cur_drv
->sect
== cur_drv
->last_sect
) {
2016 fdctrl
->data_state
&= ~FD_STATE_FORMAT
;
2017 /* Last sector done */
2018 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
2021 fdctrl
->data_pos
= 0;
2022 fdctrl
->data_len
= 4;
2027 static void fdctrl_handle_lock(FDCtrl
*fdctrl
, int direction
)
2029 fdctrl
->lock
= (fdctrl
->fifo
[0] & 0x80) ? 1 : 0;
2030 fdctrl
->fifo
[0] = fdctrl
->lock
<< 4;
2031 fdctrl_to_result_phase(fdctrl
, 1);
2034 static void fdctrl_handle_dumpreg(FDCtrl
*fdctrl
, int direction
)
2036 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2038 /* Drives position */
2039 fdctrl
->fifo
[0] = drv0(fdctrl
)->track
;
2040 fdctrl
->fifo
[1] = drv1(fdctrl
)->track
;
2042 fdctrl
->fifo
[2] = drv2(fdctrl
)->track
;
2043 fdctrl
->fifo
[3] = drv3(fdctrl
)->track
;
2045 fdctrl
->fifo
[2] = 0;
2046 fdctrl
->fifo
[3] = 0;
2049 fdctrl
->fifo
[4] = fdctrl
->timer0
;
2050 fdctrl
->fifo
[5] = (fdctrl
->timer1
<< 1) | (fdctrl
->dor
& FD_DOR_DMAEN
? 1 : 0);
2051 fdctrl
->fifo
[6] = cur_drv
->last_sect
;
2052 fdctrl
->fifo
[7] = (fdctrl
->lock
<< 7) |
2053 (cur_drv
->perpendicular
<< 2);
2054 fdctrl
->fifo
[8] = fdctrl
->config
;
2055 fdctrl
->fifo
[9] = fdctrl
->precomp_trk
;
2056 fdctrl_to_result_phase(fdctrl
, 10);
2059 static void fdctrl_handle_version(FDCtrl
*fdctrl
, int direction
)
2061 /* Controller's version */
2062 fdctrl
->fifo
[0] = fdctrl
->version
;
2063 fdctrl_to_result_phase(fdctrl
, 1);
2066 static void fdctrl_handle_partid(FDCtrl
*fdctrl
, int direction
)
2068 fdctrl
->fifo
[0] = 0x41; /* Stepping 1 */
2069 fdctrl_to_result_phase(fdctrl
, 1);
2072 static void fdctrl_handle_restore(FDCtrl
*fdctrl
, int direction
)
2074 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2076 /* Drives position */
2077 drv0(fdctrl
)->track
= fdctrl
->fifo
[3];
2078 drv1(fdctrl
)->track
= fdctrl
->fifo
[4];
2080 drv2(fdctrl
)->track
= fdctrl
->fifo
[5];
2081 drv3(fdctrl
)->track
= fdctrl
->fifo
[6];
2084 fdctrl
->timer0
= fdctrl
->fifo
[7];
2085 fdctrl
->timer1
= fdctrl
->fifo
[8];
2086 cur_drv
->last_sect
= fdctrl
->fifo
[9];
2087 fdctrl
->lock
= fdctrl
->fifo
[10] >> 7;
2088 cur_drv
->perpendicular
= (fdctrl
->fifo
[10] >> 2) & 0xF;
2089 fdctrl
->config
= fdctrl
->fifo
[11];
2090 fdctrl
->precomp_trk
= fdctrl
->fifo
[12];
2091 fdctrl
->pwrd
= fdctrl
->fifo
[13];
2092 fdctrl_to_command_phase(fdctrl
);
2095 static void fdctrl_handle_save(FDCtrl
*fdctrl
, int direction
)
2097 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2099 fdctrl
->fifo
[0] = 0;
2100 fdctrl
->fifo
[1] = 0;
2101 /* Drives position */
2102 fdctrl
->fifo
[2] = drv0(fdctrl
)->track
;
2103 fdctrl
->fifo
[3] = drv1(fdctrl
)->track
;
2105 fdctrl
->fifo
[4] = drv2(fdctrl
)->track
;
2106 fdctrl
->fifo
[5] = drv3(fdctrl
)->track
;
2108 fdctrl
->fifo
[4] = 0;
2109 fdctrl
->fifo
[5] = 0;
2112 fdctrl
->fifo
[6] = fdctrl
->timer0
;
2113 fdctrl
->fifo
[7] = fdctrl
->timer1
;
2114 fdctrl
->fifo
[8] = cur_drv
->last_sect
;
2115 fdctrl
->fifo
[9] = (fdctrl
->lock
<< 7) |
2116 (cur_drv
->perpendicular
<< 2);
2117 fdctrl
->fifo
[10] = fdctrl
->config
;
2118 fdctrl
->fifo
[11] = fdctrl
->precomp_trk
;
2119 fdctrl
->fifo
[12] = fdctrl
->pwrd
;
2120 fdctrl
->fifo
[13] = 0;
2121 fdctrl
->fifo
[14] = 0;
2122 fdctrl_to_result_phase(fdctrl
, 15);
2125 static void fdctrl_handle_readid(FDCtrl
*fdctrl
, int direction
)
2127 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2129 cur_drv
->head
= (fdctrl
->fifo
[1] >> 2) & 1;
2130 timer_mod(fdctrl
->result_timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) +
2131 (NANOSECONDS_PER_SECOND
/ 50));
2134 static void fdctrl_handle_format_track(FDCtrl
*fdctrl
, int direction
)
2138 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2139 cur_drv
= get_cur_drv(fdctrl
);
2140 fdctrl
->data_state
|= FD_STATE_FORMAT
;
2141 if (fdctrl
->fifo
[0] & 0x80)
2142 fdctrl
->data_state
|= FD_STATE_MULTI
;
2144 fdctrl
->data_state
&= ~FD_STATE_MULTI
;
2146 fdctrl
->fifo
[2] > 7 ? 16384 : 128 << fdctrl
->fifo
[2];
2148 cur_drv
->last_sect
=
2149 cur_drv
->flags
& FDISK_DBL_SIDES
? fdctrl
->fifo
[3] :
2150 fdctrl
->fifo
[3] / 2;
2152 cur_drv
->last_sect
= fdctrl
->fifo
[3];
2154 /* TODO: implement format using DMA expected by the Bochs BIOS
2155 * and Linux fdformat (read 3 bytes per sector via DMA and fill
2156 * the sector with the specified fill byte
2158 fdctrl
->data_state
&= ~FD_STATE_FORMAT
;
2159 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
2162 static void fdctrl_handle_specify(FDCtrl
*fdctrl
, int direction
)
2164 fdctrl
->timer0
= (fdctrl
->fifo
[1] >> 4) & 0xF;
2165 fdctrl
->timer1
= fdctrl
->fifo
[2] >> 1;
2166 if (fdctrl
->fifo
[2] & 1)
2167 fdctrl
->dor
&= ~FD_DOR_DMAEN
;
2169 fdctrl
->dor
|= FD_DOR_DMAEN
;
2170 /* No result back */
2171 fdctrl_to_command_phase(fdctrl
);
2174 static void fdctrl_handle_sense_drive_status(FDCtrl
*fdctrl
, int direction
)
2178 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2179 cur_drv
= get_cur_drv(fdctrl
);
2180 cur_drv
->head
= (fdctrl
->fifo
[1] >> 2) & 1;
2181 /* 1 Byte status back */
2182 fdctrl
->fifo
[0] = (cur_drv
->ro
<< 6) |
2183 (cur_drv
->track
== 0 ? 0x10 : 0x00) |
2184 (cur_drv
->head
<< 2) |
2185 GET_CUR_DRV(fdctrl
) |
2187 fdctrl_to_result_phase(fdctrl
, 1);
2190 static void fdctrl_handle_recalibrate(FDCtrl
*fdctrl
, int direction
)
2194 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2195 cur_drv
= get_cur_drv(fdctrl
);
2196 fd_recalibrate(cur_drv
);
2197 fdctrl_to_command_phase(fdctrl
);
2198 /* Raise Interrupt */
2199 fdctrl
->status0
|= FD_SR0_SEEK
;
2200 fdctrl_raise_irq(fdctrl
);
2203 static void fdctrl_handle_sense_interrupt_status(FDCtrl
*fdctrl
, int direction
)
2205 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2207 if (fdctrl
->reset_sensei
> 0) {
2209 FD_SR0_RDYCHG
+ FD_RESET_SENSEI_COUNT
- fdctrl
->reset_sensei
;
2210 fdctrl
->reset_sensei
--;
2211 } else if (!(fdctrl
->sra
& FD_SRA_INTPEND
)) {
2212 fdctrl
->fifo
[0] = FD_SR0_INVCMD
;
2213 fdctrl_to_result_phase(fdctrl
, 1);
2217 (fdctrl
->status0
& ~(FD_SR0_HEAD
| FD_SR0_DS1
| FD_SR0_DS0
))
2218 | GET_CUR_DRV(fdctrl
);
2221 fdctrl
->fifo
[1] = cur_drv
->track
;
2222 fdctrl_to_result_phase(fdctrl
, 2);
2223 fdctrl_reset_irq(fdctrl
);
2224 fdctrl
->status0
= FD_SR0_RDYCHG
;
2227 static void fdctrl_handle_seek(FDCtrl
*fdctrl
, int direction
)
2231 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2232 cur_drv
= get_cur_drv(fdctrl
);
2233 fdctrl_to_command_phase(fdctrl
);
2234 /* The seek command just sends step pulses to the drive and doesn't care if
2235 * there is a medium inserted of if it's banging the head against the drive.
2237 fd_seek(cur_drv
, cur_drv
->head
, fdctrl
->fifo
[2], cur_drv
->sect
, 1);
2238 /* Raise Interrupt */
2239 fdctrl
->status0
|= FD_SR0_SEEK
;
2240 fdctrl_raise_irq(fdctrl
);
2243 static void fdctrl_handle_perpendicular_mode(FDCtrl
*fdctrl
, int direction
)
2245 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2247 if (fdctrl
->fifo
[1] & 0x80)
2248 cur_drv
->perpendicular
= fdctrl
->fifo
[1] & 0x7;
2249 /* No result back */
2250 fdctrl_to_command_phase(fdctrl
);
2253 static void fdctrl_handle_configure(FDCtrl
*fdctrl
, int direction
)
2255 fdctrl
->config
= fdctrl
->fifo
[2];
2256 fdctrl
->precomp_trk
= fdctrl
->fifo
[3];
2257 /* No result back */
2258 fdctrl_to_command_phase(fdctrl
);
2261 static void fdctrl_handle_powerdown_mode(FDCtrl
*fdctrl
, int direction
)
2263 fdctrl
->pwrd
= fdctrl
->fifo
[1];
2264 fdctrl
->fifo
[0] = fdctrl
->fifo
[1];
2265 fdctrl_to_result_phase(fdctrl
, 1);
2268 static void fdctrl_handle_option(FDCtrl
*fdctrl
, int direction
)
2270 /* No result back */
2271 fdctrl_to_command_phase(fdctrl
);
2274 static void fdctrl_handle_drive_specification_command(FDCtrl
*fdctrl
, int direction
)
2276 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2279 pos
= fdctrl
->data_pos
- 1;
2280 pos
%= FD_SECTOR_LEN
;
2281 if (fdctrl
->fifo
[pos
] & 0x80) {
2282 /* Command parameters done */
2283 if (fdctrl
->fifo
[pos
] & 0x40) {
2284 fdctrl
->fifo
[0] = fdctrl
->fifo
[1];
2285 fdctrl
->fifo
[2] = 0;
2286 fdctrl
->fifo
[3] = 0;
2287 fdctrl_to_result_phase(fdctrl
, 4);
2289 fdctrl_to_command_phase(fdctrl
);
2291 } else if (fdctrl
->data_len
> 7) {
2293 fdctrl
->fifo
[0] = 0x80 |
2294 (cur_drv
->head
<< 2) | GET_CUR_DRV(fdctrl
);
2295 fdctrl_to_result_phase(fdctrl
, 1);
2299 static void fdctrl_handle_relative_seek_in(FDCtrl
*fdctrl
, int direction
)
2303 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2304 cur_drv
= get_cur_drv(fdctrl
);
2305 if (fdctrl
->fifo
[2] + cur_drv
->track
>= cur_drv
->max_track
) {
2306 fd_seek(cur_drv
, cur_drv
->head
, cur_drv
->max_track
- 1,
2309 fd_seek(cur_drv
, cur_drv
->head
,
2310 cur_drv
->track
+ fdctrl
->fifo
[2], cur_drv
->sect
, 1);
2312 fdctrl_to_command_phase(fdctrl
);
2313 /* Raise Interrupt */
2314 fdctrl
->status0
|= FD_SR0_SEEK
;
2315 fdctrl_raise_irq(fdctrl
);
2318 static void fdctrl_handle_relative_seek_out(FDCtrl
*fdctrl
, int direction
)
2322 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2323 cur_drv
= get_cur_drv(fdctrl
);
2324 if (fdctrl
->fifo
[2] > cur_drv
->track
) {
2325 fd_seek(cur_drv
, cur_drv
->head
, 0, cur_drv
->sect
, 1);
2327 fd_seek(cur_drv
, cur_drv
->head
,
2328 cur_drv
->track
- fdctrl
->fifo
[2], cur_drv
->sect
, 1);
2330 fdctrl_to_command_phase(fdctrl
);
2331 /* Raise Interrupt */
2332 fdctrl
->status0
|= FD_SR0_SEEK
;
2333 fdctrl_raise_irq(fdctrl
);
2337 * Handlers for the execution phase of each command
2339 typedef struct FDCtrlCommand
{
2344 void (*handler
)(FDCtrl
*fdctrl
, int direction
);
2348 static const FDCtrlCommand handlers
[] = {
2349 { FD_CMD_READ
, 0x1f, "READ", 8, fdctrl_start_transfer
, FD_DIR_READ
},
2350 { FD_CMD_WRITE
, 0x3f, "WRITE", 8, fdctrl_start_transfer
, FD_DIR_WRITE
},
2351 { FD_CMD_SEEK
, 0xff, "SEEK", 2, fdctrl_handle_seek
},
2352 { FD_CMD_SENSE_INTERRUPT_STATUS
, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status
},
2353 { FD_CMD_RECALIBRATE
, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate
},
2354 { FD_CMD_FORMAT_TRACK
, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track
},
2355 { FD_CMD_READ_TRACK
, 0xbf, "READ TRACK", 8, fdctrl_start_transfer
, FD_DIR_READ
},
2356 { FD_CMD_RESTORE
, 0xff, "RESTORE", 17, fdctrl_handle_restore
}, /* part of READ DELETED DATA */
2357 { FD_CMD_SAVE
, 0xff, "SAVE", 0, fdctrl_handle_save
}, /* part of READ DELETED DATA */
2358 { FD_CMD_READ_DELETED
, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del
, FD_DIR_READ
},
2359 { FD_CMD_SCAN_EQUAL
, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer
, FD_DIR_SCANE
},
2360 { FD_CMD_VERIFY
, 0x1f, "VERIFY", 8, fdctrl_start_transfer
, FD_DIR_VERIFY
},
2361 { FD_CMD_SCAN_LOW_OR_EQUAL
, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer
, FD_DIR_SCANL
},
2362 { FD_CMD_SCAN_HIGH_OR_EQUAL
, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer
, FD_DIR_SCANH
},
2363 { FD_CMD_WRITE_DELETED
, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del
, FD_DIR_WRITE
},
2364 { FD_CMD_READ_ID
, 0xbf, "READ ID", 1, fdctrl_handle_readid
},
2365 { FD_CMD_SPECIFY
, 0xff, "SPECIFY", 2, fdctrl_handle_specify
},
2366 { FD_CMD_SENSE_DRIVE_STATUS
, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status
},
2367 { FD_CMD_PERPENDICULAR_MODE
, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode
},
2368 { FD_CMD_CONFIGURE
, 0xff, "CONFIGURE", 3, fdctrl_handle_configure
},
2369 { FD_CMD_POWERDOWN_MODE
, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode
},
2370 { FD_CMD_OPTION
, 0xff, "OPTION", 1, fdctrl_handle_option
},
2371 { FD_CMD_DRIVE_SPECIFICATION_COMMAND
, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command
},
2372 { FD_CMD_RELATIVE_SEEK_OUT
, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out
},
2373 { FD_CMD_FORMAT_AND_WRITE
, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented
},
2374 { FD_CMD_RELATIVE_SEEK_IN
, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in
},
2375 { FD_CMD_LOCK
, 0x7f, "LOCK", 0, fdctrl_handle_lock
},
2376 { FD_CMD_DUMPREG
, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg
},
2377 { FD_CMD_VERSION
, 0xff, "VERSION", 0, fdctrl_handle_version
},
2378 { FD_CMD_PART_ID
, 0xff, "PART ID", 0, fdctrl_handle_partid
},
2379 { FD_CMD_WRITE
, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer
, FD_DIR_WRITE
}, /* not in specification ; BeOS 4.5 bug */
2380 { 0, 0, "unknown", 0, fdctrl_unimplemented
}, /* default handler */
2382 /* Associate command to an index in the 'handlers' array */
2383 static uint8_t command_to_handler
[256];
2385 static const FDCtrlCommand
*get_command(uint8_t cmd
)
2389 idx
= command_to_handler
[cmd
];
2390 FLOPPY_DPRINTF("%s command\n", handlers
[idx
].name
);
2391 return &handlers
[idx
];
2394 static void fdctrl_write_data(FDCtrl
*fdctrl
, uint32_t value
)
2397 const FDCtrlCommand
*cmd
;
2401 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
2402 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2405 if (!(fdctrl
->msr
& FD_MSR_RQM
) || (fdctrl
->msr
& FD_MSR_DIO
)) {
2406 FLOPPY_DPRINTF("error: controller not ready for writing\n");
2409 fdctrl
->dsr
&= ~FD_DSR_PWRDOWN
;
2411 FLOPPY_DPRINTF("%s: %02x\n", __func__
, value
);
2413 /* If data_len spans multiple sectors, the current position in the FIFO
2414 * wraps around while fdctrl->data_pos is the real position in the whole
2416 pos
= fdctrl
->data_pos
++;
2417 pos
%= FD_SECTOR_LEN
;
2418 fdctrl
->fifo
[pos
] = value
;
2420 if (fdctrl
->data_pos
== fdctrl
->data_len
) {
2421 fdctrl
->msr
&= ~FD_MSR_RQM
;
2424 switch (fdctrl
->phase
) {
2425 case FD_PHASE_EXECUTION
:
2426 /* For DMA requests, RQM should be cleared during execution phase, so
2427 * we would have errored out above. */
2428 assert(fdctrl
->msr
& FD_MSR_NONDMA
);
2430 /* FIFO data write */
2431 if (pos
== FD_SECTOR_LEN
- 1 ||
2432 fdctrl
->data_pos
== fdctrl
->data_len
) {
2433 cur_drv
= get_cur_drv(fdctrl
);
2434 if (blk_pwrite(cur_drv
->blk
, fd_offset(cur_drv
), fdctrl
->fifo
,
2435 BDRV_SECTOR_SIZE
, 0) < 0) {
2436 FLOPPY_DPRINTF("error writing sector %d\n",
2437 fd_sector(cur_drv
));
2440 if (!fdctrl_seek_to_next_sect(fdctrl
, cur_drv
)) {
2441 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2442 fd_sector(cur_drv
));
2447 /* Switch to result phase when done with the transfer */
2448 if (fdctrl
->data_pos
== fdctrl
->data_len
) {
2449 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
2453 case FD_PHASE_COMMAND
:
2454 assert(!(fdctrl
->msr
& FD_MSR_NONDMA
));
2455 assert(fdctrl
->data_pos
< FD_SECTOR_LEN
);
2458 /* The first byte specifies the command. Now we start reading
2459 * as many parameters as this command requires. */
2460 cmd
= get_command(value
);
2461 fdctrl
->data_len
= cmd
->parameters
+ 1;
2462 if (cmd
->parameters
) {
2463 fdctrl
->msr
|= FD_MSR_RQM
;
2465 fdctrl
->msr
|= FD_MSR_CMDBUSY
;
2468 if (fdctrl
->data_pos
== fdctrl
->data_len
) {
2469 /* We have all parameters now, execute the command */
2470 fdctrl
->phase
= FD_PHASE_EXECUTION
;
2472 if (fdctrl
->data_state
& FD_STATE_FORMAT
) {
2473 fdctrl_format_sector(fdctrl
);
2477 cmd
= get_command(fdctrl
->fifo
[0]);
2478 FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd
->name
);
2479 cmd
->handler(fdctrl
, cmd
->direction
);
2483 case FD_PHASE_RESULT
:
2489 static void fdctrl_result_timer(void *opaque
)
2491 FDCtrl
*fdctrl
= opaque
;
2492 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2494 /* Pretend we are spinning.
2495 * This is needed for Coherent, which uses READ ID to check for
2496 * sector interleaving.
2498 if (cur_drv
->last_sect
!= 0) {
2499 cur_drv
->sect
= (cur_drv
->sect
% cur_drv
->last_sect
) + 1;
2501 /* READ_ID can't automatically succeed! */
2502 if (fdctrl
->check_media_rate
&&
2503 (fdctrl
->dsr
& FD_DSR_DRATEMASK
) != cur_drv
->media_rate
) {
2504 FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2505 fdctrl
->dsr
& FD_DSR_DRATEMASK
, cur_drv
->media_rate
);
2506 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, FD_SR1_MA
, 0x00);
2508 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
2512 /* Init functions */
2513 static void fdctrl_connect_drives(FDCtrl
*fdctrl
, DeviceState
*fdc_dev
,
2520 Error
*local_err
= NULL
;
2522 for (i
= 0; i
< MAX_FD
; i
++) {
2523 drive
= &fdctrl
->drives
[i
];
2524 drive
->fdctrl
= fdctrl
;
2526 /* If the drive is not present, we skip creating the qdev device, but
2527 * still have to initialise the controller. */
2528 blk
= fdctrl
->qdev_for_drives
[i
].blk
;
2531 fd_revalidate(drive
);
2535 dev
= qdev_create(&fdctrl
->bus
.bus
, "floppy");
2536 qdev_prop_set_uint32(dev
, "unit", i
);
2537 qdev_prop_set_enum(dev
, "drive-type", fdctrl
->qdev_for_drives
[i
].type
);
2540 blk_detach_dev(blk
, fdc_dev
);
2541 fdctrl
->qdev_for_drives
[i
].blk
= NULL
;
2542 qdev_prop_set_drive(dev
, "drive", blk
, &local_err
);
2546 error_propagate(errp
, local_err
);
2550 object_property_set_bool(OBJECT(dev
), true, "realized", &local_err
);
2552 error_propagate(errp
, local_err
);
2558 ISADevice
*fdctrl_init_isa(ISABus
*bus
, DriveInfo
**fds
)
2563 isadev
= isa_try_create(bus
, TYPE_ISA_FDC
);
2567 dev
= DEVICE(isadev
);
2570 qdev_prop_set_drive(dev
, "driveA", blk_by_legacy_dinfo(fds
[0]),
2574 qdev_prop_set_drive(dev
, "driveB", blk_by_legacy_dinfo(fds
[1]),
2577 qdev_init_nofail(dev
);
2582 void fdctrl_init_sysbus(qemu_irq irq
, int dma_chann
,
2583 hwaddr mmio_base
, DriveInfo
**fds
)
2590 dev
= qdev_create(NULL
, "sysbus-fdc");
2591 sys
= SYSBUS_FDC(dev
);
2592 fdctrl
= &sys
->state
;
2593 fdctrl
->dma_chann
= dma_chann
; /* FIXME */
2595 qdev_prop_set_drive(dev
, "driveA", blk_by_legacy_dinfo(fds
[0]),
2599 qdev_prop_set_drive(dev
, "driveB", blk_by_legacy_dinfo(fds
[1]),
2602 qdev_init_nofail(dev
);
2603 sbd
= SYS_BUS_DEVICE(dev
);
2604 sysbus_connect_irq(sbd
, 0, irq
);
2605 sysbus_mmio_map(sbd
, 0, mmio_base
);
2608 void sun4m_fdctrl_init(qemu_irq irq
, hwaddr io_base
,
2609 DriveInfo
**fds
, qemu_irq
*fdc_tc
)
2614 dev
= qdev_create(NULL
, "SUNW,fdtwo");
2616 qdev_prop_set_drive(dev
, "drive", blk_by_legacy_dinfo(fds
[0]),
2619 qdev_init_nofail(dev
);
2620 sys
= SYSBUS_FDC(dev
);
2621 sysbus_connect_irq(SYS_BUS_DEVICE(sys
), 0, irq
);
2622 sysbus_mmio_map(SYS_BUS_DEVICE(sys
), 0, io_base
);
2623 *fdc_tc
= qdev_get_gpio_in(dev
, 0);
2626 static void fdctrl_realize_common(DeviceState
*dev
, FDCtrl
*fdctrl
,
2630 static int command_tables_inited
= 0;
2632 if (fdctrl
->fallback
== FLOPPY_DRIVE_TYPE_AUTO
) {
2633 error_setg(errp
, "Cannot choose a fallback FDrive type of 'auto'");
2636 /* Fill 'command_to_handler' lookup table */
2637 if (!command_tables_inited
) {
2638 command_tables_inited
= 1;
2639 for (i
= ARRAY_SIZE(handlers
) - 1; i
>= 0; i
--) {
2640 for (j
= 0; j
< sizeof(command_to_handler
); j
++) {
2641 if ((j
& handlers
[i
].mask
) == handlers
[i
].value
) {
2642 command_to_handler
[j
] = i
;
2648 FLOPPY_DPRINTF("init controller\n");
2649 fdctrl
->fifo
= qemu_memalign(512, FD_SECTOR_LEN
);
2650 fdctrl
->fifo_size
= 512;
2651 fdctrl
->result_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
,
2652 fdctrl_result_timer
, fdctrl
);
2654 fdctrl
->version
= 0x90; /* Intel 82078 controller */
2655 fdctrl
->config
= FD_CONFIG_EIS
| FD_CONFIG_EFIFO
; /* Implicit seek, polling & FIFO enabled */
2656 fdctrl
->num_floppies
= MAX_FD
;
2658 if (fdctrl
->dma_chann
!= -1) {
2660 assert(fdctrl
->dma
);
2661 k
= ISADMA_GET_CLASS(fdctrl
->dma
);
2662 k
->register_channel(fdctrl
->dma
, fdctrl
->dma_chann
,
2663 &fdctrl_transfer_handler
, fdctrl
);
2666 floppy_bus_create(fdctrl
, &fdctrl
->bus
, dev
);
2667 fdctrl_connect_drives(fdctrl
, dev
, errp
);
2670 static const MemoryRegionPortio fdc_portio_list
[] = {
2671 { 1, 5, 1, .read
= fdctrl_read
, .write
= fdctrl_write
},
2672 { 7, 1, 1, .read
= fdctrl_read
, .write
= fdctrl_write
},
2673 PORTIO_END_OF_LIST(),
2676 static void isabus_fdc_realize(DeviceState
*dev
, Error
**errp
)
2678 ISADevice
*isadev
= ISA_DEVICE(dev
);
2679 FDCtrlISABus
*isa
= ISA_FDC(dev
);
2680 FDCtrl
*fdctrl
= &isa
->state
;
2683 isa_register_portio_list(isadev
, &fdctrl
->portio_list
,
2684 isa
->iobase
, fdc_portio_list
, fdctrl
,
2687 isa_init_irq(isadev
, &fdctrl
->irq
, isa
->irq
);
2688 fdctrl
->dma_chann
= isa
->dma
;
2689 if (fdctrl
->dma_chann
!= -1) {
2690 fdctrl
->dma
= isa_get_dma(isa_bus_from_device(isadev
), isa
->dma
);
2692 error_setg(errp
, "ISA controller does not support DMA");
2697 qdev_set_legacy_instance_id(dev
, isa
->iobase
, 2);
2698 fdctrl_realize_common(dev
, fdctrl
, &err
);
2700 error_propagate(errp
, err
);
2705 static void sysbus_fdc_initfn(Object
*obj
)
2707 SysBusDevice
*sbd
= SYS_BUS_DEVICE(obj
);
2708 FDCtrlSysBus
*sys
= SYSBUS_FDC(obj
);
2709 FDCtrl
*fdctrl
= &sys
->state
;
2711 fdctrl
->dma_chann
= -1;
2713 memory_region_init_io(&fdctrl
->iomem
, obj
, &fdctrl_mem_ops
, fdctrl
,
2715 sysbus_init_mmio(sbd
, &fdctrl
->iomem
);
2718 static void sun4m_fdc_initfn(Object
*obj
)
2720 SysBusDevice
*sbd
= SYS_BUS_DEVICE(obj
);
2721 FDCtrlSysBus
*sys
= SYSBUS_FDC(obj
);
2722 FDCtrl
*fdctrl
= &sys
->state
;
2724 fdctrl
->dma_chann
= -1;
2726 memory_region_init_io(&fdctrl
->iomem
, obj
, &fdctrl_mem_strict_ops
,
2727 fdctrl
, "fdctrl", 0x08);
2728 sysbus_init_mmio(sbd
, &fdctrl
->iomem
);
2731 static void sysbus_fdc_common_initfn(Object
*obj
)
2733 DeviceState
*dev
= DEVICE(obj
);
2734 SysBusDevice
*sbd
= SYS_BUS_DEVICE(dev
);
2735 FDCtrlSysBus
*sys
= SYSBUS_FDC(obj
);
2736 FDCtrl
*fdctrl
= &sys
->state
;
2738 qdev_set_legacy_instance_id(dev
, 0 /* io */, 2); /* FIXME */
2740 sysbus_init_irq(sbd
, &fdctrl
->irq
);
2741 qdev_init_gpio_in(dev
, fdctrl_handle_tc
, 1);
2744 static void sysbus_fdc_common_realize(DeviceState
*dev
, Error
**errp
)
2746 FDCtrlSysBus
*sys
= SYSBUS_FDC(dev
);
2747 FDCtrl
*fdctrl
= &sys
->state
;
2749 fdctrl_realize_common(dev
, fdctrl
, errp
);
2752 FloppyDriveType
isa_fdc_get_drive_type(ISADevice
*fdc
, int i
)
2754 FDCtrlISABus
*isa
= ISA_FDC(fdc
);
2756 return isa
->state
.drives
[i
].drive
;
2759 void isa_fdc_get_drive_max_chs(FloppyDriveType type
,
2760 uint8_t *maxc
, uint8_t *maxh
, uint8_t *maxs
)
2762 const FDFormat
*fdf
;
2764 *maxc
= *maxh
= *maxs
= 0;
2765 for (fdf
= fd_formats
; fdf
->drive
!= FLOPPY_DRIVE_TYPE_NONE
; fdf
++) {
2766 if (fdf
->drive
!= type
) {
2769 if (*maxc
< fdf
->max_track
) {
2770 *maxc
= fdf
->max_track
;
2772 if (*maxh
< fdf
->max_head
) {
2773 *maxh
= fdf
->max_head
;
2775 if (*maxs
< fdf
->last_sect
) {
2776 *maxs
= fdf
->last_sect
;
2782 static const VMStateDescription vmstate_isa_fdc
={
2785 .minimum_version_id
= 2,
2786 .fields
= (VMStateField
[]) {
2787 VMSTATE_STRUCT(state
, FDCtrlISABus
, 0, vmstate_fdc
, FDCtrl
),
2788 VMSTATE_END_OF_LIST()
2792 static Property isa_fdc_properties
[] = {
2793 DEFINE_PROP_UINT32("iobase", FDCtrlISABus
, iobase
, 0x3f0),
2794 DEFINE_PROP_UINT32("irq", FDCtrlISABus
, irq
, 6),
2795 DEFINE_PROP_UINT32("dma", FDCtrlISABus
, dma
, 2),
2796 DEFINE_PROP_DRIVE("driveA", FDCtrlISABus
, state
.qdev_for_drives
[0].blk
),
2797 DEFINE_PROP_DRIVE("driveB", FDCtrlISABus
, state
.qdev_for_drives
[1].blk
),
2798 DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus
, state
.check_media_rate
,
2800 DEFINE_PROP_SIGNED("fdtypeA", FDCtrlISABus
, state
.qdev_for_drives
[0].type
,
2801 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2803 DEFINE_PROP_SIGNED("fdtypeB", FDCtrlISABus
, state
.qdev_for_drives
[1].type
,
2804 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2806 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus
, state
.fallback
,
2807 FLOPPY_DRIVE_TYPE_288
, qdev_prop_fdc_drive_type
,
2809 DEFINE_PROP_END_OF_LIST(),
2812 static void isabus_fdc_class_init(ObjectClass
*klass
, void *data
)
2814 DeviceClass
*dc
= DEVICE_CLASS(klass
);
2816 dc
->realize
= isabus_fdc_realize
;
2817 dc
->fw_name
= "fdc";
2818 dc
->reset
= fdctrl_external_reset_isa
;
2819 dc
->vmsd
= &vmstate_isa_fdc
;
2820 dc
->props
= isa_fdc_properties
;
2821 set_bit(DEVICE_CATEGORY_STORAGE
, dc
->categories
);
2824 static void isabus_fdc_instance_init(Object
*obj
)
2826 FDCtrlISABus
*isa
= ISA_FDC(obj
);
2828 device_add_bootindex_property(obj
, &isa
->bootindexA
,
2829 "bootindexA", "/floppy@0",
2831 device_add_bootindex_property(obj
, &isa
->bootindexB
,
2832 "bootindexB", "/floppy@1",
2836 static const TypeInfo isa_fdc_info
= {
2837 .name
= TYPE_ISA_FDC
,
2838 .parent
= TYPE_ISA_DEVICE
,
2839 .instance_size
= sizeof(FDCtrlISABus
),
2840 .class_init
= isabus_fdc_class_init
,
2841 .instance_init
= isabus_fdc_instance_init
,
2844 static const VMStateDescription vmstate_sysbus_fdc
={
2847 .minimum_version_id
= 2,
2848 .fields
= (VMStateField
[]) {
2849 VMSTATE_STRUCT(state
, FDCtrlSysBus
, 0, vmstate_fdc
, FDCtrl
),
2850 VMSTATE_END_OF_LIST()
2854 static Property sysbus_fdc_properties
[] = {
2855 DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus
, state
.qdev_for_drives
[0].blk
),
2856 DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus
, state
.qdev_for_drives
[1].blk
),
2857 DEFINE_PROP_SIGNED("fdtypeA", FDCtrlSysBus
, state
.qdev_for_drives
[0].type
,
2858 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2860 DEFINE_PROP_SIGNED("fdtypeB", FDCtrlSysBus
, state
.qdev_for_drives
[1].type
,
2861 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2863 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus
, state
.fallback
,
2864 FLOPPY_DRIVE_TYPE_144
, qdev_prop_fdc_drive_type
,
2866 DEFINE_PROP_END_OF_LIST(),
2869 static void sysbus_fdc_class_init(ObjectClass
*klass
, void *data
)
2871 DeviceClass
*dc
= DEVICE_CLASS(klass
);
2873 dc
->props
= sysbus_fdc_properties
;
2874 set_bit(DEVICE_CATEGORY_STORAGE
, dc
->categories
);
2877 static const TypeInfo sysbus_fdc_info
= {
2878 .name
= "sysbus-fdc",
2879 .parent
= TYPE_SYSBUS_FDC
,
2880 .instance_init
= sysbus_fdc_initfn
,
2881 .class_init
= sysbus_fdc_class_init
,
2884 static Property sun4m_fdc_properties
[] = {
2885 DEFINE_PROP_DRIVE("drive", FDCtrlSysBus
, state
.qdev_for_drives
[0].blk
),
2886 DEFINE_PROP_SIGNED("fdtype", FDCtrlSysBus
, state
.qdev_for_drives
[0].type
,
2887 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2889 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus
, state
.fallback
,
2890 FLOPPY_DRIVE_TYPE_144
, qdev_prop_fdc_drive_type
,
2892 DEFINE_PROP_END_OF_LIST(),
2895 static void sun4m_fdc_class_init(ObjectClass
*klass
, void *data
)
2897 DeviceClass
*dc
= DEVICE_CLASS(klass
);
2899 dc
->props
= sun4m_fdc_properties
;
2900 set_bit(DEVICE_CATEGORY_STORAGE
, dc
->categories
);
2903 static const TypeInfo sun4m_fdc_info
= {
2904 .name
= "SUNW,fdtwo",
2905 .parent
= TYPE_SYSBUS_FDC
,
2906 .instance_init
= sun4m_fdc_initfn
,
2907 .class_init
= sun4m_fdc_class_init
,
2910 static void sysbus_fdc_common_class_init(ObjectClass
*klass
, void *data
)
2912 DeviceClass
*dc
= DEVICE_CLASS(klass
);
2914 dc
->realize
= sysbus_fdc_common_realize
;
2915 dc
->reset
= fdctrl_external_reset_sysbus
;
2916 dc
->vmsd
= &vmstate_sysbus_fdc
;
2919 static const TypeInfo sysbus_fdc_type_info
= {
2920 .name
= TYPE_SYSBUS_FDC
,
2921 .parent
= TYPE_SYS_BUS_DEVICE
,
2922 .instance_size
= sizeof(FDCtrlSysBus
),
2923 .instance_init
= sysbus_fdc_common_initfn
,
2925 .class_init
= sysbus_fdc_common_class_init
,
2928 static void fdc_register_types(void)
2930 type_register_static(&isa_fdc_info
);
2931 type_register_static(&sysbus_fdc_type_info
);
2932 type_register_static(&sysbus_fdc_info
);
2933 type_register_static(&sun4m_fdc_info
);
2934 type_register_static(&floppy_bus_info
);
2935 type_register_static(&floppy_drive_info
);
2938 type_init(fdc_register_types
)