hw/misc/edu: Convert to realize()
[qemu/ar7.git] / hw / intc / armv7m_nvic.c
blob6fc167e230aff791474abb102d3b51ac5a202f07
1 /*
2 * ARM Nested Vectored Interrupt Controller
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
9 * The ARMv7M System controller is fairly tightly tied in with the
10 * NVIC. Much of that is also implemented here.
13 #include "hw/sysbus.h"
14 #include "qemu/timer.h"
15 #include "hw/arm/arm.h"
16 #include "exec/address-spaces.h"
17 #include "gic_internal.h"
19 typedef struct {
20 GICState gic;
21 struct {
22 uint32_t control;
23 uint32_t reload;
24 int64_t tick;
25 QEMUTimer *timer;
26 } systick;
27 MemoryRegion sysregmem;
28 MemoryRegion gic_iomem_alias;
29 MemoryRegion container;
30 uint32_t num_irq;
31 qemu_irq sysresetreq;
32 } nvic_state;
34 #define TYPE_NVIC "armv7m_nvic"
35 /**
36 * NVICClass:
37 * @parent_reset: the parent class' reset handler.
39 * A model of the v7M NVIC and System Controller
41 typedef struct NVICClass {
42 /*< private >*/
43 ARMGICClass parent_class;
44 /*< public >*/
45 DeviceRealize parent_realize;
46 void (*parent_reset)(DeviceState *dev);
47 } NVICClass;
49 #define NVIC_CLASS(klass) \
50 OBJECT_CLASS_CHECK(NVICClass, (klass), TYPE_NVIC)
51 #define NVIC_GET_CLASS(obj) \
52 OBJECT_GET_CLASS(NVICClass, (obj), TYPE_NVIC)
53 #define NVIC(obj) \
54 OBJECT_CHECK(nvic_state, (obj), TYPE_NVIC)
56 static const uint8_t nvic_id[] = {
57 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
60 /* qemu timers run at 1GHz. We want something closer to 1MHz. */
61 #define SYSTICK_SCALE 1000ULL
63 #define SYSTICK_ENABLE (1 << 0)
64 #define SYSTICK_TICKINT (1 << 1)
65 #define SYSTICK_CLKSOURCE (1 << 2)
66 #define SYSTICK_COUNTFLAG (1 << 16)
68 int system_clock_scale;
70 /* Conversion factor from qemu timer to SysTick frequencies. */
71 static inline int64_t systick_scale(nvic_state *s)
73 if (s->systick.control & SYSTICK_CLKSOURCE)
74 return system_clock_scale;
75 else
76 return 1000;
79 static void systick_reload(nvic_state *s, int reset)
81 /* The Cortex-M3 Devices Generic User Guide says that "When the
82 * ENABLE bit is set to 1, the counter loads the RELOAD value from the
83 * SYST RVR register and then counts down". So, we need to check the
84 * ENABLE bit before reloading the value.
86 if ((s->systick.control & SYSTICK_ENABLE) == 0) {
87 return;
90 if (reset)
91 s->systick.tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
92 s->systick.tick += (s->systick.reload + 1) * systick_scale(s);
93 timer_mod(s->systick.timer, s->systick.tick);
96 static void systick_timer_tick(void * opaque)
98 nvic_state *s = (nvic_state *)opaque;
99 s->systick.control |= SYSTICK_COUNTFLAG;
100 if (s->systick.control & SYSTICK_TICKINT) {
101 /* Trigger the interrupt. */
102 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK);
104 if (s->systick.reload == 0) {
105 s->systick.control &= ~SYSTICK_ENABLE;
106 } else {
107 systick_reload(s, 0);
111 static void systick_reset(nvic_state *s)
113 s->systick.control = 0;
114 s->systick.reload = 0;
115 s->systick.tick = 0;
116 timer_del(s->systick.timer);
119 /* The external routines use the hardware vector numbering, ie. the first
120 IRQ is #16. The internal GIC routines use #32 as the first IRQ. */
121 void armv7m_nvic_set_pending(void *opaque, int irq)
123 nvic_state *s = (nvic_state *)opaque;
124 if (irq >= 16)
125 irq += 16;
126 gic_set_pending_private(&s->gic, 0, irq);
129 /* Make pending IRQ active. */
130 int armv7m_nvic_acknowledge_irq(void *opaque)
132 nvic_state *s = (nvic_state *)opaque;
133 uint32_t irq;
135 irq = gic_acknowledge_irq(&s->gic, 0, MEMTXATTRS_UNSPECIFIED);
136 if (irq == 1023)
137 hw_error("Interrupt but no vector\n");
138 if (irq >= 32)
139 irq -= 16;
140 return irq;
143 void armv7m_nvic_complete_irq(void *opaque, int irq)
145 nvic_state *s = (nvic_state *)opaque;
146 if (irq >= 16)
147 irq += 16;
148 gic_complete_irq(&s->gic, 0, irq, MEMTXATTRS_UNSPECIFIED);
151 static uint32_t nvic_readl(nvic_state *s, uint32_t offset)
153 ARMCPU *cpu;
154 uint32_t val;
155 int irq;
157 switch (offset) {
158 case 4: /* Interrupt Control Type. */
159 return (s->num_irq / 32) - 1;
160 case 0x10: /* SysTick Control and Status. */
161 val = s->systick.control;
162 s->systick.control &= ~SYSTICK_COUNTFLAG;
163 return val;
164 case 0x14: /* SysTick Reload Value. */
165 return s->systick.reload;
166 case 0x18: /* SysTick Current Value. */
168 int64_t t;
169 if ((s->systick.control & SYSTICK_ENABLE) == 0)
170 return 0;
171 t = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
172 if (t >= s->systick.tick)
173 return 0;
174 val = ((s->systick.tick - (t + 1)) / systick_scale(s)) + 1;
175 /* The interrupt in triggered when the timer reaches zero.
176 However the counter is not reloaded until the next clock
177 tick. This is a hack to return zero during the first tick. */
178 if (val > s->systick.reload)
179 val = 0;
180 return val;
182 case 0x1c: /* SysTick Calibration Value. */
183 return 10000;
184 case 0xd00: /* CPUID Base. */
185 cpu = ARM_CPU(current_cpu);
186 return cpu->midr;
187 case 0xd04: /* Interrupt Control State. */
188 /* VECTACTIVE */
189 cpu = ARM_CPU(current_cpu);
190 val = cpu->env.v7m.exception;
191 if (val == 1023) {
192 val = 0;
193 } else if (val >= 32) {
194 val -= 16;
196 /* VECTPENDING */
197 if (s->gic.current_pending[0] != 1023)
198 val |= (s->gic.current_pending[0] << 12);
199 /* ISRPENDING and RETTOBASE */
200 for (irq = 32; irq < s->num_irq; irq++) {
201 if (s->gic.irq_state[irq].pending) {
202 val |= (1 << 22);
203 break;
205 if (irq != cpu->env.v7m.exception && s->gic.irq_state[irq].active) {
206 val |= (1 << 11);
209 /* PENDSTSET */
210 if (s->gic.irq_state[ARMV7M_EXCP_SYSTICK].pending)
211 val |= (1 << 26);
212 /* PENDSVSET */
213 if (s->gic.irq_state[ARMV7M_EXCP_PENDSV].pending)
214 val |= (1 << 28);
215 /* NMIPENDSET */
216 if (s->gic.irq_state[ARMV7M_EXCP_NMI].pending)
217 val |= (1 << 31);
218 return val;
219 case 0xd08: /* Vector Table Offset. */
220 cpu = ARM_CPU(current_cpu);
221 return cpu->env.v7m.vecbase;
222 case 0xd0c: /* Application Interrupt/Reset Control. */
223 return 0xfa050000;
224 case 0xd10: /* System Control. */
225 /* TODO: Implement SLEEPONEXIT. */
226 return 0;
227 case 0xd14: /* Configuration Control. */
228 /* TODO: Implement Configuration Control bits. */
229 return 0;
230 case 0xd24: /* System Handler Status. */
231 val = 0;
232 if (s->gic.irq_state[ARMV7M_EXCP_MEM].active) val |= (1 << 0);
233 if (s->gic.irq_state[ARMV7M_EXCP_BUS].active) val |= (1 << 1);
234 if (s->gic.irq_state[ARMV7M_EXCP_USAGE].active) val |= (1 << 3);
235 if (s->gic.irq_state[ARMV7M_EXCP_SVC].active) val |= (1 << 7);
236 if (s->gic.irq_state[ARMV7M_EXCP_DEBUG].active) val |= (1 << 8);
237 if (s->gic.irq_state[ARMV7M_EXCP_PENDSV].active) val |= (1 << 10);
238 if (s->gic.irq_state[ARMV7M_EXCP_SYSTICK].active) val |= (1 << 11);
239 if (s->gic.irq_state[ARMV7M_EXCP_USAGE].pending) val |= (1 << 12);
240 if (s->gic.irq_state[ARMV7M_EXCP_MEM].pending) val |= (1 << 13);
241 if (s->gic.irq_state[ARMV7M_EXCP_BUS].pending) val |= (1 << 14);
242 if (s->gic.irq_state[ARMV7M_EXCP_SVC].pending) val |= (1 << 15);
243 if (s->gic.irq_state[ARMV7M_EXCP_MEM].enabled) val |= (1 << 16);
244 if (s->gic.irq_state[ARMV7M_EXCP_BUS].enabled) val |= (1 << 17);
245 if (s->gic.irq_state[ARMV7M_EXCP_USAGE].enabled) val |= (1 << 18);
246 return val;
247 case 0xd28: /* Configurable Fault Status. */
248 /* TODO: Implement Fault Status. */
249 qemu_log_mask(LOG_UNIMP, "Configurable Fault Status unimplemented\n");
250 return 0;
251 case 0xd2c: /* Hard Fault Status. */
252 case 0xd30: /* Debug Fault Status. */
253 case 0xd34: /* Mem Manage Address. */
254 case 0xd38: /* Bus Fault Address. */
255 case 0xd3c: /* Aux Fault Status. */
256 /* TODO: Implement fault status registers. */
257 qemu_log_mask(LOG_UNIMP, "Fault status registers unimplemented\n");
258 return 0;
259 case 0xd40: /* PFR0. */
260 return 0x00000030;
261 case 0xd44: /* PRF1. */
262 return 0x00000200;
263 case 0xd48: /* DFR0. */
264 return 0x00100000;
265 case 0xd4c: /* AFR0. */
266 return 0x00000000;
267 case 0xd50: /* MMFR0. */
268 return 0x00000030;
269 case 0xd54: /* MMFR1. */
270 return 0x00000000;
271 case 0xd58: /* MMFR2. */
272 return 0x00000000;
273 case 0xd5c: /* MMFR3. */
274 return 0x00000000;
275 case 0xd60: /* ISAR0. */
276 return 0x01141110;
277 case 0xd64: /* ISAR1. */
278 return 0x02111000;
279 case 0xd68: /* ISAR2. */
280 return 0x21112231;
281 case 0xd6c: /* ISAR3. */
282 return 0x01111110;
283 case 0xd70: /* ISAR4. */
284 return 0x01310102;
285 /* TODO: Implement debug registers. */
286 default:
287 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
288 return 0;
292 static void nvic_writel(nvic_state *s, uint32_t offset, uint32_t value)
294 ARMCPU *cpu;
295 uint32_t oldval;
296 switch (offset) {
297 case 0x10: /* SysTick Control and Status. */
298 oldval = s->systick.control;
299 s->systick.control &= 0xfffffff8;
300 s->systick.control |= value & 7;
301 if ((oldval ^ value) & SYSTICK_ENABLE) {
302 int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
303 if (value & SYSTICK_ENABLE) {
304 if (s->systick.tick) {
305 s->systick.tick += now;
306 timer_mod(s->systick.timer, s->systick.tick);
307 } else {
308 systick_reload(s, 1);
310 } else {
311 timer_del(s->systick.timer);
312 s->systick.tick -= now;
313 if (s->systick.tick < 0)
314 s->systick.tick = 0;
316 } else if ((oldval ^ value) & SYSTICK_CLKSOURCE) {
317 /* This is a hack. Force the timer to be reloaded
318 when the reference clock is changed. */
319 systick_reload(s, 1);
321 break;
322 case 0x14: /* SysTick Reload Value. */
323 s->systick.reload = value;
324 break;
325 case 0x18: /* SysTick Current Value. Writes reload the timer. */
326 systick_reload(s, 1);
327 s->systick.control &= ~SYSTICK_COUNTFLAG;
328 break;
329 case 0xd04: /* Interrupt Control State. */
330 if (value & (1 << 31)) {
331 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI);
333 if (value & (1 << 28)) {
334 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV);
335 } else if (value & (1 << 27)) {
336 s->gic.irq_state[ARMV7M_EXCP_PENDSV].pending = 0;
337 gic_update(&s->gic);
339 if (value & (1 << 26)) {
340 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK);
341 } else if (value & (1 << 25)) {
342 s->gic.irq_state[ARMV7M_EXCP_SYSTICK].pending = 0;
343 gic_update(&s->gic);
345 break;
346 case 0xd08: /* Vector Table Offset. */
347 cpu = ARM_CPU(current_cpu);
348 cpu->env.v7m.vecbase = value & 0xffffff80;
349 break;
350 case 0xd0c: /* Application Interrupt/Reset Control. */
351 if ((value >> 16) == 0x05fa) {
352 if (value & 4) {
353 qemu_irq_pulse(s->sysresetreq);
355 if (value & 2) {
356 qemu_log_mask(LOG_UNIMP, "VECTCLRACTIVE unimplemented\n");
358 if (value & 1) {
359 qemu_log_mask(LOG_UNIMP, "AIRCR system reset unimplemented\n");
361 if (value & 0x700) {
362 qemu_log_mask(LOG_UNIMP, "PRIGROUP unimplemented\n");
365 break;
366 case 0xd10: /* System Control. */
367 case 0xd14: /* Configuration Control. */
368 /* TODO: Implement control registers. */
369 qemu_log_mask(LOG_UNIMP, "NVIC: SCR and CCR unimplemented\n");
370 break;
371 case 0xd24: /* System Handler Control. */
372 /* TODO: Real hardware allows you to set/clear the active bits
373 under some circumstances. We don't implement this. */
374 s->gic.irq_state[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
375 s->gic.irq_state[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
376 s->gic.irq_state[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
377 break;
378 case 0xd28: /* Configurable Fault Status. */
379 case 0xd2c: /* Hard Fault Status. */
380 case 0xd30: /* Debug Fault Status. */
381 case 0xd34: /* Mem Manage Address. */
382 case 0xd38: /* Bus Fault Address. */
383 case 0xd3c: /* Aux Fault Status. */
384 qemu_log_mask(LOG_UNIMP,
385 "NVIC: fault status registers unimplemented\n");
386 break;
387 case 0xf00: /* Software Triggered Interrupt Register */
388 if ((value & 0x1ff) < s->num_irq) {
389 gic_set_pending_private(&s->gic, 0, value & 0x1ff);
391 break;
392 default:
393 qemu_log_mask(LOG_GUEST_ERROR,
394 "NVIC: Bad write offset 0x%x\n", offset);
398 static uint64_t nvic_sysreg_read(void *opaque, hwaddr addr,
399 unsigned size)
401 nvic_state *s = (nvic_state *)opaque;
402 uint32_t offset = addr;
403 int i;
404 uint32_t val;
406 switch (offset) {
407 case 0xd18 ... 0xd23: /* System Handler Priority. */
408 val = 0;
409 for (i = 0; i < size; i++) {
410 val |= s->gic.priority1[(offset - 0xd14) + i][0] << (i * 8);
412 return val;
413 case 0xfe0 ... 0xfff: /* ID. */
414 if (offset & 3) {
415 return 0;
417 return nvic_id[(offset - 0xfe0) >> 2];
419 if (size == 4) {
420 return nvic_readl(s, offset);
422 qemu_log_mask(LOG_GUEST_ERROR,
423 "NVIC: Bad read of size %d at offset 0x%x\n", size, offset);
424 return 0;
427 static void nvic_sysreg_write(void *opaque, hwaddr addr,
428 uint64_t value, unsigned size)
430 nvic_state *s = (nvic_state *)opaque;
431 uint32_t offset = addr;
432 int i;
434 switch (offset) {
435 case 0xd18 ... 0xd23: /* System Handler Priority. */
436 for (i = 0; i < size; i++) {
437 s->gic.priority1[(offset - 0xd14) + i][0] =
438 (value >> (i * 8)) & 0xff;
440 gic_update(&s->gic);
441 return;
443 if (size == 4) {
444 nvic_writel(s, offset, value);
445 return;
447 qemu_log_mask(LOG_GUEST_ERROR,
448 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
451 static const MemoryRegionOps nvic_sysreg_ops = {
452 .read = nvic_sysreg_read,
453 .write = nvic_sysreg_write,
454 .endianness = DEVICE_NATIVE_ENDIAN,
457 static const VMStateDescription vmstate_nvic = {
458 .name = "armv7m_nvic",
459 .version_id = 1,
460 .minimum_version_id = 1,
461 .fields = (VMStateField[]) {
462 VMSTATE_UINT32(systick.control, nvic_state),
463 VMSTATE_UINT32(systick.reload, nvic_state),
464 VMSTATE_INT64(systick.tick, nvic_state),
465 VMSTATE_TIMER_PTR(systick.timer, nvic_state),
466 VMSTATE_END_OF_LIST()
470 static void armv7m_nvic_reset(DeviceState *dev)
472 nvic_state *s = NVIC(dev);
473 NVICClass *nc = NVIC_GET_CLASS(s);
474 nc->parent_reset(dev);
475 /* Common GIC reset resets to disabled; the NVIC doesn't have
476 * per-CPU interfaces so mark our non-existent CPU interface
477 * as enabled by default, and with a priority mask which allows
478 * all interrupts through.
480 s->gic.cpu_ctlr[0] = GICC_CTLR_EN_GRP0;
481 s->gic.priority_mask[0] = 0x100;
482 /* The NVIC as a whole is always enabled. */
483 s->gic.ctlr = 1;
484 systick_reset(s);
487 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
489 nvic_state *s = NVIC(dev);
490 NVICClass *nc = NVIC_GET_CLASS(s);
491 Error *local_err = NULL;
493 /* The NVIC always has only one CPU */
494 s->gic.num_cpu = 1;
495 /* Tell the common code we're an NVIC */
496 s->gic.revision = 0xffffffff;
497 s->num_irq = s->gic.num_irq;
498 nc->parent_realize(dev, &local_err);
499 if (local_err) {
500 error_propagate(errp, local_err);
501 return;
503 gic_init_irqs_and_distributor(&s->gic);
504 /* The NVIC and system controller register area looks like this:
505 * 0..0xff : system control registers, including systick
506 * 0x100..0xcff : GIC-like registers
507 * 0xd00..0xfff : system control registers
508 * We use overlaying to put the GIC like registers
509 * over the top of the system control register region.
511 memory_region_init(&s->container, OBJECT(s), "nvic", 0x1000);
512 /* The system register region goes at the bottom of the priority
513 * stack as it covers the whole page.
515 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
516 "nvic_sysregs", 0x1000);
517 memory_region_add_subregion(&s->container, 0, &s->sysregmem);
518 /* Alias the GIC region so we can get only the section of it
519 * we need, and layer it on top of the system register region.
521 memory_region_init_alias(&s->gic_iomem_alias, OBJECT(s),
522 "nvic-gic", &s->gic.iomem,
523 0x100, 0xc00);
524 memory_region_add_subregion_overlap(&s->container, 0x100,
525 &s->gic_iomem_alias, 1);
526 /* Map the whole thing into system memory at the location required
527 * by the v7M architecture.
529 memory_region_add_subregion(get_system_memory(), 0xe000e000, &s->container);
530 s->systick.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, systick_timer_tick, s);
533 static void armv7m_nvic_instance_init(Object *obj)
535 /* We have a different default value for the num-irq property
536 * than our superclass. This function runs after qdev init
537 * has set the defaults from the Property array and before
538 * any user-specified property setting, so just modify the
539 * value in the GICState struct.
541 GICState *s = ARM_GIC_COMMON(obj);
542 DeviceState *dev = DEVICE(obj);
543 nvic_state *nvic = NVIC(obj);
544 /* The ARM v7m may have anything from 0 to 496 external interrupt
545 * IRQ lines. We default to 64. Other boards may differ and should
546 * set the num-irq property appropriately.
548 s->num_irq = 64;
549 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
552 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
554 NVICClass *nc = NVIC_CLASS(klass);
555 DeviceClass *dc = DEVICE_CLASS(klass);
557 nc->parent_reset = dc->reset;
558 nc->parent_realize = dc->realize;
559 dc->vmsd = &vmstate_nvic;
560 dc->reset = armv7m_nvic_reset;
561 dc->realize = armv7m_nvic_realize;
564 static const TypeInfo armv7m_nvic_info = {
565 .name = TYPE_NVIC,
566 .parent = TYPE_ARM_GIC_COMMON,
567 .instance_init = armv7m_nvic_instance_init,
568 .instance_size = sizeof(nvic_state),
569 .class_init = armv7m_nvic_class_init,
570 .class_size = sizeof(NVICClass),
573 static void armv7m_nvic_register_types(void)
575 type_register_static(&armv7m_nvic_info);
578 type_init(armv7m_nvic_register_types)