qom: trace asserting casts
[qemu/ar7.git] / kvm-all.c
blob3a316023593a4c3d46fc4806dec6ecc6d44b8c8d
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "hw/hw.h"
29 #include "hw/pci/msi.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm.h"
32 #include "qemu/bswap.h"
33 #include "exec/memory.h"
34 #include "exec/address-spaces.h"
35 #include "qemu/event_notifier.h"
36 #include "trace.h"
38 /* This check must be after config-host.h is included */
39 #ifdef CONFIG_EVENTFD
40 #include <sys/eventfd.h>
41 #endif
43 #ifdef CONFIG_VALGRIND_H
44 #include <valgrind/memcheck.h>
45 #endif
47 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
48 #define PAGE_SIZE TARGET_PAGE_SIZE
50 //#define DEBUG_KVM
52 #ifdef DEBUG_KVM
53 #define DPRINTF(fmt, ...) \
54 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
55 #else
56 #define DPRINTF(fmt, ...) \
57 do { } while (0)
58 #endif
60 #define KVM_MSI_HASHTAB_SIZE 256
62 typedef struct KVMSlot
64 hwaddr start_addr;
65 ram_addr_t memory_size;
66 void *ram;
67 int slot;
68 int flags;
69 } KVMSlot;
71 typedef struct kvm_dirty_log KVMDirtyLog;
73 struct KVMState
75 KVMSlot slots[32];
76 int fd;
77 int vmfd;
78 int coalesced_mmio;
79 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
80 bool coalesced_flush_in_progress;
81 int broken_set_mem_region;
82 int migration_log;
83 int vcpu_events;
84 int robust_singlestep;
85 int debugregs;
86 #ifdef KVM_CAP_SET_GUEST_DEBUG
87 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
88 #endif
89 int pit_state2;
90 int xsave, xcrs;
91 int many_ioeventfds;
92 int intx_set_mask;
93 /* The man page (and posix) say ioctl numbers are signed int, but
94 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
95 * unsigned, and treating them as signed here can break things */
96 unsigned irq_set_ioctl;
97 #ifdef KVM_CAP_IRQ_ROUTING
98 struct kvm_irq_routing *irq_routes;
99 int nr_allocated_irq_routes;
100 uint32_t *used_gsi_bitmap;
101 unsigned int gsi_count;
102 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
103 bool direct_msi;
104 #endif
107 KVMState *kvm_state;
108 bool kvm_kernel_irqchip;
109 bool kvm_async_interrupts_allowed;
110 bool kvm_irqfds_allowed;
111 bool kvm_msi_via_irqfd_allowed;
112 bool kvm_gsi_routing_allowed;
113 bool kvm_allowed;
115 static const KVMCapabilityInfo kvm_required_capabilites[] = {
116 KVM_CAP_INFO(USER_MEMORY),
117 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
118 KVM_CAP_LAST_INFO
121 static KVMSlot *kvm_alloc_slot(KVMState *s)
123 int i;
125 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
126 if (s->slots[i].memory_size == 0) {
127 return &s->slots[i];
131 fprintf(stderr, "%s: no free slot available\n", __func__);
132 abort();
135 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
136 hwaddr start_addr,
137 hwaddr end_addr)
139 int i;
141 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
142 KVMSlot *mem = &s->slots[i];
144 if (start_addr == mem->start_addr &&
145 end_addr == mem->start_addr + mem->memory_size) {
146 return mem;
150 return NULL;
154 * Find overlapping slot with lowest start address
156 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
157 hwaddr start_addr,
158 hwaddr end_addr)
160 KVMSlot *found = NULL;
161 int i;
163 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
164 KVMSlot *mem = &s->slots[i];
166 if (mem->memory_size == 0 ||
167 (found && found->start_addr < mem->start_addr)) {
168 continue;
171 if (end_addr > mem->start_addr &&
172 start_addr < mem->start_addr + mem->memory_size) {
173 found = mem;
177 return found;
180 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
181 hwaddr *phys_addr)
183 int i;
185 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
186 KVMSlot *mem = &s->slots[i];
188 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
189 *phys_addr = mem->start_addr + (ram - mem->ram);
190 return 1;
194 return 0;
197 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
199 struct kvm_userspace_memory_region mem;
201 mem.slot = slot->slot;
202 mem.guest_phys_addr = slot->start_addr;
203 mem.memory_size = slot->memory_size;
204 mem.userspace_addr = (unsigned long)slot->ram;
205 mem.flags = slot->flags;
206 if (s->migration_log) {
207 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
209 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
212 static void kvm_reset_vcpu(void *opaque)
214 CPUState *cpu = opaque;
216 kvm_arch_reset_vcpu(cpu);
219 int kvm_init_vcpu(CPUState *cpu)
221 KVMState *s = kvm_state;
222 long mmap_size;
223 int ret;
225 DPRINTF("kvm_init_vcpu\n");
227 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
228 if (ret < 0) {
229 DPRINTF("kvm_create_vcpu failed\n");
230 goto err;
233 cpu->kvm_fd = ret;
234 cpu->kvm_state = s;
235 cpu->kvm_vcpu_dirty = true;
237 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
238 if (mmap_size < 0) {
239 ret = mmap_size;
240 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
241 goto err;
244 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
245 cpu->kvm_fd, 0);
246 if (cpu->kvm_run == MAP_FAILED) {
247 ret = -errno;
248 DPRINTF("mmap'ing vcpu state failed\n");
249 goto err;
252 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
253 s->coalesced_mmio_ring =
254 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
257 ret = kvm_arch_init_vcpu(cpu);
258 if (ret == 0) {
259 qemu_register_reset(kvm_reset_vcpu, cpu);
260 kvm_arch_reset_vcpu(cpu);
262 err:
263 return ret;
267 * dirty pages logging control
270 static int kvm_mem_flags(KVMState *s, bool log_dirty)
272 return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
275 static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
277 KVMState *s = kvm_state;
278 int flags, mask = KVM_MEM_LOG_DIRTY_PAGES;
279 int old_flags;
281 old_flags = mem->flags;
283 flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
284 mem->flags = flags;
286 /* If nothing changed effectively, no need to issue ioctl */
287 if (s->migration_log) {
288 flags |= KVM_MEM_LOG_DIRTY_PAGES;
291 if (flags == old_flags) {
292 return 0;
295 return kvm_set_user_memory_region(s, mem);
298 static int kvm_dirty_pages_log_change(hwaddr phys_addr,
299 ram_addr_t size, bool log_dirty)
301 KVMState *s = kvm_state;
302 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
304 if (mem == NULL) {
305 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
306 TARGET_FMT_plx "\n", __func__, phys_addr,
307 (hwaddr)(phys_addr + size - 1));
308 return -EINVAL;
310 return kvm_slot_dirty_pages_log_change(mem, log_dirty);
313 static void kvm_log_start(MemoryListener *listener,
314 MemoryRegionSection *section)
316 int r;
318 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
319 section->size, true);
320 if (r < 0) {
321 abort();
325 static void kvm_log_stop(MemoryListener *listener,
326 MemoryRegionSection *section)
328 int r;
330 r = kvm_dirty_pages_log_change(section->offset_within_address_space,
331 section->size, false);
332 if (r < 0) {
333 abort();
337 static int kvm_set_migration_log(int enable)
339 KVMState *s = kvm_state;
340 KVMSlot *mem;
341 int i, err;
343 s->migration_log = enable;
345 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
346 mem = &s->slots[i];
348 if (!mem->memory_size) {
349 continue;
351 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
352 continue;
354 err = kvm_set_user_memory_region(s, mem);
355 if (err) {
356 return err;
359 return 0;
362 /* get kvm's dirty pages bitmap and update qemu's */
363 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
364 unsigned long *bitmap)
366 unsigned int i, j;
367 unsigned long page_number, c;
368 hwaddr addr, addr1;
369 unsigned int len = ((section->size / getpagesize()) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
370 unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
373 * bitmap-traveling is faster than memory-traveling (for addr...)
374 * especially when most of the memory is not dirty.
376 for (i = 0; i < len; i++) {
377 if (bitmap[i] != 0) {
378 c = leul_to_cpu(bitmap[i]);
379 do {
380 j = ffsl(c) - 1;
381 c &= ~(1ul << j);
382 page_number = (i * HOST_LONG_BITS + j) * hpratio;
383 addr1 = page_number * TARGET_PAGE_SIZE;
384 addr = section->offset_within_region + addr1;
385 memory_region_set_dirty(section->mr, addr,
386 TARGET_PAGE_SIZE * hpratio);
387 } while (c != 0);
390 return 0;
393 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
396 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
397 * This function updates qemu's dirty bitmap using
398 * memory_region_set_dirty(). This means all bits are set
399 * to dirty.
401 * @start_add: start of logged region.
402 * @end_addr: end of logged region.
404 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section)
406 KVMState *s = kvm_state;
407 unsigned long size, allocated_size = 0;
408 KVMDirtyLog d;
409 KVMSlot *mem;
410 int ret = 0;
411 hwaddr start_addr = section->offset_within_address_space;
412 hwaddr end_addr = start_addr + section->size;
414 d.dirty_bitmap = NULL;
415 while (start_addr < end_addr) {
416 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
417 if (mem == NULL) {
418 break;
421 /* XXX bad kernel interface alert
422 * For dirty bitmap, kernel allocates array of size aligned to
423 * bits-per-long. But for case when the kernel is 64bits and
424 * the userspace is 32bits, userspace can't align to the same
425 * bits-per-long, since sizeof(long) is different between kernel
426 * and user space. This way, userspace will provide buffer which
427 * may be 4 bytes less than the kernel will use, resulting in
428 * userspace memory corruption (which is not detectable by valgrind
429 * too, in most cases).
430 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
431 * a hope that sizeof(long) wont become >8 any time soon.
433 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
434 /*HOST_LONG_BITS*/ 64) / 8;
435 if (!d.dirty_bitmap) {
436 d.dirty_bitmap = g_malloc(size);
437 } else if (size > allocated_size) {
438 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
440 allocated_size = size;
441 memset(d.dirty_bitmap, 0, allocated_size);
443 d.slot = mem->slot;
445 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
446 DPRINTF("ioctl failed %d\n", errno);
447 ret = -1;
448 break;
451 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
452 start_addr = mem->start_addr + mem->memory_size;
454 g_free(d.dirty_bitmap);
456 return ret;
459 static void kvm_coalesce_mmio_region(MemoryListener *listener,
460 MemoryRegionSection *secion,
461 hwaddr start, hwaddr size)
463 KVMState *s = kvm_state;
465 if (s->coalesced_mmio) {
466 struct kvm_coalesced_mmio_zone zone;
468 zone.addr = start;
469 zone.size = size;
470 zone.pad = 0;
472 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
476 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
477 MemoryRegionSection *secion,
478 hwaddr start, hwaddr size)
480 KVMState *s = kvm_state;
482 if (s->coalesced_mmio) {
483 struct kvm_coalesced_mmio_zone zone;
485 zone.addr = start;
486 zone.size = size;
487 zone.pad = 0;
489 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
493 int kvm_check_extension(KVMState *s, unsigned int extension)
495 int ret;
497 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
498 if (ret < 0) {
499 ret = 0;
502 return ret;
505 static int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val,
506 bool assign, uint32_t size, bool datamatch)
508 int ret;
509 struct kvm_ioeventfd iofd;
511 iofd.datamatch = datamatch ? val : 0;
512 iofd.addr = addr;
513 iofd.len = size;
514 iofd.flags = 0;
515 iofd.fd = fd;
517 if (!kvm_enabled()) {
518 return -ENOSYS;
521 if (datamatch) {
522 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
524 if (!assign) {
525 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
528 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
530 if (ret < 0) {
531 return -errno;
534 return 0;
537 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
538 bool assign, uint32_t size, bool datamatch)
540 struct kvm_ioeventfd kick = {
541 .datamatch = datamatch ? val : 0,
542 .addr = addr,
543 .flags = KVM_IOEVENTFD_FLAG_PIO,
544 .len = size,
545 .fd = fd,
547 int r;
548 if (!kvm_enabled()) {
549 return -ENOSYS;
551 if (datamatch) {
552 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
554 if (!assign) {
555 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
557 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
558 if (r < 0) {
559 return r;
561 return 0;
565 static int kvm_check_many_ioeventfds(void)
567 /* Userspace can use ioeventfd for io notification. This requires a host
568 * that supports eventfd(2) and an I/O thread; since eventfd does not
569 * support SIGIO it cannot interrupt the vcpu.
571 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
572 * can avoid creating too many ioeventfds.
574 #if defined(CONFIG_EVENTFD)
575 int ioeventfds[7];
576 int i, ret = 0;
577 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
578 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
579 if (ioeventfds[i] < 0) {
580 break;
582 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
583 if (ret < 0) {
584 close(ioeventfds[i]);
585 break;
589 /* Decide whether many devices are supported or not */
590 ret = i == ARRAY_SIZE(ioeventfds);
592 while (i-- > 0) {
593 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
594 close(ioeventfds[i]);
596 return ret;
597 #else
598 return 0;
599 #endif
602 static const KVMCapabilityInfo *
603 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
605 while (list->name) {
606 if (!kvm_check_extension(s, list->value)) {
607 return list;
609 list++;
611 return NULL;
614 static void kvm_set_phys_mem(MemoryRegionSection *section, bool add)
616 KVMState *s = kvm_state;
617 KVMSlot *mem, old;
618 int err;
619 MemoryRegion *mr = section->mr;
620 bool log_dirty = memory_region_is_logging(mr);
621 hwaddr start_addr = section->offset_within_address_space;
622 ram_addr_t size = section->size;
623 void *ram = NULL;
624 unsigned delta;
626 /* kvm works in page size chunks, but the function may be called
627 with sub-page size and unaligned start address. */
628 delta = TARGET_PAGE_ALIGN(size) - size;
629 if (delta > size) {
630 return;
632 start_addr += delta;
633 size -= delta;
634 size &= TARGET_PAGE_MASK;
635 if (!size || (start_addr & ~TARGET_PAGE_MASK)) {
636 return;
639 if (!memory_region_is_ram(mr)) {
640 return;
643 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
645 while (1) {
646 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
647 if (!mem) {
648 break;
651 if (add && start_addr >= mem->start_addr &&
652 (start_addr + size <= mem->start_addr + mem->memory_size) &&
653 (ram - start_addr == mem->ram - mem->start_addr)) {
654 /* The new slot fits into the existing one and comes with
655 * identical parameters - update flags and done. */
656 kvm_slot_dirty_pages_log_change(mem, log_dirty);
657 return;
660 old = *mem;
662 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
663 kvm_physical_sync_dirty_bitmap(section);
666 /* unregister the overlapping slot */
667 mem->memory_size = 0;
668 err = kvm_set_user_memory_region(s, mem);
669 if (err) {
670 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
671 __func__, strerror(-err));
672 abort();
675 /* Workaround for older KVM versions: we can't join slots, even not by
676 * unregistering the previous ones and then registering the larger
677 * slot. We have to maintain the existing fragmentation. Sigh.
679 * This workaround assumes that the new slot starts at the same
680 * address as the first existing one. If not or if some overlapping
681 * slot comes around later, we will fail (not seen in practice so far)
682 * - and actually require a recent KVM version. */
683 if (s->broken_set_mem_region &&
684 old.start_addr == start_addr && old.memory_size < size && add) {
685 mem = kvm_alloc_slot(s);
686 mem->memory_size = old.memory_size;
687 mem->start_addr = old.start_addr;
688 mem->ram = old.ram;
689 mem->flags = kvm_mem_flags(s, log_dirty);
691 err = kvm_set_user_memory_region(s, mem);
692 if (err) {
693 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
694 strerror(-err));
695 abort();
698 start_addr += old.memory_size;
699 ram += old.memory_size;
700 size -= old.memory_size;
701 continue;
704 /* register prefix slot */
705 if (old.start_addr < start_addr) {
706 mem = kvm_alloc_slot(s);
707 mem->memory_size = start_addr - old.start_addr;
708 mem->start_addr = old.start_addr;
709 mem->ram = old.ram;
710 mem->flags = kvm_mem_flags(s, log_dirty);
712 err = kvm_set_user_memory_region(s, mem);
713 if (err) {
714 fprintf(stderr, "%s: error registering prefix slot: %s\n",
715 __func__, strerror(-err));
716 #ifdef TARGET_PPC
717 fprintf(stderr, "%s: This is probably because your kernel's " \
718 "PAGE_SIZE is too big. Please try to use 4k " \
719 "PAGE_SIZE!\n", __func__);
720 #endif
721 abort();
725 /* register suffix slot */
726 if (old.start_addr + old.memory_size > start_addr + size) {
727 ram_addr_t size_delta;
729 mem = kvm_alloc_slot(s);
730 mem->start_addr = start_addr + size;
731 size_delta = mem->start_addr - old.start_addr;
732 mem->memory_size = old.memory_size - size_delta;
733 mem->ram = old.ram + size_delta;
734 mem->flags = kvm_mem_flags(s, log_dirty);
736 err = kvm_set_user_memory_region(s, mem);
737 if (err) {
738 fprintf(stderr, "%s: error registering suffix slot: %s\n",
739 __func__, strerror(-err));
740 abort();
745 /* in case the KVM bug workaround already "consumed" the new slot */
746 if (!size) {
747 return;
749 if (!add) {
750 return;
752 mem = kvm_alloc_slot(s);
753 mem->memory_size = size;
754 mem->start_addr = start_addr;
755 mem->ram = ram;
756 mem->flags = kvm_mem_flags(s, log_dirty);
758 err = kvm_set_user_memory_region(s, mem);
759 if (err) {
760 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
761 strerror(-err));
762 abort();
766 static void kvm_region_add(MemoryListener *listener,
767 MemoryRegionSection *section)
769 kvm_set_phys_mem(section, true);
772 static void kvm_region_del(MemoryListener *listener,
773 MemoryRegionSection *section)
775 kvm_set_phys_mem(section, false);
778 static void kvm_log_sync(MemoryListener *listener,
779 MemoryRegionSection *section)
781 int r;
783 r = kvm_physical_sync_dirty_bitmap(section);
784 if (r < 0) {
785 abort();
789 static void kvm_log_global_start(struct MemoryListener *listener)
791 int r;
793 r = kvm_set_migration_log(1);
794 assert(r >= 0);
797 static void kvm_log_global_stop(struct MemoryListener *listener)
799 int r;
801 r = kvm_set_migration_log(0);
802 assert(r >= 0);
805 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
806 MemoryRegionSection *section,
807 bool match_data, uint64_t data,
808 EventNotifier *e)
810 int fd = event_notifier_get_fd(e);
811 int r;
813 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
814 data, true, section->size, match_data);
815 if (r < 0) {
816 abort();
820 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
821 MemoryRegionSection *section,
822 bool match_data, uint64_t data,
823 EventNotifier *e)
825 int fd = event_notifier_get_fd(e);
826 int r;
828 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
829 data, false, section->size, match_data);
830 if (r < 0) {
831 abort();
835 static void kvm_io_ioeventfd_add(MemoryListener *listener,
836 MemoryRegionSection *section,
837 bool match_data, uint64_t data,
838 EventNotifier *e)
840 int fd = event_notifier_get_fd(e);
841 int r;
843 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
844 data, true, section->size, match_data);
845 if (r < 0) {
846 abort();
850 static void kvm_io_ioeventfd_del(MemoryListener *listener,
851 MemoryRegionSection *section,
852 bool match_data, uint64_t data,
853 EventNotifier *e)
856 int fd = event_notifier_get_fd(e);
857 int r;
859 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
860 data, false, section->size, match_data);
861 if (r < 0) {
862 abort();
866 static MemoryListener kvm_memory_listener = {
867 .region_add = kvm_region_add,
868 .region_del = kvm_region_del,
869 .log_start = kvm_log_start,
870 .log_stop = kvm_log_stop,
871 .log_sync = kvm_log_sync,
872 .log_global_start = kvm_log_global_start,
873 .log_global_stop = kvm_log_global_stop,
874 .eventfd_add = kvm_mem_ioeventfd_add,
875 .eventfd_del = kvm_mem_ioeventfd_del,
876 .coalesced_mmio_add = kvm_coalesce_mmio_region,
877 .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
878 .priority = 10,
881 static MemoryListener kvm_io_listener = {
882 .eventfd_add = kvm_io_ioeventfd_add,
883 .eventfd_del = kvm_io_ioeventfd_del,
884 .priority = 10,
887 static void kvm_handle_interrupt(CPUState *cpu, int mask)
889 cpu->interrupt_request |= mask;
891 if (!qemu_cpu_is_self(cpu)) {
892 qemu_cpu_kick(cpu);
896 int kvm_set_irq(KVMState *s, int irq, int level)
898 struct kvm_irq_level event;
899 int ret;
901 assert(kvm_async_interrupts_enabled());
903 event.level = level;
904 event.irq = irq;
905 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
906 if (ret < 0) {
907 perror("kvm_set_irq");
908 abort();
911 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
914 #ifdef KVM_CAP_IRQ_ROUTING
915 typedef struct KVMMSIRoute {
916 struct kvm_irq_routing_entry kroute;
917 QTAILQ_ENTRY(KVMMSIRoute) entry;
918 } KVMMSIRoute;
920 static void set_gsi(KVMState *s, unsigned int gsi)
922 s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
925 static void clear_gsi(KVMState *s, unsigned int gsi)
927 s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
930 static void kvm_init_irq_routing(KVMState *s)
932 int gsi_count, i;
934 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING);
935 if (gsi_count > 0) {
936 unsigned int gsi_bits, i;
938 /* Round up so we can search ints using ffs */
939 gsi_bits = ALIGN(gsi_count, 32);
940 s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
941 s->gsi_count = gsi_count;
943 /* Mark any over-allocated bits as already in use */
944 for (i = gsi_count; i < gsi_bits; i++) {
945 set_gsi(s, i);
949 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
950 s->nr_allocated_irq_routes = 0;
952 if (!s->direct_msi) {
953 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
954 QTAILQ_INIT(&s->msi_hashtab[i]);
958 kvm_arch_init_irq_routing(s);
961 static void kvm_irqchip_commit_routes(KVMState *s)
963 int ret;
965 s->irq_routes->flags = 0;
966 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
967 assert(ret == 0);
970 static void kvm_add_routing_entry(KVMState *s,
971 struct kvm_irq_routing_entry *entry)
973 struct kvm_irq_routing_entry *new;
974 int n, size;
976 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
977 n = s->nr_allocated_irq_routes * 2;
978 if (n < 64) {
979 n = 64;
981 size = sizeof(struct kvm_irq_routing);
982 size += n * sizeof(*new);
983 s->irq_routes = g_realloc(s->irq_routes, size);
984 s->nr_allocated_irq_routes = n;
986 n = s->irq_routes->nr++;
987 new = &s->irq_routes->entries[n];
988 memset(new, 0, sizeof(*new));
989 new->gsi = entry->gsi;
990 new->type = entry->type;
991 new->flags = entry->flags;
992 new->u = entry->u;
994 set_gsi(s, entry->gsi);
996 kvm_irqchip_commit_routes(s);
999 static int kvm_update_routing_entry(KVMState *s,
1000 struct kvm_irq_routing_entry *new_entry)
1002 struct kvm_irq_routing_entry *entry;
1003 int n;
1005 for (n = 0; n < s->irq_routes->nr; n++) {
1006 entry = &s->irq_routes->entries[n];
1007 if (entry->gsi != new_entry->gsi) {
1008 continue;
1011 entry->type = new_entry->type;
1012 entry->flags = new_entry->flags;
1013 entry->u = new_entry->u;
1015 kvm_irqchip_commit_routes(s);
1017 return 0;
1020 return -ESRCH;
1023 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1025 struct kvm_irq_routing_entry e;
1027 assert(pin < s->gsi_count);
1029 e.gsi = irq;
1030 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1031 e.flags = 0;
1032 e.u.irqchip.irqchip = irqchip;
1033 e.u.irqchip.pin = pin;
1034 kvm_add_routing_entry(s, &e);
1037 void kvm_irqchip_release_virq(KVMState *s, int virq)
1039 struct kvm_irq_routing_entry *e;
1040 int i;
1042 for (i = 0; i < s->irq_routes->nr; i++) {
1043 e = &s->irq_routes->entries[i];
1044 if (e->gsi == virq) {
1045 s->irq_routes->nr--;
1046 *e = s->irq_routes->entries[s->irq_routes->nr];
1049 clear_gsi(s, virq);
1052 static unsigned int kvm_hash_msi(uint32_t data)
1054 /* This is optimized for IA32 MSI layout. However, no other arch shall
1055 * repeat the mistake of not providing a direct MSI injection API. */
1056 return data & 0xff;
1059 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1061 KVMMSIRoute *route, *next;
1062 unsigned int hash;
1064 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1065 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1066 kvm_irqchip_release_virq(s, route->kroute.gsi);
1067 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1068 g_free(route);
1073 static int kvm_irqchip_get_virq(KVMState *s)
1075 uint32_t *word = s->used_gsi_bitmap;
1076 int max_words = ALIGN(s->gsi_count, 32) / 32;
1077 int i, bit;
1078 bool retry = true;
1080 again:
1081 /* Return the lowest unused GSI in the bitmap */
1082 for (i = 0; i < max_words; i++) {
1083 bit = ffs(~word[i]);
1084 if (!bit) {
1085 continue;
1088 return bit - 1 + i * 32;
1090 if (!s->direct_msi && retry) {
1091 retry = false;
1092 kvm_flush_dynamic_msi_routes(s);
1093 goto again;
1095 return -ENOSPC;
1099 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1101 unsigned int hash = kvm_hash_msi(msg.data);
1102 KVMMSIRoute *route;
1104 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1105 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1106 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1107 route->kroute.u.msi.data == msg.data) {
1108 return route;
1111 return NULL;
1114 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1116 struct kvm_msi msi;
1117 KVMMSIRoute *route;
1119 if (s->direct_msi) {
1120 msi.address_lo = (uint32_t)msg.address;
1121 msi.address_hi = msg.address >> 32;
1122 msi.data = msg.data;
1123 msi.flags = 0;
1124 memset(msi.pad, 0, sizeof(msi.pad));
1126 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1129 route = kvm_lookup_msi_route(s, msg);
1130 if (!route) {
1131 int virq;
1133 virq = kvm_irqchip_get_virq(s);
1134 if (virq < 0) {
1135 return virq;
1138 route = g_malloc(sizeof(KVMMSIRoute));
1139 route->kroute.gsi = virq;
1140 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1141 route->kroute.flags = 0;
1142 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1143 route->kroute.u.msi.address_hi = msg.address >> 32;
1144 route->kroute.u.msi.data = msg.data;
1146 kvm_add_routing_entry(s, &route->kroute);
1148 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1149 entry);
1152 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1154 return kvm_set_irq(s, route->kroute.gsi, 1);
1157 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1159 struct kvm_irq_routing_entry kroute;
1160 int virq;
1162 if (!kvm_gsi_routing_enabled()) {
1163 return -ENOSYS;
1166 virq = kvm_irqchip_get_virq(s);
1167 if (virq < 0) {
1168 return virq;
1171 kroute.gsi = virq;
1172 kroute.type = KVM_IRQ_ROUTING_MSI;
1173 kroute.flags = 0;
1174 kroute.u.msi.address_lo = (uint32_t)msg.address;
1175 kroute.u.msi.address_hi = msg.address >> 32;
1176 kroute.u.msi.data = msg.data;
1178 kvm_add_routing_entry(s, &kroute);
1180 return virq;
1183 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1185 struct kvm_irq_routing_entry kroute;
1187 if (!kvm_irqchip_in_kernel()) {
1188 return -ENOSYS;
1191 kroute.gsi = virq;
1192 kroute.type = KVM_IRQ_ROUTING_MSI;
1193 kroute.flags = 0;
1194 kroute.u.msi.address_lo = (uint32_t)msg.address;
1195 kroute.u.msi.address_hi = msg.address >> 32;
1196 kroute.u.msi.data = msg.data;
1198 return kvm_update_routing_entry(s, &kroute);
1201 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1203 struct kvm_irqfd irqfd = {
1204 .fd = fd,
1205 .gsi = virq,
1206 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1209 if (!kvm_irqfds_enabled()) {
1210 return -ENOSYS;
1213 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1216 #else /* !KVM_CAP_IRQ_ROUTING */
1218 static void kvm_init_irq_routing(KVMState *s)
1222 void kvm_irqchip_release_virq(KVMState *s, int virq)
1226 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1228 abort();
1231 int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
1233 return -ENOSYS;
1236 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1238 abort();
1241 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1243 return -ENOSYS;
1245 #endif /* !KVM_CAP_IRQ_ROUTING */
1247 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1249 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, true);
1252 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
1254 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, false);
1257 static int kvm_irqchip_create(KVMState *s)
1259 QemuOptsList *list = qemu_find_opts("machine");
1260 int ret;
1262 if (QTAILQ_EMPTY(&list->head) ||
1263 !qemu_opt_get_bool(QTAILQ_FIRST(&list->head),
1264 "kernel_irqchip", true) ||
1265 !kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1266 return 0;
1269 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1270 if (ret < 0) {
1271 fprintf(stderr, "Create kernel irqchip failed\n");
1272 return ret;
1275 kvm_kernel_irqchip = true;
1276 /* If we have an in-kernel IRQ chip then we must have asynchronous
1277 * interrupt delivery (though the reverse is not necessarily true)
1279 kvm_async_interrupts_allowed = true;
1281 kvm_init_irq_routing(s);
1283 return 0;
1286 static int kvm_max_vcpus(KVMState *s)
1288 int ret;
1290 /* Find number of supported CPUs using the recommended
1291 * procedure from the kernel API documentation to cope with
1292 * older kernels that may be missing capabilities.
1294 ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1295 if (ret) {
1296 return ret;
1298 ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1299 if (ret) {
1300 return ret;
1303 return 4;
1306 int kvm_init(void)
1308 static const char upgrade_note[] =
1309 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1310 "(see http://sourceforge.net/projects/kvm).\n";
1311 KVMState *s;
1312 const KVMCapabilityInfo *missing_cap;
1313 int ret;
1314 int i;
1315 int max_vcpus;
1317 s = g_malloc0(sizeof(KVMState));
1320 * On systems where the kernel can support different base page
1321 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1322 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1323 * page size for the system though.
1325 assert(TARGET_PAGE_SIZE <= getpagesize());
1327 #ifdef KVM_CAP_SET_GUEST_DEBUG
1328 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1329 #endif
1330 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
1331 s->slots[i].slot = i;
1333 s->vmfd = -1;
1334 s->fd = qemu_open("/dev/kvm", O_RDWR);
1335 if (s->fd == -1) {
1336 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1337 ret = -errno;
1338 goto err;
1341 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1342 if (ret < KVM_API_VERSION) {
1343 if (ret > 0) {
1344 ret = -EINVAL;
1346 fprintf(stderr, "kvm version too old\n");
1347 goto err;
1350 if (ret > KVM_API_VERSION) {
1351 ret = -EINVAL;
1352 fprintf(stderr, "kvm version not supported\n");
1353 goto err;
1356 max_vcpus = kvm_max_vcpus(s);
1357 if (smp_cpus > max_vcpus) {
1358 ret = -EINVAL;
1359 fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus "
1360 "supported by KVM (%d)\n", smp_cpus, max_vcpus);
1361 goto err;
1364 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
1365 if (s->vmfd < 0) {
1366 #ifdef TARGET_S390X
1367 fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
1368 "your host kernel command line\n");
1369 #endif
1370 ret = s->vmfd;
1371 goto err;
1374 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1375 if (!missing_cap) {
1376 missing_cap =
1377 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1379 if (missing_cap) {
1380 ret = -EINVAL;
1381 fprintf(stderr, "kvm does not support %s\n%s",
1382 missing_cap->name, upgrade_note);
1383 goto err;
1386 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1388 s->broken_set_mem_region = 1;
1389 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1390 if (ret > 0) {
1391 s->broken_set_mem_region = 0;
1394 #ifdef KVM_CAP_VCPU_EVENTS
1395 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1396 #endif
1398 s->robust_singlestep =
1399 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1401 #ifdef KVM_CAP_DEBUGREGS
1402 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1403 #endif
1405 #ifdef KVM_CAP_XSAVE
1406 s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1407 #endif
1409 #ifdef KVM_CAP_XCRS
1410 s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1411 #endif
1413 #ifdef KVM_CAP_PIT_STATE2
1414 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1415 #endif
1417 #ifdef KVM_CAP_IRQ_ROUTING
1418 s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1419 #endif
1421 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1423 s->irq_set_ioctl = KVM_IRQ_LINE;
1424 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1425 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1428 ret = kvm_arch_init(s);
1429 if (ret < 0) {
1430 goto err;
1433 ret = kvm_irqchip_create(s);
1434 if (ret < 0) {
1435 goto err;
1438 kvm_state = s;
1439 memory_listener_register(&kvm_memory_listener, &address_space_memory);
1440 memory_listener_register(&kvm_io_listener, &address_space_io);
1442 s->many_ioeventfds = kvm_check_many_ioeventfds();
1444 cpu_interrupt_handler = kvm_handle_interrupt;
1446 return 0;
1448 err:
1449 if (s->vmfd >= 0) {
1450 close(s->vmfd);
1452 if (s->fd != -1) {
1453 close(s->fd);
1455 g_free(s);
1457 return ret;
1460 static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
1461 uint32_t count)
1463 int i;
1464 uint8_t *ptr = data;
1466 for (i = 0; i < count; i++) {
1467 if (direction == KVM_EXIT_IO_IN) {
1468 switch (size) {
1469 case 1:
1470 stb_p(ptr, cpu_inb(port));
1471 break;
1472 case 2:
1473 stw_p(ptr, cpu_inw(port));
1474 break;
1475 case 4:
1476 stl_p(ptr, cpu_inl(port));
1477 break;
1479 } else {
1480 switch (size) {
1481 case 1:
1482 cpu_outb(port, ldub_p(ptr));
1483 break;
1484 case 2:
1485 cpu_outw(port, lduw_p(ptr));
1486 break;
1487 case 4:
1488 cpu_outl(port, ldl_p(ptr));
1489 break;
1493 ptr += size;
1497 static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
1499 CPUState *cpu = ENV_GET_CPU(env);
1501 fprintf(stderr, "KVM internal error.");
1502 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1503 int i;
1505 fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
1506 for (i = 0; i < run->internal.ndata; ++i) {
1507 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1508 i, (uint64_t)run->internal.data[i]);
1510 } else {
1511 fprintf(stderr, "\n");
1513 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1514 fprintf(stderr, "emulation failure\n");
1515 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1516 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1517 return EXCP_INTERRUPT;
1520 /* FIXME: Should trigger a qmp message to let management know
1521 * something went wrong.
1523 return -1;
1526 void kvm_flush_coalesced_mmio_buffer(void)
1528 KVMState *s = kvm_state;
1530 if (s->coalesced_flush_in_progress) {
1531 return;
1534 s->coalesced_flush_in_progress = true;
1536 if (s->coalesced_mmio_ring) {
1537 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1538 while (ring->first != ring->last) {
1539 struct kvm_coalesced_mmio *ent;
1541 ent = &ring->coalesced_mmio[ring->first];
1543 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1544 smp_wmb();
1545 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1549 s->coalesced_flush_in_progress = false;
1552 static void do_kvm_cpu_synchronize_state(void *arg)
1554 CPUState *cpu = arg;
1556 if (!cpu->kvm_vcpu_dirty) {
1557 kvm_arch_get_registers(cpu);
1558 cpu->kvm_vcpu_dirty = true;
1562 void kvm_cpu_synchronize_state(CPUArchState *env)
1564 CPUState *cpu = ENV_GET_CPU(env);
1566 if (!cpu->kvm_vcpu_dirty) {
1567 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
1571 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1573 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1574 cpu->kvm_vcpu_dirty = false;
1577 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1579 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1580 cpu->kvm_vcpu_dirty = false;
1583 int kvm_cpu_exec(CPUArchState *env)
1585 CPUState *cpu = ENV_GET_CPU(env);
1586 struct kvm_run *run = cpu->kvm_run;
1587 int ret, run_ret;
1589 DPRINTF("kvm_cpu_exec()\n");
1591 if (kvm_arch_process_async_events(cpu)) {
1592 cpu->exit_request = 0;
1593 return EXCP_HLT;
1596 do {
1597 if (cpu->kvm_vcpu_dirty) {
1598 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1599 cpu->kvm_vcpu_dirty = false;
1602 kvm_arch_pre_run(cpu, run);
1603 if (cpu->exit_request) {
1604 DPRINTF("interrupt exit requested\n");
1606 * KVM requires us to reenter the kernel after IO exits to complete
1607 * instruction emulation. This self-signal will ensure that we
1608 * leave ASAP again.
1610 qemu_cpu_kick_self();
1612 qemu_mutex_unlock_iothread();
1614 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
1616 qemu_mutex_lock_iothread();
1617 kvm_arch_post_run(cpu, run);
1619 if (run_ret < 0) {
1620 if (run_ret == -EINTR || run_ret == -EAGAIN) {
1621 DPRINTF("io window exit\n");
1622 ret = EXCP_INTERRUPT;
1623 break;
1625 fprintf(stderr, "error: kvm run failed %s\n",
1626 strerror(-run_ret));
1627 abort();
1630 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
1631 switch (run->exit_reason) {
1632 case KVM_EXIT_IO:
1633 DPRINTF("handle_io\n");
1634 kvm_handle_io(run->io.port,
1635 (uint8_t *)run + run->io.data_offset,
1636 run->io.direction,
1637 run->io.size,
1638 run->io.count);
1639 ret = 0;
1640 break;
1641 case KVM_EXIT_MMIO:
1642 DPRINTF("handle_mmio\n");
1643 cpu_physical_memory_rw(run->mmio.phys_addr,
1644 run->mmio.data,
1645 run->mmio.len,
1646 run->mmio.is_write);
1647 ret = 0;
1648 break;
1649 case KVM_EXIT_IRQ_WINDOW_OPEN:
1650 DPRINTF("irq_window_open\n");
1651 ret = EXCP_INTERRUPT;
1652 break;
1653 case KVM_EXIT_SHUTDOWN:
1654 DPRINTF("shutdown\n");
1655 qemu_system_reset_request();
1656 ret = EXCP_INTERRUPT;
1657 break;
1658 case KVM_EXIT_UNKNOWN:
1659 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
1660 (uint64_t)run->hw.hardware_exit_reason);
1661 ret = -1;
1662 break;
1663 case KVM_EXIT_INTERNAL_ERROR:
1664 ret = kvm_handle_internal_error(env, run);
1665 break;
1666 default:
1667 DPRINTF("kvm_arch_handle_exit\n");
1668 ret = kvm_arch_handle_exit(cpu, run);
1669 break;
1671 } while (ret == 0);
1673 if (ret < 0) {
1674 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
1675 vm_stop(RUN_STATE_INTERNAL_ERROR);
1678 cpu->exit_request = 0;
1679 return ret;
1682 int kvm_ioctl(KVMState *s, int type, ...)
1684 int ret;
1685 void *arg;
1686 va_list ap;
1688 va_start(ap, type);
1689 arg = va_arg(ap, void *);
1690 va_end(ap);
1692 trace_kvm_ioctl(type, arg);
1693 ret = ioctl(s->fd, type, arg);
1694 if (ret == -1) {
1695 ret = -errno;
1697 return ret;
1700 int kvm_vm_ioctl(KVMState *s, int type, ...)
1702 int ret;
1703 void *arg;
1704 va_list ap;
1706 va_start(ap, type);
1707 arg = va_arg(ap, void *);
1708 va_end(ap);
1710 trace_kvm_vm_ioctl(type, arg);
1711 ret = ioctl(s->vmfd, type, arg);
1712 if (ret == -1) {
1713 ret = -errno;
1715 return ret;
1718 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
1720 int ret;
1721 void *arg;
1722 va_list ap;
1724 va_start(ap, type);
1725 arg = va_arg(ap, void *);
1726 va_end(ap);
1728 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
1729 ret = ioctl(cpu->kvm_fd, type, arg);
1730 if (ret == -1) {
1731 ret = -errno;
1733 return ret;
1736 int kvm_has_sync_mmu(void)
1738 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
1741 int kvm_has_vcpu_events(void)
1743 return kvm_state->vcpu_events;
1746 int kvm_has_robust_singlestep(void)
1748 return kvm_state->robust_singlestep;
1751 int kvm_has_debugregs(void)
1753 return kvm_state->debugregs;
1756 int kvm_has_xsave(void)
1758 return kvm_state->xsave;
1761 int kvm_has_xcrs(void)
1763 return kvm_state->xcrs;
1766 int kvm_has_pit_state2(void)
1768 return kvm_state->pit_state2;
1771 int kvm_has_many_ioeventfds(void)
1773 if (!kvm_enabled()) {
1774 return 0;
1776 return kvm_state->many_ioeventfds;
1779 int kvm_has_gsi_routing(void)
1781 #ifdef KVM_CAP_IRQ_ROUTING
1782 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
1783 #else
1784 return false;
1785 #endif
1788 int kvm_has_intx_set_mask(void)
1790 return kvm_state->intx_set_mask;
1793 void *kvm_vmalloc(ram_addr_t size)
1795 #ifdef TARGET_S390X
1796 void *mem;
1798 mem = kvm_arch_vmalloc(size);
1799 if (mem) {
1800 return mem;
1802 #endif
1803 return qemu_vmalloc(size);
1806 void kvm_setup_guest_memory(void *start, size_t size)
1808 #ifdef CONFIG_VALGRIND_H
1809 VALGRIND_MAKE_MEM_DEFINED(start, size);
1810 #endif
1811 if (!kvm_has_sync_mmu()) {
1812 int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
1814 if (ret) {
1815 perror("qemu_madvise");
1816 fprintf(stderr,
1817 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1818 exit(1);
1823 #ifdef KVM_CAP_SET_GUEST_DEBUG
1824 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
1825 target_ulong pc)
1827 struct kvm_sw_breakpoint *bp;
1829 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
1830 if (bp->pc == pc) {
1831 return bp;
1834 return NULL;
1837 int kvm_sw_breakpoints_active(CPUState *cpu)
1839 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
1842 struct kvm_set_guest_debug_data {
1843 struct kvm_guest_debug dbg;
1844 CPUState *cpu;
1845 int err;
1848 static void kvm_invoke_set_guest_debug(void *data)
1850 struct kvm_set_guest_debug_data *dbg_data = data;
1852 dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
1853 &dbg_data->dbg);
1856 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1858 CPUState *cpu = ENV_GET_CPU(env);
1859 struct kvm_set_guest_debug_data data;
1861 data.dbg.control = reinject_trap;
1863 if (env->singlestep_enabled) {
1864 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1866 kvm_arch_update_guest_debug(cpu, &data.dbg);
1867 data.cpu = cpu;
1869 run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
1870 return data.err;
1873 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1874 target_ulong len, int type)
1876 CPUState *current_cpu = ENV_GET_CPU(current_env);
1877 struct kvm_sw_breakpoint *bp;
1878 CPUArchState *env;
1879 int err;
1881 if (type == GDB_BREAKPOINT_SW) {
1882 bp = kvm_find_sw_breakpoint(current_cpu, addr);
1883 if (bp) {
1884 bp->use_count++;
1885 return 0;
1888 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
1889 if (!bp) {
1890 return -ENOMEM;
1893 bp->pc = addr;
1894 bp->use_count = 1;
1895 err = kvm_arch_insert_sw_breakpoint(current_cpu, bp);
1896 if (err) {
1897 g_free(bp);
1898 return err;
1901 QTAILQ_INSERT_HEAD(&current_cpu->kvm_state->kvm_sw_breakpoints,
1902 bp, entry);
1903 } else {
1904 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1905 if (err) {
1906 return err;
1910 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1911 err = kvm_update_guest_debug(env, 0);
1912 if (err) {
1913 return err;
1916 return 0;
1919 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
1920 target_ulong len, int type)
1922 CPUState *current_cpu = ENV_GET_CPU(current_env);
1923 struct kvm_sw_breakpoint *bp;
1924 CPUArchState *env;
1925 int err;
1927 if (type == GDB_BREAKPOINT_SW) {
1928 bp = kvm_find_sw_breakpoint(current_cpu, addr);
1929 if (!bp) {
1930 return -ENOENT;
1933 if (bp->use_count > 1) {
1934 bp->use_count--;
1935 return 0;
1938 err = kvm_arch_remove_sw_breakpoint(current_cpu, bp);
1939 if (err) {
1940 return err;
1943 QTAILQ_REMOVE(&current_cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
1944 g_free(bp);
1945 } else {
1946 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1947 if (err) {
1948 return err;
1952 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1953 err = kvm_update_guest_debug(env, 0);
1954 if (err) {
1955 return err;
1958 return 0;
1961 void kvm_remove_all_breakpoints(CPUArchState *current_env)
1963 CPUState *current_cpu = ENV_GET_CPU(current_env);
1964 struct kvm_sw_breakpoint *bp, *next;
1965 KVMState *s = current_cpu->kvm_state;
1966 CPUArchState *env;
1967 CPUState *cpu;
1969 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1970 if (kvm_arch_remove_sw_breakpoint(current_cpu, bp) != 0) {
1971 /* Try harder to find a CPU that currently sees the breakpoint. */
1972 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1973 cpu = ENV_GET_CPU(env);
1974 if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) {
1975 break;
1979 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
1980 g_free(bp);
1982 kvm_arch_remove_all_hw_breakpoints();
1984 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1985 kvm_update_guest_debug(env, 0);
1989 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1991 int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
1993 return -EINVAL;
1996 int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
1997 target_ulong len, int type)
1999 return -EINVAL;
2002 int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
2003 target_ulong len, int type)
2005 return -EINVAL;
2008 void kvm_remove_all_breakpoints(CPUArchState *current_env)
2011 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2013 int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
2015 CPUState *cpu = ENV_GET_CPU(env);
2016 struct kvm_signal_mask *sigmask;
2017 int r;
2019 if (!sigset) {
2020 return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
2023 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2025 sigmask->len = 8;
2026 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2027 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2028 g_free(sigmask);
2030 return r;
2032 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2034 return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
2037 int kvm_on_sigbus(int code, void *addr)
2039 return kvm_arch_on_sigbus(code, addr);