qapi: Consistent generated code: prefer visitor 'v'
[qemu/ar7.git] / block / qcow2-cluster.c
blob6ede629efbe4778c144e807cac3770cca0b38168
1 /*
2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include <zlib.h>
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
30 #include "trace.h"
32 int qcow2_grow_l1_table(BlockDriverState *bs, uint64_t min_size,
33 bool exact_size)
35 BDRVQcow2State *s = bs->opaque;
36 int new_l1_size2, ret, i;
37 uint64_t *new_l1_table;
38 int64_t old_l1_table_offset, old_l1_size;
39 int64_t new_l1_table_offset, new_l1_size;
40 uint8_t data[12];
42 if (min_size <= s->l1_size)
43 return 0;
45 /* Do a sanity check on min_size before trying to calculate new_l1_size
46 * (this prevents overflows during the while loop for the calculation of
47 * new_l1_size) */
48 if (min_size > INT_MAX / sizeof(uint64_t)) {
49 return -EFBIG;
52 if (exact_size) {
53 new_l1_size = min_size;
54 } else {
55 /* Bump size up to reduce the number of times we have to grow */
56 new_l1_size = s->l1_size;
57 if (new_l1_size == 0) {
58 new_l1_size = 1;
60 while (min_size > new_l1_size) {
61 new_l1_size = (new_l1_size * 3 + 1) / 2;
65 if (new_l1_size > INT_MAX / sizeof(uint64_t)) {
66 return -EFBIG;
69 #ifdef DEBUG_ALLOC2
70 fprintf(stderr, "grow l1_table from %d to %" PRId64 "\n",
71 s->l1_size, new_l1_size);
72 #endif
74 new_l1_size2 = sizeof(uint64_t) * new_l1_size;
75 new_l1_table = qemu_try_blockalign(bs->file,
76 align_offset(new_l1_size2, 512));
77 if (new_l1_table == NULL) {
78 return -ENOMEM;
80 memset(new_l1_table, 0, align_offset(new_l1_size2, 512));
82 memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
84 /* write new table (align to cluster) */
85 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
86 new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
87 if (new_l1_table_offset < 0) {
88 qemu_vfree(new_l1_table);
89 return new_l1_table_offset;
92 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
93 if (ret < 0) {
94 goto fail;
97 /* the L1 position has not yet been updated, so these clusters must
98 * indeed be completely free */
99 ret = qcow2_pre_write_overlap_check(bs, 0, new_l1_table_offset,
100 new_l1_size2);
101 if (ret < 0) {
102 goto fail;
105 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
106 for(i = 0; i < s->l1_size; i++)
107 new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
108 ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
109 if (ret < 0)
110 goto fail;
111 for(i = 0; i < s->l1_size; i++)
112 new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
114 /* set new table */
115 BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
116 cpu_to_be32w((uint32_t*)data, new_l1_size);
117 stq_be_p(data + 4, new_l1_table_offset);
118 ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
119 if (ret < 0) {
120 goto fail;
122 qemu_vfree(s->l1_table);
123 old_l1_table_offset = s->l1_table_offset;
124 s->l1_table_offset = new_l1_table_offset;
125 s->l1_table = new_l1_table;
126 old_l1_size = s->l1_size;
127 s->l1_size = new_l1_size;
128 qcow2_free_clusters(bs, old_l1_table_offset, old_l1_size * sizeof(uint64_t),
129 QCOW2_DISCARD_OTHER);
130 return 0;
131 fail:
132 qemu_vfree(new_l1_table);
133 qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2,
134 QCOW2_DISCARD_OTHER);
135 return ret;
139 * l2_load
141 * Loads a L2 table into memory. If the table is in the cache, the cache
142 * is used; otherwise the L2 table is loaded from the image file.
144 * Returns a pointer to the L2 table on success, or NULL if the read from
145 * the image file failed.
148 static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
149 uint64_t **l2_table)
151 BDRVQcow2State *s = bs->opaque;
152 int ret;
154 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
156 return ret;
160 * Writes one sector of the L1 table to the disk (can't update single entries
161 * and we really don't want bdrv_pread to perform a read-modify-write)
163 #define L1_ENTRIES_PER_SECTOR (512 / 8)
164 int qcow2_write_l1_entry(BlockDriverState *bs, int l1_index)
166 BDRVQcow2State *s = bs->opaque;
167 uint64_t buf[L1_ENTRIES_PER_SECTOR] = { 0 };
168 int l1_start_index;
169 int i, ret;
171 l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
172 for (i = 0; i < L1_ENTRIES_PER_SECTOR && l1_start_index + i < s->l1_size;
173 i++)
175 buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
178 ret = qcow2_pre_write_overlap_check(bs, QCOW2_OL_ACTIVE_L1,
179 s->l1_table_offset + 8 * l1_start_index, sizeof(buf));
180 if (ret < 0) {
181 return ret;
184 BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
185 ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
186 buf, sizeof(buf));
187 if (ret < 0) {
188 return ret;
191 return 0;
195 * l2_allocate
197 * Allocate a new l2 entry in the file. If l1_index points to an already
198 * used entry in the L2 table (i.e. we are doing a copy on write for the L2
199 * table) copy the contents of the old L2 table into the newly allocated one.
200 * Otherwise the new table is initialized with zeros.
204 static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
206 BDRVQcow2State *s = bs->opaque;
207 uint64_t old_l2_offset;
208 uint64_t *l2_table = NULL;
209 int64_t l2_offset;
210 int ret;
212 old_l2_offset = s->l1_table[l1_index];
214 trace_qcow2_l2_allocate(bs, l1_index);
216 /* allocate a new l2 entry */
218 l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
219 if (l2_offset < 0) {
220 ret = l2_offset;
221 goto fail;
224 ret = qcow2_cache_flush(bs, s->refcount_block_cache);
225 if (ret < 0) {
226 goto fail;
229 /* allocate a new entry in the l2 cache */
231 trace_qcow2_l2_allocate_get_empty(bs, l1_index);
232 ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
233 if (ret < 0) {
234 goto fail;
237 l2_table = *table;
239 if ((old_l2_offset & L1E_OFFSET_MASK) == 0) {
240 /* if there was no old l2 table, clear the new table */
241 memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
242 } else {
243 uint64_t* old_table;
245 /* if there was an old l2 table, read it from the disk */
246 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
247 ret = qcow2_cache_get(bs, s->l2_table_cache,
248 old_l2_offset & L1E_OFFSET_MASK,
249 (void**) &old_table);
250 if (ret < 0) {
251 goto fail;
254 memcpy(l2_table, old_table, s->cluster_size);
256 qcow2_cache_put(bs, s->l2_table_cache, (void **) &old_table);
259 /* write the l2 table to the file */
260 BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
262 trace_qcow2_l2_allocate_write_l2(bs, l1_index);
263 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
264 ret = qcow2_cache_flush(bs, s->l2_table_cache);
265 if (ret < 0) {
266 goto fail;
269 /* update the L1 entry */
270 trace_qcow2_l2_allocate_write_l1(bs, l1_index);
271 s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
272 ret = qcow2_write_l1_entry(bs, l1_index);
273 if (ret < 0) {
274 goto fail;
277 *table = l2_table;
278 trace_qcow2_l2_allocate_done(bs, l1_index, 0);
279 return 0;
281 fail:
282 trace_qcow2_l2_allocate_done(bs, l1_index, ret);
283 if (l2_table != NULL) {
284 qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
286 s->l1_table[l1_index] = old_l2_offset;
287 if (l2_offset > 0) {
288 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
289 QCOW2_DISCARD_ALWAYS);
291 return ret;
295 * Checks how many clusters in a given L2 table are contiguous in the image
296 * file. As soon as one of the flags in the bitmask stop_flags changes compared
297 * to the first cluster, the search is stopped and the cluster is not counted
298 * as contiguous. (This allows it, for example, to stop at the first compressed
299 * cluster which may require a different handling)
301 static int count_contiguous_clusters(int nb_clusters, int cluster_size,
302 uint64_t *l2_table, uint64_t stop_flags)
304 int i;
305 uint64_t mask = stop_flags | L2E_OFFSET_MASK | QCOW_OFLAG_COMPRESSED;
306 uint64_t first_entry = be64_to_cpu(l2_table[0]);
307 uint64_t offset = first_entry & mask;
309 if (!offset)
310 return 0;
312 assert(qcow2_get_cluster_type(first_entry) != QCOW2_CLUSTER_COMPRESSED);
314 for (i = 0; i < nb_clusters; i++) {
315 uint64_t l2_entry = be64_to_cpu(l2_table[i]) & mask;
316 if (offset + (uint64_t) i * cluster_size != l2_entry) {
317 break;
321 return i;
324 static int count_contiguous_free_clusters(int nb_clusters, uint64_t *l2_table)
326 int i;
328 for (i = 0; i < nb_clusters; i++) {
329 int type = qcow2_get_cluster_type(be64_to_cpu(l2_table[i]));
331 if (type != QCOW2_CLUSTER_UNALLOCATED) {
332 break;
336 return i;
339 /* The crypt function is compatible with the linux cryptoloop
340 algorithm for < 4 GB images. NOTE: out_buf == in_buf is
341 supported */
342 int qcow2_encrypt_sectors(BDRVQcow2State *s, int64_t sector_num,
343 uint8_t *out_buf, const uint8_t *in_buf,
344 int nb_sectors, bool enc,
345 Error **errp)
347 union {
348 uint64_t ll[2];
349 uint8_t b[16];
350 } ivec;
351 int i;
352 int ret;
354 for(i = 0; i < nb_sectors; i++) {
355 ivec.ll[0] = cpu_to_le64(sector_num);
356 ivec.ll[1] = 0;
357 if (qcrypto_cipher_setiv(s->cipher,
358 ivec.b, G_N_ELEMENTS(ivec.b),
359 errp) < 0) {
360 return -1;
362 if (enc) {
363 ret = qcrypto_cipher_encrypt(s->cipher,
364 in_buf,
365 out_buf,
366 512,
367 errp);
368 } else {
369 ret = qcrypto_cipher_decrypt(s->cipher,
370 in_buf,
371 out_buf,
372 512,
373 errp);
375 if (ret < 0) {
376 return -1;
378 sector_num++;
379 in_buf += 512;
380 out_buf += 512;
382 return 0;
385 static int coroutine_fn copy_sectors(BlockDriverState *bs,
386 uint64_t start_sect,
387 uint64_t cluster_offset,
388 int n_start, int n_end)
390 BDRVQcow2State *s = bs->opaque;
391 QEMUIOVector qiov;
392 struct iovec iov;
393 int n, ret;
395 n = n_end - n_start;
396 if (n <= 0) {
397 return 0;
400 iov.iov_len = n * BDRV_SECTOR_SIZE;
401 iov.iov_base = qemu_try_blockalign(bs, iov.iov_len);
402 if (iov.iov_base == NULL) {
403 return -ENOMEM;
406 qemu_iovec_init_external(&qiov, &iov, 1);
408 BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
410 if (!bs->drv) {
411 ret = -ENOMEDIUM;
412 goto out;
415 /* Call .bdrv_co_readv() directly instead of using the public block-layer
416 * interface. This avoids double I/O throttling and request tracking,
417 * which can lead to deadlock when block layer copy-on-read is enabled.
419 ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
420 if (ret < 0) {
421 goto out;
424 if (bs->encrypted) {
425 Error *err = NULL;
426 assert(s->cipher);
427 if (qcow2_encrypt_sectors(s, start_sect + n_start,
428 iov.iov_base, iov.iov_base, n,
429 true, &err) < 0) {
430 ret = -EIO;
431 error_free(err);
432 goto out;
436 ret = qcow2_pre_write_overlap_check(bs, 0,
437 cluster_offset + n_start * BDRV_SECTOR_SIZE, n * BDRV_SECTOR_SIZE);
438 if (ret < 0) {
439 goto out;
442 BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
443 ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
444 if (ret < 0) {
445 goto out;
448 ret = 0;
449 out:
450 qemu_vfree(iov.iov_base);
451 return ret;
456 * get_cluster_offset
458 * For a given offset of the disk image, find the cluster offset in
459 * qcow2 file. The offset is stored in *cluster_offset.
461 * on entry, *num is the number of contiguous sectors we'd like to
462 * access following offset.
464 * on exit, *num is the number of contiguous sectors we can read.
466 * Returns the cluster type (QCOW2_CLUSTER_*) on success, -errno in error
467 * cases.
469 int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
470 int *num, uint64_t *cluster_offset)
472 BDRVQcow2State *s = bs->opaque;
473 unsigned int l2_index;
474 uint64_t l1_index, l2_offset, *l2_table;
475 int l1_bits, c;
476 unsigned int index_in_cluster, nb_clusters;
477 uint64_t nb_available, nb_needed;
478 int ret;
480 index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
481 nb_needed = *num + index_in_cluster;
483 l1_bits = s->l2_bits + s->cluster_bits;
485 /* compute how many bytes there are between the offset and
486 * the end of the l1 entry
489 nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
491 /* compute the number of available sectors */
493 nb_available = (nb_available >> 9) + index_in_cluster;
495 if (nb_needed > nb_available) {
496 nb_needed = nb_available;
498 assert(nb_needed <= INT_MAX);
500 *cluster_offset = 0;
502 /* seek to the l2 offset in the l1 table */
504 l1_index = offset >> l1_bits;
505 if (l1_index >= s->l1_size) {
506 ret = QCOW2_CLUSTER_UNALLOCATED;
507 goto out;
510 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
511 if (!l2_offset) {
512 ret = QCOW2_CLUSTER_UNALLOCATED;
513 goto out;
516 if (offset_into_cluster(s, l2_offset)) {
517 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
518 " unaligned (L1 index: %#" PRIx64 ")",
519 l2_offset, l1_index);
520 return -EIO;
523 /* load the l2 table in memory */
525 ret = l2_load(bs, l2_offset, &l2_table);
526 if (ret < 0) {
527 return ret;
530 /* find the cluster offset for the given disk offset */
532 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
533 *cluster_offset = be64_to_cpu(l2_table[l2_index]);
535 /* nb_needed <= INT_MAX, thus nb_clusters <= INT_MAX, too */
536 nb_clusters = size_to_clusters(s, nb_needed << 9);
538 ret = qcow2_get_cluster_type(*cluster_offset);
539 switch (ret) {
540 case QCOW2_CLUSTER_COMPRESSED:
541 /* Compressed clusters can only be processed one by one */
542 c = 1;
543 *cluster_offset &= L2E_COMPRESSED_OFFSET_SIZE_MASK;
544 break;
545 case QCOW2_CLUSTER_ZERO:
546 if (s->qcow_version < 3) {
547 qcow2_signal_corruption(bs, true, -1, -1, "Zero cluster entry found"
548 " in pre-v3 image (L2 offset: %#" PRIx64
549 ", L2 index: %#x)", l2_offset, l2_index);
550 ret = -EIO;
551 goto fail;
553 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
554 &l2_table[l2_index], QCOW_OFLAG_ZERO);
555 *cluster_offset = 0;
556 break;
557 case QCOW2_CLUSTER_UNALLOCATED:
558 /* how many empty clusters ? */
559 c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
560 *cluster_offset = 0;
561 break;
562 case QCOW2_CLUSTER_NORMAL:
563 /* how many allocated clusters ? */
564 c = count_contiguous_clusters(nb_clusters, s->cluster_size,
565 &l2_table[l2_index], QCOW_OFLAG_ZERO);
566 *cluster_offset &= L2E_OFFSET_MASK;
567 if (offset_into_cluster(s, *cluster_offset)) {
568 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset %#"
569 PRIx64 " unaligned (L2 offset: %#" PRIx64
570 ", L2 index: %#x)", *cluster_offset,
571 l2_offset, l2_index);
572 ret = -EIO;
573 goto fail;
575 break;
576 default:
577 abort();
580 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
582 nb_available = (c * s->cluster_sectors);
584 out:
585 if (nb_available > nb_needed)
586 nb_available = nb_needed;
588 *num = nb_available - index_in_cluster;
590 return ret;
592 fail:
593 qcow2_cache_put(bs, s->l2_table_cache, (void **)&l2_table);
594 return ret;
598 * get_cluster_table
600 * for a given disk offset, load (and allocate if needed)
601 * the l2 table.
603 * the l2 table offset in the qcow2 file and the cluster index
604 * in the l2 table are given to the caller.
606 * Returns 0 on success, -errno in failure case
608 static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
609 uint64_t **new_l2_table,
610 int *new_l2_index)
612 BDRVQcow2State *s = bs->opaque;
613 unsigned int l2_index;
614 uint64_t l1_index, l2_offset;
615 uint64_t *l2_table = NULL;
616 int ret;
618 /* seek to the l2 offset in the l1 table */
620 l1_index = offset >> (s->l2_bits + s->cluster_bits);
621 if (l1_index >= s->l1_size) {
622 ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
623 if (ret < 0) {
624 return ret;
628 assert(l1_index < s->l1_size);
629 l2_offset = s->l1_table[l1_index] & L1E_OFFSET_MASK;
630 if (offset_into_cluster(s, l2_offset)) {
631 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#" PRIx64
632 " unaligned (L1 index: %#" PRIx64 ")",
633 l2_offset, l1_index);
634 return -EIO;
637 /* seek the l2 table of the given l2 offset */
639 if (s->l1_table[l1_index] & QCOW_OFLAG_COPIED) {
640 /* load the l2 table in memory */
641 ret = l2_load(bs, l2_offset, &l2_table);
642 if (ret < 0) {
643 return ret;
645 } else {
646 /* First allocate a new L2 table (and do COW if needed) */
647 ret = l2_allocate(bs, l1_index, &l2_table);
648 if (ret < 0) {
649 return ret;
652 /* Then decrease the refcount of the old table */
653 if (l2_offset) {
654 qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t),
655 QCOW2_DISCARD_OTHER);
659 /* find the cluster offset for the given disk offset */
661 l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
663 *new_l2_table = l2_table;
664 *new_l2_index = l2_index;
666 return 0;
670 * alloc_compressed_cluster_offset
672 * For a given offset of the disk image, return cluster offset in
673 * qcow2 file.
675 * If the offset is not found, allocate a new compressed cluster.
677 * Return the cluster offset if successful,
678 * Return 0, otherwise.
682 uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
683 uint64_t offset,
684 int compressed_size)
686 BDRVQcow2State *s = bs->opaque;
687 int l2_index, ret;
688 uint64_t *l2_table;
689 int64_t cluster_offset;
690 int nb_csectors;
692 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
693 if (ret < 0) {
694 return 0;
697 /* Compression can't overwrite anything. Fail if the cluster was already
698 * allocated. */
699 cluster_offset = be64_to_cpu(l2_table[l2_index]);
700 if (cluster_offset & L2E_OFFSET_MASK) {
701 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
702 return 0;
705 cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
706 if (cluster_offset < 0) {
707 qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
708 return 0;
711 nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
712 (cluster_offset >> 9);
714 cluster_offset |= QCOW_OFLAG_COMPRESSED |
715 ((uint64_t)nb_csectors << s->csize_shift);
717 /* update L2 table */
719 /* compressed clusters never have the copied flag */
721 BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
722 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
723 l2_table[l2_index] = cpu_to_be64(cluster_offset);
724 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
726 return cluster_offset;
729 static int perform_cow(BlockDriverState *bs, QCowL2Meta *m, Qcow2COWRegion *r)
731 BDRVQcow2State *s = bs->opaque;
732 int ret;
734 if (r->nb_sectors == 0) {
735 return 0;
738 qemu_co_mutex_unlock(&s->lock);
739 ret = copy_sectors(bs, m->offset / BDRV_SECTOR_SIZE, m->alloc_offset,
740 r->offset / BDRV_SECTOR_SIZE,
741 r->offset / BDRV_SECTOR_SIZE + r->nb_sectors);
742 qemu_co_mutex_lock(&s->lock);
744 if (ret < 0) {
745 return ret;
749 * Before we update the L2 table to actually point to the new cluster, we
750 * need to be sure that the refcounts have been increased and COW was
751 * handled.
753 qcow2_cache_depends_on_flush(s->l2_table_cache);
755 return 0;
758 int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
760 BDRVQcow2State *s = bs->opaque;
761 int i, j = 0, l2_index, ret;
762 uint64_t *old_cluster, *l2_table;
763 uint64_t cluster_offset = m->alloc_offset;
765 trace_qcow2_cluster_link_l2(qemu_coroutine_self(), m->nb_clusters);
766 assert(m->nb_clusters > 0);
768 old_cluster = g_try_new(uint64_t, m->nb_clusters);
769 if (old_cluster == NULL) {
770 ret = -ENOMEM;
771 goto err;
774 /* copy content of unmodified sectors */
775 ret = perform_cow(bs, m, &m->cow_start);
776 if (ret < 0) {
777 goto err;
780 ret = perform_cow(bs, m, &m->cow_end);
781 if (ret < 0) {
782 goto err;
785 /* Update L2 table. */
786 if (s->use_lazy_refcounts) {
787 qcow2_mark_dirty(bs);
789 if (qcow2_need_accurate_refcounts(s)) {
790 qcow2_cache_set_dependency(bs, s->l2_table_cache,
791 s->refcount_block_cache);
794 ret = get_cluster_table(bs, m->offset, &l2_table, &l2_index);
795 if (ret < 0) {
796 goto err;
798 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
800 assert(l2_index + m->nb_clusters <= s->l2_size);
801 for (i = 0; i < m->nb_clusters; i++) {
802 /* if two concurrent writes happen to the same unallocated cluster
803 * each write allocates separate cluster and writes data concurrently.
804 * The first one to complete updates l2 table with pointer to its
805 * cluster the second one has to do RMW (which is done above by
806 * copy_sectors()), update l2 table with its cluster pointer and free
807 * old cluster. This is what this loop does */
808 if(l2_table[l2_index + i] != 0)
809 old_cluster[j++] = l2_table[l2_index + i];
811 l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
812 (i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
816 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
819 * If this was a COW, we need to decrease the refcount of the old cluster.
820 * Also flush bs->file to get the right order for L2 and refcount update.
822 * Don't discard clusters that reach a refcount of 0 (e.g. compressed
823 * clusters), the next write will reuse them anyway.
825 if (j != 0) {
826 for (i = 0; i < j; i++) {
827 qcow2_free_any_clusters(bs, be64_to_cpu(old_cluster[i]), 1,
828 QCOW2_DISCARD_NEVER);
832 ret = 0;
833 err:
834 g_free(old_cluster);
835 return ret;
839 * Returns the number of contiguous clusters that can be used for an allocating
840 * write, but require COW to be performed (this includes yet unallocated space,
841 * which must copy from the backing file)
843 static int count_cow_clusters(BDRVQcow2State *s, int nb_clusters,
844 uint64_t *l2_table, int l2_index)
846 int i;
848 for (i = 0; i < nb_clusters; i++) {
849 uint64_t l2_entry = be64_to_cpu(l2_table[l2_index + i]);
850 int cluster_type = qcow2_get_cluster_type(l2_entry);
852 switch(cluster_type) {
853 case QCOW2_CLUSTER_NORMAL:
854 if (l2_entry & QCOW_OFLAG_COPIED) {
855 goto out;
857 break;
858 case QCOW2_CLUSTER_UNALLOCATED:
859 case QCOW2_CLUSTER_COMPRESSED:
860 case QCOW2_CLUSTER_ZERO:
861 break;
862 default:
863 abort();
867 out:
868 assert(i <= nb_clusters);
869 return i;
873 * Check if there already is an AIO write request in flight which allocates
874 * the same cluster. In this case we need to wait until the previous
875 * request has completed and updated the L2 table accordingly.
877 * Returns:
878 * 0 if there was no dependency. *cur_bytes indicates the number of
879 * bytes from guest_offset that can be read before the next
880 * dependency must be processed (or the request is complete)
882 * -EAGAIN if we had to wait for another request, previously gathered
883 * information on cluster allocation may be invalid now. The caller
884 * must start over anyway, so consider *cur_bytes undefined.
886 static int handle_dependencies(BlockDriverState *bs, uint64_t guest_offset,
887 uint64_t *cur_bytes, QCowL2Meta **m)
889 BDRVQcow2State *s = bs->opaque;
890 QCowL2Meta *old_alloc;
891 uint64_t bytes = *cur_bytes;
893 QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
895 uint64_t start = guest_offset;
896 uint64_t end = start + bytes;
897 uint64_t old_start = l2meta_cow_start(old_alloc);
898 uint64_t old_end = l2meta_cow_end(old_alloc);
900 if (end <= old_start || start >= old_end) {
901 /* No intersection */
902 } else {
903 if (start < old_start) {
904 /* Stop at the start of a running allocation */
905 bytes = old_start - start;
906 } else {
907 bytes = 0;
910 /* Stop if already an l2meta exists. After yielding, it wouldn't
911 * be valid any more, so we'd have to clean up the old L2Metas
912 * and deal with requests depending on them before starting to
913 * gather new ones. Not worth the trouble. */
914 if (bytes == 0 && *m) {
915 *cur_bytes = 0;
916 return 0;
919 if (bytes == 0) {
920 /* Wait for the dependency to complete. We need to recheck
921 * the free/allocated clusters when we continue. */
922 qemu_co_mutex_unlock(&s->lock);
923 qemu_co_queue_wait(&old_alloc->dependent_requests);
924 qemu_co_mutex_lock(&s->lock);
925 return -EAGAIN;
930 /* Make sure that existing clusters and new allocations are only used up to
931 * the next dependency if we shortened the request above */
932 *cur_bytes = bytes;
934 return 0;
938 * Checks how many already allocated clusters that don't require a copy on
939 * write there are at the given guest_offset (up to *bytes). If
940 * *host_offset is not zero, only physically contiguous clusters beginning at
941 * this host offset are counted.
943 * Note that guest_offset may not be cluster aligned. In this case, the
944 * returned *host_offset points to exact byte referenced by guest_offset and
945 * therefore isn't cluster aligned as well.
947 * Returns:
948 * 0: if no allocated clusters are available at the given offset.
949 * *bytes is normally unchanged. It is set to 0 if the cluster
950 * is allocated and doesn't need COW, but doesn't have the right
951 * physical offset.
953 * 1: if allocated clusters that don't require a COW are available at
954 * the requested offset. *bytes may have decreased and describes
955 * the length of the area that can be written to.
957 * -errno: in error cases
959 static int handle_copied(BlockDriverState *bs, uint64_t guest_offset,
960 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
962 BDRVQcow2State *s = bs->opaque;
963 int l2_index;
964 uint64_t cluster_offset;
965 uint64_t *l2_table;
966 uint64_t nb_clusters;
967 unsigned int keep_clusters;
968 int ret;
970 trace_qcow2_handle_copied(qemu_coroutine_self(), guest_offset, *host_offset,
971 *bytes);
973 assert(*host_offset == 0 || offset_into_cluster(s, guest_offset)
974 == offset_into_cluster(s, *host_offset));
977 * Calculate the number of clusters to look for. We stop at L2 table
978 * boundaries to keep things simple.
980 nb_clusters =
981 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
983 l2_index = offset_to_l2_index(s, guest_offset);
984 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
985 assert(nb_clusters <= INT_MAX);
987 /* Find L2 entry for the first involved cluster */
988 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
989 if (ret < 0) {
990 return ret;
993 cluster_offset = be64_to_cpu(l2_table[l2_index]);
995 /* Check how many clusters are already allocated and don't need COW */
996 if (qcow2_get_cluster_type(cluster_offset) == QCOW2_CLUSTER_NORMAL
997 && (cluster_offset & QCOW_OFLAG_COPIED))
999 /* If a specific host_offset is required, check it */
1000 bool offset_matches =
1001 (cluster_offset & L2E_OFFSET_MASK) == *host_offset;
1003 if (offset_into_cluster(s, cluster_offset & L2E_OFFSET_MASK)) {
1004 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1005 "%#llx unaligned (guest offset: %#" PRIx64
1006 ")", cluster_offset & L2E_OFFSET_MASK,
1007 guest_offset);
1008 ret = -EIO;
1009 goto out;
1012 if (*host_offset != 0 && !offset_matches) {
1013 *bytes = 0;
1014 ret = 0;
1015 goto out;
1018 /* We keep all QCOW_OFLAG_COPIED clusters */
1019 keep_clusters =
1020 count_contiguous_clusters(nb_clusters, s->cluster_size,
1021 &l2_table[l2_index],
1022 QCOW_OFLAG_COPIED | QCOW_OFLAG_ZERO);
1023 assert(keep_clusters <= nb_clusters);
1025 *bytes = MIN(*bytes,
1026 keep_clusters * s->cluster_size
1027 - offset_into_cluster(s, guest_offset));
1029 ret = 1;
1030 } else {
1031 ret = 0;
1034 /* Cleanup */
1035 out:
1036 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1038 /* Only return a host offset if we actually made progress. Otherwise we
1039 * would make requirements for handle_alloc() that it can't fulfill */
1040 if (ret > 0) {
1041 *host_offset = (cluster_offset & L2E_OFFSET_MASK)
1042 + offset_into_cluster(s, guest_offset);
1045 return ret;
1049 * Allocates new clusters for the given guest_offset.
1051 * At most *nb_clusters are allocated, and on return *nb_clusters is updated to
1052 * contain the number of clusters that have been allocated and are contiguous
1053 * in the image file.
1055 * If *host_offset is non-zero, it specifies the offset in the image file at
1056 * which the new clusters must start. *nb_clusters can be 0 on return in this
1057 * case if the cluster at host_offset is already in use. If *host_offset is
1058 * zero, the clusters can be allocated anywhere in the image file.
1060 * *host_offset is updated to contain the offset into the image file at which
1061 * the first allocated cluster starts.
1063 * Return 0 on success and -errno in error cases. -EAGAIN means that the
1064 * function has been waiting for another request and the allocation must be
1065 * restarted, but the whole request should not be failed.
1067 static int do_alloc_cluster_offset(BlockDriverState *bs, uint64_t guest_offset,
1068 uint64_t *host_offset, uint64_t *nb_clusters)
1070 BDRVQcow2State *s = bs->opaque;
1072 trace_qcow2_do_alloc_clusters_offset(qemu_coroutine_self(), guest_offset,
1073 *host_offset, *nb_clusters);
1075 /* Allocate new clusters */
1076 trace_qcow2_cluster_alloc_phys(qemu_coroutine_self());
1077 if (*host_offset == 0) {
1078 int64_t cluster_offset =
1079 qcow2_alloc_clusters(bs, *nb_clusters * s->cluster_size);
1080 if (cluster_offset < 0) {
1081 return cluster_offset;
1083 *host_offset = cluster_offset;
1084 return 0;
1085 } else {
1086 int64_t ret = qcow2_alloc_clusters_at(bs, *host_offset, *nb_clusters);
1087 if (ret < 0) {
1088 return ret;
1090 *nb_clusters = ret;
1091 return 0;
1096 * Allocates new clusters for an area that either is yet unallocated or needs a
1097 * copy on write. If *host_offset is non-zero, clusters are only allocated if
1098 * the new allocation can match the specified host offset.
1100 * Note that guest_offset may not be cluster aligned. In this case, the
1101 * returned *host_offset points to exact byte referenced by guest_offset and
1102 * therefore isn't cluster aligned as well.
1104 * Returns:
1105 * 0: if no clusters could be allocated. *bytes is set to 0,
1106 * *host_offset is left unchanged.
1108 * 1: if new clusters were allocated. *bytes may be decreased if the
1109 * new allocation doesn't cover all of the requested area.
1110 * *host_offset is updated to contain the host offset of the first
1111 * newly allocated cluster.
1113 * -errno: in error cases
1115 static int handle_alloc(BlockDriverState *bs, uint64_t guest_offset,
1116 uint64_t *host_offset, uint64_t *bytes, QCowL2Meta **m)
1118 BDRVQcow2State *s = bs->opaque;
1119 int l2_index;
1120 uint64_t *l2_table;
1121 uint64_t entry;
1122 uint64_t nb_clusters;
1123 int ret;
1125 uint64_t alloc_cluster_offset;
1127 trace_qcow2_handle_alloc(qemu_coroutine_self(), guest_offset, *host_offset,
1128 *bytes);
1129 assert(*bytes > 0);
1132 * Calculate the number of clusters to look for. We stop at L2 table
1133 * boundaries to keep things simple.
1135 nb_clusters =
1136 size_to_clusters(s, offset_into_cluster(s, guest_offset) + *bytes);
1138 l2_index = offset_to_l2_index(s, guest_offset);
1139 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1140 assert(nb_clusters <= INT_MAX);
1142 /* Find L2 entry for the first involved cluster */
1143 ret = get_cluster_table(bs, guest_offset, &l2_table, &l2_index);
1144 if (ret < 0) {
1145 return ret;
1148 entry = be64_to_cpu(l2_table[l2_index]);
1150 /* For the moment, overwrite compressed clusters one by one */
1151 if (entry & QCOW_OFLAG_COMPRESSED) {
1152 nb_clusters = 1;
1153 } else {
1154 nb_clusters = count_cow_clusters(s, nb_clusters, l2_table, l2_index);
1157 /* This function is only called when there were no non-COW clusters, so if
1158 * we can't find any unallocated or COW clusters either, something is
1159 * wrong with our code. */
1160 assert(nb_clusters > 0);
1162 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1164 /* Allocate, if necessary at a given offset in the image file */
1165 alloc_cluster_offset = start_of_cluster(s, *host_offset);
1166 ret = do_alloc_cluster_offset(bs, guest_offset, &alloc_cluster_offset,
1167 &nb_clusters);
1168 if (ret < 0) {
1169 goto fail;
1172 /* Can't extend contiguous allocation */
1173 if (nb_clusters == 0) {
1174 *bytes = 0;
1175 return 0;
1178 /* !*host_offset would overwrite the image header and is reserved for "no
1179 * host offset preferred". If 0 was a valid host offset, it'd trigger the
1180 * following overlap check; do that now to avoid having an invalid value in
1181 * *host_offset. */
1182 if (!alloc_cluster_offset) {
1183 ret = qcow2_pre_write_overlap_check(bs, 0, alloc_cluster_offset,
1184 nb_clusters * s->cluster_size);
1185 assert(ret < 0);
1186 goto fail;
1190 * Save info needed for meta data update.
1192 * requested_sectors: Number of sectors from the start of the first
1193 * newly allocated cluster to the end of the (possibly shortened
1194 * before) write request.
1196 * avail_sectors: Number of sectors from the start of the first
1197 * newly allocated to the end of the last newly allocated cluster.
1199 * nb_sectors: The number of sectors from the start of the first
1200 * newly allocated cluster to the end of the area that the write
1201 * request actually writes to (excluding COW at the end)
1203 int requested_sectors =
1204 (*bytes + offset_into_cluster(s, guest_offset))
1205 >> BDRV_SECTOR_BITS;
1206 int avail_sectors = nb_clusters
1207 << (s->cluster_bits - BDRV_SECTOR_BITS);
1208 int alloc_n_start = offset_into_cluster(s, guest_offset)
1209 >> BDRV_SECTOR_BITS;
1210 int nb_sectors = MIN(requested_sectors, avail_sectors);
1211 QCowL2Meta *old_m = *m;
1213 *m = g_malloc0(sizeof(**m));
1215 **m = (QCowL2Meta) {
1216 .next = old_m,
1218 .alloc_offset = alloc_cluster_offset,
1219 .offset = start_of_cluster(s, guest_offset),
1220 .nb_clusters = nb_clusters,
1221 .nb_available = nb_sectors,
1223 .cow_start = {
1224 .offset = 0,
1225 .nb_sectors = alloc_n_start,
1227 .cow_end = {
1228 .offset = nb_sectors * BDRV_SECTOR_SIZE,
1229 .nb_sectors = avail_sectors - nb_sectors,
1232 qemu_co_queue_init(&(*m)->dependent_requests);
1233 QLIST_INSERT_HEAD(&s->cluster_allocs, *m, next_in_flight);
1235 *host_offset = alloc_cluster_offset + offset_into_cluster(s, guest_offset);
1236 *bytes = MIN(*bytes, (nb_sectors * BDRV_SECTOR_SIZE)
1237 - offset_into_cluster(s, guest_offset));
1238 assert(*bytes != 0);
1240 return 1;
1242 fail:
1243 if (*m && (*m)->nb_clusters > 0) {
1244 QLIST_REMOVE(*m, next_in_flight);
1246 return ret;
1250 * alloc_cluster_offset
1252 * For a given offset on the virtual disk, find the cluster offset in qcow2
1253 * file. If the offset is not found, allocate a new cluster.
1255 * If the cluster was already allocated, m->nb_clusters is set to 0 and
1256 * other fields in m are meaningless.
1258 * If the cluster is newly allocated, m->nb_clusters is set to the number of
1259 * contiguous clusters that have been allocated. In this case, the other
1260 * fields of m are valid and contain information about the first allocated
1261 * cluster.
1263 * If the request conflicts with another write request in flight, the coroutine
1264 * is queued and will be reentered when the dependency has completed.
1266 * Return 0 on success and -errno in error cases
1268 int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
1269 int *num, uint64_t *host_offset, QCowL2Meta **m)
1271 BDRVQcow2State *s = bs->opaque;
1272 uint64_t start, remaining;
1273 uint64_t cluster_offset;
1274 uint64_t cur_bytes;
1275 int ret;
1277 trace_qcow2_alloc_clusters_offset(qemu_coroutine_self(), offset, *num);
1279 assert((offset & ~BDRV_SECTOR_MASK) == 0);
1281 again:
1282 start = offset;
1283 remaining = (uint64_t)*num << BDRV_SECTOR_BITS;
1284 cluster_offset = 0;
1285 *host_offset = 0;
1286 cur_bytes = 0;
1287 *m = NULL;
1289 while (true) {
1291 if (!*host_offset) {
1292 *host_offset = start_of_cluster(s, cluster_offset);
1295 assert(remaining >= cur_bytes);
1297 start += cur_bytes;
1298 remaining -= cur_bytes;
1299 cluster_offset += cur_bytes;
1301 if (remaining == 0) {
1302 break;
1305 cur_bytes = remaining;
1308 * Now start gathering as many contiguous clusters as possible:
1310 * 1. Check for overlaps with in-flight allocations
1312 * a) Overlap not in the first cluster -> shorten this request and
1313 * let the caller handle the rest in its next loop iteration.
1315 * b) Real overlaps of two requests. Yield and restart the search
1316 * for contiguous clusters (the situation could have changed
1317 * while we were sleeping)
1319 * c) TODO: Request starts in the same cluster as the in-flight
1320 * allocation ends. Shorten the COW of the in-fight allocation,
1321 * set cluster_offset to write to the same cluster and set up
1322 * the right synchronisation between the in-flight request and
1323 * the new one.
1325 ret = handle_dependencies(bs, start, &cur_bytes, m);
1326 if (ret == -EAGAIN) {
1327 /* Currently handle_dependencies() doesn't yield if we already had
1328 * an allocation. If it did, we would have to clean up the L2Meta
1329 * structs before starting over. */
1330 assert(*m == NULL);
1331 goto again;
1332 } else if (ret < 0) {
1333 return ret;
1334 } else if (cur_bytes == 0) {
1335 break;
1336 } else {
1337 /* handle_dependencies() may have decreased cur_bytes (shortened
1338 * the allocations below) so that the next dependency is processed
1339 * correctly during the next loop iteration. */
1343 * 2. Count contiguous COPIED clusters.
1345 ret = handle_copied(bs, start, &cluster_offset, &cur_bytes, m);
1346 if (ret < 0) {
1347 return ret;
1348 } else if (ret) {
1349 continue;
1350 } else if (cur_bytes == 0) {
1351 break;
1355 * 3. If the request still hasn't completed, allocate new clusters,
1356 * considering any cluster_offset of steps 1c or 2.
1358 ret = handle_alloc(bs, start, &cluster_offset, &cur_bytes, m);
1359 if (ret < 0) {
1360 return ret;
1361 } else if (ret) {
1362 continue;
1363 } else {
1364 assert(cur_bytes == 0);
1365 break;
1369 *num -= remaining >> BDRV_SECTOR_BITS;
1370 assert(*num > 0);
1371 assert(*host_offset != 0);
1373 return 0;
1376 static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
1377 const uint8_t *buf, int buf_size)
1379 z_stream strm1, *strm = &strm1;
1380 int ret, out_len;
1382 memset(strm, 0, sizeof(*strm));
1384 strm->next_in = (uint8_t *)buf;
1385 strm->avail_in = buf_size;
1386 strm->next_out = out_buf;
1387 strm->avail_out = out_buf_size;
1389 ret = inflateInit2(strm, -12);
1390 if (ret != Z_OK)
1391 return -1;
1392 ret = inflate(strm, Z_FINISH);
1393 out_len = strm->next_out - out_buf;
1394 if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
1395 out_len != out_buf_size) {
1396 inflateEnd(strm);
1397 return -1;
1399 inflateEnd(strm);
1400 return 0;
1403 int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
1405 BDRVQcow2State *s = bs->opaque;
1406 int ret, csize, nb_csectors, sector_offset;
1407 uint64_t coffset;
1409 coffset = cluster_offset & s->cluster_offset_mask;
1410 if (s->cluster_cache_offset != coffset) {
1411 nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
1412 sector_offset = coffset & 511;
1413 csize = nb_csectors * 512 - sector_offset;
1414 BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
1415 ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
1416 if (ret < 0) {
1417 return ret;
1419 if (decompress_buffer(s->cluster_cache, s->cluster_size,
1420 s->cluster_data + sector_offset, csize) < 0) {
1421 return -EIO;
1423 s->cluster_cache_offset = coffset;
1425 return 0;
1429 * This discards as many clusters of nb_clusters as possible at once (i.e.
1430 * all clusters in the same L2 table) and returns the number of discarded
1431 * clusters.
1433 static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
1434 uint64_t nb_clusters, enum qcow2_discard_type type,
1435 bool full_discard)
1437 BDRVQcow2State *s = bs->opaque;
1438 uint64_t *l2_table;
1439 int l2_index;
1440 int ret;
1441 int i;
1443 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1444 if (ret < 0) {
1445 return ret;
1448 /* Limit nb_clusters to one L2 table */
1449 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1450 assert(nb_clusters <= INT_MAX);
1452 for (i = 0; i < nb_clusters; i++) {
1453 uint64_t old_l2_entry;
1455 old_l2_entry = be64_to_cpu(l2_table[l2_index + i]);
1458 * If full_discard is false, make sure that a discarded area reads back
1459 * as zeroes for v3 images (we cannot do it for v2 without actually
1460 * writing a zero-filled buffer). We can skip the operation if the
1461 * cluster is already marked as zero, or if it's unallocated and we
1462 * don't have a backing file.
1464 * TODO We might want to use bdrv_get_block_status(bs) here, but we're
1465 * holding s->lock, so that doesn't work today.
1467 * If full_discard is true, the sector should not read back as zeroes,
1468 * but rather fall through to the backing file.
1470 switch (qcow2_get_cluster_type(old_l2_entry)) {
1471 case QCOW2_CLUSTER_UNALLOCATED:
1472 if (full_discard || !bs->backing_hd) {
1473 continue;
1475 break;
1477 case QCOW2_CLUSTER_ZERO:
1478 if (!full_discard) {
1479 continue;
1481 break;
1483 case QCOW2_CLUSTER_NORMAL:
1484 case QCOW2_CLUSTER_COMPRESSED:
1485 break;
1487 default:
1488 abort();
1491 /* First remove L2 entries */
1492 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1493 if (!full_discard && s->qcow_version >= 3) {
1494 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1495 } else {
1496 l2_table[l2_index + i] = cpu_to_be64(0);
1499 /* Then decrease the refcount */
1500 qcow2_free_any_clusters(bs, old_l2_entry, 1, type);
1503 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1505 return nb_clusters;
1508 int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
1509 int nb_sectors, enum qcow2_discard_type type, bool full_discard)
1511 BDRVQcow2State *s = bs->opaque;
1512 uint64_t end_offset;
1513 uint64_t nb_clusters;
1514 int ret;
1516 end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
1518 /* Round start up and end down */
1519 offset = align_offset(offset, s->cluster_size);
1520 end_offset = start_of_cluster(s, end_offset);
1522 if (offset > end_offset) {
1523 return 0;
1526 nb_clusters = size_to_clusters(s, end_offset - offset);
1528 s->cache_discards = true;
1530 /* Each L2 table is handled by its own loop iteration */
1531 while (nb_clusters > 0) {
1532 ret = discard_single_l2(bs, offset, nb_clusters, type, full_discard);
1533 if (ret < 0) {
1534 goto fail;
1537 nb_clusters -= ret;
1538 offset += (ret * s->cluster_size);
1541 ret = 0;
1542 fail:
1543 s->cache_discards = false;
1544 qcow2_process_discards(bs, ret);
1546 return ret;
1550 * This zeroes as many clusters of nb_clusters as possible at once (i.e.
1551 * all clusters in the same L2 table) and returns the number of zeroed
1552 * clusters.
1554 static int zero_single_l2(BlockDriverState *bs, uint64_t offset,
1555 uint64_t nb_clusters)
1557 BDRVQcow2State *s = bs->opaque;
1558 uint64_t *l2_table;
1559 int l2_index;
1560 int ret;
1561 int i;
1563 ret = get_cluster_table(bs, offset, &l2_table, &l2_index);
1564 if (ret < 0) {
1565 return ret;
1568 /* Limit nb_clusters to one L2 table */
1569 nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
1570 assert(nb_clusters <= INT_MAX);
1572 for (i = 0; i < nb_clusters; i++) {
1573 uint64_t old_offset;
1575 old_offset = be64_to_cpu(l2_table[l2_index + i]);
1577 /* Update L2 entries */
1578 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1579 if (old_offset & QCOW_OFLAG_COMPRESSED) {
1580 l2_table[l2_index + i] = cpu_to_be64(QCOW_OFLAG_ZERO);
1581 qcow2_free_any_clusters(bs, old_offset, 1, QCOW2_DISCARD_REQUEST);
1582 } else {
1583 l2_table[l2_index + i] |= cpu_to_be64(QCOW_OFLAG_ZERO);
1587 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1589 return nb_clusters;
1592 int qcow2_zero_clusters(BlockDriverState *bs, uint64_t offset, int nb_sectors)
1594 BDRVQcow2State *s = bs->opaque;
1595 uint64_t nb_clusters;
1596 int ret;
1598 /* The zero flag is only supported by version 3 and newer */
1599 if (s->qcow_version < 3) {
1600 return -ENOTSUP;
1603 /* Each L2 table is handled by its own loop iteration */
1604 nb_clusters = size_to_clusters(s, nb_sectors << BDRV_SECTOR_BITS);
1606 s->cache_discards = true;
1608 while (nb_clusters > 0) {
1609 ret = zero_single_l2(bs, offset, nb_clusters);
1610 if (ret < 0) {
1611 goto fail;
1614 nb_clusters -= ret;
1615 offset += (ret * s->cluster_size);
1618 ret = 0;
1619 fail:
1620 s->cache_discards = false;
1621 qcow2_process_discards(bs, ret);
1623 return ret;
1627 * Expands all zero clusters in a specific L1 table (or deallocates them, for
1628 * non-backed non-pre-allocated zero clusters).
1630 * l1_entries and *visited_l1_entries are used to keep track of progress for
1631 * status_cb(). l1_entries contains the total number of L1 entries and
1632 * *visited_l1_entries counts all visited L1 entries.
1634 static int expand_zero_clusters_in_l1(BlockDriverState *bs, uint64_t *l1_table,
1635 int l1_size, int64_t *visited_l1_entries,
1636 int64_t l1_entries,
1637 BlockDriverAmendStatusCB *status_cb)
1639 BDRVQcow2State *s = bs->opaque;
1640 bool is_active_l1 = (l1_table == s->l1_table);
1641 uint64_t *l2_table = NULL;
1642 int ret;
1643 int i, j;
1645 if (!is_active_l1) {
1646 /* inactive L2 tables require a buffer to be stored in when loading
1647 * them from disk */
1648 l2_table = qemu_try_blockalign(bs->file, s->cluster_size);
1649 if (l2_table == NULL) {
1650 return -ENOMEM;
1654 for (i = 0; i < l1_size; i++) {
1655 uint64_t l2_offset = l1_table[i] & L1E_OFFSET_MASK;
1656 bool l2_dirty = false;
1657 uint64_t l2_refcount;
1659 if (!l2_offset) {
1660 /* unallocated */
1661 (*visited_l1_entries)++;
1662 if (status_cb) {
1663 status_cb(bs, *visited_l1_entries, l1_entries);
1665 continue;
1668 if (offset_into_cluster(s, l2_offset)) {
1669 qcow2_signal_corruption(bs, true, -1, -1, "L2 table offset %#"
1670 PRIx64 " unaligned (L1 index: %#x)",
1671 l2_offset, i);
1672 ret = -EIO;
1673 goto fail;
1676 if (is_active_l1) {
1677 /* get active L2 tables from cache */
1678 ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset,
1679 (void **)&l2_table);
1680 } else {
1681 /* load inactive L2 tables from disk */
1682 ret = bdrv_read(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1683 (void *)l2_table, s->cluster_sectors);
1685 if (ret < 0) {
1686 goto fail;
1689 ret = qcow2_get_refcount(bs, l2_offset >> s->cluster_bits,
1690 &l2_refcount);
1691 if (ret < 0) {
1692 goto fail;
1695 for (j = 0; j < s->l2_size; j++) {
1696 uint64_t l2_entry = be64_to_cpu(l2_table[j]);
1697 int64_t offset = l2_entry & L2E_OFFSET_MASK;
1698 int cluster_type = qcow2_get_cluster_type(l2_entry);
1699 bool preallocated = offset != 0;
1701 if (cluster_type != QCOW2_CLUSTER_ZERO) {
1702 continue;
1705 if (!preallocated) {
1706 if (!bs->backing_hd) {
1707 /* not backed; therefore we can simply deallocate the
1708 * cluster */
1709 l2_table[j] = 0;
1710 l2_dirty = true;
1711 continue;
1714 offset = qcow2_alloc_clusters(bs, s->cluster_size);
1715 if (offset < 0) {
1716 ret = offset;
1717 goto fail;
1720 if (l2_refcount > 1) {
1721 /* For shared L2 tables, set the refcount accordingly (it is
1722 * already 1 and needs to be l2_refcount) */
1723 ret = qcow2_update_cluster_refcount(bs,
1724 offset >> s->cluster_bits,
1725 refcount_diff(1, l2_refcount), false,
1726 QCOW2_DISCARD_OTHER);
1727 if (ret < 0) {
1728 qcow2_free_clusters(bs, offset, s->cluster_size,
1729 QCOW2_DISCARD_OTHER);
1730 goto fail;
1735 if (offset_into_cluster(s, offset)) {
1736 qcow2_signal_corruption(bs, true, -1, -1, "Data cluster offset "
1737 "%#" PRIx64 " unaligned (L2 offset: %#"
1738 PRIx64 ", L2 index: %#x)", offset,
1739 l2_offset, j);
1740 if (!preallocated) {
1741 qcow2_free_clusters(bs, offset, s->cluster_size,
1742 QCOW2_DISCARD_ALWAYS);
1744 ret = -EIO;
1745 goto fail;
1748 ret = qcow2_pre_write_overlap_check(bs, 0, offset, s->cluster_size);
1749 if (ret < 0) {
1750 if (!preallocated) {
1751 qcow2_free_clusters(bs, offset, s->cluster_size,
1752 QCOW2_DISCARD_ALWAYS);
1754 goto fail;
1757 ret = bdrv_write_zeroes(bs->file, offset / BDRV_SECTOR_SIZE,
1758 s->cluster_sectors, 0);
1759 if (ret < 0) {
1760 if (!preallocated) {
1761 qcow2_free_clusters(bs, offset, s->cluster_size,
1762 QCOW2_DISCARD_ALWAYS);
1764 goto fail;
1767 if (l2_refcount == 1) {
1768 l2_table[j] = cpu_to_be64(offset | QCOW_OFLAG_COPIED);
1769 } else {
1770 l2_table[j] = cpu_to_be64(offset);
1772 l2_dirty = true;
1775 if (is_active_l1) {
1776 if (l2_dirty) {
1777 qcow2_cache_entry_mark_dirty(bs, s->l2_table_cache, l2_table);
1778 qcow2_cache_depends_on_flush(s->l2_table_cache);
1780 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1781 } else {
1782 if (l2_dirty) {
1783 ret = qcow2_pre_write_overlap_check(bs,
1784 QCOW2_OL_INACTIVE_L2 | QCOW2_OL_ACTIVE_L2, l2_offset,
1785 s->cluster_size);
1786 if (ret < 0) {
1787 goto fail;
1790 ret = bdrv_write(bs->file, l2_offset / BDRV_SECTOR_SIZE,
1791 (void *)l2_table, s->cluster_sectors);
1792 if (ret < 0) {
1793 goto fail;
1798 (*visited_l1_entries)++;
1799 if (status_cb) {
1800 status_cb(bs, *visited_l1_entries, l1_entries);
1804 ret = 0;
1806 fail:
1807 if (l2_table) {
1808 if (!is_active_l1) {
1809 qemu_vfree(l2_table);
1810 } else {
1811 qcow2_cache_put(bs, s->l2_table_cache, (void **) &l2_table);
1814 return ret;
1818 * For backed images, expands all zero clusters on the image. For non-backed
1819 * images, deallocates all non-pre-allocated zero clusters (and claims the
1820 * allocation for pre-allocated ones). This is important for downgrading to a
1821 * qcow2 version which doesn't yet support metadata zero clusters.
1823 int qcow2_expand_zero_clusters(BlockDriverState *bs,
1824 BlockDriverAmendStatusCB *status_cb)
1826 BDRVQcow2State *s = bs->opaque;
1827 uint64_t *l1_table = NULL;
1828 int64_t l1_entries = 0, visited_l1_entries = 0;
1829 int ret;
1830 int i, j;
1832 if (status_cb) {
1833 l1_entries = s->l1_size;
1834 for (i = 0; i < s->nb_snapshots; i++) {
1835 l1_entries += s->snapshots[i].l1_size;
1839 ret = expand_zero_clusters_in_l1(bs, s->l1_table, s->l1_size,
1840 &visited_l1_entries, l1_entries,
1841 status_cb);
1842 if (ret < 0) {
1843 goto fail;
1846 /* Inactive L1 tables may point to active L2 tables - therefore it is
1847 * necessary to flush the L2 table cache before trying to access the L2
1848 * tables pointed to by inactive L1 entries (else we might try to expand
1849 * zero clusters that have already been expanded); furthermore, it is also
1850 * necessary to empty the L2 table cache, since it may contain tables which
1851 * are now going to be modified directly on disk, bypassing the cache.
1852 * qcow2_cache_empty() does both for us. */
1853 ret = qcow2_cache_empty(bs, s->l2_table_cache);
1854 if (ret < 0) {
1855 goto fail;
1858 for (i = 0; i < s->nb_snapshots; i++) {
1859 int l1_sectors = (s->snapshots[i].l1_size * sizeof(uint64_t) +
1860 BDRV_SECTOR_SIZE - 1) / BDRV_SECTOR_SIZE;
1862 l1_table = g_realloc(l1_table, l1_sectors * BDRV_SECTOR_SIZE);
1864 ret = bdrv_read(bs->file, s->snapshots[i].l1_table_offset /
1865 BDRV_SECTOR_SIZE, (void *)l1_table, l1_sectors);
1866 if (ret < 0) {
1867 goto fail;
1870 for (j = 0; j < s->snapshots[i].l1_size; j++) {
1871 be64_to_cpus(&l1_table[j]);
1874 ret = expand_zero_clusters_in_l1(bs, l1_table, s->snapshots[i].l1_size,
1875 &visited_l1_entries, l1_entries,
1876 status_cb);
1877 if (ret < 0) {
1878 goto fail;
1882 ret = 0;
1884 fail:
1885 g_free(l1_table);
1886 return ret;