monitor/hmp-cmds: add hmp_handle_error() for hmp_migrate_set_speed()
[qemu/ar7.git] / hw / acpi / nvdimm.c
blobfa7bf8b50754eb9f09465b6d931b8431c15662ec
1 /*
2 * NVDIMM ACPI Implementation
4 * Copyright(C) 2015 Intel Corporation.
6 * Author:
7 * Xiao Guangrong <guangrong.xiao@linux.intel.com>
9 * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
10 * and the DSM specification can be found at:
11 * http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
13 * Currently, it only supports PMEM Virtualization.
15 * This library is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU Lesser General Public
17 * License as published by the Free Software Foundation; either
18 * version 2 of the License, or (at your option) any later version.
20 * This library is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * Lesser General Public License for more details.
25 * You should have received a copy of the GNU Lesser General Public
26 * License along with this library; if not, see <http://www.gnu.org/licenses/>
29 #include "qemu/osdep.h"
30 #include "hw/acpi/acpi.h"
31 #include "hw/acpi/aml-build.h"
32 #include "hw/acpi/bios-linker-loader.h"
33 #include "hw/nvram/fw_cfg.h"
34 #include "hw/mem/nvdimm.h"
35 #include "qemu/nvdimm-utils.h"
37 #define NVDIMM_UUID_LE(a, b, c, d0, d1, d2, d3, d4, d5, d6, d7) \
38 { (a) & 0xff, ((a) >> 8) & 0xff, ((a) >> 16) & 0xff, ((a) >> 24) & 0xff, \
39 (b) & 0xff, ((b) >> 8) & 0xff, (c) & 0xff, ((c) >> 8) & 0xff, \
40 (d0), (d1), (d2), (d3), (d4), (d5), (d6), (d7) }
43 * define Byte Addressable Persistent Memory (PM) Region according to
44 * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
46 static const uint8_t nvdimm_nfit_spa_uuid[] =
47 NVDIMM_UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
48 0x18, 0xb7, 0x8c, 0xdb);
51 * NVDIMM Firmware Interface Table
52 * @signature: "NFIT"
54 * It provides information that allows OSPM to enumerate NVDIMM present in
55 * the platform and associate system physical address ranges created by the
56 * NVDIMMs.
58 * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
60 struct NvdimmNfitHeader {
61 ACPI_TABLE_HEADER_DEF
62 uint32_t reserved;
63 } QEMU_PACKED;
64 typedef struct NvdimmNfitHeader NvdimmNfitHeader;
67 * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
68 * Interface Table (NFIT).
72 * System Physical Address Range Structure
74 * It describes the system physical address ranges occupied by NVDIMMs and
75 * the types of the regions.
77 struct NvdimmNfitSpa {
78 uint16_t type;
79 uint16_t length;
80 uint16_t spa_index;
81 uint16_t flags;
82 uint32_t reserved;
83 uint32_t proximity_domain;
84 uint8_t type_guid[16];
85 uint64_t spa_base;
86 uint64_t spa_length;
87 uint64_t mem_attr;
88 } QEMU_PACKED;
89 typedef struct NvdimmNfitSpa NvdimmNfitSpa;
92 * Memory Device to System Physical Address Range Mapping Structure
94 * It enables identifying each NVDIMM region and the corresponding SPA
95 * describing the memory interleave
97 struct NvdimmNfitMemDev {
98 uint16_t type;
99 uint16_t length;
100 uint32_t nfit_handle;
101 uint16_t phys_id;
102 uint16_t region_id;
103 uint16_t spa_index;
104 uint16_t dcr_index;
105 uint64_t region_len;
106 uint64_t region_offset;
107 uint64_t region_dpa;
108 uint16_t interleave_index;
109 uint16_t interleave_ways;
110 uint16_t flags;
111 uint16_t reserved;
112 } QEMU_PACKED;
113 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev;
115 #define ACPI_NFIT_MEM_NOT_ARMED (1 << 3)
118 * NVDIMM Control Region Structure
120 * It describes the NVDIMM and if applicable, Block Control Window.
122 struct NvdimmNfitControlRegion {
123 uint16_t type;
124 uint16_t length;
125 uint16_t dcr_index;
126 uint16_t vendor_id;
127 uint16_t device_id;
128 uint16_t revision_id;
129 uint16_t sub_vendor_id;
130 uint16_t sub_device_id;
131 uint16_t sub_revision_id;
132 uint8_t reserved[6];
133 uint32_t serial_number;
134 uint16_t fic;
135 uint16_t num_bcw;
136 uint64_t bcw_size;
137 uint64_t cmd_offset;
138 uint64_t cmd_size;
139 uint64_t status_offset;
140 uint64_t status_size;
141 uint16_t flags;
142 uint8_t reserved2[6];
143 } QEMU_PACKED;
144 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion;
147 * NVDIMM Platform Capabilities Structure
149 * Defined in section 5.2.25.9 of ACPI 6.2 Errata A, September 2017
151 struct NvdimmNfitPlatformCaps {
152 uint16_t type;
153 uint16_t length;
154 uint8_t highest_cap;
155 uint8_t reserved[3];
156 uint32_t capabilities;
157 uint8_t reserved2[4];
158 } QEMU_PACKED;
159 typedef struct NvdimmNfitPlatformCaps NvdimmNfitPlatformCaps;
162 * Module serial number is a unique number for each device. We use the
163 * slot id of NVDIMM device to generate this number so that each device
164 * associates with a different number.
166 * 0x123456 is a magic number we arbitrarily chose.
168 static uint32_t nvdimm_slot_to_sn(int slot)
170 return 0x123456 + slot;
174 * handle is used to uniquely associate nfit_memdev structure with NVDIMM
175 * ACPI device - nfit_memdev.nfit_handle matches with the value returned
176 * by ACPI device _ADR method.
178 * We generate the handle with the slot id of NVDIMM device and reserve
179 * 0 for NVDIMM root device.
181 static uint32_t nvdimm_slot_to_handle(int slot)
183 return slot + 1;
187 * index uniquely identifies the structure, 0 is reserved which indicates
188 * that the structure is not valid or the associated structure is not
189 * present.
191 * Each NVDIMM device needs two indexes, one for nfit_spa and another for
192 * nfit_dc which are generated by the slot id of NVDIMM device.
194 static uint16_t nvdimm_slot_to_spa_index(int slot)
196 return (slot + 1) << 1;
199 /* See the comments of nvdimm_slot_to_spa_index(). */
200 static uint32_t nvdimm_slot_to_dcr_index(int slot)
202 return nvdimm_slot_to_spa_index(slot) + 1;
205 static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle)
207 NVDIMMDevice *nvdimm = NULL;
208 GSList *list, *device_list = nvdimm_get_device_list();
210 for (list = device_list; list; list = list->next) {
211 NVDIMMDevice *nvd = list->data;
212 int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP,
213 NULL);
215 if (nvdimm_slot_to_handle(slot) == handle) {
216 nvdimm = nvd;
217 break;
221 g_slist_free(device_list);
222 return nvdimm;
225 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
226 static void
227 nvdimm_build_structure_spa(GArray *structures, DeviceState *dev)
229 NvdimmNfitSpa *nfit_spa;
230 uint64_t addr = object_property_get_uint(OBJECT(dev), PC_DIMM_ADDR_PROP,
231 NULL);
232 uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
233 NULL);
234 uint32_t node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
235 NULL);
236 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
237 NULL);
239 nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa));
241 nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range
242 Structure */);
243 nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa));
244 nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
247 * Control region is strict as all the device info, such as SN, index,
248 * is associated with slot id.
250 nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for
251 management during hot add/online
252 operation */ |
253 2 /* Data in Proximity Domain field is
254 valid*/);
256 /* NUMA node. */
257 nfit_spa->proximity_domain = cpu_to_le32(node);
258 /* the region reported as PMEM. */
259 memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid,
260 sizeof(nvdimm_nfit_spa_uuid));
262 nfit_spa->spa_base = cpu_to_le64(addr);
263 nfit_spa->spa_length = cpu_to_le64(size);
265 /* It is the PMEM and can be cached as writeback. */
266 nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ |
267 0x8000ULL /* EFI_MEMORY_NV */);
271 * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
272 * Structure
274 static void
275 nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev)
277 NvdimmNfitMemDev *nfit_memdev;
278 NVDIMMDevice *nvdimm = NVDIMM(OBJECT(dev));
279 uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP,
280 NULL);
281 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
282 NULL);
283 uint32_t handle = nvdimm_slot_to_handle(slot);
285 nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev));
287 nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address
288 Range Map Structure*/);
289 nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev));
290 nfit_memdev->nfit_handle = cpu_to_le32(handle);
293 * associate memory device with System Physical Address Range
294 * Structure.
296 nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot));
297 /* associate memory device with Control Region Structure. */
298 nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
300 /* The memory region on the device. */
301 nfit_memdev->region_len = cpu_to_le64(size);
302 /* The device address starts from 0. */
303 nfit_memdev->region_dpa = cpu_to_le64(0);
305 /* Only one interleave for PMEM. */
306 nfit_memdev->interleave_ways = cpu_to_le16(1);
308 if (nvdimm->unarmed) {
309 nfit_memdev->flags |= cpu_to_le16(ACPI_NFIT_MEM_NOT_ARMED);
314 * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
316 static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev)
318 NvdimmNfitControlRegion *nfit_dcr;
319 int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP,
320 NULL);
321 uint32_t sn = nvdimm_slot_to_sn(slot);
323 nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr));
325 nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */);
326 nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr));
327 nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot));
329 /* vendor: Intel. */
330 nfit_dcr->vendor_id = cpu_to_le16(0x8086);
331 nfit_dcr->device_id = cpu_to_le16(1);
333 /* The _DSM method is following Intel's DSM specification. */
334 nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported
335 in ACPI 6.0 is 1. */);
336 nfit_dcr->serial_number = cpu_to_le32(sn);
337 nfit_dcr->fic = cpu_to_le16(0x301 /* Format Interface Code:
338 Byte addressable, no energy backed.
339 See ACPI 6.2, sect 5.2.25.6 and
340 JEDEC Annex L Release 3. */);
344 * ACPI 6.2 Errata A: 5.2.25.9 NVDIMM Platform Capabilities Structure
346 static void
347 nvdimm_build_structure_caps(GArray *structures, uint32_t capabilities)
349 NvdimmNfitPlatformCaps *nfit_caps;
351 nfit_caps = acpi_data_push(structures, sizeof(*nfit_caps));
353 nfit_caps->type = cpu_to_le16(7 /* NVDIMM Platform Capabilities */);
354 nfit_caps->length = cpu_to_le16(sizeof(*nfit_caps));
355 nfit_caps->highest_cap = 31 - clz32(capabilities);
356 nfit_caps->capabilities = cpu_to_le32(capabilities);
359 static GArray *nvdimm_build_device_structure(NVDIMMState *state)
361 GSList *device_list = nvdimm_get_device_list();
362 GArray *structures = g_array_new(false, true /* clear */, 1);
364 for (; device_list; device_list = device_list->next) {
365 DeviceState *dev = device_list->data;
367 /* build System Physical Address Range Structure. */
368 nvdimm_build_structure_spa(structures, dev);
371 * build Memory Device to System Physical Address Range Mapping
372 * Structure.
374 nvdimm_build_structure_memdev(structures, dev);
376 /* build NVDIMM Control Region Structure. */
377 nvdimm_build_structure_dcr(structures, dev);
379 g_slist_free(device_list);
381 if (state->persistence) {
382 nvdimm_build_structure_caps(structures, state->persistence);
385 return structures;
388 static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf)
390 fit_buf->fit = g_array_new(false, true /* clear */, 1);
393 static void nvdimm_build_fit_buffer(NVDIMMState *state)
395 NvdimmFitBuffer *fit_buf = &state->fit_buf;
397 g_array_free(fit_buf->fit, true);
398 fit_buf->fit = nvdimm_build_device_structure(state);
399 fit_buf->dirty = true;
402 void nvdimm_plug(NVDIMMState *state)
404 nvdimm_build_fit_buffer(state);
407 static void nvdimm_build_nfit(NVDIMMState *state, GArray *table_offsets,
408 GArray *table_data, BIOSLinker *linker)
410 NvdimmFitBuffer *fit_buf = &state->fit_buf;
411 unsigned int header;
413 acpi_add_table(table_offsets, table_data);
415 /* NFIT header. */
416 header = table_data->len;
417 acpi_data_push(table_data, sizeof(NvdimmNfitHeader));
418 /* NVDIMM device structures. */
419 g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len);
421 build_header(linker, table_data,
422 (void *)(table_data->data + header), "NFIT",
423 sizeof(NvdimmNfitHeader) + fit_buf->fit->len, 1, NULL, NULL);
426 #define NVDIMM_DSM_MEMORY_SIZE 4096
428 struct NvdimmDsmIn {
429 uint32_t handle;
430 uint32_t revision;
431 uint32_t function;
432 /* the remaining size in the page is used by arg3. */
433 union {
434 uint8_t arg3[4084];
436 } QEMU_PACKED;
437 typedef struct NvdimmDsmIn NvdimmDsmIn;
438 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != NVDIMM_DSM_MEMORY_SIZE);
440 struct NvdimmDsmOut {
441 /* the size of buffer filled by QEMU. */
442 uint32_t len;
443 uint8_t data[4092];
444 } QEMU_PACKED;
445 typedef struct NvdimmDsmOut NvdimmDsmOut;
446 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != NVDIMM_DSM_MEMORY_SIZE);
448 struct NvdimmDsmFunc0Out {
449 /* the size of buffer filled by QEMU. */
450 uint32_t len;
451 uint32_t supported_func;
452 } QEMU_PACKED;
453 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out;
455 struct NvdimmDsmFuncNoPayloadOut {
456 /* the size of buffer filled by QEMU. */
457 uint32_t len;
458 uint32_t func_ret_status;
459 } QEMU_PACKED;
460 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut;
462 struct NvdimmFuncGetLabelSizeOut {
463 /* the size of buffer filled by QEMU. */
464 uint32_t len;
465 uint32_t func_ret_status; /* return status code. */
466 uint32_t label_size; /* the size of label data area. */
468 * Maximum size of the namespace label data length supported by
469 * the platform in Get/Set Namespace Label Data functions.
471 uint32_t max_xfer;
472 } QEMU_PACKED;
473 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut;
474 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > NVDIMM_DSM_MEMORY_SIZE);
476 struct NvdimmFuncGetLabelDataIn {
477 uint32_t offset; /* the offset in the namespace label data area. */
478 uint32_t length; /* the size of data is to be read via the function. */
479 } QEMU_PACKED;
480 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn;
481 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) +
482 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
484 struct NvdimmFuncGetLabelDataOut {
485 /* the size of buffer filled by QEMU. */
486 uint32_t len;
487 uint32_t func_ret_status; /* return status code. */
488 uint8_t out_buf[]; /* the data got via Get Namesapce Label function. */
489 } QEMU_PACKED;
490 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut;
491 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > NVDIMM_DSM_MEMORY_SIZE);
493 struct NvdimmFuncSetLabelDataIn {
494 uint32_t offset; /* the offset in the namespace label data area. */
495 uint32_t length; /* the size of data is to be written via the function. */
496 uint8_t in_buf[]; /* the data written to label data area. */
497 } QEMU_PACKED;
498 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn;
499 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) +
500 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
502 struct NvdimmFuncReadFITIn {
503 uint32_t offset; /* the offset into FIT buffer. */
504 } QEMU_PACKED;
505 typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn;
506 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) +
507 offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE);
509 struct NvdimmFuncReadFITOut {
510 /* the size of buffer filled by QEMU. */
511 uint32_t len;
512 uint32_t func_ret_status; /* return status code. */
513 uint8_t fit[]; /* the FIT data. */
514 } QEMU_PACKED;
515 typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut;
516 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > NVDIMM_DSM_MEMORY_SIZE);
518 static void
519 nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr)
521 NvdimmDsmFunc0Out func0 = {
522 .len = cpu_to_le32(sizeof(func0)),
523 .supported_func = cpu_to_le32(supported_func),
525 cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0));
528 static void
529 nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr)
531 NvdimmDsmFuncNoPayloadOut out = {
532 .len = cpu_to_le32(sizeof(out)),
533 .func_ret_status = cpu_to_le32(func_ret_status),
535 cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out));
538 #define NVDIMM_DSM_RET_STATUS_SUCCESS 0 /* Success */
539 #define NVDIMM_DSM_RET_STATUS_UNSUPPORT 1 /* Not Supported */
540 #define NVDIMM_DSM_RET_STATUS_NOMEMDEV 2 /* Non-Existing Memory Device */
541 #define NVDIMM_DSM_RET_STATUS_INVALID 3 /* Invalid Input Parameters */
542 #define NVDIMM_DSM_RET_STATUS_FIT_CHANGED 0x100 /* FIT Changed */
544 #define NVDIMM_QEMU_RSVD_HANDLE_ROOT 0x10000
546 /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */
547 static void nvdimm_dsm_func_read_fit(NVDIMMState *state, NvdimmDsmIn *in,
548 hwaddr dsm_mem_addr)
550 NvdimmFitBuffer *fit_buf = &state->fit_buf;
551 NvdimmFuncReadFITIn *read_fit;
552 NvdimmFuncReadFITOut *read_fit_out;
553 GArray *fit;
554 uint32_t read_len = 0, func_ret_status;
555 int size;
557 read_fit = (NvdimmFuncReadFITIn *)in->arg3;
558 read_fit->offset = le32_to_cpu(read_fit->offset);
560 fit = fit_buf->fit;
562 nvdimm_debug("Read FIT: offset %#x FIT size %#x Dirty %s.\n",
563 read_fit->offset, fit->len, fit_buf->dirty ? "Yes" : "No");
565 if (read_fit->offset > fit->len) {
566 func_ret_status = NVDIMM_DSM_RET_STATUS_INVALID;
567 goto exit;
570 /* It is the first time to read FIT. */
571 if (!read_fit->offset) {
572 fit_buf->dirty = false;
573 } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */
574 func_ret_status = NVDIMM_DSM_RET_STATUS_FIT_CHANGED;
575 goto exit;
578 func_ret_status = NVDIMM_DSM_RET_STATUS_SUCCESS;
579 read_len = MIN(fit->len - read_fit->offset,
580 NVDIMM_DSM_MEMORY_SIZE - sizeof(NvdimmFuncReadFITOut));
582 exit:
583 size = sizeof(NvdimmFuncReadFITOut) + read_len;
584 read_fit_out = g_malloc(size);
586 read_fit_out->len = cpu_to_le32(size);
587 read_fit_out->func_ret_status = cpu_to_le32(func_ret_status);
588 memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len);
590 cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size);
592 g_free(read_fit_out);
595 static void
596 nvdimm_dsm_handle_reserved_root_method(NVDIMMState *state,
597 NvdimmDsmIn *in, hwaddr dsm_mem_addr)
599 switch (in->function) {
600 case 0x0:
601 nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr);
602 return;
603 case 0x1 /* Read FIT */:
604 nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr);
605 return;
608 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
611 static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
614 * function 0 is called to inquire which functions are supported by
615 * OSPM
617 if (!in->function) {
618 nvdimm_dsm_function0(0 /* No function supported other than
619 function 0 */, dsm_mem_addr);
620 return;
623 /* No function except function 0 is supported yet. */
624 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
628 * the max transfer size is the max size transferred by both a
629 * 'Get Namespace Label Data' function and a 'Set Namespace Label Data'
630 * function.
632 static uint32_t nvdimm_get_max_xfer_label_size(void)
634 uint32_t max_get_size, max_set_size, dsm_memory_size;
636 dsm_memory_size = NVDIMM_DSM_MEMORY_SIZE;
639 * the max data ACPI can read one time which is transferred by
640 * the response of 'Get Namespace Label Data' function.
642 max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut);
645 * the max data ACPI can write one time which is transferred by
646 * 'Set Namespace Label Data' function.
648 max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) -
649 sizeof(NvdimmFuncSetLabelDataIn);
651 return MIN(max_get_size, max_set_size);
655 * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4).
657 * It gets the size of Namespace Label data area and the max data size
658 * that Get/Set Namespace Label Data functions can transfer.
660 static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr)
662 NvdimmFuncGetLabelSizeOut label_size_out = {
663 .len = cpu_to_le32(sizeof(label_size_out)),
665 uint32_t label_size, mxfer;
667 label_size = nvdimm->label_size;
668 mxfer = nvdimm_get_max_xfer_label_size();
670 nvdimm_debug("label_size %#x, max_xfer %#x.\n", label_size, mxfer);
672 label_size_out.func_ret_status = cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
673 label_size_out.label_size = cpu_to_le32(label_size);
674 label_size_out.max_xfer = cpu_to_le32(mxfer);
676 cpu_physical_memory_write(dsm_mem_addr, &label_size_out,
677 sizeof(label_size_out));
680 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm,
681 uint32_t offset, uint32_t length)
683 uint32_t ret = NVDIMM_DSM_RET_STATUS_INVALID;
685 if (offset + length < offset) {
686 nvdimm_debug("offset %#x + length %#x is overflow.\n", offset,
687 length);
688 return ret;
691 if (nvdimm->label_size < offset + length) {
692 nvdimm_debug("position %#x is beyond label data (len = %" PRIx64 ").\n",
693 offset + length, nvdimm->label_size);
694 return ret;
697 if (length > nvdimm_get_max_xfer_label_size()) {
698 nvdimm_debug("length (%#x) is larger than max_xfer (%#x).\n",
699 length, nvdimm_get_max_xfer_label_size());
700 return ret;
703 return NVDIMM_DSM_RET_STATUS_SUCCESS;
707 * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5).
709 static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
710 hwaddr dsm_mem_addr)
712 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
713 NvdimmFuncGetLabelDataIn *get_label_data;
714 NvdimmFuncGetLabelDataOut *get_label_data_out;
715 uint32_t status;
716 int size;
718 get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3;
719 get_label_data->offset = le32_to_cpu(get_label_data->offset);
720 get_label_data->length = le32_to_cpu(get_label_data->length);
722 nvdimm_debug("Read Label Data: offset %#x length %#x.\n",
723 get_label_data->offset, get_label_data->length);
725 status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset,
726 get_label_data->length);
727 if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
728 nvdimm_dsm_no_payload(status, dsm_mem_addr);
729 return;
732 size = sizeof(*get_label_data_out) + get_label_data->length;
733 assert(size <= NVDIMM_DSM_MEMORY_SIZE);
734 get_label_data_out = g_malloc(size);
736 get_label_data_out->len = cpu_to_le32(size);
737 get_label_data_out->func_ret_status =
738 cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS);
739 nvc->read_label_data(nvdimm, get_label_data_out->out_buf,
740 get_label_data->length, get_label_data->offset);
742 cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size);
743 g_free(get_label_data_out);
747 * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6).
749 static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in,
750 hwaddr dsm_mem_addr)
752 NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm);
753 NvdimmFuncSetLabelDataIn *set_label_data;
754 uint32_t status;
756 set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3;
758 set_label_data->offset = le32_to_cpu(set_label_data->offset);
759 set_label_data->length = le32_to_cpu(set_label_data->length);
761 nvdimm_debug("Write Label Data: offset %#x length %#x.\n",
762 set_label_data->offset, set_label_data->length);
764 status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset,
765 set_label_data->length);
766 if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) {
767 nvdimm_dsm_no_payload(status, dsm_mem_addr);
768 return;
771 assert(offsetof(NvdimmDsmIn, arg3) + sizeof(*set_label_data) +
772 set_label_data->length <= NVDIMM_DSM_MEMORY_SIZE);
774 nvc->write_label_data(nvdimm, set_label_data->in_buf,
775 set_label_data->length, set_label_data->offset);
776 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS, dsm_mem_addr);
779 static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr)
781 NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle);
783 /* See the comments in nvdimm_dsm_root(). */
784 if (!in->function) {
785 uint32_t supported_func = 0;
787 if (nvdimm && nvdimm->label_size) {
788 supported_func |= 0x1 /* Bit 0 indicates whether there is
789 support for any functions other
790 than function 0. */ |
791 1 << 4 /* Get Namespace Label Size */ |
792 1 << 5 /* Get Namespace Label Data */ |
793 1 << 6 /* Set Namespace Label Data */;
795 nvdimm_dsm_function0(supported_func, dsm_mem_addr);
796 return;
799 if (!nvdimm) {
800 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV,
801 dsm_mem_addr);
802 return;
805 /* Encode DSM function according to DSM Spec Rev1. */
806 switch (in->function) {
807 case 4 /* Get Namespace Label Size */:
808 if (nvdimm->label_size) {
809 nvdimm_dsm_label_size(nvdimm, dsm_mem_addr);
810 return;
812 break;
813 case 5 /* Get Namespace Label Data */:
814 if (nvdimm->label_size) {
815 nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr);
816 return;
818 break;
819 case 0x6 /* Set Namespace Label Data */:
820 if (nvdimm->label_size) {
821 nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr);
822 return;
824 break;
827 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
830 static uint64_t
831 nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size)
833 nvdimm_debug("BUG: we never read _DSM IO Port.\n");
834 return 0;
837 static void
838 nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size)
840 NVDIMMState *state = opaque;
841 NvdimmDsmIn *in;
842 hwaddr dsm_mem_addr = val;
844 nvdimm_debug("dsm memory address %#" HWADDR_PRIx ".\n", dsm_mem_addr);
847 * The DSM memory is mapped to guest address space so an evil guest
848 * can change its content while we are doing DSM emulation. Avoid
849 * this by copying DSM memory to QEMU local memory.
851 in = g_new(NvdimmDsmIn, 1);
852 cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in));
854 in->revision = le32_to_cpu(in->revision);
855 in->function = le32_to_cpu(in->function);
856 in->handle = le32_to_cpu(in->handle);
858 nvdimm_debug("Revision %#x Handler %#x Function %#x.\n", in->revision,
859 in->handle, in->function);
861 if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) {
862 nvdimm_debug("Revision %#x is not supported, expect %#x.\n",
863 in->revision, 0x1);
864 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr);
865 goto exit;
868 if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) {
869 nvdimm_dsm_handle_reserved_root_method(state, in, dsm_mem_addr);
870 goto exit;
873 /* Handle 0 is reserved for NVDIMM Root Device. */
874 if (!in->handle) {
875 nvdimm_dsm_root(in, dsm_mem_addr);
876 goto exit;
879 nvdimm_dsm_device(in, dsm_mem_addr);
881 exit:
882 g_free(in);
885 static const MemoryRegionOps nvdimm_dsm_ops = {
886 .read = nvdimm_dsm_read,
887 .write = nvdimm_dsm_write,
888 .endianness = DEVICE_LITTLE_ENDIAN,
889 .valid = {
890 .min_access_size = 4,
891 .max_access_size = 4,
895 void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev)
897 if (dev->hotplugged) {
898 acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS);
902 void nvdimm_init_acpi_state(NVDIMMState *state, MemoryRegion *io,
903 struct AcpiGenericAddress dsm_io,
904 FWCfgState *fw_cfg, Object *owner)
906 state->dsm_io = dsm_io;
907 memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state,
908 "nvdimm-acpi-io", dsm_io.bit_width >> 3);
909 memory_region_add_subregion(io, dsm_io.address, &state->io_mr);
911 state->dsm_mem = g_array_new(false, true /* clear */, 1);
912 acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn));
913 fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data,
914 state->dsm_mem->len);
916 nvdimm_init_fit_buffer(&state->fit_buf);
919 #define NVDIMM_COMMON_DSM "NCAL"
920 #define NVDIMM_ACPI_MEM_ADDR "MEMA"
922 #define NVDIMM_DSM_MEMORY "NRAM"
923 #define NVDIMM_DSM_IOPORT "NPIO"
925 #define NVDIMM_DSM_NOTIFY "NTFI"
926 #define NVDIMM_DSM_HANDLE "HDLE"
927 #define NVDIMM_DSM_REVISION "REVS"
928 #define NVDIMM_DSM_FUNCTION "FUNC"
929 #define NVDIMM_DSM_ARG3 "FARG"
931 #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN"
932 #define NVDIMM_DSM_OUT_BUF "ODAT"
934 #define NVDIMM_DSM_RFIT_STATUS "RSTA"
936 #define NVDIMM_QEMU_RSVD_UUID "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62"
938 static void nvdimm_build_common_dsm(Aml *dev,
939 NVDIMMState *nvdimm_state)
941 Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2;
942 Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid;
943 Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size;
944 Aml *whilectx, *offset;
945 uint8_t byte_list[1];
946 AmlRegionSpace rs;
948 method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED);
949 uuid = aml_arg(0);
950 function = aml_arg(2);
951 handle = aml_arg(4);
952 dsm_mem = aml_local(6);
953 dsm_out_buf = aml_local(7);
955 aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem));
957 if (nvdimm_state->dsm_io.space_id == AML_AS_SYSTEM_IO) {
958 rs = AML_SYSTEM_IO;
959 } else {
960 rs = AML_SYSTEM_MEMORY;
963 /* map DSM memory and IO into ACPI namespace. */
964 aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, rs,
965 aml_int(nvdimm_state->dsm_io.address),
966 nvdimm_state->dsm_io.bit_width >> 3));
967 aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY,
968 AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn)));
971 * DSM notifier:
972 * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to
973 * emulate the access.
975 * It is the IO port so that accessing them will cause VM-exit, the
976 * control will be transferred to QEMU.
978 field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK,
979 AML_PRESERVE);
980 aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY,
981 nvdimm_state->dsm_io.bit_width));
982 aml_append(method, field);
985 * DSM input:
986 * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call
987 * happens on NVDIMM Root Device.
988 * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call.
989 * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call.
990 * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package
991 * containing function-specific arguments.
993 * They are RAM mapping on host so that these accesses never cause
994 * VM-EXIT.
996 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
997 AML_PRESERVE);
998 aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE,
999 sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE));
1000 aml_append(field, aml_named_field(NVDIMM_DSM_REVISION,
1001 sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE));
1002 aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION,
1003 sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE));
1004 aml_append(field, aml_named_field(NVDIMM_DSM_ARG3,
1005 (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE));
1006 aml_append(method, field);
1009 * DSM output:
1010 * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU.
1011 * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result.
1013 * Since the page is reused by both input and out, the input data
1014 * will be lost after storing new result into ODAT so we should fetch
1015 * all the input data before writing the result.
1017 field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK,
1018 AML_PRESERVE);
1019 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE,
1020 sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE));
1021 aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF,
1022 (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE));
1023 aml_append(method, field);
1026 * do not support any method if DSM memory address has not been
1027 * patched.
1029 unpatched = aml_equal(dsm_mem, aml_int(0x0));
1031 expected_uuid = aml_local(0);
1033 ifctx = aml_if(aml_equal(handle, aml_int(0x0)));
1034 aml_append(ifctx, aml_store(
1035 aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA")
1036 /* UUID for NVDIMM Root Device */, expected_uuid));
1037 aml_append(method, ifctx);
1038 elsectx = aml_else();
1039 ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)));
1040 aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID
1041 /* UUID for QEMU internal use */), expected_uuid));
1042 aml_append(elsectx, ifctx);
1043 elsectx2 = aml_else();
1044 aml_append(elsectx2, aml_store(
1045 aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66")
1046 /* UUID for NVDIMM Devices */, expected_uuid));
1047 aml_append(elsectx, elsectx2);
1048 aml_append(method, elsectx);
1050 uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid));
1052 unsupport = aml_if(aml_or(unpatched, uuid_invalid, NULL));
1055 * function 0 is called to inquire what functions are supported by
1056 * OSPM
1058 ifctx = aml_if(aml_equal(function, aml_int(0)));
1059 byte_list[0] = 0 /* No function Supported */;
1060 aml_append(ifctx, aml_return(aml_buffer(1, byte_list)));
1061 aml_append(unsupport, ifctx);
1063 /* No function is supported yet. */
1064 byte_list[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT;
1065 aml_append(unsupport, aml_return(aml_buffer(1, byte_list)));
1066 aml_append(method, unsupport);
1069 * The HDLE indicates the DSM function is issued from which device,
1070 * it reserves 0 for root device and is the handle for NVDIMM devices.
1071 * See the comments in nvdimm_slot_to_handle().
1073 aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE)));
1074 aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION)));
1075 aml_append(method, aml_store(function, aml_name(NVDIMM_DSM_FUNCTION)));
1078 * The fourth parameter (Arg3) of _DSM is a package which contains
1079 * a buffer, the layout of the buffer is specified by UUID (Arg0),
1080 * Revision ID (Arg1) and Function Index (Arg2) which are documented
1081 * in the DSM Spec.
1083 pckg = aml_arg(3);
1084 ifctx = aml_if(aml_and(aml_equal(aml_object_type(pckg),
1085 aml_int(4 /* Package */)) /* It is a Package? */,
1086 aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */,
1087 NULL));
1089 pckg_index = aml_local(2);
1090 pckg_buf = aml_local(3);
1091 aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index));
1092 aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf));
1093 aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3)));
1094 aml_append(method, ifctx);
1097 * tell QEMU about the real address of DSM memory, then QEMU
1098 * gets the control and fills the result in DSM memory.
1100 aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY)));
1102 dsm_out_buf_size = aml_local(1);
1103 /* RLEN is not included in the payload returned to guest. */
1104 aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE),
1105 aml_int(4), dsm_out_buf_size));
1108 * As per ACPI spec 6.3, Table 19-419 Object Conversion Rules, if
1109 * the Buffer Field <= to the size of an Integer (in bits), it will
1110 * be treated as an integer. Moreover, the integer size depends on
1111 * DSDT tables revision number. If revision number is < 2, integer
1112 * size is 32 bits, otherwise it is 64 bits.
1113 * Because of this CreateField() canot be used if RLEN < Integer Size.
1115 * Also please note that APCI ASL operator SizeOf() doesn't support
1116 * Integer and there isn't any other way to figure out the Integer
1117 * size. Hence we assume 8 byte as Integer size and if RLEN < 8 bytes,
1118 * build dsm_out_buf byte by byte.
1120 ifctx = aml_if(aml_lless(dsm_out_buf_size, aml_int(8)));
1121 offset = aml_local(2);
1122 aml_append(ifctx, aml_store(aml_int(0), offset));
1123 aml_append(ifctx, aml_name_decl("TBUF", aml_buffer(1, NULL)));
1124 aml_append(ifctx, aml_store(aml_buffer(0, NULL), dsm_out_buf));
1126 whilectx = aml_while(aml_lless(offset, dsm_out_buf_size));
1127 /* Copy 1 byte at offset from ODAT to temporary buffer(TBUF). */
1128 aml_append(whilectx, aml_store(aml_derefof(aml_index(
1129 aml_name(NVDIMM_DSM_OUT_BUF), offset)),
1130 aml_index(aml_name("TBUF"), aml_int(0))));
1131 aml_append(whilectx, aml_concatenate(dsm_out_buf, aml_name("TBUF"),
1132 dsm_out_buf));
1133 aml_append(whilectx, aml_increment(offset));
1134 aml_append(ifctx, whilectx);
1136 aml_append(ifctx, aml_return(dsm_out_buf));
1137 aml_append(method, ifctx);
1139 /* If RLEN >= Integer size, just use CreateField() operator */
1140 aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)),
1141 dsm_out_buf_size));
1142 aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF),
1143 aml_int(0), dsm_out_buf_size, "OBUF"));
1144 aml_append(method, aml_return(aml_name("OBUF")));
1146 aml_append(dev, method);
1149 static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle)
1151 Aml *method;
1153 method = aml_method("_DSM", 4, AML_NOTSERIALIZED);
1154 aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0),
1155 aml_arg(1), aml_arg(2), aml_arg(3),
1156 aml_int(handle))));
1157 aml_append(dev, method);
1160 static void nvdimm_build_fit(Aml *dev)
1162 Aml *method, *pkg, *buf, *buf_size, *offset, *call_result;
1163 Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit;
1165 buf = aml_local(0);
1166 buf_size = aml_local(1);
1167 fit = aml_local(2);
1169 aml_append(dev, aml_name_decl(NVDIMM_DSM_RFIT_STATUS, aml_int(0)));
1171 /* build helper function, RFIT. */
1172 method = aml_method("RFIT", 1, AML_SERIALIZED);
1173 aml_append(method, aml_name_decl("OFST", aml_int(0)));
1175 /* prepare input package. */
1176 pkg = aml_package(1);
1177 aml_append(method, aml_store(aml_arg(0), aml_name("OFST")));
1178 aml_append(pkg, aml_name("OFST"));
1180 /* call Read_FIT function. */
1181 call_result = aml_call5(NVDIMM_COMMON_DSM,
1182 aml_touuid(NVDIMM_QEMU_RSVD_UUID),
1183 aml_int(1) /* Revision 1 */,
1184 aml_int(0x1) /* Read FIT */,
1185 pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT));
1186 aml_append(method, aml_store(call_result, buf));
1188 /* handle _DSM result. */
1189 aml_append(method, aml_create_dword_field(buf,
1190 aml_int(0) /* offset at byte 0 */, "STAU"));
1192 aml_append(method, aml_store(aml_name("STAU"),
1193 aml_name(NVDIMM_DSM_RFIT_STATUS)));
1195 /* if something is wrong during _DSM. */
1196 ifcond = aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS),
1197 aml_name("STAU"));
1198 ifctx = aml_if(aml_lnot(ifcond));
1199 aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1200 aml_append(method, ifctx);
1202 aml_append(method, aml_store(aml_sizeof(buf), buf_size));
1203 aml_append(method, aml_subtract(buf_size,
1204 aml_int(4) /* the size of "STAU" */,
1205 buf_size));
1207 /* if we read the end of fit. */
1208 ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1209 aml_append(ifctx, aml_return(aml_buffer(0, NULL)));
1210 aml_append(method, ifctx);
1212 aml_append(method, aml_create_field(buf,
1213 aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/
1214 aml_shiftleft(buf_size, aml_int(3)), "BUFF"));
1215 aml_append(method, aml_return(aml_name("BUFF")));
1216 aml_append(dev, method);
1218 /* build _FIT. */
1219 method = aml_method("_FIT", 0, AML_SERIALIZED);
1220 offset = aml_local(3);
1222 aml_append(method, aml_store(aml_buffer(0, NULL), fit));
1223 aml_append(method, aml_store(aml_int(0), offset));
1225 whilectx = aml_while(aml_int(1));
1226 aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf));
1227 aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size));
1230 * if fit buffer was changed during RFIT, read from the beginning
1231 * again.
1233 ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS),
1234 aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED)));
1235 aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit));
1236 aml_append(ifctx, aml_store(aml_int(0), offset));
1237 aml_append(whilectx, ifctx);
1239 elsectx = aml_else();
1241 /* finish fit read if no data is read out. */
1242 ifctx = aml_if(aml_equal(buf_size, aml_int(0)));
1243 aml_append(ifctx, aml_return(fit));
1244 aml_append(elsectx, ifctx);
1246 /* update the offset. */
1247 aml_append(elsectx, aml_add(offset, buf_size, offset));
1248 /* append the data we read out to the fit buffer. */
1249 aml_append(elsectx, aml_concatenate(fit, buf, fit));
1250 aml_append(whilectx, elsectx);
1251 aml_append(method, whilectx);
1253 aml_append(dev, method);
1256 static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots)
1258 uint32_t slot;
1260 for (slot = 0; slot < ram_slots; slot++) {
1261 uint32_t handle = nvdimm_slot_to_handle(slot);
1262 Aml *nvdimm_dev;
1264 nvdimm_dev = aml_device("NV%02X", slot);
1267 * ACPI 6.0: 9.20 NVDIMM Devices:
1269 * _ADR object that is used to supply OSPM with unique address
1270 * of the NVDIMM device. This is done by returning the NFIT Device
1271 * handle that is used to identify the associated entries in ACPI
1272 * table NFIT or _FIT.
1274 aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle)));
1276 nvdimm_build_device_dsm(nvdimm_dev, handle);
1277 aml_append(root_dev, nvdimm_dev);
1281 static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data,
1282 BIOSLinker *linker,
1283 NVDIMMState *nvdimm_state,
1284 uint32_t ram_slots)
1286 Aml *ssdt, *sb_scope, *dev;
1287 int mem_addr_offset, nvdimm_ssdt;
1289 acpi_add_table(table_offsets, table_data);
1291 ssdt = init_aml_allocator();
1292 acpi_data_push(ssdt->buf, sizeof(AcpiTableHeader));
1294 sb_scope = aml_scope("\\_SB");
1296 dev = aml_device("NVDR");
1299 * ACPI 6.0: 9.20 NVDIMM Devices:
1301 * The ACPI Name Space device uses _HID of ACPI0012 to identify the root
1302 * NVDIMM interface device. Platform firmware is required to contain one
1303 * such device in _SB scope if NVDIMMs support is exposed by platform to
1304 * OSPM.
1305 * For each NVDIMM present or intended to be supported by platform,
1306 * platform firmware also exposes an ACPI Namespace Device under the
1307 * root device.
1309 aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012")));
1311 nvdimm_build_common_dsm(dev, nvdimm_state);
1313 /* 0 is reserved for root device. */
1314 nvdimm_build_device_dsm(dev, 0);
1315 nvdimm_build_fit(dev);
1317 nvdimm_build_nvdimm_devices(dev, ram_slots);
1319 aml_append(sb_scope, dev);
1320 aml_append(ssdt, sb_scope);
1322 nvdimm_ssdt = table_data->len;
1324 /* copy AML table into ACPI tables blob and patch header there */
1325 g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len);
1326 mem_addr_offset = build_append_named_dword(table_data,
1327 NVDIMM_ACPI_MEM_ADDR);
1329 bios_linker_loader_alloc(linker,
1330 NVDIMM_DSM_MEM_FILE, nvdimm_state->dsm_mem,
1331 sizeof(NvdimmDsmIn), false /* high memory */);
1332 bios_linker_loader_add_pointer(linker,
1333 ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t),
1334 NVDIMM_DSM_MEM_FILE, 0);
1335 build_header(linker, table_data,
1336 (void *)(table_data->data + nvdimm_ssdt),
1337 "SSDT", table_data->len - nvdimm_ssdt, 1, NULL, "NVDIMM");
1338 free_aml_allocator();
1341 void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data,
1342 BIOSLinker *linker, NVDIMMState *state,
1343 uint32_t ram_slots)
1345 GSList *device_list;
1347 /* no nvdimm device can be plugged. */
1348 if (!ram_slots) {
1349 return;
1352 nvdimm_build_ssdt(table_offsets, table_data, linker, state,
1353 ram_slots);
1355 device_list = nvdimm_get_device_list();
1356 /* no NVDIMM device is plugged. */
1357 if (!device_list) {
1358 return;
1361 nvdimm_build_nfit(state, table_offsets, table_data, linker);
1362 g_slist_free(device_list);