2 * ARM V2M MPS2 board emulation, trustzone aware FPGA images
4 * Copyright (c) 2017 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13 * FPGA but is otherwise the same as the 2). Since the CPU itself
14 * and most of the devices are in the FPGA, the details of the board
15 * as seen by the guest depend significantly on the FPGA image.
16 * This source file covers the following FPGA images, for TrustZone cores:
17 * "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
18 * "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
20 * Links to the TRM for the board itself and to the various Application
21 * Notes which document the FPGA images can be found here:
22 * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
25 * http://infocenter.arm.com/help/topic/com.arm.doc.100112_0200_06_en/versatile_express_cortex_m_prototyping_systems_v2m_mps2_and_v2m_mps2plus_technical_reference_100112_0200_06_en.pdf
26 * Application Note AN505:
27 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
28 * Application Note AN521:
29 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0521c/index.html
31 * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
32 * (ARM ECM0601256) for the details of some of the device layout:
33 * http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
34 * Similarly, the AN521 uses the SSE-200, and the SSE-200 TRM defines
35 * most of the device layout:
36 * http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf
40 #include "qemu/osdep.h"
41 #include "qemu/units.h"
42 #include "qapi/error.h"
43 #include "qemu/error-report.h"
44 #include "hw/arm/boot.h"
45 #include "hw/arm/armv7m.h"
46 #include "hw/or-irq.h"
47 #include "hw/boards.h"
48 #include "exec/address-spaces.h"
49 #include "sysemu/sysemu.h"
50 #include "hw/misc/unimp.h"
51 #include "hw/char/cmsdk-apb-uart.h"
52 #include "hw/timer/cmsdk-apb-timer.h"
53 #include "hw/misc/mps2-scc.h"
54 #include "hw/misc/mps2-fpgaio.h"
55 #include "hw/misc/tz-mpc.h"
56 #include "hw/misc/tz-msc.h"
57 #include "hw/arm/armsse.h"
58 #include "hw/dma/pl080.h"
59 #include "hw/ssi/pl022.h"
60 #include "hw/net/lan9118.h"
62 #include "hw/core/split-irq.h"
64 #define MPS2TZ_NUMIRQ 92
66 typedef enum MPS2TZFPGAType
{
73 MPS2TZFPGAType fpga_type
;
75 const char *armsse_type
;
83 MemoryRegion ssram
[3];
84 MemoryRegion ssram1_m
;
90 UnimplementedDeviceState i2c
[4];
91 UnimplementedDeviceState i2s_audio
;
92 UnimplementedDeviceState gpio
[4];
93 UnimplementedDeviceState gfx
;
97 SplitIRQ sec_resp_splitter
;
98 qemu_or_irq uart_irq_orgate
;
100 SplitIRQ cpu_irq_splitter
[MPS2TZ_NUMIRQ
];
101 } MPS2TZMachineState
;
103 #define TYPE_MPS2TZ_MACHINE "mps2tz"
104 #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
105 #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
107 #define MPS2TZ_MACHINE(obj) \
108 OBJECT_CHECK(MPS2TZMachineState, obj, TYPE_MPS2TZ_MACHINE)
109 #define MPS2TZ_MACHINE_GET_CLASS(obj) \
110 OBJECT_GET_CLASS(MPS2TZMachineClass, obj, TYPE_MPS2TZ_MACHINE)
111 #define MPS2TZ_MACHINE_CLASS(klass) \
112 OBJECT_CLASS_CHECK(MPS2TZMachineClass, klass, TYPE_MPS2TZ_MACHINE)
114 /* Main SYSCLK frequency in Hz */
115 #define SYSCLK_FRQ 20000000
117 /* Create an alias of an entire original MemoryRegion @orig
118 * located at @base in the memory map.
120 static void make_ram_alias(MemoryRegion
*mr
, const char *name
,
121 MemoryRegion
*orig
, hwaddr base
)
123 memory_region_init_alias(mr
, NULL
, name
, orig
, 0,
124 memory_region_size(orig
));
125 memory_region_add_subregion(get_system_memory(), base
, mr
);
128 static qemu_irq
get_sse_irq_in(MPS2TZMachineState
*mms
, int irqno
)
130 /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
131 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
133 assert(irqno
< MPS2TZ_NUMIRQ
);
135 switch (mmc
->fpga_type
) {
137 return qdev_get_gpio_in_named(DEVICE(&mms
->iotkit
), "EXP_IRQ", irqno
);
139 return qdev_get_gpio_in(DEVICE(&mms
->cpu_irq_splitter
[irqno
]), 0);
141 g_assert_not_reached();
145 /* Most of the devices in the AN505 FPGA image sit behind
146 * Peripheral Protection Controllers. These data structures
147 * define the layout of which devices sit behind which PPCs.
148 * The devfn for each port is a function which creates, configures
149 * and initializes the device, returning the MemoryRegion which
150 * needs to be plugged into the downstream end of the PPC port.
152 typedef MemoryRegion
*MakeDevFn(MPS2TZMachineState
*mms
, void *opaque
,
153 const char *name
, hwaddr size
);
155 typedef struct PPCPortInfo
{
163 typedef struct PPCInfo
{
165 PPCPortInfo ports
[TZ_NUM_PORTS
];
168 static MemoryRegion
*make_unimp_dev(MPS2TZMachineState
*mms
,
170 const char *name
, hwaddr size
)
172 /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
173 * and return a pointer to its MemoryRegion.
175 UnimplementedDeviceState
*uds
= opaque
;
177 sysbus_init_child_obj(OBJECT(mms
), name
, uds
,
178 sizeof(UnimplementedDeviceState
),
179 TYPE_UNIMPLEMENTED_DEVICE
);
180 qdev_prop_set_string(DEVICE(uds
), "name", name
);
181 qdev_prop_set_uint64(DEVICE(uds
), "size", size
);
182 object_property_set_bool(OBJECT(uds
), true, "realized", &error_fatal
);
183 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds
), 0);
186 static MemoryRegion
*make_uart(MPS2TZMachineState
*mms
, void *opaque
,
187 const char *name
, hwaddr size
)
189 CMSDKAPBUART
*uart
= opaque
;
190 int i
= uart
- &mms
->uart
[0];
192 int txirqno
= i
* 2 + 1;
193 int combirqno
= i
+ 10;
195 DeviceState
*orgate_dev
= DEVICE(&mms
->uart_irq_orgate
);
197 sysbus_init_child_obj(OBJECT(mms
), name
, uart
, sizeof(mms
->uart
[0]),
198 TYPE_CMSDK_APB_UART
);
199 qdev_prop_set_chr(DEVICE(uart
), "chardev", serial_hd(i
));
200 qdev_prop_set_uint32(DEVICE(uart
), "pclk-frq", SYSCLK_FRQ
);
201 object_property_set_bool(OBJECT(uart
), true, "realized", &error_fatal
);
202 s
= SYS_BUS_DEVICE(uart
);
203 sysbus_connect_irq(s
, 0, get_sse_irq_in(mms
, txirqno
));
204 sysbus_connect_irq(s
, 1, get_sse_irq_in(mms
, rxirqno
));
205 sysbus_connect_irq(s
, 2, qdev_get_gpio_in(orgate_dev
, i
* 2));
206 sysbus_connect_irq(s
, 3, qdev_get_gpio_in(orgate_dev
, i
* 2 + 1));
207 sysbus_connect_irq(s
, 4, get_sse_irq_in(mms
, combirqno
));
208 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart
), 0);
211 static MemoryRegion
*make_scc(MPS2TZMachineState
*mms
, void *opaque
,
212 const char *name
, hwaddr size
)
214 MPS2SCC
*scc
= opaque
;
216 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
218 sysbus_init_child_obj(OBJECT(mms
), "scc", scc
,
219 sizeof(mms
->scc
), TYPE_MPS2_SCC
);
220 sccdev
= DEVICE(scc
);
221 qdev_prop_set_uint32(sccdev
, "scc-cfg4", 0x2);
222 qdev_prop_set_uint32(sccdev
, "scc-aid", 0x00200008);
223 qdev_prop_set_uint32(sccdev
, "scc-id", mmc
->scc_id
);
224 object_property_set_bool(OBJECT(scc
), true, "realized", &error_fatal
);
225 return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev
), 0);
228 static MemoryRegion
*make_fpgaio(MPS2TZMachineState
*mms
, void *opaque
,
229 const char *name
, hwaddr size
)
231 MPS2FPGAIO
*fpgaio
= opaque
;
233 sysbus_init_child_obj(OBJECT(mms
), "fpgaio", fpgaio
,
234 sizeof(mms
->fpgaio
), TYPE_MPS2_FPGAIO
);
235 object_property_set_bool(OBJECT(fpgaio
), true, "realized", &error_fatal
);
236 return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio
), 0);
239 static MemoryRegion
*make_eth_dev(MPS2TZMachineState
*mms
, void *opaque
,
240 const char *name
, hwaddr size
)
243 NICInfo
*nd
= &nd_table
[0];
245 /* In hardware this is a LAN9220; the LAN9118 is software compatible
246 * except that it doesn't support the checksum-offload feature.
248 qemu_check_nic_model(nd
, "lan9118");
249 mms
->lan9118
= qdev_create(NULL
, TYPE_LAN9118
);
250 qdev_set_nic_properties(mms
->lan9118
, nd
);
251 qdev_init_nofail(mms
->lan9118
);
253 s
= SYS_BUS_DEVICE(mms
->lan9118
);
254 sysbus_connect_irq(s
, 0, get_sse_irq_in(mms
, 16));
255 return sysbus_mmio_get_region(s
, 0);
258 static MemoryRegion
*make_mpc(MPS2TZMachineState
*mms
, void *opaque
,
259 const char *name
, hwaddr size
)
262 int i
= mpc
- &mms
->ssram_mpc
[0];
263 MemoryRegion
*ssram
= &mms
->ssram
[i
];
264 MemoryRegion
*upstream
;
265 char *mpcname
= g_strdup_printf("%s-mpc", name
);
266 static uint32_t ramsize
[] = { 0x00400000, 0x00200000, 0x00200000 };
267 static uint32_t rambase
[] = { 0x00000000, 0x28000000, 0x28200000 };
269 memory_region_init_ram(ssram
, NULL
, name
, ramsize
[i
], &error_fatal
);
271 sysbus_init_child_obj(OBJECT(mms
), mpcname
, mpc
, sizeof(mms
->ssram_mpc
[0]),
273 object_property_set_link(OBJECT(mpc
), OBJECT(ssram
),
274 "downstream", &error_fatal
);
275 object_property_set_bool(OBJECT(mpc
), true, "realized", &error_fatal
);
276 /* Map the upstream end of the MPC into system memory */
277 upstream
= sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc
), 1);
278 memory_region_add_subregion(get_system_memory(), rambase
[i
], upstream
);
279 /* and connect its interrupt to the IoTKit */
280 qdev_connect_gpio_out_named(DEVICE(mpc
), "irq", 0,
281 qdev_get_gpio_in_named(DEVICE(&mms
->iotkit
),
282 "mpcexp_status", i
));
284 /* The first SSRAM is a special case as it has an alias; accesses to
285 * the alias region at 0x00400000 must also go to the MPC upstream.
288 make_ram_alias(&mms
->ssram1_m
, "mps.ssram1_m", upstream
, 0x00400000);
292 /* Return the register interface MR for our caller to map behind the PPC */
293 return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc
), 0);
296 static MemoryRegion
*make_dma(MPS2TZMachineState
*mms
, void *opaque
,
297 const char *name
, hwaddr size
)
299 PL080State
*dma
= opaque
;
300 int i
= dma
- &mms
->dma
[0];
302 char *mscname
= g_strdup_printf("%s-msc", name
);
303 TZMSC
*msc
= &mms
->msc
[i
];
304 DeviceState
*iotkitdev
= DEVICE(&mms
->iotkit
);
305 MemoryRegion
*msc_upstream
;
306 MemoryRegion
*msc_downstream
;
309 * Each DMA device is a PL081 whose transaction master interface
310 * is guarded by a Master Security Controller. The downstream end of
311 * the MSC connects to the IoTKit AHB Slave Expansion port, so the
312 * DMA devices can see all devices and memory that the CPU does.
314 sysbus_init_child_obj(OBJECT(mms
), mscname
, msc
, sizeof(*msc
), TYPE_TZ_MSC
);
315 msc_downstream
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms
->iotkit
), 0);
316 object_property_set_link(OBJECT(msc
), OBJECT(msc_downstream
),
317 "downstream", &error_fatal
);
318 object_property_set_link(OBJECT(msc
), OBJECT(mms
),
319 "idau", &error_fatal
);
320 object_property_set_bool(OBJECT(msc
), true, "realized", &error_fatal
);
322 qdev_connect_gpio_out_named(DEVICE(msc
), "irq", 0,
323 qdev_get_gpio_in_named(iotkitdev
,
324 "mscexp_status", i
));
325 qdev_connect_gpio_out_named(iotkitdev
, "mscexp_clear", i
,
326 qdev_get_gpio_in_named(DEVICE(msc
),
328 qdev_connect_gpio_out_named(iotkitdev
, "mscexp_ns", i
,
329 qdev_get_gpio_in_named(DEVICE(msc
),
331 qdev_connect_gpio_out(DEVICE(&mms
->sec_resp_splitter
),
332 ARRAY_SIZE(mms
->ppc
) + i
,
333 qdev_get_gpio_in_named(DEVICE(msc
),
335 msc_upstream
= sysbus_mmio_get_region(SYS_BUS_DEVICE(msc
), 0);
337 sysbus_init_child_obj(OBJECT(mms
), name
, dma
, sizeof(*dma
), TYPE_PL081
);
338 object_property_set_link(OBJECT(dma
), OBJECT(msc_upstream
),
339 "downstream", &error_fatal
);
340 object_property_set_bool(OBJECT(dma
), true, "realized", &error_fatal
);
342 s
= SYS_BUS_DEVICE(dma
);
343 /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
344 sysbus_connect_irq(s
, 0, get_sse_irq_in(mms
, 58 + i
* 3));
345 sysbus_connect_irq(s
, 1, get_sse_irq_in(mms
, 56 + i
* 3));
346 sysbus_connect_irq(s
, 2, get_sse_irq_in(mms
, 57 + i
* 3));
349 return sysbus_mmio_get_region(s
, 0);
352 static MemoryRegion
*make_spi(MPS2TZMachineState
*mms
, void *opaque
,
353 const char *name
, hwaddr size
)
356 * The AN505 has five PL022 SPI controllers.
357 * One of these should have the LCD controller behind it; the others
358 * are connected only to the FPGA's "general purpose SPI connector"
359 * or "shield" expansion connectors.
360 * Note that if we do implement devices behind SPI, the chip select
361 * lines are set via the "MISC" register in the MPS2 FPGAIO device.
363 PL022State
*spi
= opaque
;
364 int i
= spi
- &mms
->spi
[0];
367 sysbus_init_child_obj(OBJECT(mms
), name
, spi
, sizeof(mms
->spi
[0]),
369 object_property_set_bool(OBJECT(spi
), true, "realized", &error_fatal
);
370 s
= SYS_BUS_DEVICE(spi
);
371 sysbus_connect_irq(s
, 0, get_sse_irq_in(mms
, 51 + i
));
372 return sysbus_mmio_get_region(s
, 0);
375 static void mps2tz_common_init(MachineState
*machine
)
377 MPS2TZMachineState
*mms
= MPS2TZ_MACHINE(machine
);
378 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_GET_CLASS(mms
);
379 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
380 MemoryRegion
*system_memory
= get_system_memory();
381 DeviceState
*iotkitdev
;
382 DeviceState
*dev_splitter
;
385 if (strcmp(machine
->cpu_type
, mc
->default_cpu_type
) != 0) {
386 error_report("This board can only be used with CPU %s",
387 mc
->default_cpu_type
);
391 sysbus_init_child_obj(OBJECT(machine
), "iotkit", &mms
->iotkit
,
392 sizeof(mms
->iotkit
), mmc
->armsse_type
);
393 iotkitdev
= DEVICE(&mms
->iotkit
);
394 object_property_set_link(OBJECT(&mms
->iotkit
), OBJECT(system_memory
),
395 "memory", &error_abort
);
396 qdev_prop_set_uint32(iotkitdev
, "EXP_NUMIRQ", MPS2TZ_NUMIRQ
);
397 qdev_prop_set_uint32(iotkitdev
, "MAINCLK", SYSCLK_FRQ
);
398 object_property_set_bool(OBJECT(&mms
->iotkit
), true, "realized",
402 * The AN521 needs us to create splitters to feed the IRQ inputs
403 * for each CPU in the SSE-200 from each device in the board.
405 if (mmc
->fpga_type
== FPGA_AN521
) {
406 for (i
= 0; i
< MPS2TZ_NUMIRQ
; i
++) {
407 char *name
= g_strdup_printf("mps2-irq-splitter%d", i
);
408 SplitIRQ
*splitter
= &mms
->cpu_irq_splitter
[i
];
410 object_initialize_child(OBJECT(machine
), name
,
411 splitter
, sizeof(*splitter
),
412 TYPE_SPLIT_IRQ
, &error_fatal
, NULL
);
415 object_property_set_int(OBJECT(splitter
), 2, "num-lines",
417 object_property_set_bool(OBJECT(splitter
), true, "realized",
419 qdev_connect_gpio_out(DEVICE(splitter
), 0,
420 qdev_get_gpio_in_named(DEVICE(&mms
->iotkit
),
422 qdev_connect_gpio_out(DEVICE(splitter
), 1,
423 qdev_get_gpio_in_named(DEVICE(&mms
->iotkit
),
428 /* The sec_resp_cfg output from the IoTKit must be split into multiple
429 * lines, one for each of the PPCs we create here, plus one per MSC.
431 object_initialize_child(OBJECT(machine
), "sec-resp-splitter",
432 &mms
->sec_resp_splitter
,
433 sizeof(mms
->sec_resp_splitter
),
434 TYPE_SPLIT_IRQ
, &error_abort
, NULL
);
435 object_property_set_int(OBJECT(&mms
->sec_resp_splitter
),
436 ARRAY_SIZE(mms
->ppc
) + ARRAY_SIZE(mms
->msc
),
437 "num-lines", &error_fatal
);
438 object_property_set_bool(OBJECT(&mms
->sec_resp_splitter
), true,
439 "realized", &error_fatal
);
440 dev_splitter
= DEVICE(&mms
->sec_resp_splitter
);
441 qdev_connect_gpio_out_named(iotkitdev
, "sec_resp_cfg", 0,
442 qdev_get_gpio_in(dev_splitter
, 0));
444 /* The IoTKit sets up much of the memory layout, including
445 * the aliases between secure and non-secure regions in the
446 * address space. The FPGA itself contains:
448 * 0x00000000..0x003fffff SSRAM1
449 * 0x00400000..0x007fffff alias of SSRAM1
450 * 0x28000000..0x283fffff 4MB SSRAM2 + SSRAM3
451 * 0x40100000..0x4fffffff AHB Master Expansion 1 interface devices
452 * 0x80000000..0x80ffffff 16MB PSRAM
455 /* The FPGA images have an odd combination of different RAMs,
456 * because in hardware they are different implementations and
457 * connected to different buses, giving varying performance/size
458 * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
459 * call the 16MB our "system memory", as it's the largest lump.
461 memory_region_allocate_system_memory(&mms
->psram
,
462 NULL
, "mps.ram", 16 * MiB
);
463 memory_region_add_subregion(system_memory
, 0x80000000, &mms
->psram
);
465 /* The overflow IRQs for all UARTs are ORed together.
466 * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
467 * Create the OR gate for this.
469 object_initialize_child(OBJECT(mms
), "uart-irq-orgate",
470 &mms
->uart_irq_orgate
, sizeof(mms
->uart_irq_orgate
),
471 TYPE_OR_IRQ
, &error_abort
, NULL
);
472 object_property_set_int(OBJECT(&mms
->uart_irq_orgate
), 10, "num-lines",
474 object_property_set_bool(OBJECT(&mms
->uart_irq_orgate
), true,
475 "realized", &error_fatal
);
476 qdev_connect_gpio_out(DEVICE(&mms
->uart_irq_orgate
), 0,
477 get_sse_irq_in(mms
, 15));
479 /* Most of the devices in the FPGA are behind Peripheral Protection
480 * Controllers. The required order for initializing things is:
481 * + initialize the PPC
482 * + initialize, configure and realize downstream devices
483 * + connect downstream device MemoryRegions to the PPC
485 * + map the PPC's MemoryRegions to the places in the address map
486 * where the downstream devices should appear
487 * + wire up the PPC's control lines to the IoTKit object
490 const PPCInfo ppcs
[] = { {
491 .name
= "apb_ppcexp0",
493 { "ssram-0", make_mpc
, &mms
->ssram_mpc
[0], 0x58007000, 0x1000 },
494 { "ssram-1", make_mpc
, &mms
->ssram_mpc
[1], 0x58008000, 0x1000 },
495 { "ssram-2", make_mpc
, &mms
->ssram_mpc
[2], 0x58009000, 0x1000 },
498 .name
= "apb_ppcexp1",
500 { "spi0", make_spi
, &mms
->spi
[0], 0x40205000, 0x1000 },
501 { "spi1", make_spi
, &mms
->spi
[1], 0x40206000, 0x1000 },
502 { "spi2", make_spi
, &mms
->spi
[2], 0x40209000, 0x1000 },
503 { "spi3", make_spi
, &mms
->spi
[3], 0x4020a000, 0x1000 },
504 { "spi4", make_spi
, &mms
->spi
[4], 0x4020b000, 0x1000 },
505 { "uart0", make_uart
, &mms
->uart
[0], 0x40200000, 0x1000 },
506 { "uart1", make_uart
, &mms
->uart
[1], 0x40201000, 0x1000 },
507 { "uart2", make_uart
, &mms
->uart
[2], 0x40202000, 0x1000 },
508 { "uart3", make_uart
, &mms
->uart
[3], 0x40203000, 0x1000 },
509 { "uart4", make_uart
, &mms
->uart
[4], 0x40204000, 0x1000 },
510 { "i2c0", make_unimp_dev
, &mms
->i2c
[0], 0x40207000, 0x1000 },
511 { "i2c1", make_unimp_dev
, &mms
->i2c
[1], 0x40208000, 0x1000 },
512 { "i2c2", make_unimp_dev
, &mms
->i2c
[2], 0x4020c000, 0x1000 },
513 { "i2c3", make_unimp_dev
, &mms
->i2c
[3], 0x4020d000, 0x1000 },
516 .name
= "apb_ppcexp2",
518 { "scc", make_scc
, &mms
->scc
, 0x40300000, 0x1000 },
519 { "i2s-audio", make_unimp_dev
, &mms
->i2s_audio
,
520 0x40301000, 0x1000 },
521 { "fpgaio", make_fpgaio
, &mms
->fpgaio
, 0x40302000, 0x1000 },
524 .name
= "ahb_ppcexp0",
526 { "gfx", make_unimp_dev
, &mms
->gfx
, 0x41000000, 0x140000 },
527 { "gpio0", make_unimp_dev
, &mms
->gpio
[0], 0x40100000, 0x1000 },
528 { "gpio1", make_unimp_dev
, &mms
->gpio
[1], 0x40101000, 0x1000 },
529 { "gpio2", make_unimp_dev
, &mms
->gpio
[2], 0x40102000, 0x1000 },
530 { "gpio3", make_unimp_dev
, &mms
->gpio
[3], 0x40103000, 0x1000 },
531 { "eth", make_eth_dev
, NULL
, 0x42000000, 0x100000 },
534 .name
= "ahb_ppcexp1",
536 { "dma0", make_dma
, &mms
->dma
[0], 0x40110000, 0x1000 },
537 { "dma1", make_dma
, &mms
->dma
[1], 0x40111000, 0x1000 },
538 { "dma2", make_dma
, &mms
->dma
[2], 0x40112000, 0x1000 },
539 { "dma3", make_dma
, &mms
->dma
[3], 0x40113000, 0x1000 },
544 for (i
= 0; i
< ARRAY_SIZE(ppcs
); i
++) {
545 const PPCInfo
*ppcinfo
= &ppcs
[i
];
546 TZPPC
*ppc
= &mms
->ppc
[i
];
551 sysbus_init_child_obj(OBJECT(machine
), ppcinfo
->name
, ppc
,
552 sizeof(TZPPC
), TYPE_TZ_PPC
);
553 ppcdev
= DEVICE(ppc
);
555 for (port
= 0; port
< TZ_NUM_PORTS
; port
++) {
556 const PPCPortInfo
*pinfo
= &ppcinfo
->ports
[port
];
564 mr
= pinfo
->devfn(mms
, pinfo
->opaque
, pinfo
->name
, pinfo
->size
);
565 portname
= g_strdup_printf("port[%d]", port
);
566 object_property_set_link(OBJECT(ppc
), OBJECT(mr
),
567 portname
, &error_fatal
);
571 object_property_set_bool(OBJECT(ppc
), true, "realized", &error_fatal
);
573 for (port
= 0; port
< TZ_NUM_PORTS
; port
++) {
574 const PPCPortInfo
*pinfo
= &ppcinfo
->ports
[port
];
579 sysbus_mmio_map(SYS_BUS_DEVICE(ppc
), port
, pinfo
->addr
);
581 gpioname
= g_strdup_printf("%s_nonsec", ppcinfo
->name
);
582 qdev_connect_gpio_out_named(iotkitdev
, gpioname
, port
,
583 qdev_get_gpio_in_named(ppcdev
,
587 gpioname
= g_strdup_printf("%s_ap", ppcinfo
->name
);
588 qdev_connect_gpio_out_named(iotkitdev
, gpioname
, port
,
589 qdev_get_gpio_in_named(ppcdev
,
594 gpioname
= g_strdup_printf("%s_irq_enable", ppcinfo
->name
);
595 qdev_connect_gpio_out_named(iotkitdev
, gpioname
, 0,
596 qdev_get_gpio_in_named(ppcdev
,
599 gpioname
= g_strdup_printf("%s_irq_clear", ppcinfo
->name
);
600 qdev_connect_gpio_out_named(iotkitdev
, gpioname
, 0,
601 qdev_get_gpio_in_named(ppcdev
,
604 gpioname
= g_strdup_printf("%s_irq_status", ppcinfo
->name
);
605 qdev_connect_gpio_out_named(ppcdev
, "irq", 0,
606 qdev_get_gpio_in_named(iotkitdev
,
610 qdev_connect_gpio_out(dev_splitter
, i
,
611 qdev_get_gpio_in_named(ppcdev
,
615 create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
617 armv7m_load_kernel(ARM_CPU(first_cpu
), machine
->kernel_filename
, 0x400000);
620 static void mps2_tz_idau_check(IDAUInterface
*ii
, uint32_t address
,
621 int *iregion
, bool *exempt
, bool *ns
, bool *nsc
)
624 * The MPS2 TZ FPGA images have IDAUs in them which are connected to
625 * the Master Security Controllers. Thes have the same logic as
626 * is used by the IoTKit for the IDAU connected to the CPU, except
627 * that MSCs don't care about the NSC attribute.
629 int region
= extract32(address
, 28, 4);
633 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
634 *exempt
= (address
& 0xeff00000) == 0xe0000000;
638 static void mps2tz_class_init(ObjectClass
*oc
, void *data
)
640 MachineClass
*mc
= MACHINE_CLASS(oc
);
641 IDAUInterfaceClass
*iic
= IDAU_INTERFACE_CLASS(oc
);
643 mc
->init
= mps2tz_common_init
;
644 iic
->check
= mps2_tz_idau_check
;
647 static void mps2tz_an505_class_init(ObjectClass
*oc
, void *data
)
649 MachineClass
*mc
= MACHINE_CLASS(oc
);
650 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_CLASS(oc
);
652 mc
->desc
= "ARM MPS2 with AN505 FPGA image for Cortex-M33";
653 mc
->default_cpus
= 1;
654 mc
->min_cpus
= mc
->default_cpus
;
655 mc
->max_cpus
= mc
->default_cpus
;
656 mmc
->fpga_type
= FPGA_AN505
;
657 mc
->default_cpu_type
= ARM_CPU_TYPE_NAME("cortex-m33");
658 mmc
->scc_id
= 0x41045050;
659 mmc
->armsse_type
= TYPE_IOTKIT
;
662 static void mps2tz_an521_class_init(ObjectClass
*oc
, void *data
)
664 MachineClass
*mc
= MACHINE_CLASS(oc
);
665 MPS2TZMachineClass
*mmc
= MPS2TZ_MACHINE_CLASS(oc
);
667 mc
->desc
= "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
668 mc
->default_cpus
= 2;
669 mc
->min_cpus
= mc
->default_cpus
;
670 mc
->max_cpus
= mc
->default_cpus
;
671 mmc
->fpga_type
= FPGA_AN521
;
672 mc
->default_cpu_type
= ARM_CPU_TYPE_NAME("cortex-m33");
673 mmc
->scc_id
= 0x41045210;
674 mmc
->armsse_type
= TYPE_SSE200
;
677 static const TypeInfo mps2tz_info
= {
678 .name
= TYPE_MPS2TZ_MACHINE
,
679 .parent
= TYPE_MACHINE
,
681 .instance_size
= sizeof(MPS2TZMachineState
),
682 .class_size
= sizeof(MPS2TZMachineClass
),
683 .class_init
= mps2tz_class_init
,
684 .interfaces
= (InterfaceInfo
[]) {
685 { TYPE_IDAU_INTERFACE
},
690 static const TypeInfo mps2tz_an505_info
= {
691 .name
= TYPE_MPS2TZ_AN505_MACHINE
,
692 .parent
= TYPE_MPS2TZ_MACHINE
,
693 .class_init
= mps2tz_an505_class_init
,
696 static const TypeInfo mps2tz_an521_info
= {
697 .name
= TYPE_MPS2TZ_AN521_MACHINE
,
698 .parent
= TYPE_MPS2TZ_MACHINE
,
699 .class_init
= mps2tz_an521_class_init
,
702 static void mps2tz_machine_init(void)
704 type_register_static(&mps2tz_info
);
705 type_register_static(&mps2tz_an505_info
);
706 type_register_static(&mps2tz_an521_info
);
709 type_init(mps2tz_machine_init
);