4 * Generate helpers used by TCG for qemu_ld/st ops and code load
7 * Included from target op helpers and exec.c.
9 * Copyright (c) 2003 Fabrice Bellard
11 * This library is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2 of the License, or (at your option) any later version.
16 * This library is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
27 #define SDATA_TYPE int64_t
28 #define DATA_TYPE uint64_t
32 #define SDATA_TYPE int32_t
33 #define DATA_TYPE uint32_t
37 #define SDATA_TYPE int16_t
38 #define DATA_TYPE uint16_t
42 #define SDATA_TYPE int8_t
43 #define DATA_TYPE uint8_t
45 #error unsupported data size
49 /* For the benefit of TCG generated code, we want to avoid the complication
50 of ABI-specific return type promotion and always return a value extended
51 to the register size of the host. This is tcg_target_long, except in the
52 case of a 32-bit host and 64-bit data, and for that we always have
53 uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */
54 #if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8
55 # define WORD_TYPE DATA_TYPE
56 # define USUFFIX SUFFIX
58 # define WORD_TYPE tcg_target_ulong
59 # define USUFFIX glue(u, SUFFIX)
60 # define SSUFFIX glue(s, SUFFIX)
63 #ifdef SOFTMMU_CODE_ACCESS
64 #define READ_ACCESS_TYPE MMU_INST_FETCH
65 #define ADDR_READ addr_code
67 #define READ_ACCESS_TYPE MMU_DATA_LOAD
68 #define ADDR_READ addr_read
72 # define BSWAP(X) bswap64(X)
74 # define BSWAP(X) bswap32(X)
76 # define BSWAP(X) bswap16(X)
82 # define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX)
83 # define helper_be_ld_name helper_le_ld_name
84 # define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX)
85 # define helper_be_lds_name helper_le_lds_name
86 # define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX)
87 # define helper_be_st_name helper_le_st_name
89 # define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX)
90 # define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX)
91 # define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX)
92 # define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX)
93 # define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX)
94 # define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX)
97 #ifndef SOFTMMU_CODE_ACCESS
98 static inline DATA_TYPE
glue(io_read
, SUFFIX
)(CPUArchState
*env
,
99 size_t mmu_idx
, size_t index
,
103 MMUAccessType access_type
)
105 CPUIOTLBEntry
*iotlbentry
= &env
->iotlb
[mmu_idx
][index
];
106 return io_readx(env
, iotlbentry
, mmu_idx
, addr
, retaddr
, recheck
,
107 access_type
, DATA_SIZE
);
111 WORD_TYPE
helper_le_ld_name(CPUArchState
*env
, target_ulong addr
,
112 TCGMemOpIdx oi
, uintptr_t retaddr
)
114 uintptr_t mmu_idx
= get_mmuidx(oi
);
115 uintptr_t index
= tlb_index(env
, mmu_idx
, addr
);
116 CPUTLBEntry
*entry
= tlb_entry(env
, mmu_idx
, addr
);
117 target_ulong tlb_addr
= entry
->ADDR_READ
;
118 unsigned a_bits
= get_alignment_bits(get_memop(oi
));
122 if (addr
& ((1 << a_bits
) - 1)) {
123 cpu_unaligned_access(ENV_GET_CPU(env
), addr
, READ_ACCESS_TYPE
,
127 /* If the TLB entry is for a different page, reload and try again. */
128 if (!tlb_hit(tlb_addr
, addr
)) {
129 if (!VICTIM_TLB_HIT(ADDR_READ
, addr
)) {
130 tlb_fill(ENV_GET_CPU(env
), addr
, DATA_SIZE
, READ_ACCESS_TYPE
,
133 tlb_addr
= entry
->ADDR_READ
;
136 /* Handle an IO access. */
137 if (unlikely(tlb_addr
& ~TARGET_PAGE_MASK
)) {
138 if ((addr
& (DATA_SIZE
- 1)) != 0) {
139 goto do_unaligned_access
;
142 /* ??? Note that the io helpers always read data in the target
143 byte ordering. We should push the LE/BE request down into io. */
144 res
= glue(io_read
, SUFFIX
)(env
, mmu_idx
, index
, addr
, retaddr
,
145 tlb_addr
& TLB_RECHECK
,
151 /* Handle slow unaligned access (it spans two pages or IO). */
153 && unlikely((addr
& ~TARGET_PAGE_MASK
) + DATA_SIZE
- 1
154 >= TARGET_PAGE_SIZE
)) {
155 target_ulong addr1
, addr2
;
156 DATA_TYPE res1
, res2
;
159 addr1
= addr
& ~(DATA_SIZE
- 1);
160 addr2
= addr1
+ DATA_SIZE
;
161 res1
= helper_le_ld_name(env
, addr1
, oi
, retaddr
);
162 res2
= helper_le_ld_name(env
, addr2
, oi
, retaddr
);
163 shift
= (addr
& (DATA_SIZE
- 1)) * 8;
165 /* Little-endian combine. */
166 res
= (res1
>> shift
) | (res2
<< ((DATA_SIZE
* 8) - shift
));
170 haddr
= addr
+ entry
->addend
;
172 res
= glue(glue(ld
, LSUFFIX
), _p
)((uint8_t *)haddr
);
174 res
= glue(glue(ld
, LSUFFIX
), _le_p
)((uint8_t *)haddr
);
180 WORD_TYPE
helper_be_ld_name(CPUArchState
*env
, target_ulong addr
,
181 TCGMemOpIdx oi
, uintptr_t retaddr
)
183 uintptr_t mmu_idx
= get_mmuidx(oi
);
184 uintptr_t index
= tlb_index(env
, mmu_idx
, addr
);
185 CPUTLBEntry
*entry
= tlb_entry(env
, mmu_idx
, addr
);
186 target_ulong tlb_addr
= entry
->ADDR_READ
;
187 unsigned a_bits
= get_alignment_bits(get_memop(oi
));
191 if (addr
& ((1 << a_bits
) - 1)) {
192 cpu_unaligned_access(ENV_GET_CPU(env
), addr
, READ_ACCESS_TYPE
,
196 /* If the TLB entry is for a different page, reload and try again. */
197 if (!tlb_hit(tlb_addr
, addr
)) {
198 if (!VICTIM_TLB_HIT(ADDR_READ
, addr
)) {
199 tlb_fill(ENV_GET_CPU(env
), addr
, DATA_SIZE
, READ_ACCESS_TYPE
,
202 tlb_addr
= entry
->ADDR_READ
;
205 /* Handle an IO access. */
206 if (unlikely(tlb_addr
& ~TARGET_PAGE_MASK
)) {
207 if ((addr
& (DATA_SIZE
- 1)) != 0) {
208 goto do_unaligned_access
;
211 /* ??? Note that the io helpers always read data in the target
212 byte ordering. We should push the LE/BE request down into io. */
213 res
= glue(io_read
, SUFFIX
)(env
, mmu_idx
, index
, addr
, retaddr
,
214 tlb_addr
& TLB_RECHECK
,
220 /* Handle slow unaligned access (it spans two pages or IO). */
222 && unlikely((addr
& ~TARGET_PAGE_MASK
) + DATA_SIZE
- 1
223 >= TARGET_PAGE_SIZE
)) {
224 target_ulong addr1
, addr2
;
225 DATA_TYPE res1
, res2
;
228 addr1
= addr
& ~(DATA_SIZE
- 1);
229 addr2
= addr1
+ DATA_SIZE
;
230 res1
= helper_be_ld_name(env
, addr1
, oi
, retaddr
);
231 res2
= helper_be_ld_name(env
, addr2
, oi
, retaddr
);
232 shift
= (addr
& (DATA_SIZE
- 1)) * 8;
234 /* Big-endian combine. */
235 res
= (res1
<< shift
) | (res2
>> ((DATA_SIZE
* 8) - shift
));
239 haddr
= addr
+ entry
->addend
;
240 res
= glue(glue(ld
, LSUFFIX
), _be_p
)((uint8_t *)haddr
);
243 #endif /* DATA_SIZE > 1 */
245 #ifndef SOFTMMU_CODE_ACCESS
247 /* Provide signed versions of the load routines as well. We can of course
248 avoid this for 64-bit data, or for 32-bit data on 32-bit host. */
249 #if DATA_SIZE * 8 < TCG_TARGET_REG_BITS
250 WORD_TYPE
helper_le_lds_name(CPUArchState
*env
, target_ulong addr
,
251 TCGMemOpIdx oi
, uintptr_t retaddr
)
253 return (SDATA_TYPE
)helper_le_ld_name(env
, addr
, oi
, retaddr
);
257 WORD_TYPE
helper_be_lds_name(CPUArchState
*env
, target_ulong addr
,
258 TCGMemOpIdx oi
, uintptr_t retaddr
)
260 return (SDATA_TYPE
)helper_be_ld_name(env
, addr
, oi
, retaddr
);
265 static inline void glue(io_write
, SUFFIX
)(CPUArchState
*env
,
266 size_t mmu_idx
, size_t index
,
272 CPUIOTLBEntry
*iotlbentry
= &env
->iotlb
[mmu_idx
][index
];
273 return io_writex(env
, iotlbentry
, mmu_idx
, val
, addr
, retaddr
,
277 void helper_le_st_name(CPUArchState
*env
, target_ulong addr
, DATA_TYPE val
,
278 TCGMemOpIdx oi
, uintptr_t retaddr
)
280 uintptr_t mmu_idx
= get_mmuidx(oi
);
281 uintptr_t index
= tlb_index(env
, mmu_idx
, addr
);
282 CPUTLBEntry
*entry
= tlb_entry(env
, mmu_idx
, addr
);
283 target_ulong tlb_addr
= tlb_addr_write(entry
);
284 unsigned a_bits
= get_alignment_bits(get_memop(oi
));
287 if (addr
& ((1 << a_bits
) - 1)) {
288 cpu_unaligned_access(ENV_GET_CPU(env
), addr
, MMU_DATA_STORE
,
292 /* If the TLB entry is for a different page, reload and try again. */
293 if (!tlb_hit(tlb_addr
, addr
)) {
294 if (!VICTIM_TLB_HIT(addr_write
, addr
)) {
295 tlb_fill(ENV_GET_CPU(env
), addr
, DATA_SIZE
, MMU_DATA_STORE
,
298 tlb_addr
= tlb_addr_write(entry
) & ~TLB_INVALID_MASK
;
301 /* Handle an IO access. */
302 if (unlikely(tlb_addr
& ~TARGET_PAGE_MASK
)) {
303 if ((addr
& (DATA_SIZE
- 1)) != 0) {
304 goto do_unaligned_access
;
307 /* ??? Note that the io helpers always read data in the target
308 byte ordering. We should push the LE/BE request down into io. */
310 glue(io_write
, SUFFIX
)(env
, mmu_idx
, index
, val
, addr
,
311 retaddr
, tlb_addr
& TLB_RECHECK
);
315 /* Handle slow unaligned access (it spans two pages or IO). */
317 && unlikely((addr
& ~TARGET_PAGE_MASK
) + DATA_SIZE
- 1
318 >= TARGET_PAGE_SIZE
)) {
323 /* Ensure the second page is in the TLB. Note that the first page
324 is already guaranteed to be filled, and that the second page
325 cannot evict the first. */
326 page2
= (addr
+ DATA_SIZE
) & TARGET_PAGE_MASK
;
327 entry2
= tlb_entry(env
, mmu_idx
, page2
);
328 if (!tlb_hit_page(tlb_addr_write(entry2
), page2
)
329 && !VICTIM_TLB_HIT(addr_write
, page2
)) {
330 tlb_fill(ENV_GET_CPU(env
), page2
, DATA_SIZE
, MMU_DATA_STORE
,
334 /* XXX: not efficient, but simple. */
335 /* This loop must go in the forward direction to avoid issues
336 with self-modifying code in Windows 64-bit. */
337 for (i
= 0; i
< DATA_SIZE
; ++i
) {
338 /* Little-endian extract. */
339 uint8_t val8
= val
>> (i
* 8);
340 glue(helper_ret_stb
, MMUSUFFIX
)(env
, addr
+ i
, val8
,
346 haddr
= addr
+ entry
->addend
;
348 glue(glue(st
, SUFFIX
), _p
)((uint8_t *)haddr
, val
);
350 glue(glue(st
, SUFFIX
), _le_p
)((uint8_t *)haddr
, val
);
355 void helper_be_st_name(CPUArchState
*env
, target_ulong addr
, DATA_TYPE val
,
356 TCGMemOpIdx oi
, uintptr_t retaddr
)
358 uintptr_t mmu_idx
= get_mmuidx(oi
);
359 uintptr_t index
= tlb_index(env
, mmu_idx
, addr
);
360 CPUTLBEntry
*entry
= tlb_entry(env
, mmu_idx
, addr
);
361 target_ulong tlb_addr
= tlb_addr_write(entry
);
362 unsigned a_bits
= get_alignment_bits(get_memop(oi
));
365 if (addr
& ((1 << a_bits
) - 1)) {
366 cpu_unaligned_access(ENV_GET_CPU(env
), addr
, MMU_DATA_STORE
,
370 /* If the TLB entry is for a different page, reload and try again. */
371 if (!tlb_hit(tlb_addr
, addr
)) {
372 if (!VICTIM_TLB_HIT(addr_write
, addr
)) {
373 tlb_fill(ENV_GET_CPU(env
), addr
, DATA_SIZE
, MMU_DATA_STORE
,
376 tlb_addr
= tlb_addr_write(entry
) & ~TLB_INVALID_MASK
;
379 /* Handle an IO access. */
380 if (unlikely(tlb_addr
& ~TARGET_PAGE_MASK
)) {
381 if ((addr
& (DATA_SIZE
- 1)) != 0) {
382 goto do_unaligned_access
;
385 /* ??? Note that the io helpers always read data in the target
386 byte ordering. We should push the LE/BE request down into io. */
388 glue(io_write
, SUFFIX
)(env
, mmu_idx
, index
, val
, addr
, retaddr
,
389 tlb_addr
& TLB_RECHECK
);
393 /* Handle slow unaligned access (it spans two pages or IO). */
395 && unlikely((addr
& ~TARGET_PAGE_MASK
) + DATA_SIZE
- 1
396 >= TARGET_PAGE_SIZE
)) {
401 /* Ensure the second page is in the TLB. Note that the first page
402 is already guaranteed to be filled, and that the second page
403 cannot evict the first. */
404 page2
= (addr
+ DATA_SIZE
) & TARGET_PAGE_MASK
;
405 entry2
= tlb_entry(env
, mmu_idx
, page2
);
406 if (!tlb_hit_page(tlb_addr_write(entry2
), page2
)
407 && !VICTIM_TLB_HIT(addr_write
, page2
)) {
408 tlb_fill(ENV_GET_CPU(env
), page2
, DATA_SIZE
, MMU_DATA_STORE
,
412 /* XXX: not efficient, but simple */
413 /* This loop must go in the forward direction to avoid issues
414 with self-modifying code. */
415 for (i
= 0; i
< DATA_SIZE
; ++i
) {
416 /* Big-endian extract. */
417 uint8_t val8
= val
>> (((DATA_SIZE
- 1) * 8) - (i
* 8));
418 glue(helper_ret_stb
, MMUSUFFIX
)(env
, addr
+ i
, val8
,
424 haddr
= addr
+ entry
->addend
;
425 glue(glue(st
, SUFFIX
), _be_p
)((uint8_t *)haddr
, val
);
427 #endif /* DATA_SIZE > 1 */
428 #endif /* !defined(SOFTMMU_CODE_ACCESS) */
430 #undef READ_ACCESS_TYPE
441 #undef helper_le_ld_name
442 #undef helper_be_ld_name
443 #undef helper_le_lds_name
444 #undef helper_be_lds_name
445 #undef helper_le_st_name
446 #undef helper_be_st_name