1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
5 #include <sys/resource.h>
9 #include "disas/disas.h"
10 #include "qemu/path.h"
11 #include "qemu/queue.h"
12 #include "qemu/guest-random.h"
13 #include "qemu/units.h"
14 #include "qemu/selfmap.h"
26 #define ELF_OSABI ELFOSABI_SYSV
28 /* from personality.h */
31 * Flags for bug emulation.
33 * These occupy the top three bytes.
36 ADDR_NO_RANDOMIZE
= 0x0040000, /* disable randomization of VA space */
37 FDPIC_FUNCPTRS
= 0x0080000, /* userspace function ptrs point to
38 descriptors (signal handling) */
39 MMAP_PAGE_ZERO
= 0x0100000,
40 ADDR_COMPAT_LAYOUT
= 0x0200000,
41 READ_IMPLIES_EXEC
= 0x0400000,
42 ADDR_LIMIT_32BIT
= 0x0800000,
43 SHORT_INODE
= 0x1000000,
44 WHOLE_SECONDS
= 0x2000000,
45 STICKY_TIMEOUTS
= 0x4000000,
46 ADDR_LIMIT_3GB
= 0x8000000,
52 * These go in the low byte. Avoid using the top bit, it will
53 * conflict with error returns.
57 PER_LINUX_32BIT
= 0x0000 | ADDR_LIMIT_32BIT
,
58 PER_LINUX_FDPIC
= 0x0000 | FDPIC_FUNCPTRS
,
59 PER_SVR4
= 0x0001 | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
60 PER_SVR3
= 0x0002 | STICKY_TIMEOUTS
| SHORT_INODE
,
61 PER_SCOSVR3
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
| SHORT_INODE
,
62 PER_OSR5
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
,
63 PER_WYSEV386
= 0x0004 | STICKY_TIMEOUTS
| SHORT_INODE
,
64 PER_ISCR4
= 0x0005 | STICKY_TIMEOUTS
,
66 PER_SUNOS
= 0x0006 | STICKY_TIMEOUTS
,
67 PER_XENIX
= 0x0007 | STICKY_TIMEOUTS
| SHORT_INODE
,
69 PER_LINUX32_3GB
= 0x0008 | ADDR_LIMIT_3GB
,
70 PER_IRIX32
= 0x0009 | STICKY_TIMEOUTS
,/* IRIX5 32-bit */
71 PER_IRIXN32
= 0x000a | STICKY_TIMEOUTS
,/* IRIX6 new 32-bit */
72 PER_IRIX64
= 0x000b | STICKY_TIMEOUTS
,/* IRIX6 64-bit */
74 PER_SOLARIS
= 0x000d | STICKY_TIMEOUTS
,
75 PER_UW7
= 0x000e | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
76 PER_OSF4
= 0x000f, /* OSF/1 v4 */
82 * Return the base personality without flags.
84 #define personality(pers) (pers & PER_MASK)
86 int info_is_fdpic(struct image_info
*info
)
88 return info
->personality
== PER_LINUX_FDPIC
;
91 /* this flag is uneffective under linux too, should be deleted */
93 #define MAP_DENYWRITE 0
96 /* should probably go in elf.h */
101 #ifdef TARGET_WORDS_BIGENDIAN
102 #define ELF_DATA ELFDATA2MSB
104 #define ELF_DATA ELFDATA2LSB
107 #ifdef TARGET_ABI_MIPSN32
108 typedef abi_ullong target_elf_greg_t
;
109 #define tswapreg(ptr) tswap64(ptr)
111 typedef abi_ulong target_elf_greg_t
;
112 #define tswapreg(ptr) tswapal(ptr)
116 typedef abi_ushort target_uid_t
;
117 typedef abi_ushort target_gid_t
;
119 typedef abi_uint target_uid_t
;
120 typedef abi_uint target_gid_t
;
122 typedef abi_int target_pid_t
;
126 #define ELF_PLATFORM get_elf_platform()
128 static const char *get_elf_platform(void)
130 static char elf_platform
[] = "i386";
131 int family
= object_property_get_int(OBJECT(thread_cpu
), "family", NULL
);
135 elf_platform
[1] = '0' + family
;
139 #define ELF_HWCAP get_elf_hwcap()
141 static uint32_t get_elf_hwcap(void)
143 X86CPU
*cpu
= X86_CPU(thread_cpu
);
145 return cpu
->env
.features
[FEAT_1_EDX
];
149 #define ELF_START_MMAP 0x2aaaaab000ULL
151 #define ELF_CLASS ELFCLASS64
152 #define ELF_ARCH EM_X86_64
154 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
157 regs
->rsp
= infop
->start_stack
;
158 regs
->rip
= infop
->entry
;
162 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
165 * Note that ELF_NREG should be 29 as there should be place for
166 * TRAPNO and ERR "registers" as well but linux doesn't dump
169 * See linux kernel: arch/x86/include/asm/elf.h
171 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUX86State
*env
)
173 (*regs
)[0] = env
->regs
[15];
174 (*regs
)[1] = env
->regs
[14];
175 (*regs
)[2] = env
->regs
[13];
176 (*regs
)[3] = env
->regs
[12];
177 (*regs
)[4] = env
->regs
[R_EBP
];
178 (*regs
)[5] = env
->regs
[R_EBX
];
179 (*regs
)[6] = env
->regs
[11];
180 (*regs
)[7] = env
->regs
[10];
181 (*regs
)[8] = env
->regs
[9];
182 (*regs
)[9] = env
->regs
[8];
183 (*regs
)[10] = env
->regs
[R_EAX
];
184 (*regs
)[11] = env
->regs
[R_ECX
];
185 (*regs
)[12] = env
->regs
[R_EDX
];
186 (*regs
)[13] = env
->regs
[R_ESI
];
187 (*regs
)[14] = env
->regs
[R_EDI
];
188 (*regs
)[15] = env
->regs
[R_EAX
]; /* XXX */
189 (*regs
)[16] = env
->eip
;
190 (*regs
)[17] = env
->segs
[R_CS
].selector
& 0xffff;
191 (*regs
)[18] = env
->eflags
;
192 (*regs
)[19] = env
->regs
[R_ESP
];
193 (*regs
)[20] = env
->segs
[R_SS
].selector
& 0xffff;
194 (*regs
)[21] = env
->segs
[R_FS
].selector
& 0xffff;
195 (*regs
)[22] = env
->segs
[R_GS
].selector
& 0xffff;
196 (*regs
)[23] = env
->segs
[R_DS
].selector
& 0xffff;
197 (*regs
)[24] = env
->segs
[R_ES
].selector
& 0xffff;
198 (*regs
)[25] = env
->segs
[R_FS
].selector
& 0xffff;
199 (*regs
)[26] = env
->segs
[R_GS
].selector
& 0xffff;
204 #define ELF_START_MMAP 0x80000000
207 * This is used to ensure we don't load something for the wrong architecture.
209 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
212 * These are used to set parameters in the core dumps.
214 #define ELF_CLASS ELFCLASS32
215 #define ELF_ARCH EM_386
217 static inline void init_thread(struct target_pt_regs
*regs
,
218 struct image_info
*infop
)
220 regs
->esp
= infop
->start_stack
;
221 regs
->eip
= infop
->entry
;
223 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
224 starts %edx contains a pointer to a function which might be
225 registered using `atexit'. This provides a mean for the
226 dynamic linker to call DT_FINI functions for shared libraries
227 that have been loaded before the code runs.
229 A value of 0 tells we have no such handler. */
234 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
237 * Note that ELF_NREG should be 19 as there should be place for
238 * TRAPNO and ERR "registers" as well but linux doesn't dump
241 * See linux kernel: arch/x86/include/asm/elf.h
243 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUX86State
*env
)
245 (*regs
)[0] = env
->regs
[R_EBX
];
246 (*regs
)[1] = env
->regs
[R_ECX
];
247 (*regs
)[2] = env
->regs
[R_EDX
];
248 (*regs
)[3] = env
->regs
[R_ESI
];
249 (*regs
)[4] = env
->regs
[R_EDI
];
250 (*regs
)[5] = env
->regs
[R_EBP
];
251 (*regs
)[6] = env
->regs
[R_EAX
];
252 (*regs
)[7] = env
->segs
[R_DS
].selector
& 0xffff;
253 (*regs
)[8] = env
->segs
[R_ES
].selector
& 0xffff;
254 (*regs
)[9] = env
->segs
[R_FS
].selector
& 0xffff;
255 (*regs
)[10] = env
->segs
[R_GS
].selector
& 0xffff;
256 (*regs
)[11] = env
->regs
[R_EAX
]; /* XXX */
257 (*regs
)[12] = env
->eip
;
258 (*regs
)[13] = env
->segs
[R_CS
].selector
& 0xffff;
259 (*regs
)[14] = env
->eflags
;
260 (*regs
)[15] = env
->regs
[R_ESP
];
261 (*regs
)[16] = env
->segs
[R_SS
].selector
& 0xffff;
265 #define USE_ELF_CORE_DUMP
266 #define ELF_EXEC_PAGESIZE 4096
272 #ifndef TARGET_AARCH64
273 /* 32 bit ARM definitions */
275 #define ELF_START_MMAP 0x80000000
277 #define ELF_ARCH EM_ARM
278 #define ELF_CLASS ELFCLASS32
280 static inline void init_thread(struct target_pt_regs
*regs
,
281 struct image_info
*infop
)
283 abi_long stack
= infop
->start_stack
;
284 memset(regs
, 0, sizeof(*regs
));
286 regs
->uregs
[16] = ARM_CPU_MODE_USR
;
287 if (infop
->entry
& 1) {
288 regs
->uregs
[16] |= CPSR_T
;
290 regs
->uregs
[15] = infop
->entry
& 0xfffffffe;
291 regs
->uregs
[13] = infop
->start_stack
;
292 /* FIXME - what to for failure of get_user()? */
293 get_user_ual(regs
->uregs
[2], stack
+ 8); /* envp */
294 get_user_ual(regs
->uregs
[1], stack
+ 4); /* envp */
295 /* XXX: it seems that r0 is zeroed after ! */
297 /* For uClinux PIC binaries. */
298 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
299 regs
->uregs
[10] = infop
->start_data
;
301 /* Support ARM FDPIC. */
302 if (info_is_fdpic(infop
)) {
303 /* As described in the ABI document, r7 points to the loadmap info
304 * prepared by the kernel. If an interpreter is needed, r8 points
305 * to the interpreter loadmap and r9 points to the interpreter
306 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
307 * r9 points to the main program PT_DYNAMIC info.
309 regs
->uregs
[7] = infop
->loadmap_addr
;
310 if (infop
->interpreter_loadmap_addr
) {
311 /* Executable is dynamically loaded. */
312 regs
->uregs
[8] = infop
->interpreter_loadmap_addr
;
313 regs
->uregs
[9] = infop
->interpreter_pt_dynamic_addr
;
316 regs
->uregs
[9] = infop
->pt_dynamic_addr
;
322 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
324 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUARMState
*env
)
326 (*regs
)[0] = tswapreg(env
->regs
[0]);
327 (*regs
)[1] = tswapreg(env
->regs
[1]);
328 (*regs
)[2] = tswapreg(env
->regs
[2]);
329 (*regs
)[3] = tswapreg(env
->regs
[3]);
330 (*regs
)[4] = tswapreg(env
->regs
[4]);
331 (*regs
)[5] = tswapreg(env
->regs
[5]);
332 (*regs
)[6] = tswapreg(env
->regs
[6]);
333 (*regs
)[7] = tswapreg(env
->regs
[7]);
334 (*regs
)[8] = tswapreg(env
->regs
[8]);
335 (*regs
)[9] = tswapreg(env
->regs
[9]);
336 (*regs
)[10] = tswapreg(env
->regs
[10]);
337 (*regs
)[11] = tswapreg(env
->regs
[11]);
338 (*regs
)[12] = tswapreg(env
->regs
[12]);
339 (*regs
)[13] = tswapreg(env
->regs
[13]);
340 (*regs
)[14] = tswapreg(env
->regs
[14]);
341 (*regs
)[15] = tswapreg(env
->regs
[15]);
343 (*regs
)[16] = tswapreg(cpsr_read((CPUARMState
*)env
));
344 (*regs
)[17] = tswapreg(env
->regs
[0]); /* XXX */
347 #define USE_ELF_CORE_DUMP
348 #define ELF_EXEC_PAGESIZE 4096
352 ARM_HWCAP_ARM_SWP
= 1 << 0,
353 ARM_HWCAP_ARM_HALF
= 1 << 1,
354 ARM_HWCAP_ARM_THUMB
= 1 << 2,
355 ARM_HWCAP_ARM_26BIT
= 1 << 3,
356 ARM_HWCAP_ARM_FAST_MULT
= 1 << 4,
357 ARM_HWCAP_ARM_FPA
= 1 << 5,
358 ARM_HWCAP_ARM_VFP
= 1 << 6,
359 ARM_HWCAP_ARM_EDSP
= 1 << 7,
360 ARM_HWCAP_ARM_JAVA
= 1 << 8,
361 ARM_HWCAP_ARM_IWMMXT
= 1 << 9,
362 ARM_HWCAP_ARM_CRUNCH
= 1 << 10,
363 ARM_HWCAP_ARM_THUMBEE
= 1 << 11,
364 ARM_HWCAP_ARM_NEON
= 1 << 12,
365 ARM_HWCAP_ARM_VFPv3
= 1 << 13,
366 ARM_HWCAP_ARM_VFPv3D16
= 1 << 14,
367 ARM_HWCAP_ARM_TLS
= 1 << 15,
368 ARM_HWCAP_ARM_VFPv4
= 1 << 16,
369 ARM_HWCAP_ARM_IDIVA
= 1 << 17,
370 ARM_HWCAP_ARM_IDIVT
= 1 << 18,
371 ARM_HWCAP_ARM_VFPD32
= 1 << 19,
372 ARM_HWCAP_ARM_LPAE
= 1 << 20,
373 ARM_HWCAP_ARM_EVTSTRM
= 1 << 21,
377 ARM_HWCAP2_ARM_AES
= 1 << 0,
378 ARM_HWCAP2_ARM_PMULL
= 1 << 1,
379 ARM_HWCAP2_ARM_SHA1
= 1 << 2,
380 ARM_HWCAP2_ARM_SHA2
= 1 << 3,
381 ARM_HWCAP2_ARM_CRC32
= 1 << 4,
384 /* The commpage only exists for 32 bit kernels */
386 #define ARM_COMMPAGE (intptr_t)0xffff0f00u
388 static bool init_guest_commpage(void)
390 void *want
= g2h(ARM_COMMPAGE
& -qemu_host_page_size
);
391 void *addr
= mmap(want
, qemu_host_page_size
, PROT_READ
| PROT_WRITE
,
392 MAP_ANONYMOUS
| MAP_PRIVATE
, -1, 0);
394 if (addr
== MAP_FAILED
) {
395 perror("Allocating guest commpage");
402 /* Set kernel helper versions; rest of page is 0. */
403 __put_user(5, (uint32_t *)g2h(0xffff0ffcu
));
405 if (mprotect(addr
, qemu_host_page_size
, PROT_READ
)) {
406 perror("Protecting guest commpage");
412 #define ELF_HWCAP get_elf_hwcap()
413 #define ELF_HWCAP2 get_elf_hwcap2()
415 static uint32_t get_elf_hwcap(void)
417 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
420 hwcaps
|= ARM_HWCAP_ARM_SWP
;
421 hwcaps
|= ARM_HWCAP_ARM_HALF
;
422 hwcaps
|= ARM_HWCAP_ARM_THUMB
;
423 hwcaps
|= ARM_HWCAP_ARM_FAST_MULT
;
425 /* probe for the extra features */
426 #define GET_FEATURE(feat, hwcap) \
427 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
429 #define GET_FEATURE_ID(feat, hwcap) \
430 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
432 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
433 GET_FEATURE(ARM_FEATURE_V5
, ARM_HWCAP_ARM_EDSP
);
434 GET_FEATURE(ARM_FEATURE_IWMMXT
, ARM_HWCAP_ARM_IWMMXT
);
435 GET_FEATURE(ARM_FEATURE_THUMB2EE
, ARM_HWCAP_ARM_THUMBEE
);
436 GET_FEATURE(ARM_FEATURE_NEON
, ARM_HWCAP_ARM_NEON
);
437 GET_FEATURE(ARM_FEATURE_V6K
, ARM_HWCAP_ARM_TLS
);
438 GET_FEATURE(ARM_FEATURE_LPAE
, ARM_HWCAP_ARM_LPAE
);
439 GET_FEATURE_ID(aa32_arm_div
, ARM_HWCAP_ARM_IDIVA
);
440 GET_FEATURE_ID(aa32_thumb_div
, ARM_HWCAP_ARM_IDIVT
);
441 GET_FEATURE_ID(aa32_vfp
, ARM_HWCAP_ARM_VFP
);
443 if (cpu_isar_feature(aa32_fpsp_v3
, cpu
) ||
444 cpu_isar_feature(aa32_fpdp_v3
, cpu
)) {
445 hwcaps
|= ARM_HWCAP_ARM_VFPv3
;
446 if (cpu_isar_feature(aa32_simd_r32
, cpu
)) {
447 hwcaps
|= ARM_HWCAP_ARM_VFPD32
;
449 hwcaps
|= ARM_HWCAP_ARM_VFPv3D16
;
452 GET_FEATURE_ID(aa32_simdfmac
, ARM_HWCAP_ARM_VFPv4
);
457 static uint32_t get_elf_hwcap2(void)
459 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
462 GET_FEATURE_ID(aa32_aes
, ARM_HWCAP2_ARM_AES
);
463 GET_FEATURE_ID(aa32_pmull
, ARM_HWCAP2_ARM_PMULL
);
464 GET_FEATURE_ID(aa32_sha1
, ARM_HWCAP2_ARM_SHA1
);
465 GET_FEATURE_ID(aa32_sha2
, ARM_HWCAP2_ARM_SHA2
);
466 GET_FEATURE_ID(aa32_crc32
, ARM_HWCAP2_ARM_CRC32
);
471 #undef GET_FEATURE_ID
473 #define ELF_PLATFORM get_elf_platform()
475 static const char *get_elf_platform(void)
477 CPUARMState
*env
= thread_cpu
->env_ptr
;
479 #ifdef TARGET_WORDS_BIGENDIAN
485 if (arm_feature(env
, ARM_FEATURE_V8
)) {
487 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
488 if (arm_feature(env
, ARM_FEATURE_M
)) {
493 } else if (arm_feature(env
, ARM_FEATURE_V6
)) {
495 } else if (arm_feature(env
, ARM_FEATURE_V5
)) {
505 /* 64 bit ARM definitions */
506 #define ELF_START_MMAP 0x80000000
508 #define ELF_ARCH EM_AARCH64
509 #define ELF_CLASS ELFCLASS64
510 #ifdef TARGET_WORDS_BIGENDIAN
511 # define ELF_PLATFORM "aarch64_be"
513 # define ELF_PLATFORM "aarch64"
516 static inline void init_thread(struct target_pt_regs
*regs
,
517 struct image_info
*infop
)
519 abi_long stack
= infop
->start_stack
;
520 memset(regs
, 0, sizeof(*regs
));
522 regs
->pc
= infop
->entry
& ~0x3ULL
;
527 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
529 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
530 const CPUARMState
*env
)
534 for (i
= 0; i
< 32; i
++) {
535 (*regs
)[i
] = tswapreg(env
->xregs
[i
]);
537 (*regs
)[32] = tswapreg(env
->pc
);
538 (*regs
)[33] = tswapreg(pstate_read((CPUARMState
*)env
));
541 #define USE_ELF_CORE_DUMP
542 #define ELF_EXEC_PAGESIZE 4096
545 ARM_HWCAP_A64_FP
= 1 << 0,
546 ARM_HWCAP_A64_ASIMD
= 1 << 1,
547 ARM_HWCAP_A64_EVTSTRM
= 1 << 2,
548 ARM_HWCAP_A64_AES
= 1 << 3,
549 ARM_HWCAP_A64_PMULL
= 1 << 4,
550 ARM_HWCAP_A64_SHA1
= 1 << 5,
551 ARM_HWCAP_A64_SHA2
= 1 << 6,
552 ARM_HWCAP_A64_CRC32
= 1 << 7,
553 ARM_HWCAP_A64_ATOMICS
= 1 << 8,
554 ARM_HWCAP_A64_FPHP
= 1 << 9,
555 ARM_HWCAP_A64_ASIMDHP
= 1 << 10,
556 ARM_HWCAP_A64_CPUID
= 1 << 11,
557 ARM_HWCAP_A64_ASIMDRDM
= 1 << 12,
558 ARM_HWCAP_A64_JSCVT
= 1 << 13,
559 ARM_HWCAP_A64_FCMA
= 1 << 14,
560 ARM_HWCAP_A64_LRCPC
= 1 << 15,
561 ARM_HWCAP_A64_DCPOP
= 1 << 16,
562 ARM_HWCAP_A64_SHA3
= 1 << 17,
563 ARM_HWCAP_A64_SM3
= 1 << 18,
564 ARM_HWCAP_A64_SM4
= 1 << 19,
565 ARM_HWCAP_A64_ASIMDDP
= 1 << 20,
566 ARM_HWCAP_A64_SHA512
= 1 << 21,
567 ARM_HWCAP_A64_SVE
= 1 << 22,
568 ARM_HWCAP_A64_ASIMDFHM
= 1 << 23,
569 ARM_HWCAP_A64_DIT
= 1 << 24,
570 ARM_HWCAP_A64_USCAT
= 1 << 25,
571 ARM_HWCAP_A64_ILRCPC
= 1 << 26,
572 ARM_HWCAP_A64_FLAGM
= 1 << 27,
573 ARM_HWCAP_A64_SSBS
= 1 << 28,
574 ARM_HWCAP_A64_SB
= 1 << 29,
575 ARM_HWCAP_A64_PACA
= 1 << 30,
576 ARM_HWCAP_A64_PACG
= 1UL << 31,
578 ARM_HWCAP2_A64_DCPODP
= 1 << 0,
579 ARM_HWCAP2_A64_SVE2
= 1 << 1,
580 ARM_HWCAP2_A64_SVEAES
= 1 << 2,
581 ARM_HWCAP2_A64_SVEPMULL
= 1 << 3,
582 ARM_HWCAP2_A64_SVEBITPERM
= 1 << 4,
583 ARM_HWCAP2_A64_SVESHA3
= 1 << 5,
584 ARM_HWCAP2_A64_SVESM4
= 1 << 6,
585 ARM_HWCAP2_A64_FLAGM2
= 1 << 7,
586 ARM_HWCAP2_A64_FRINT
= 1 << 8,
589 #define ELF_HWCAP get_elf_hwcap()
590 #define ELF_HWCAP2 get_elf_hwcap2()
592 #define GET_FEATURE_ID(feat, hwcap) \
593 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
595 static uint32_t get_elf_hwcap(void)
597 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
600 hwcaps
|= ARM_HWCAP_A64_FP
;
601 hwcaps
|= ARM_HWCAP_A64_ASIMD
;
602 hwcaps
|= ARM_HWCAP_A64_CPUID
;
604 /* probe for the extra features */
606 GET_FEATURE_ID(aa64_aes
, ARM_HWCAP_A64_AES
);
607 GET_FEATURE_ID(aa64_pmull
, ARM_HWCAP_A64_PMULL
);
608 GET_FEATURE_ID(aa64_sha1
, ARM_HWCAP_A64_SHA1
);
609 GET_FEATURE_ID(aa64_sha256
, ARM_HWCAP_A64_SHA2
);
610 GET_FEATURE_ID(aa64_sha512
, ARM_HWCAP_A64_SHA512
);
611 GET_FEATURE_ID(aa64_crc32
, ARM_HWCAP_A64_CRC32
);
612 GET_FEATURE_ID(aa64_sha3
, ARM_HWCAP_A64_SHA3
);
613 GET_FEATURE_ID(aa64_sm3
, ARM_HWCAP_A64_SM3
);
614 GET_FEATURE_ID(aa64_sm4
, ARM_HWCAP_A64_SM4
);
615 GET_FEATURE_ID(aa64_fp16
, ARM_HWCAP_A64_FPHP
| ARM_HWCAP_A64_ASIMDHP
);
616 GET_FEATURE_ID(aa64_atomics
, ARM_HWCAP_A64_ATOMICS
);
617 GET_FEATURE_ID(aa64_rdm
, ARM_HWCAP_A64_ASIMDRDM
);
618 GET_FEATURE_ID(aa64_dp
, ARM_HWCAP_A64_ASIMDDP
);
619 GET_FEATURE_ID(aa64_fcma
, ARM_HWCAP_A64_FCMA
);
620 GET_FEATURE_ID(aa64_sve
, ARM_HWCAP_A64_SVE
);
621 GET_FEATURE_ID(aa64_pauth
, ARM_HWCAP_A64_PACA
| ARM_HWCAP_A64_PACG
);
622 GET_FEATURE_ID(aa64_fhm
, ARM_HWCAP_A64_ASIMDFHM
);
623 GET_FEATURE_ID(aa64_jscvt
, ARM_HWCAP_A64_JSCVT
);
624 GET_FEATURE_ID(aa64_sb
, ARM_HWCAP_A64_SB
);
625 GET_FEATURE_ID(aa64_condm_4
, ARM_HWCAP_A64_FLAGM
);
626 GET_FEATURE_ID(aa64_dcpop
, ARM_HWCAP_A64_DCPOP
);
627 GET_FEATURE_ID(aa64_rcpc_8_3
, ARM_HWCAP_A64_LRCPC
);
628 GET_FEATURE_ID(aa64_rcpc_8_4
, ARM_HWCAP_A64_ILRCPC
);
633 static uint32_t get_elf_hwcap2(void)
635 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
638 GET_FEATURE_ID(aa64_dcpodp
, ARM_HWCAP2_A64_DCPODP
);
639 GET_FEATURE_ID(aa64_condm_5
, ARM_HWCAP2_A64_FLAGM2
);
640 GET_FEATURE_ID(aa64_frint
, ARM_HWCAP2_A64_FRINT
);
645 #undef GET_FEATURE_ID
647 #endif /* not TARGET_AARCH64 */
648 #endif /* TARGET_ARM */
651 #ifdef TARGET_SPARC64
653 #define ELF_START_MMAP 0x80000000
654 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
655 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
657 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
659 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
662 #define ELF_CLASS ELFCLASS64
663 #define ELF_ARCH EM_SPARCV9
665 #define STACK_BIAS 2047
667 static inline void init_thread(struct target_pt_regs
*regs
,
668 struct image_info
*infop
)
673 regs
->pc
= infop
->entry
;
674 regs
->npc
= regs
->pc
+ 4;
677 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
679 if (personality(infop
->personality
) == PER_LINUX32
)
680 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
682 regs
->u_regs
[14] = infop
->start_stack
- 16 * 8 - STACK_BIAS
;
687 #define ELF_START_MMAP 0x80000000
688 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
689 | HWCAP_SPARC_MULDIV)
691 #define ELF_CLASS ELFCLASS32
692 #define ELF_ARCH EM_SPARC
694 static inline void init_thread(struct target_pt_regs
*regs
,
695 struct image_info
*infop
)
698 regs
->pc
= infop
->entry
;
699 regs
->npc
= regs
->pc
+ 4;
701 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
709 #define ELF_MACHINE PPC_ELF_MACHINE
710 #define ELF_START_MMAP 0x80000000
712 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
714 #define elf_check_arch(x) ( (x) == EM_PPC64 )
716 #define ELF_CLASS ELFCLASS64
720 #define ELF_CLASS ELFCLASS32
724 #define ELF_ARCH EM_PPC
726 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
727 See arch/powerpc/include/asm/cputable.h. */
729 QEMU_PPC_FEATURE_32
= 0x80000000,
730 QEMU_PPC_FEATURE_64
= 0x40000000,
731 QEMU_PPC_FEATURE_601_INSTR
= 0x20000000,
732 QEMU_PPC_FEATURE_HAS_ALTIVEC
= 0x10000000,
733 QEMU_PPC_FEATURE_HAS_FPU
= 0x08000000,
734 QEMU_PPC_FEATURE_HAS_MMU
= 0x04000000,
735 QEMU_PPC_FEATURE_HAS_4xxMAC
= 0x02000000,
736 QEMU_PPC_FEATURE_UNIFIED_CACHE
= 0x01000000,
737 QEMU_PPC_FEATURE_HAS_SPE
= 0x00800000,
738 QEMU_PPC_FEATURE_HAS_EFP_SINGLE
= 0x00400000,
739 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
= 0x00200000,
740 QEMU_PPC_FEATURE_NO_TB
= 0x00100000,
741 QEMU_PPC_FEATURE_POWER4
= 0x00080000,
742 QEMU_PPC_FEATURE_POWER5
= 0x00040000,
743 QEMU_PPC_FEATURE_POWER5_PLUS
= 0x00020000,
744 QEMU_PPC_FEATURE_CELL
= 0x00010000,
745 QEMU_PPC_FEATURE_BOOKE
= 0x00008000,
746 QEMU_PPC_FEATURE_SMT
= 0x00004000,
747 QEMU_PPC_FEATURE_ICACHE_SNOOP
= 0x00002000,
748 QEMU_PPC_FEATURE_ARCH_2_05
= 0x00001000,
749 QEMU_PPC_FEATURE_PA6T
= 0x00000800,
750 QEMU_PPC_FEATURE_HAS_DFP
= 0x00000400,
751 QEMU_PPC_FEATURE_POWER6_EXT
= 0x00000200,
752 QEMU_PPC_FEATURE_ARCH_2_06
= 0x00000100,
753 QEMU_PPC_FEATURE_HAS_VSX
= 0x00000080,
754 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT
= 0x00000040,
756 QEMU_PPC_FEATURE_TRUE_LE
= 0x00000002,
757 QEMU_PPC_FEATURE_PPC_LE
= 0x00000001,
759 /* Feature definitions in AT_HWCAP2. */
760 QEMU_PPC_FEATURE2_ARCH_2_07
= 0x80000000, /* ISA 2.07 */
761 QEMU_PPC_FEATURE2_HAS_HTM
= 0x40000000, /* Hardware Transactional Memory */
762 QEMU_PPC_FEATURE2_HAS_DSCR
= 0x20000000, /* Data Stream Control Register */
763 QEMU_PPC_FEATURE2_HAS_EBB
= 0x10000000, /* Event Base Branching */
764 QEMU_PPC_FEATURE2_HAS_ISEL
= 0x08000000, /* Integer Select */
765 QEMU_PPC_FEATURE2_HAS_TAR
= 0x04000000, /* Target Address Register */
766 QEMU_PPC_FEATURE2_VEC_CRYPTO
= 0x02000000,
767 QEMU_PPC_FEATURE2_HTM_NOSC
= 0x01000000,
768 QEMU_PPC_FEATURE2_ARCH_3_00
= 0x00800000, /* ISA 3.00 */
769 QEMU_PPC_FEATURE2_HAS_IEEE128
= 0x00400000, /* VSX IEEE Bin Float 128-bit */
770 QEMU_PPC_FEATURE2_DARN
= 0x00200000, /* darn random number insn */
771 QEMU_PPC_FEATURE2_SCV
= 0x00100000, /* scv syscall */
772 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND
= 0x00080000, /* TM w/o suspended state */
775 #define ELF_HWCAP get_elf_hwcap()
777 static uint32_t get_elf_hwcap(void)
779 PowerPCCPU
*cpu
= POWERPC_CPU(thread_cpu
);
780 uint32_t features
= 0;
782 /* We don't have to be terribly complete here; the high points are
783 Altivec/FP/SPE support. Anything else is just a bonus. */
784 #define GET_FEATURE(flag, feature) \
785 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
786 #define GET_FEATURE2(flags, feature) \
788 if ((cpu->env.insns_flags2 & flags) == flags) { \
789 features |= feature; \
792 GET_FEATURE(PPC_64B
, QEMU_PPC_FEATURE_64
);
793 GET_FEATURE(PPC_FLOAT
, QEMU_PPC_FEATURE_HAS_FPU
);
794 GET_FEATURE(PPC_ALTIVEC
, QEMU_PPC_FEATURE_HAS_ALTIVEC
);
795 GET_FEATURE(PPC_SPE
, QEMU_PPC_FEATURE_HAS_SPE
);
796 GET_FEATURE(PPC_SPE_SINGLE
, QEMU_PPC_FEATURE_HAS_EFP_SINGLE
);
797 GET_FEATURE(PPC_SPE_DOUBLE
, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
);
798 GET_FEATURE(PPC_BOOKE
, QEMU_PPC_FEATURE_BOOKE
);
799 GET_FEATURE(PPC_405_MAC
, QEMU_PPC_FEATURE_HAS_4xxMAC
);
800 GET_FEATURE2(PPC2_DFP
, QEMU_PPC_FEATURE_HAS_DFP
);
801 GET_FEATURE2(PPC2_VSX
, QEMU_PPC_FEATURE_HAS_VSX
);
802 GET_FEATURE2((PPC2_PERM_ISA206
| PPC2_DIVE_ISA206
| PPC2_ATOMIC_ISA206
|
803 PPC2_FP_CVT_ISA206
| PPC2_FP_TST_ISA206
),
804 QEMU_PPC_FEATURE_ARCH_2_06
);
811 #define ELF_HWCAP2 get_elf_hwcap2()
813 static uint32_t get_elf_hwcap2(void)
815 PowerPCCPU
*cpu
= POWERPC_CPU(thread_cpu
);
816 uint32_t features
= 0;
818 #define GET_FEATURE(flag, feature) \
819 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
820 #define GET_FEATURE2(flag, feature) \
821 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
823 GET_FEATURE(PPC_ISEL
, QEMU_PPC_FEATURE2_HAS_ISEL
);
824 GET_FEATURE2(PPC2_BCTAR_ISA207
, QEMU_PPC_FEATURE2_HAS_TAR
);
825 GET_FEATURE2((PPC2_BCTAR_ISA207
| PPC2_LSQ_ISA207
| PPC2_ALTIVEC_207
|
826 PPC2_ISA207S
), QEMU_PPC_FEATURE2_ARCH_2_07
|
827 QEMU_PPC_FEATURE2_VEC_CRYPTO
);
828 GET_FEATURE2(PPC2_ISA300
, QEMU_PPC_FEATURE2_ARCH_3_00
|
829 QEMU_PPC_FEATURE2_DARN
);
838 * The requirements here are:
839 * - keep the final alignment of sp (sp & 0xf)
840 * - make sure the 32-bit value at the first 16 byte aligned position of
841 * AUXV is greater than 16 for glibc compatibility.
842 * AT_IGNOREPPC is used for that.
843 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
844 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
846 #define DLINFO_ARCH_ITEMS 5
847 #define ARCH_DLINFO \
849 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
851 * Handle glibc compatibility: these magic entries must \
852 * be at the lowest addresses in the final auxv. \
854 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
855 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
856 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
857 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
858 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
861 static inline void init_thread(struct target_pt_regs
*_regs
, struct image_info
*infop
)
863 _regs
->gpr
[1] = infop
->start_stack
;
864 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
865 if (get_ppc64_abi(infop
) < 2) {
867 get_user_u64(val
, infop
->entry
+ 8);
868 _regs
->gpr
[2] = val
+ infop
->load_bias
;
869 get_user_u64(val
, infop
->entry
);
870 infop
->entry
= val
+ infop
->load_bias
;
872 _regs
->gpr
[12] = infop
->entry
; /* r12 set to global entry address */
875 _regs
->nip
= infop
->entry
;
878 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
880 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
882 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUPPCState
*env
)
885 target_ulong ccr
= 0;
887 for (i
= 0; i
< ARRAY_SIZE(env
->gpr
); i
++) {
888 (*regs
)[i
] = tswapreg(env
->gpr
[i
]);
891 (*regs
)[32] = tswapreg(env
->nip
);
892 (*regs
)[33] = tswapreg(env
->msr
);
893 (*regs
)[35] = tswapreg(env
->ctr
);
894 (*regs
)[36] = tswapreg(env
->lr
);
895 (*regs
)[37] = tswapreg(env
->xer
);
897 for (i
= 0; i
< ARRAY_SIZE(env
->crf
); i
++) {
898 ccr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
900 (*regs
)[38] = tswapreg(ccr
);
903 #define USE_ELF_CORE_DUMP
904 #define ELF_EXEC_PAGESIZE 4096
910 #define ELF_START_MMAP 0x80000000
913 #define ELF_CLASS ELFCLASS64
915 #define ELF_CLASS ELFCLASS32
917 #define ELF_ARCH EM_MIPS
919 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
921 static inline void init_thread(struct target_pt_regs
*regs
,
922 struct image_info
*infop
)
924 regs
->cp0_status
= 2 << CP0St_KSU
;
925 regs
->cp0_epc
= infop
->entry
;
926 regs
->regs
[29] = infop
->start_stack
;
929 /* See linux kernel: arch/mips/include/asm/elf.h. */
931 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
933 /* See linux kernel: arch/mips/include/asm/reg.h. */
940 TARGET_EF_R26
= TARGET_EF_R0
+ 26,
941 TARGET_EF_R27
= TARGET_EF_R0
+ 27,
942 TARGET_EF_LO
= TARGET_EF_R0
+ 32,
943 TARGET_EF_HI
= TARGET_EF_R0
+ 33,
944 TARGET_EF_CP0_EPC
= TARGET_EF_R0
+ 34,
945 TARGET_EF_CP0_BADVADDR
= TARGET_EF_R0
+ 35,
946 TARGET_EF_CP0_STATUS
= TARGET_EF_R0
+ 36,
947 TARGET_EF_CP0_CAUSE
= TARGET_EF_R0
+ 37
950 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
951 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUMIPSState
*env
)
955 for (i
= 0; i
< TARGET_EF_R0
; i
++) {
958 (*regs
)[TARGET_EF_R0
] = 0;
960 for (i
= 1; i
< ARRAY_SIZE(env
->active_tc
.gpr
); i
++) {
961 (*regs
)[TARGET_EF_R0
+ i
] = tswapreg(env
->active_tc
.gpr
[i
]);
964 (*regs
)[TARGET_EF_R26
] = 0;
965 (*regs
)[TARGET_EF_R27
] = 0;
966 (*regs
)[TARGET_EF_LO
] = tswapreg(env
->active_tc
.LO
[0]);
967 (*regs
)[TARGET_EF_HI
] = tswapreg(env
->active_tc
.HI
[0]);
968 (*regs
)[TARGET_EF_CP0_EPC
] = tswapreg(env
->active_tc
.PC
);
969 (*regs
)[TARGET_EF_CP0_BADVADDR
] = tswapreg(env
->CP0_BadVAddr
);
970 (*regs
)[TARGET_EF_CP0_STATUS
] = tswapreg(env
->CP0_Status
);
971 (*regs
)[TARGET_EF_CP0_CAUSE
] = tswapreg(env
->CP0_Cause
);
974 #define USE_ELF_CORE_DUMP
975 #define ELF_EXEC_PAGESIZE 4096
977 /* See arch/mips/include/uapi/asm/hwcap.h. */
979 HWCAP_MIPS_R6
= (1 << 0),
980 HWCAP_MIPS_MSA
= (1 << 1),
983 #define ELF_HWCAP get_elf_hwcap()
985 static uint32_t get_elf_hwcap(void)
987 MIPSCPU
*cpu
= MIPS_CPU(thread_cpu
);
990 #define GET_FEATURE(flag, hwcap) \
991 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
993 GET_FEATURE(ISA_MIPS32R6
| ISA_MIPS64R6
, HWCAP_MIPS_R6
);
994 GET_FEATURE(ASE_MSA
, HWCAP_MIPS_MSA
);
1001 #endif /* TARGET_MIPS */
1003 #ifdef TARGET_MICROBLAZE
1005 #define ELF_START_MMAP 0x80000000
1007 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1009 #define ELF_CLASS ELFCLASS32
1010 #define ELF_ARCH EM_MICROBLAZE
1012 static inline void init_thread(struct target_pt_regs
*regs
,
1013 struct image_info
*infop
)
1015 regs
->pc
= infop
->entry
;
1016 regs
->r1
= infop
->start_stack
;
1020 #define ELF_EXEC_PAGESIZE 4096
1022 #define USE_ELF_CORE_DUMP
1024 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1026 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1027 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUMBState
*env
)
1031 for (i
= 0; i
< 32; i
++) {
1032 (*regs
)[pos
++] = tswapreg(env
->regs
[i
]);
1035 for (i
= 0; i
< 6; i
++) {
1036 (*regs
)[pos
++] = tswapreg(env
->sregs
[i
]);
1040 #endif /* TARGET_MICROBLAZE */
1044 #define ELF_START_MMAP 0x80000000
1046 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1048 #define ELF_CLASS ELFCLASS32
1049 #define ELF_ARCH EM_ALTERA_NIOS2
1051 static void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
1053 regs
->ea
= infop
->entry
;
1054 regs
->sp
= infop
->start_stack
;
1055 regs
->estatus
= 0x3;
1058 #define ELF_EXEC_PAGESIZE 4096
1060 #define USE_ELF_CORE_DUMP
1062 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1064 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1065 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1066 const CPUNios2State
*env
)
1071 for (i
= 1; i
< 8; i
++) /* r0-r7 */
1072 (*regs
)[i
] = tswapreg(env
->regs
[i
+ 7]);
1074 for (i
= 8; i
< 16; i
++) /* r8-r15 */
1075 (*regs
)[i
] = tswapreg(env
->regs
[i
- 8]);
1077 for (i
= 16; i
< 24; i
++) /* r16-r23 */
1078 (*regs
)[i
] = tswapreg(env
->regs
[i
+ 7]);
1079 (*regs
)[24] = -1; /* R_ET */
1080 (*regs
)[25] = -1; /* R_BT */
1081 (*regs
)[26] = tswapreg(env
->regs
[R_GP
]);
1082 (*regs
)[27] = tswapreg(env
->regs
[R_SP
]);
1083 (*regs
)[28] = tswapreg(env
->regs
[R_FP
]);
1084 (*regs
)[29] = tswapreg(env
->regs
[R_EA
]);
1085 (*regs
)[30] = -1; /* R_SSTATUS */
1086 (*regs
)[31] = tswapreg(env
->regs
[R_RA
]);
1088 (*regs
)[32] = tswapreg(env
->regs
[R_PC
]);
1090 (*regs
)[33] = -1; /* R_STATUS */
1091 (*regs
)[34] = tswapreg(env
->regs
[CR_ESTATUS
]);
1093 for (i
= 35; i
< 49; i
++) /* ... */
1097 #endif /* TARGET_NIOS2 */
1099 #ifdef TARGET_OPENRISC
1101 #define ELF_START_MMAP 0x08000000
1103 #define ELF_ARCH EM_OPENRISC
1104 #define ELF_CLASS ELFCLASS32
1105 #define ELF_DATA ELFDATA2MSB
1107 static inline void init_thread(struct target_pt_regs
*regs
,
1108 struct image_info
*infop
)
1110 regs
->pc
= infop
->entry
;
1111 regs
->gpr
[1] = infop
->start_stack
;
1114 #define USE_ELF_CORE_DUMP
1115 #define ELF_EXEC_PAGESIZE 8192
1117 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1118 #define ELF_NREG 34 /* gprs and pc, sr */
1119 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1121 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1122 const CPUOpenRISCState
*env
)
1126 for (i
= 0; i
< 32; i
++) {
1127 (*regs
)[i
] = tswapreg(cpu_get_gpr(env
, i
));
1129 (*regs
)[32] = tswapreg(env
->pc
);
1130 (*regs
)[33] = tswapreg(cpu_get_sr(env
));
1133 #define ELF_PLATFORM NULL
1135 #endif /* TARGET_OPENRISC */
1139 #define ELF_START_MMAP 0x80000000
1141 #define ELF_CLASS ELFCLASS32
1142 #define ELF_ARCH EM_SH
1144 static inline void init_thread(struct target_pt_regs
*regs
,
1145 struct image_info
*infop
)
1147 /* Check other registers XXXXX */
1148 regs
->pc
= infop
->entry
;
1149 regs
->regs
[15] = infop
->start_stack
;
1152 /* See linux kernel: arch/sh/include/asm/elf.h. */
1154 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1156 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1161 TARGET_REG_GBR
= 19,
1162 TARGET_REG_MACH
= 20,
1163 TARGET_REG_MACL
= 21,
1164 TARGET_REG_SYSCALL
= 22
1167 static inline void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1168 const CPUSH4State
*env
)
1172 for (i
= 0; i
< 16; i
++) {
1173 (*regs
)[i
] = tswapreg(env
->gregs
[i
]);
1176 (*regs
)[TARGET_REG_PC
] = tswapreg(env
->pc
);
1177 (*regs
)[TARGET_REG_PR
] = tswapreg(env
->pr
);
1178 (*regs
)[TARGET_REG_SR
] = tswapreg(env
->sr
);
1179 (*regs
)[TARGET_REG_GBR
] = tswapreg(env
->gbr
);
1180 (*regs
)[TARGET_REG_MACH
] = tswapreg(env
->mach
);
1181 (*regs
)[TARGET_REG_MACL
] = tswapreg(env
->macl
);
1182 (*regs
)[TARGET_REG_SYSCALL
] = 0; /* FIXME */
1185 #define USE_ELF_CORE_DUMP
1186 #define ELF_EXEC_PAGESIZE 4096
1189 SH_CPU_HAS_FPU
= 0x0001, /* Hardware FPU support */
1190 SH_CPU_HAS_P2_FLUSH_BUG
= 0x0002, /* Need to flush the cache in P2 area */
1191 SH_CPU_HAS_MMU_PAGE_ASSOC
= 0x0004, /* SH3: TLB way selection bit support */
1192 SH_CPU_HAS_DSP
= 0x0008, /* SH-DSP: DSP support */
1193 SH_CPU_HAS_PERF_COUNTER
= 0x0010, /* Hardware performance counters */
1194 SH_CPU_HAS_PTEA
= 0x0020, /* PTEA register */
1195 SH_CPU_HAS_LLSC
= 0x0040, /* movli.l/movco.l */
1196 SH_CPU_HAS_L2_CACHE
= 0x0080, /* Secondary cache / URAM */
1197 SH_CPU_HAS_OP32
= 0x0100, /* 32-bit instruction support */
1198 SH_CPU_HAS_PTEAEX
= 0x0200, /* PTE ASID Extension support */
1201 #define ELF_HWCAP get_elf_hwcap()
1203 static uint32_t get_elf_hwcap(void)
1205 SuperHCPU
*cpu
= SUPERH_CPU(thread_cpu
);
1208 hwcap
|= SH_CPU_HAS_FPU
;
1210 if (cpu
->env
.features
& SH_FEATURE_SH4A
) {
1211 hwcap
|= SH_CPU_HAS_LLSC
;
1221 #define ELF_START_MMAP 0x80000000
1223 #define ELF_CLASS ELFCLASS32
1224 #define ELF_ARCH EM_CRIS
1226 static inline void init_thread(struct target_pt_regs
*regs
,
1227 struct image_info
*infop
)
1229 regs
->erp
= infop
->entry
;
1232 #define ELF_EXEC_PAGESIZE 8192
1238 #define ELF_START_MMAP 0x80000000
1240 #define ELF_CLASS ELFCLASS32
1241 #define ELF_ARCH EM_68K
1243 /* ??? Does this need to do anything?
1244 #define ELF_PLAT_INIT(_r) */
1246 static inline void init_thread(struct target_pt_regs
*regs
,
1247 struct image_info
*infop
)
1249 regs
->usp
= infop
->start_stack
;
1251 regs
->pc
= infop
->entry
;
1254 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1256 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1258 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUM68KState
*env
)
1260 (*regs
)[0] = tswapreg(env
->dregs
[1]);
1261 (*regs
)[1] = tswapreg(env
->dregs
[2]);
1262 (*regs
)[2] = tswapreg(env
->dregs
[3]);
1263 (*regs
)[3] = tswapreg(env
->dregs
[4]);
1264 (*regs
)[4] = tswapreg(env
->dregs
[5]);
1265 (*regs
)[5] = tswapreg(env
->dregs
[6]);
1266 (*regs
)[6] = tswapreg(env
->dregs
[7]);
1267 (*regs
)[7] = tswapreg(env
->aregs
[0]);
1268 (*regs
)[8] = tswapreg(env
->aregs
[1]);
1269 (*regs
)[9] = tswapreg(env
->aregs
[2]);
1270 (*regs
)[10] = tswapreg(env
->aregs
[3]);
1271 (*regs
)[11] = tswapreg(env
->aregs
[4]);
1272 (*regs
)[12] = tswapreg(env
->aregs
[5]);
1273 (*regs
)[13] = tswapreg(env
->aregs
[6]);
1274 (*regs
)[14] = tswapreg(env
->dregs
[0]);
1275 (*regs
)[15] = tswapreg(env
->aregs
[7]);
1276 (*regs
)[16] = tswapreg(env
->dregs
[0]); /* FIXME: orig_d0 */
1277 (*regs
)[17] = tswapreg(env
->sr
);
1278 (*regs
)[18] = tswapreg(env
->pc
);
1279 (*regs
)[19] = 0; /* FIXME: regs->format | regs->vector */
1282 #define USE_ELF_CORE_DUMP
1283 #define ELF_EXEC_PAGESIZE 8192
1289 #define ELF_START_MMAP (0x30000000000ULL)
1291 #define ELF_CLASS ELFCLASS64
1292 #define ELF_ARCH EM_ALPHA
1294 static inline void init_thread(struct target_pt_regs
*regs
,
1295 struct image_info
*infop
)
1297 regs
->pc
= infop
->entry
;
1299 regs
->usp
= infop
->start_stack
;
1302 #define ELF_EXEC_PAGESIZE 8192
1304 #endif /* TARGET_ALPHA */
1308 #define ELF_START_MMAP (0x20000000000ULL)
1310 #define ELF_CLASS ELFCLASS64
1311 #define ELF_DATA ELFDATA2MSB
1312 #define ELF_ARCH EM_S390
1316 #define ELF_HWCAP get_elf_hwcap()
1318 #define GET_FEATURE(_feat, _hwcap) \
1319 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1321 static uint32_t get_elf_hwcap(void)
1324 * Let's assume we always have esan3 and zarch.
1325 * 31-bit processes can use 64-bit registers (high gprs).
1327 uint32_t hwcap
= HWCAP_S390_ESAN3
| HWCAP_S390_ZARCH
| HWCAP_S390_HIGH_GPRS
;
1329 GET_FEATURE(S390_FEAT_STFLE
, HWCAP_S390_STFLE
);
1330 GET_FEATURE(S390_FEAT_MSA
, HWCAP_S390_MSA
);
1331 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT
, HWCAP_S390_LDISP
);
1332 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE
, HWCAP_S390_EIMM
);
1333 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3
) &&
1334 s390_has_feat(S390_FEAT_ETF3_ENH
)) {
1335 hwcap
|= HWCAP_S390_ETF3EH
;
1337 GET_FEATURE(S390_FEAT_VECTOR
, HWCAP_S390_VXRS
);
1342 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
1344 regs
->psw
.addr
= infop
->entry
;
1345 regs
->psw
.mask
= PSW_MASK_64
| PSW_MASK_32
;
1346 regs
->gprs
[15] = infop
->start_stack
;
1349 #endif /* TARGET_S390X */
1351 #ifdef TARGET_TILEGX
1353 /* 42 bits real used address, a half for user mode */
1354 #define ELF_START_MMAP (0x00000020000000000ULL)
1356 #define elf_check_arch(x) ((x) == EM_TILEGX)
1358 #define ELF_CLASS ELFCLASS64
1359 #define ELF_DATA ELFDATA2LSB
1360 #define ELF_ARCH EM_TILEGX
1362 static inline void init_thread(struct target_pt_regs
*regs
,
1363 struct image_info
*infop
)
1365 regs
->pc
= infop
->entry
;
1366 regs
->sp
= infop
->start_stack
;
1370 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1372 #endif /* TARGET_TILEGX */
1376 #define ELF_START_MMAP 0x80000000
1377 #define ELF_ARCH EM_RISCV
1379 #ifdef TARGET_RISCV32
1380 #define ELF_CLASS ELFCLASS32
1382 #define ELF_CLASS ELFCLASS64
1385 static inline void init_thread(struct target_pt_regs
*regs
,
1386 struct image_info
*infop
)
1388 regs
->sepc
= infop
->entry
;
1389 regs
->sp
= infop
->start_stack
;
1392 #define ELF_EXEC_PAGESIZE 4096
1394 #endif /* TARGET_RISCV */
1398 #define ELF_START_MMAP 0x80000000
1399 #define ELF_CLASS ELFCLASS32
1400 #define ELF_ARCH EM_PARISC
1401 #define ELF_PLATFORM "PARISC"
1402 #define STACK_GROWS_DOWN 0
1403 #define STACK_ALIGNMENT 64
1405 static inline void init_thread(struct target_pt_regs
*regs
,
1406 struct image_info
*infop
)
1408 regs
->iaoq
[0] = infop
->entry
;
1409 regs
->iaoq
[1] = infop
->entry
+ 4;
1411 regs
->gr
[24] = infop
->arg_start
;
1412 regs
->gr
[25] = (infop
->arg_end
- infop
->arg_start
) / sizeof(abi_ulong
);
1413 /* The top-of-stack contains a linkage buffer. */
1414 regs
->gr
[30] = infop
->start_stack
+ 64;
1415 regs
->gr
[31] = infop
->entry
;
1418 #endif /* TARGET_HPPA */
1420 #ifdef TARGET_XTENSA
1422 #define ELF_START_MMAP 0x20000000
1424 #define ELF_CLASS ELFCLASS32
1425 #define ELF_ARCH EM_XTENSA
1427 static inline void init_thread(struct target_pt_regs
*regs
,
1428 struct image_info
*infop
)
1430 regs
->windowbase
= 0;
1431 regs
->windowstart
= 1;
1432 regs
->areg
[1] = infop
->start_stack
;
1433 regs
->pc
= infop
->entry
;
1436 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1437 #define ELF_NREG 128
1438 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1447 TARGET_REG_WINDOWSTART
,
1448 TARGET_REG_WINDOWBASE
,
1449 TARGET_REG_THREADPTR
,
1450 TARGET_REG_AR0
= 64,
1453 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1454 const CPUXtensaState
*env
)
1458 (*regs
)[TARGET_REG_PC
] = tswapreg(env
->pc
);
1459 (*regs
)[TARGET_REG_PS
] = tswapreg(env
->sregs
[PS
] & ~PS_EXCM
);
1460 (*regs
)[TARGET_REG_LBEG
] = tswapreg(env
->sregs
[LBEG
]);
1461 (*regs
)[TARGET_REG_LEND
] = tswapreg(env
->sregs
[LEND
]);
1462 (*regs
)[TARGET_REG_LCOUNT
] = tswapreg(env
->sregs
[LCOUNT
]);
1463 (*regs
)[TARGET_REG_SAR
] = tswapreg(env
->sregs
[SAR
]);
1464 (*regs
)[TARGET_REG_WINDOWSTART
] = tswapreg(env
->sregs
[WINDOW_START
]);
1465 (*regs
)[TARGET_REG_WINDOWBASE
] = tswapreg(env
->sregs
[WINDOW_BASE
]);
1466 (*regs
)[TARGET_REG_THREADPTR
] = tswapreg(env
->uregs
[THREADPTR
]);
1467 xtensa_sync_phys_from_window((CPUXtensaState
*)env
);
1468 for (i
= 0; i
< env
->config
->nareg
; ++i
) {
1469 (*regs
)[TARGET_REG_AR0
+ i
] = tswapreg(env
->phys_regs
[i
]);
1473 #define USE_ELF_CORE_DUMP
1474 #define ELF_EXEC_PAGESIZE 4096
1476 #endif /* TARGET_XTENSA */
1478 #ifndef ELF_PLATFORM
1479 #define ELF_PLATFORM (NULL)
1483 #define ELF_MACHINE ELF_ARCH
1486 #ifndef elf_check_arch
1487 #define elf_check_arch(x) ((x) == ELF_ARCH)
1494 #ifndef STACK_GROWS_DOWN
1495 #define STACK_GROWS_DOWN 1
1498 #ifndef STACK_ALIGNMENT
1499 #define STACK_ALIGNMENT 16
1504 #define ELF_CLASS ELFCLASS32
1506 #define bswaptls(ptr) bswap32s(ptr)
1513 unsigned int a_info
; /* Use macros N_MAGIC, etc for access */
1514 unsigned int a_text
; /* length of text, in bytes */
1515 unsigned int a_data
; /* length of data, in bytes */
1516 unsigned int a_bss
; /* length of uninitialized data area, in bytes */
1517 unsigned int a_syms
; /* length of symbol table data in file, in bytes */
1518 unsigned int a_entry
; /* start address */
1519 unsigned int a_trsize
; /* length of relocation info for text, in bytes */
1520 unsigned int a_drsize
; /* length of relocation info for data, in bytes */
1524 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1530 /* Necessary parameters */
1531 #define TARGET_ELF_EXEC_PAGESIZE \
1532 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1533 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1534 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1535 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1536 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1537 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1539 #define DLINFO_ITEMS 16
1541 static inline void memcpy_fromfs(void * to
, const void * from
, unsigned long n
)
1543 memcpy(to
, from
, n
);
1547 static void bswap_ehdr(struct elfhdr
*ehdr
)
1549 bswap16s(&ehdr
->e_type
); /* Object file type */
1550 bswap16s(&ehdr
->e_machine
); /* Architecture */
1551 bswap32s(&ehdr
->e_version
); /* Object file version */
1552 bswaptls(&ehdr
->e_entry
); /* Entry point virtual address */
1553 bswaptls(&ehdr
->e_phoff
); /* Program header table file offset */
1554 bswaptls(&ehdr
->e_shoff
); /* Section header table file offset */
1555 bswap32s(&ehdr
->e_flags
); /* Processor-specific flags */
1556 bswap16s(&ehdr
->e_ehsize
); /* ELF header size in bytes */
1557 bswap16s(&ehdr
->e_phentsize
); /* Program header table entry size */
1558 bswap16s(&ehdr
->e_phnum
); /* Program header table entry count */
1559 bswap16s(&ehdr
->e_shentsize
); /* Section header table entry size */
1560 bswap16s(&ehdr
->e_shnum
); /* Section header table entry count */
1561 bswap16s(&ehdr
->e_shstrndx
); /* Section header string table index */
1564 static void bswap_phdr(struct elf_phdr
*phdr
, int phnum
)
1567 for (i
= 0; i
< phnum
; ++i
, ++phdr
) {
1568 bswap32s(&phdr
->p_type
); /* Segment type */
1569 bswap32s(&phdr
->p_flags
); /* Segment flags */
1570 bswaptls(&phdr
->p_offset
); /* Segment file offset */
1571 bswaptls(&phdr
->p_vaddr
); /* Segment virtual address */
1572 bswaptls(&phdr
->p_paddr
); /* Segment physical address */
1573 bswaptls(&phdr
->p_filesz
); /* Segment size in file */
1574 bswaptls(&phdr
->p_memsz
); /* Segment size in memory */
1575 bswaptls(&phdr
->p_align
); /* Segment alignment */
1579 static void bswap_shdr(struct elf_shdr
*shdr
, int shnum
)
1582 for (i
= 0; i
< shnum
; ++i
, ++shdr
) {
1583 bswap32s(&shdr
->sh_name
);
1584 bswap32s(&shdr
->sh_type
);
1585 bswaptls(&shdr
->sh_flags
);
1586 bswaptls(&shdr
->sh_addr
);
1587 bswaptls(&shdr
->sh_offset
);
1588 bswaptls(&shdr
->sh_size
);
1589 bswap32s(&shdr
->sh_link
);
1590 bswap32s(&shdr
->sh_info
);
1591 bswaptls(&shdr
->sh_addralign
);
1592 bswaptls(&shdr
->sh_entsize
);
1596 static void bswap_sym(struct elf_sym
*sym
)
1598 bswap32s(&sym
->st_name
);
1599 bswaptls(&sym
->st_value
);
1600 bswaptls(&sym
->st_size
);
1601 bswap16s(&sym
->st_shndx
);
1605 static void bswap_mips_abiflags(Mips_elf_abiflags_v0
*abiflags
)
1607 bswap16s(&abiflags
->version
);
1608 bswap32s(&abiflags
->ases
);
1609 bswap32s(&abiflags
->isa_ext
);
1610 bswap32s(&abiflags
->flags1
);
1611 bswap32s(&abiflags
->flags2
);
1615 static inline void bswap_ehdr(struct elfhdr
*ehdr
) { }
1616 static inline void bswap_phdr(struct elf_phdr
*phdr
, int phnum
) { }
1617 static inline void bswap_shdr(struct elf_shdr
*shdr
, int shnum
) { }
1618 static inline void bswap_sym(struct elf_sym
*sym
) { }
1620 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0
*abiflags
) { }
1624 #ifdef USE_ELF_CORE_DUMP
1625 static int elf_core_dump(int, const CPUArchState
*);
1626 #endif /* USE_ELF_CORE_DUMP */
1627 static void load_symbols(struct elfhdr
*hdr
, int fd
, abi_ulong load_bias
);
1629 /* Verify the portions of EHDR within E_IDENT for the target.
1630 This can be performed before bswapping the entire header. */
1631 static bool elf_check_ident(struct elfhdr
*ehdr
)
1633 return (ehdr
->e_ident
[EI_MAG0
] == ELFMAG0
1634 && ehdr
->e_ident
[EI_MAG1
] == ELFMAG1
1635 && ehdr
->e_ident
[EI_MAG2
] == ELFMAG2
1636 && ehdr
->e_ident
[EI_MAG3
] == ELFMAG3
1637 && ehdr
->e_ident
[EI_CLASS
] == ELF_CLASS
1638 && ehdr
->e_ident
[EI_DATA
] == ELF_DATA
1639 && ehdr
->e_ident
[EI_VERSION
] == EV_CURRENT
);
1642 /* Verify the portions of EHDR outside of E_IDENT for the target.
1643 This has to wait until after bswapping the header. */
1644 static bool elf_check_ehdr(struct elfhdr
*ehdr
)
1646 return (elf_check_arch(ehdr
->e_machine
)
1647 && ehdr
->e_ehsize
== sizeof(struct elfhdr
)
1648 && ehdr
->e_phentsize
== sizeof(struct elf_phdr
)
1649 && (ehdr
->e_type
== ET_EXEC
|| ehdr
->e_type
== ET_DYN
));
1653 * 'copy_elf_strings()' copies argument/envelope strings from user
1654 * memory to free pages in kernel mem. These are in a format ready
1655 * to be put directly into the top of new user memory.
1658 static abi_ulong
copy_elf_strings(int argc
, char **argv
, char *scratch
,
1659 abi_ulong p
, abi_ulong stack_limit
)
1666 return 0; /* bullet-proofing */
1669 if (STACK_GROWS_DOWN
) {
1670 int offset
= ((p
- 1) % TARGET_PAGE_SIZE
) + 1;
1671 for (i
= argc
- 1; i
>= 0; --i
) {
1674 fprintf(stderr
, "VFS: argc is wrong");
1677 len
= strlen(tmp
) + 1;
1680 if (len
> (p
- stack_limit
)) {
1684 int bytes_to_copy
= (len
> offset
) ? offset
: len
;
1685 tmp
-= bytes_to_copy
;
1687 offset
-= bytes_to_copy
;
1688 len
-= bytes_to_copy
;
1690 memcpy_fromfs(scratch
+ offset
, tmp
, bytes_to_copy
);
1693 memcpy_to_target(p
, scratch
, top
- p
);
1695 offset
= TARGET_PAGE_SIZE
;
1700 memcpy_to_target(p
, scratch
+ offset
, top
- p
);
1703 int remaining
= TARGET_PAGE_SIZE
- (p
% TARGET_PAGE_SIZE
);
1704 for (i
= 0; i
< argc
; ++i
) {
1707 fprintf(stderr
, "VFS: argc is wrong");
1710 len
= strlen(tmp
) + 1;
1711 if (len
> (stack_limit
- p
)) {
1715 int bytes_to_copy
= (len
> remaining
) ? remaining
: len
;
1717 memcpy_fromfs(scratch
+ (p
- top
), tmp
, bytes_to_copy
);
1719 tmp
+= bytes_to_copy
;
1720 remaining
-= bytes_to_copy
;
1722 len
-= bytes_to_copy
;
1724 if (remaining
== 0) {
1725 memcpy_to_target(top
, scratch
, p
- top
);
1727 remaining
= TARGET_PAGE_SIZE
;
1732 memcpy_to_target(top
, scratch
, p
- top
);
1739 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1740 * argument/environment space. Newer kernels (>2.6.33) allow more,
1741 * dependent on stack size, but guarantee at least 32 pages for
1742 * backwards compatibility.
1744 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1746 static abi_ulong
setup_arg_pages(struct linux_binprm
*bprm
,
1747 struct image_info
*info
)
1749 abi_ulong size
, error
, guard
;
1751 size
= guest_stack_size
;
1752 if (size
< STACK_LOWER_LIMIT
) {
1753 size
= STACK_LOWER_LIMIT
;
1755 guard
= TARGET_PAGE_SIZE
;
1756 if (guard
< qemu_real_host_page_size
) {
1757 guard
= qemu_real_host_page_size
;
1760 error
= target_mmap(0, size
+ guard
, PROT_READ
| PROT_WRITE
,
1761 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1763 perror("mmap stack");
1767 /* We reserve one extra page at the top of the stack as guard. */
1768 if (STACK_GROWS_DOWN
) {
1769 target_mprotect(error
, guard
, PROT_NONE
);
1770 info
->stack_limit
= error
+ guard
;
1771 return info
->stack_limit
+ size
- sizeof(void *);
1773 target_mprotect(error
+ size
, guard
, PROT_NONE
);
1774 info
->stack_limit
= error
+ size
;
1779 /* Map and zero the bss. We need to explicitly zero any fractional pages
1780 after the data section (i.e. bss). */
1781 static void zero_bss(abi_ulong elf_bss
, abi_ulong last_bss
, int prot
)
1783 uintptr_t host_start
, host_map_start
, host_end
;
1785 last_bss
= TARGET_PAGE_ALIGN(last_bss
);
1787 /* ??? There is confusion between qemu_real_host_page_size and
1788 qemu_host_page_size here and elsewhere in target_mmap, which
1789 may lead to the end of the data section mapping from the file
1790 not being mapped. At least there was an explicit test and
1791 comment for that here, suggesting that "the file size must
1792 be known". The comment probably pre-dates the introduction
1793 of the fstat system call in target_mmap which does in fact
1794 find out the size. What isn't clear is if the workaround
1795 here is still actually needed. For now, continue with it,
1796 but merge it with the "normal" mmap that would allocate the bss. */
1798 host_start
= (uintptr_t) g2h(elf_bss
);
1799 host_end
= (uintptr_t) g2h(last_bss
);
1800 host_map_start
= REAL_HOST_PAGE_ALIGN(host_start
);
1802 if (host_map_start
< host_end
) {
1803 void *p
= mmap((void *)host_map_start
, host_end
- host_map_start
,
1804 prot
, MAP_FIXED
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1805 if (p
== MAP_FAILED
) {
1806 perror("cannot mmap brk");
1811 /* Ensure that the bss page(s) are valid */
1812 if ((page_get_flags(last_bss
-1) & prot
) != prot
) {
1813 page_set_flags(elf_bss
& TARGET_PAGE_MASK
, last_bss
, prot
| PAGE_VALID
);
1816 if (host_start
< host_map_start
) {
1817 memset((void *)host_start
, 0, host_map_start
- host_start
);
1822 static int elf_is_fdpic(struct elfhdr
*exec
)
1824 return exec
->e_ident
[EI_OSABI
] == ELFOSABI_ARM_FDPIC
;
1827 /* Default implementation, always false. */
1828 static int elf_is_fdpic(struct elfhdr
*exec
)
1834 static abi_ulong
loader_build_fdpic_loadmap(struct image_info
*info
, abi_ulong sp
)
1837 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
;
1839 /* elf32_fdpic_loadseg */
1843 put_user_u32(loadsegs
[n
].addr
, sp
+0);
1844 put_user_u32(loadsegs
[n
].p_vaddr
, sp
+4);
1845 put_user_u32(loadsegs
[n
].p_memsz
, sp
+8);
1848 /* elf32_fdpic_loadmap */
1850 put_user_u16(0, sp
+0); /* version */
1851 put_user_u16(info
->nsegs
, sp
+2); /* nsegs */
1853 info
->personality
= PER_LINUX_FDPIC
;
1854 info
->loadmap_addr
= sp
;
1859 static abi_ulong
create_elf_tables(abi_ulong p
, int argc
, int envc
,
1860 struct elfhdr
*exec
,
1861 struct image_info
*info
,
1862 struct image_info
*interp_info
)
1865 abi_ulong u_argc
, u_argv
, u_envp
, u_auxv
;
1868 abi_ulong u_rand_bytes
;
1869 uint8_t k_rand_bytes
[16];
1870 abi_ulong u_platform
;
1871 const char *k_platform
;
1872 const int n
= sizeof(elf_addr_t
);
1876 /* Needs to be before we load the env/argc/... */
1877 if (elf_is_fdpic(exec
)) {
1878 /* Need 4 byte alignment for these structs */
1880 sp
= loader_build_fdpic_loadmap(info
, sp
);
1881 info
->other_info
= interp_info
;
1883 interp_info
->other_info
= info
;
1884 sp
= loader_build_fdpic_loadmap(interp_info
, sp
);
1885 info
->interpreter_loadmap_addr
= interp_info
->loadmap_addr
;
1886 info
->interpreter_pt_dynamic_addr
= interp_info
->pt_dynamic_addr
;
1888 info
->interpreter_loadmap_addr
= 0;
1889 info
->interpreter_pt_dynamic_addr
= 0;
1894 k_platform
= ELF_PLATFORM
;
1896 size_t len
= strlen(k_platform
) + 1;
1897 if (STACK_GROWS_DOWN
) {
1898 sp
-= (len
+ n
- 1) & ~(n
- 1);
1900 /* FIXME - check return value of memcpy_to_target() for failure */
1901 memcpy_to_target(sp
, k_platform
, len
);
1903 memcpy_to_target(sp
, k_platform
, len
);
1909 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1910 * the argv and envp pointers.
1912 if (STACK_GROWS_DOWN
) {
1913 sp
= QEMU_ALIGN_DOWN(sp
, 16);
1915 sp
= QEMU_ALIGN_UP(sp
, 16);
1919 * Generate 16 random bytes for userspace PRNG seeding.
1921 qemu_guest_getrandom_nofail(k_rand_bytes
, sizeof(k_rand_bytes
));
1922 if (STACK_GROWS_DOWN
) {
1925 /* FIXME - check return value of memcpy_to_target() for failure */
1926 memcpy_to_target(sp
, k_rand_bytes
, 16);
1928 memcpy_to_target(sp
, k_rand_bytes
, 16);
1933 size
= (DLINFO_ITEMS
+ 1) * 2;
1936 #ifdef DLINFO_ARCH_ITEMS
1937 size
+= DLINFO_ARCH_ITEMS
* 2;
1942 info
->auxv_len
= size
* n
;
1944 size
+= envc
+ argc
+ 2;
1945 size
+= 1; /* argc itself */
1948 /* Allocate space and finalize stack alignment for entry now. */
1949 if (STACK_GROWS_DOWN
) {
1950 u_argc
= QEMU_ALIGN_DOWN(sp
- size
, STACK_ALIGNMENT
);
1954 sp
= QEMU_ALIGN_UP(sp
+ size
, STACK_ALIGNMENT
);
1957 u_argv
= u_argc
+ n
;
1958 u_envp
= u_argv
+ (argc
+ 1) * n
;
1959 u_auxv
= u_envp
+ (envc
+ 1) * n
;
1960 info
->saved_auxv
= u_auxv
;
1961 info
->arg_start
= u_argv
;
1962 info
->arg_end
= u_argv
+ argc
* n
;
1964 /* This is correct because Linux defines
1965 * elf_addr_t as Elf32_Off / Elf64_Off
1967 #define NEW_AUX_ENT(id, val) do { \
1968 put_user_ual(id, u_auxv); u_auxv += n; \
1969 put_user_ual(val, u_auxv); u_auxv += n; \
1974 * ARCH_DLINFO must come first so platform specific code can enforce
1975 * special alignment requirements on the AUXV if necessary (eg. PPC).
1979 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1980 * on info->auxv_len will trigger.
1982 NEW_AUX_ENT(AT_PHDR
, (abi_ulong
)(info
->load_addr
+ exec
->e_phoff
));
1983 NEW_AUX_ENT(AT_PHENT
, (abi_ulong
)(sizeof (struct elf_phdr
)));
1984 NEW_AUX_ENT(AT_PHNUM
, (abi_ulong
)(exec
->e_phnum
));
1985 if ((info
->alignment
& ~qemu_host_page_mask
) != 0) {
1986 /* Target doesn't support host page size alignment */
1987 NEW_AUX_ENT(AT_PAGESZ
, (abi_ulong
)(TARGET_PAGE_SIZE
));
1989 NEW_AUX_ENT(AT_PAGESZ
, (abi_ulong
)(MAX(TARGET_PAGE_SIZE
,
1990 qemu_host_page_size
)));
1992 NEW_AUX_ENT(AT_BASE
, (abi_ulong
)(interp_info
? interp_info
->load_addr
: 0));
1993 NEW_AUX_ENT(AT_FLAGS
, (abi_ulong
)0);
1994 NEW_AUX_ENT(AT_ENTRY
, info
->entry
);
1995 NEW_AUX_ENT(AT_UID
, (abi_ulong
) getuid());
1996 NEW_AUX_ENT(AT_EUID
, (abi_ulong
) geteuid());
1997 NEW_AUX_ENT(AT_GID
, (abi_ulong
) getgid());
1998 NEW_AUX_ENT(AT_EGID
, (abi_ulong
) getegid());
1999 NEW_AUX_ENT(AT_HWCAP
, (abi_ulong
) ELF_HWCAP
);
2000 NEW_AUX_ENT(AT_CLKTCK
, (abi_ulong
) sysconf(_SC_CLK_TCK
));
2001 NEW_AUX_ENT(AT_RANDOM
, (abi_ulong
) u_rand_bytes
);
2002 NEW_AUX_ENT(AT_SECURE
, (abi_ulong
) qemu_getauxval(AT_SECURE
));
2003 NEW_AUX_ENT(AT_EXECFN
, info
->file_string
);
2006 NEW_AUX_ENT(AT_HWCAP2
, (abi_ulong
) ELF_HWCAP2
);
2010 NEW_AUX_ENT(AT_PLATFORM
, u_platform
);
2012 NEW_AUX_ENT (AT_NULL
, 0);
2015 /* Check that our initial calculation of the auxv length matches how much
2016 * we actually put into it.
2018 assert(info
->auxv_len
== u_auxv
- info
->saved_auxv
);
2020 put_user_ual(argc
, u_argc
);
2022 p
= info
->arg_strings
;
2023 for (i
= 0; i
< argc
; ++i
) {
2024 put_user_ual(p
, u_argv
);
2026 p
+= target_strlen(p
) + 1;
2028 put_user_ual(0, u_argv
);
2030 p
= info
->env_strings
;
2031 for (i
= 0; i
< envc
; ++i
) {
2032 put_user_ual(p
, u_envp
);
2034 p
+= target_strlen(p
) + 1;
2036 put_user_ual(0, u_envp
);
2041 #ifndef ARM_COMMPAGE
2042 #define ARM_COMMPAGE 0
2043 #define init_guest_commpage() true
2046 static void pgb_fail_in_use(const char *image_name
)
2048 error_report("%s: requires virtual address space that is in use "
2049 "(omit the -B option or choose a different value)",
2054 static void pgb_have_guest_base(const char *image_name
, abi_ulong guest_loaddr
,
2055 abi_ulong guest_hiaddr
, long align
)
2057 const int flags
= MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_NORESERVE
;
2060 if (!QEMU_IS_ALIGNED(guest_base
, align
)) {
2061 fprintf(stderr
, "Requested guest base 0x%lx does not satisfy "
2062 "host minimum alignment (0x%lx)\n",
2067 /* Sanity check the guest binary. */
2069 if (guest_hiaddr
> reserved_va
) {
2070 error_report("%s: requires more than reserved virtual "
2071 "address space (0x%" PRIx64
" > 0x%lx)",
2072 image_name
, (uint64_t)guest_hiaddr
, reserved_va
);
2076 if ((guest_hiaddr
- guest_base
) > ~(uintptr_t)0) {
2077 error_report("%s: requires more virtual address space "
2078 "than the host can provide (0x%" PRIx64
")",
2079 image_name
, (uint64_t)guest_hiaddr
- guest_base
);
2085 * Expand the allocation to the entire reserved_va.
2086 * Exclude the mmap_min_addr hole.
2089 guest_loaddr
= (guest_base
>= mmap_min_addr
? 0
2090 : mmap_min_addr
- guest_base
);
2091 guest_hiaddr
= reserved_va
;
2094 /* Reserve the address space for the binary, or reserved_va. */
2095 test
= g2h(guest_loaddr
);
2096 addr
= mmap(test
, guest_hiaddr
- guest_loaddr
, PROT_NONE
, flags
, -1, 0);
2098 pgb_fail_in_use(image_name
);
2102 /* Return value for guest_base, or -1 if no hole found. */
2103 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr
, uintptr_t guest_size
,
2106 GSList
*maps
, *iter
;
2107 uintptr_t this_start
, this_end
, next_start
, brk
;
2110 assert(QEMU_IS_ALIGNED(guest_loaddr
, align
));
2112 maps
= read_self_maps();
2114 /* Read brk after we've read the maps, which will malloc. */
2115 brk
= (uintptr_t)sbrk(0);
2117 /* The first hole is before the first map entry. */
2118 this_start
= mmap_min_addr
;
2120 for (iter
= maps
; iter
;
2121 this_start
= next_start
, iter
= g_slist_next(iter
)) {
2122 uintptr_t align_start
, hole_size
;
2124 this_end
= ((MapInfo
*)iter
->data
)->start
;
2125 next_start
= ((MapInfo
*)iter
->data
)->end
;
2126 align_start
= ROUND_UP(this_start
, align
);
2128 /* Skip holes that are too small. */
2129 if (align_start
>= this_end
) {
2132 hole_size
= this_end
- align_start
;
2133 if (hole_size
< guest_size
) {
2137 /* If this hole contains brk, give ourselves some room to grow. */
2138 if (this_start
<= brk
&& brk
< this_end
) {
2139 hole_size
-= guest_size
;
2140 if (sizeof(uintptr_t) == 8 && hole_size
>= 1 * GiB
) {
2141 align_start
+= 1 * GiB
;
2142 } else if (hole_size
>= 16 * MiB
) {
2143 align_start
+= 16 * MiB
;
2145 align_start
= (this_end
- guest_size
) & -align
;
2146 if (align_start
< this_start
) {
2152 /* Record the lowest successful match. */
2154 ret
= align_start
- guest_loaddr
;
2156 /* If this hole contains the identity map, select it. */
2157 if (align_start
<= guest_loaddr
&&
2158 guest_loaddr
+ guest_size
<= this_end
) {
2161 /* If this hole ends above the identity map, stop looking. */
2162 if (this_end
>= guest_loaddr
) {
2166 free_self_maps(maps
);
2171 static void pgb_static(const char *image_name
, abi_ulong orig_loaddr
,
2172 abi_ulong orig_hiaddr
, long align
)
2174 uintptr_t loaddr
= orig_loaddr
;
2175 uintptr_t hiaddr
= orig_hiaddr
;
2178 if (hiaddr
!= orig_hiaddr
) {
2179 error_report("%s: requires virtual address space that the "
2180 "host cannot provide (0x%" PRIx64
")",
2181 image_name
, (uint64_t)orig_hiaddr
);
2188 * Extend the allocation to include the commpage.
2189 * For a 64-bit host, this is just 4GiB; for a 32-bit host,
2190 * the address arithmetic will wrap around, but the difference
2191 * will produce the correct allocation size.
2193 if (sizeof(uintptr_t) == 8 || loaddr
>= 0x80000000u
) {
2194 hiaddr
= (uintptr_t)4 << 30;
2196 loaddr
= ARM_COMMPAGE
& -align
;
2200 addr
= pgb_find_hole(loaddr
, hiaddr
- loaddr
, align
);
2203 * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
2204 * that can satisfy both. But as the normal arm32 link base address
2205 * is ~32k, and we extend down to include the commpage, making the
2206 * overhead only ~96k, this is unlikely.
2208 error_report("%s: Unable to allocate %#zx bytes of "
2209 "virtual address space", image_name
,
2210 (size_t)(hiaddr
- loaddr
));
2217 static void pgb_dynamic(const char *image_name
, long align
)
2220 * The executable is dynamic and does not require a fixed address.
2221 * All we need is a commpage that satisfies align.
2222 * If we do not need a commpage, leave guest_base == 0.
2225 uintptr_t addr
, commpage
;
2227 /* 64-bit hosts should have used reserved_va. */
2228 assert(sizeof(uintptr_t) == 4);
2231 * By putting the commpage at the first hole, that puts guest_base
2232 * just above that, and maximises the positive guest addresses.
2234 commpage
= ARM_COMMPAGE
& -align
;
2235 addr
= pgb_find_hole(commpage
, -commpage
, align
);
2241 static void pgb_reserved_va(const char *image_name
, abi_ulong guest_loaddr
,
2242 abi_ulong guest_hiaddr
, long align
)
2244 const int flags
= MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_NORESERVE
;
2247 if (guest_hiaddr
> reserved_va
) {
2248 error_report("%s: requires more than reserved virtual "
2249 "address space (0x%" PRIx64
" > 0x%lx)",
2250 image_name
, (uint64_t)guest_hiaddr
, reserved_va
);
2254 /* Widen the "image" to the entire reserved address space. */
2255 pgb_static(image_name
, 0, reserved_va
, align
);
2257 /* Reserve the memory on the host. */
2258 assert(guest_base
!= 0);
2260 addr
= mmap(test
, reserved_va
, PROT_NONE
, flags
, -1, 0);
2261 if (addr
== MAP_FAILED
) {
2262 error_report("Unable to reserve 0x%lx bytes of virtual address "
2263 "space for use as guest address space (check your "
2264 "virtual memory ulimit setting or reserve less "
2265 "using -R option)", reserved_va
);
2268 assert(addr
== test
);
2271 void probe_guest_base(const char *image_name
, abi_ulong guest_loaddr
,
2272 abi_ulong guest_hiaddr
)
2274 /* In order to use host shmat, we must be able to honor SHMLBA. */
2275 uintptr_t align
= MAX(SHMLBA
, qemu_host_page_size
);
2277 if (have_guest_base
) {
2278 pgb_have_guest_base(image_name
, guest_loaddr
, guest_hiaddr
, align
);
2279 } else if (reserved_va
) {
2280 pgb_reserved_va(image_name
, guest_loaddr
, guest_hiaddr
, align
);
2281 } else if (guest_loaddr
) {
2282 pgb_static(image_name
, guest_loaddr
, guest_hiaddr
, align
);
2284 pgb_dynamic(image_name
, align
);
2287 /* Reserve and initialize the commpage. */
2288 if (!init_guest_commpage()) {
2290 * With have_guest_base, the user has selected the address and
2291 * we are trying to work with that. Otherwise, we have selected
2292 * free space and init_guest_commpage must succeeded.
2294 assert(have_guest_base
);
2295 pgb_fail_in_use(image_name
);
2298 assert(QEMU_IS_ALIGNED(guest_base
, align
));
2299 qemu_log_mask(CPU_LOG_PAGE
, "Locating guest address space "
2300 "@ 0x%" PRIx64
"\n", (uint64_t)guest_base
);
2303 /* Load an ELF image into the address space.
2305 IMAGE_NAME is the filename of the image, to use in error messages.
2306 IMAGE_FD is the open file descriptor for the image.
2308 BPRM_BUF is a copy of the beginning of the file; this of course
2309 contains the elf file header at offset 0. It is assumed that this
2310 buffer is sufficiently aligned to present no problems to the host
2311 in accessing data at aligned offsets within the buffer.
2313 On return: INFO values will be filled in, as necessary or available. */
2315 static void load_elf_image(const char *image_name
, int image_fd
,
2316 struct image_info
*info
, char **pinterp_name
,
2317 char bprm_buf
[BPRM_BUF_SIZE
])
2319 struct elfhdr
*ehdr
= (struct elfhdr
*)bprm_buf
;
2320 struct elf_phdr
*phdr
;
2321 abi_ulong load_addr
, load_bias
, loaddr
, hiaddr
, error
;
2325 /* First of all, some simple consistency checks */
2326 errmsg
= "Invalid ELF image for this architecture";
2327 if (!elf_check_ident(ehdr
)) {
2331 if (!elf_check_ehdr(ehdr
)) {
2335 i
= ehdr
->e_phnum
* sizeof(struct elf_phdr
);
2336 if (ehdr
->e_phoff
+ i
<= BPRM_BUF_SIZE
) {
2337 phdr
= (struct elf_phdr
*)(bprm_buf
+ ehdr
->e_phoff
);
2339 phdr
= (struct elf_phdr
*) alloca(i
);
2340 retval
= pread(image_fd
, phdr
, i
, ehdr
->e_phoff
);
2345 bswap_phdr(phdr
, ehdr
->e_phnum
);
2348 info
->pt_dynamic_addr
= 0;
2352 /* Find the maximum size of the image and allocate an appropriate
2353 amount of memory to handle that. */
2354 loaddr
= -1, hiaddr
= 0;
2355 info
->alignment
= 0;
2356 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
2357 if (phdr
[i
].p_type
== PT_LOAD
) {
2358 abi_ulong a
= phdr
[i
].p_vaddr
- phdr
[i
].p_offset
;
2362 a
= phdr
[i
].p_vaddr
+ phdr
[i
].p_memsz
;
2367 info
->alignment
|= phdr
[i
].p_align
;
2371 if (pinterp_name
!= NULL
) {
2373 * This is the main executable.
2375 * Reserve extra space for brk.
2376 * We hold on to this space while placing the interpreter
2377 * and the stack, lest they be placed immediately after
2378 * the data segment and block allocation from the brk.
2380 * 16MB is chosen as "large enough" without being so large
2381 * as to allow the result to not fit with a 32-bit guest on
2384 info
->reserve_brk
= 16 * MiB
;
2385 hiaddr
+= info
->reserve_brk
;
2387 if (ehdr
->e_type
== ET_EXEC
) {
2389 * Make sure that the low address does not conflict with
2390 * MMAP_MIN_ADDR or the QEMU application itself.
2392 probe_guest_base(image_name
, loaddr
, hiaddr
);
2395 * The binary is dynamic, but we still need to
2396 * select guest_base. In this case we pass a size.
2398 probe_guest_base(image_name
, 0, hiaddr
- loaddr
);
2403 * Reserve address space for all of this.
2405 * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2406 * exactly the address range that is required.
2408 * Otherwise this is ET_DYN, and we are searching for a location
2409 * that can hold the memory space required. If the image is
2410 * pre-linked, LOADDR will be non-zero, and the kernel should
2411 * honor that address if it happens to be free.
2413 * In both cases, we will overwrite pages in this range with mappings
2414 * from the executable.
2416 load_addr
= target_mmap(loaddr
, hiaddr
- loaddr
, PROT_NONE
,
2417 MAP_PRIVATE
| MAP_ANON
| MAP_NORESERVE
|
2418 (ehdr
->e_type
== ET_EXEC
? MAP_FIXED
: 0),
2420 if (load_addr
== -1) {
2423 load_bias
= load_addr
- loaddr
;
2425 if (elf_is_fdpic(ehdr
)) {
2426 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
=
2427 g_malloc(sizeof(*loadsegs
) * info
->nsegs
);
2429 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
2430 switch (phdr
[i
].p_type
) {
2432 info
->pt_dynamic_addr
= phdr
[i
].p_vaddr
+ load_bias
;
2435 loadsegs
->addr
= phdr
[i
].p_vaddr
+ load_bias
;
2436 loadsegs
->p_vaddr
= phdr
[i
].p_vaddr
;
2437 loadsegs
->p_memsz
= phdr
[i
].p_memsz
;
2444 info
->load_bias
= load_bias
;
2445 info
->code_offset
= load_bias
;
2446 info
->data_offset
= load_bias
;
2447 info
->load_addr
= load_addr
;
2448 info
->entry
= ehdr
->e_entry
+ load_bias
;
2449 info
->start_code
= -1;
2451 info
->start_data
= -1;
2454 info
->elf_flags
= ehdr
->e_flags
;
2456 for (i
= 0; i
< ehdr
->e_phnum
; i
++) {
2457 struct elf_phdr
*eppnt
= phdr
+ i
;
2458 if (eppnt
->p_type
== PT_LOAD
) {
2459 abi_ulong vaddr
, vaddr_po
, vaddr_ps
, vaddr_ef
, vaddr_em
, vaddr_len
;
2462 if (eppnt
->p_flags
& PF_R
) elf_prot
= PROT_READ
;
2463 if (eppnt
->p_flags
& PF_W
) elf_prot
|= PROT_WRITE
;
2464 if (eppnt
->p_flags
& PF_X
) elf_prot
|= PROT_EXEC
;
2466 vaddr
= load_bias
+ eppnt
->p_vaddr
;
2467 vaddr_po
= TARGET_ELF_PAGEOFFSET(vaddr
);
2468 vaddr_ps
= TARGET_ELF_PAGESTART(vaddr
);
2469 vaddr_len
= TARGET_ELF_PAGELENGTH(eppnt
->p_filesz
+ vaddr_po
);
2472 * Some segments may be completely empty without any backing file
2473 * segment, in that case just let zero_bss allocate an empty buffer
2476 if (eppnt
->p_filesz
!= 0) {
2477 error
= target_mmap(vaddr_ps
, vaddr_len
, elf_prot
,
2478 MAP_PRIVATE
| MAP_FIXED
,
2479 image_fd
, eppnt
->p_offset
- vaddr_po
);
2486 vaddr_ef
= vaddr
+ eppnt
->p_filesz
;
2487 vaddr_em
= vaddr
+ eppnt
->p_memsz
;
2489 /* If the load segment requests extra zeros (e.g. bss), map it. */
2490 if (vaddr_ef
< vaddr_em
) {
2491 zero_bss(vaddr_ef
, vaddr_em
, elf_prot
);
2494 /* Find the full program boundaries. */
2495 if (elf_prot
& PROT_EXEC
) {
2496 if (vaddr
< info
->start_code
) {
2497 info
->start_code
= vaddr
;
2499 if (vaddr_ef
> info
->end_code
) {
2500 info
->end_code
= vaddr_ef
;
2503 if (elf_prot
& PROT_WRITE
) {
2504 if (vaddr
< info
->start_data
) {
2505 info
->start_data
= vaddr
;
2507 if (vaddr_ef
> info
->end_data
) {
2508 info
->end_data
= vaddr_ef
;
2510 if (vaddr_em
> info
->brk
) {
2511 info
->brk
= vaddr_em
;
2514 } else if (eppnt
->p_type
== PT_INTERP
&& pinterp_name
) {
2517 if (*pinterp_name
) {
2518 errmsg
= "Multiple PT_INTERP entries";
2521 interp_name
= malloc(eppnt
->p_filesz
);
2526 if (eppnt
->p_offset
+ eppnt
->p_filesz
<= BPRM_BUF_SIZE
) {
2527 memcpy(interp_name
, bprm_buf
+ eppnt
->p_offset
,
2530 retval
= pread(image_fd
, interp_name
, eppnt
->p_filesz
,
2532 if (retval
!= eppnt
->p_filesz
) {
2536 if (interp_name
[eppnt
->p_filesz
- 1] != 0) {
2537 errmsg
= "Invalid PT_INTERP entry";
2540 *pinterp_name
= interp_name
;
2542 } else if (eppnt
->p_type
== PT_MIPS_ABIFLAGS
) {
2543 Mips_elf_abiflags_v0 abiflags
;
2544 if (eppnt
->p_filesz
< sizeof(Mips_elf_abiflags_v0
)) {
2545 errmsg
= "Invalid PT_MIPS_ABIFLAGS entry";
2548 if (eppnt
->p_offset
+ eppnt
->p_filesz
<= BPRM_BUF_SIZE
) {
2549 memcpy(&abiflags
, bprm_buf
+ eppnt
->p_offset
,
2550 sizeof(Mips_elf_abiflags_v0
));
2552 retval
= pread(image_fd
, &abiflags
, sizeof(Mips_elf_abiflags_v0
),
2554 if (retval
!= sizeof(Mips_elf_abiflags_v0
)) {
2558 bswap_mips_abiflags(&abiflags
);
2559 info
->fp_abi
= abiflags
.fp_abi
;
2564 if (info
->end_data
== 0) {
2565 info
->start_data
= info
->end_code
;
2566 info
->end_data
= info
->end_code
;
2567 info
->brk
= info
->end_code
;
2570 if (qemu_log_enabled()) {
2571 load_symbols(ehdr
, image_fd
, load_bias
);
2581 errmsg
= "Incomplete read of file header";
2585 errmsg
= strerror(errno
);
2587 fprintf(stderr
, "%s: %s\n", image_name
, errmsg
);
2591 static void load_elf_interp(const char *filename
, struct image_info
*info
,
2592 char bprm_buf
[BPRM_BUF_SIZE
])
2596 fd
= open(path(filename
), O_RDONLY
);
2601 retval
= read(fd
, bprm_buf
, BPRM_BUF_SIZE
);
2605 if (retval
< BPRM_BUF_SIZE
) {
2606 memset(bprm_buf
+ retval
, 0, BPRM_BUF_SIZE
- retval
);
2609 load_elf_image(filename
, fd
, info
, NULL
, bprm_buf
);
2613 fprintf(stderr
, "%s: %s\n", filename
, strerror(errno
));
2617 static int symfind(const void *s0
, const void *s1
)
2619 target_ulong addr
= *(target_ulong
*)s0
;
2620 struct elf_sym
*sym
= (struct elf_sym
*)s1
;
2622 if (addr
< sym
->st_value
) {
2624 } else if (addr
>= sym
->st_value
+ sym
->st_size
) {
2630 static const char *lookup_symbolxx(struct syminfo
*s
, target_ulong orig_addr
)
2632 #if ELF_CLASS == ELFCLASS32
2633 struct elf_sym
*syms
= s
->disas_symtab
.elf32
;
2635 struct elf_sym
*syms
= s
->disas_symtab
.elf64
;
2639 struct elf_sym
*sym
;
2641 sym
= bsearch(&orig_addr
, syms
, s
->disas_num_syms
, sizeof(*syms
), symfind
);
2643 return s
->disas_strtab
+ sym
->st_name
;
2649 /* FIXME: This should use elf_ops.h */
2650 static int symcmp(const void *s0
, const void *s1
)
2652 struct elf_sym
*sym0
= (struct elf_sym
*)s0
;
2653 struct elf_sym
*sym1
= (struct elf_sym
*)s1
;
2654 return (sym0
->st_value
< sym1
->st_value
)
2656 : ((sym0
->st_value
> sym1
->st_value
) ? 1 : 0);
2659 /* Best attempt to load symbols from this ELF object. */
2660 static void load_symbols(struct elfhdr
*hdr
, int fd
, abi_ulong load_bias
)
2662 int i
, shnum
, nsyms
, sym_idx
= 0, str_idx
= 0;
2664 struct elf_shdr
*shdr
;
2665 char *strings
= NULL
;
2666 struct syminfo
*s
= NULL
;
2667 struct elf_sym
*new_syms
, *syms
= NULL
;
2669 shnum
= hdr
->e_shnum
;
2670 i
= shnum
* sizeof(struct elf_shdr
);
2671 shdr
= (struct elf_shdr
*)alloca(i
);
2672 if (pread(fd
, shdr
, i
, hdr
->e_shoff
) != i
) {
2676 bswap_shdr(shdr
, shnum
);
2677 for (i
= 0; i
< shnum
; ++i
) {
2678 if (shdr
[i
].sh_type
== SHT_SYMTAB
) {
2680 str_idx
= shdr
[i
].sh_link
;
2685 /* There will be no symbol table if the file was stripped. */
2689 /* Now know where the strtab and symtab are. Snarf them. */
2690 s
= g_try_new(struct syminfo
, 1);
2695 segsz
= shdr
[str_idx
].sh_size
;
2696 s
->disas_strtab
= strings
= g_try_malloc(segsz
);
2698 pread(fd
, strings
, segsz
, shdr
[str_idx
].sh_offset
) != segsz
) {
2702 segsz
= shdr
[sym_idx
].sh_size
;
2703 syms
= g_try_malloc(segsz
);
2704 if (!syms
|| pread(fd
, syms
, segsz
, shdr
[sym_idx
].sh_offset
) != segsz
) {
2708 if (segsz
/ sizeof(struct elf_sym
) > INT_MAX
) {
2709 /* Implausibly large symbol table: give up rather than ploughing
2710 * on with the number of symbols calculation overflowing
2714 nsyms
= segsz
/ sizeof(struct elf_sym
);
2715 for (i
= 0; i
< nsyms
; ) {
2716 bswap_sym(syms
+ i
);
2717 /* Throw away entries which we do not need. */
2718 if (syms
[i
].st_shndx
== SHN_UNDEF
2719 || syms
[i
].st_shndx
>= SHN_LORESERVE
2720 || ELF_ST_TYPE(syms
[i
].st_info
) != STT_FUNC
) {
2722 syms
[i
] = syms
[nsyms
];
2725 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2726 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2727 syms
[i
].st_value
&= ~(target_ulong
)1;
2729 syms
[i
].st_value
+= load_bias
;
2734 /* No "useful" symbol. */
2739 /* Attempt to free the storage associated with the local symbols
2740 that we threw away. Whether or not this has any effect on the
2741 memory allocation depends on the malloc implementation and how
2742 many symbols we managed to discard. */
2743 new_syms
= g_try_renew(struct elf_sym
, syms
, nsyms
);
2744 if (new_syms
== NULL
) {
2749 qsort(syms
, nsyms
, sizeof(*syms
), symcmp
);
2751 s
->disas_num_syms
= nsyms
;
2752 #if ELF_CLASS == ELFCLASS32
2753 s
->disas_symtab
.elf32
= syms
;
2755 s
->disas_symtab
.elf64
= syms
;
2757 s
->lookup_symbol
= lookup_symbolxx
;
2769 uint32_t get_elf_eflags(int fd
)
2775 /* Read ELF header */
2776 offset
= lseek(fd
, 0, SEEK_SET
);
2777 if (offset
== (off_t
) -1) {
2780 ret
= read(fd
, &ehdr
, sizeof(ehdr
));
2781 if (ret
< sizeof(ehdr
)) {
2784 offset
= lseek(fd
, offset
, SEEK_SET
);
2785 if (offset
== (off_t
) -1) {
2789 /* Check ELF signature */
2790 if (!elf_check_ident(&ehdr
)) {
2796 if (!elf_check_ehdr(&ehdr
)) {
2800 /* return architecture id */
2801 return ehdr
.e_flags
;
2804 int load_elf_binary(struct linux_binprm
*bprm
, struct image_info
*info
)
2806 struct image_info interp_info
;
2807 struct elfhdr elf_ex
;
2808 char *elf_interpreter
= NULL
;
2811 memset(&interp_info
, 0, sizeof(interp_info
));
2813 interp_info
.fp_abi
= MIPS_ABI_FP_UNKNOWN
;
2816 info
->start_mmap
= (abi_ulong
)ELF_START_MMAP
;
2818 load_elf_image(bprm
->filename
, bprm
->fd
, info
,
2819 &elf_interpreter
, bprm
->buf
);
2821 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2822 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2823 when we load the interpreter. */
2824 elf_ex
= *(struct elfhdr
*)bprm
->buf
;
2826 /* Do this so that we can load the interpreter, if need be. We will
2827 change some of these later */
2828 bprm
->p
= setup_arg_pages(bprm
, info
);
2830 scratch
= g_new0(char, TARGET_PAGE_SIZE
);
2831 if (STACK_GROWS_DOWN
) {
2832 bprm
->p
= copy_elf_strings(1, &bprm
->filename
, scratch
,
2833 bprm
->p
, info
->stack_limit
);
2834 info
->file_string
= bprm
->p
;
2835 bprm
->p
= copy_elf_strings(bprm
->envc
, bprm
->envp
, scratch
,
2836 bprm
->p
, info
->stack_limit
);
2837 info
->env_strings
= bprm
->p
;
2838 bprm
->p
= copy_elf_strings(bprm
->argc
, bprm
->argv
, scratch
,
2839 bprm
->p
, info
->stack_limit
);
2840 info
->arg_strings
= bprm
->p
;
2842 info
->arg_strings
= bprm
->p
;
2843 bprm
->p
= copy_elf_strings(bprm
->argc
, bprm
->argv
, scratch
,
2844 bprm
->p
, info
->stack_limit
);
2845 info
->env_strings
= bprm
->p
;
2846 bprm
->p
= copy_elf_strings(bprm
->envc
, bprm
->envp
, scratch
,
2847 bprm
->p
, info
->stack_limit
);
2848 info
->file_string
= bprm
->p
;
2849 bprm
->p
= copy_elf_strings(1, &bprm
->filename
, scratch
,
2850 bprm
->p
, info
->stack_limit
);
2856 fprintf(stderr
, "%s: %s\n", bprm
->filename
, strerror(E2BIG
));
2860 if (elf_interpreter
) {
2861 load_elf_interp(elf_interpreter
, &interp_info
, bprm
->buf
);
2863 /* If the program interpreter is one of these two, then assume
2864 an iBCS2 image. Otherwise assume a native linux image. */
2866 if (strcmp(elf_interpreter
, "/usr/lib/libc.so.1") == 0
2867 || strcmp(elf_interpreter
, "/usr/lib/ld.so.1") == 0) {
2868 info
->personality
= PER_SVR4
;
2870 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2871 and some applications "depend" upon this behavior. Since
2872 we do not have the power to recompile these, we emulate
2873 the SVr4 behavior. Sigh. */
2874 target_mmap(0, qemu_host_page_size
, PROT_READ
| PROT_EXEC
,
2875 MAP_FIXED
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
2878 info
->interp_fp_abi
= interp_info
.fp_abi
;
2882 bprm
->p
= create_elf_tables(bprm
->p
, bprm
->argc
, bprm
->envc
, &elf_ex
,
2883 info
, (elf_interpreter
? &interp_info
: NULL
));
2884 info
->start_stack
= bprm
->p
;
2886 /* If we have an interpreter, set that as the program's entry point.
2887 Copy the load_bias as well, to help PPC64 interpret the entry
2888 point as a function descriptor. Do this after creating elf tables
2889 so that we copy the original program entry point into the AUXV. */
2890 if (elf_interpreter
) {
2891 info
->load_bias
= interp_info
.load_bias
;
2892 info
->entry
= interp_info
.entry
;
2893 free(elf_interpreter
);
2896 #ifdef USE_ELF_CORE_DUMP
2897 bprm
->core_dump
= &elf_core_dump
;
2901 * If we reserved extra space for brk, release it now.
2902 * The implementation of do_brk in syscalls.c expects to be able
2903 * to mmap pages in this space.
2905 if (info
->reserve_brk
) {
2906 abi_ulong start_brk
= HOST_PAGE_ALIGN(info
->brk
);
2907 abi_ulong end_brk
= HOST_PAGE_ALIGN(info
->brk
+ info
->reserve_brk
);
2908 target_munmap(start_brk
, end_brk
- start_brk
);
2914 #ifdef USE_ELF_CORE_DUMP
2916 * Definitions to generate Intel SVR4-like core files.
2917 * These mostly have the same names as the SVR4 types with "target_elf_"
2918 * tacked on the front to prevent clashes with linux definitions,
2919 * and the typedef forms have been avoided. This is mostly like
2920 * the SVR4 structure, but more Linuxy, with things that Linux does
2921 * not support and which gdb doesn't really use excluded.
2923 * Fields we don't dump (their contents is zero) in linux-user qemu
2924 * are marked with XXX.
2926 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2928 * Porting ELF coredump for target is (quite) simple process. First you
2929 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2930 * the target resides):
2932 * #define USE_ELF_CORE_DUMP
2934 * Next you define type of register set used for dumping. ELF specification
2935 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2937 * typedef <target_regtype> target_elf_greg_t;
2938 * #define ELF_NREG <number of registers>
2939 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2941 * Last step is to implement target specific function that copies registers
2942 * from given cpu into just specified register set. Prototype is:
2944 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2945 * const CPUArchState *env);
2948 * regs - copy register values into here (allocated and zeroed by caller)
2949 * env - copy registers from here
2951 * Example for ARM target is provided in this file.
2954 /* An ELF note in memory */
2958 size_t namesz_rounded
;
2961 size_t datasz_rounded
;
2966 struct target_elf_siginfo
{
2967 abi_int si_signo
; /* signal number */
2968 abi_int si_code
; /* extra code */
2969 abi_int si_errno
; /* errno */
2972 struct target_elf_prstatus
{
2973 struct target_elf_siginfo pr_info
; /* Info associated with signal */
2974 abi_short pr_cursig
; /* Current signal */
2975 abi_ulong pr_sigpend
; /* XXX */
2976 abi_ulong pr_sighold
; /* XXX */
2977 target_pid_t pr_pid
;
2978 target_pid_t pr_ppid
;
2979 target_pid_t pr_pgrp
;
2980 target_pid_t pr_sid
;
2981 struct target_timeval pr_utime
; /* XXX User time */
2982 struct target_timeval pr_stime
; /* XXX System time */
2983 struct target_timeval pr_cutime
; /* XXX Cumulative user time */
2984 struct target_timeval pr_cstime
; /* XXX Cumulative system time */
2985 target_elf_gregset_t pr_reg
; /* GP registers */
2986 abi_int pr_fpvalid
; /* XXX */
2989 #define ELF_PRARGSZ (80) /* Number of chars for args */
2991 struct target_elf_prpsinfo
{
2992 char pr_state
; /* numeric process state */
2993 char pr_sname
; /* char for pr_state */
2994 char pr_zomb
; /* zombie */
2995 char pr_nice
; /* nice val */
2996 abi_ulong pr_flag
; /* flags */
2997 target_uid_t pr_uid
;
2998 target_gid_t pr_gid
;
2999 target_pid_t pr_pid
, pr_ppid
, pr_pgrp
, pr_sid
;
3001 char pr_fname
[16] QEMU_NONSTRING
; /* filename of executable */
3002 char pr_psargs
[ELF_PRARGSZ
]; /* initial part of arg list */
3005 /* Here is the structure in which status of each thread is captured. */
3006 struct elf_thread_status
{
3007 QTAILQ_ENTRY(elf_thread_status
) ets_link
;
3008 struct target_elf_prstatus prstatus
; /* NT_PRSTATUS */
3010 elf_fpregset_t fpu
; /* NT_PRFPREG */
3011 struct task_struct
*thread
;
3012 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
3014 struct memelfnote notes
[1];
3018 struct elf_note_info
{
3019 struct memelfnote
*notes
;
3020 struct target_elf_prstatus
*prstatus
; /* NT_PRSTATUS */
3021 struct target_elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
3023 QTAILQ_HEAD(, elf_thread_status
) thread_list
;
3026 * Current version of ELF coredump doesn't support
3027 * dumping fp regs etc.
3029 elf_fpregset_t
*fpu
;
3030 elf_fpxregset_t
*xfpu
;
3031 int thread_status_size
;
3037 struct vm_area_struct
{
3038 target_ulong vma_start
; /* start vaddr of memory region */
3039 target_ulong vma_end
; /* end vaddr of memory region */
3040 abi_ulong vma_flags
; /* protection etc. flags for the region */
3041 QTAILQ_ENTRY(vm_area_struct
) vma_link
;
3045 QTAILQ_HEAD(, vm_area_struct
) mm_mmap
;
3046 int mm_count
; /* number of mappings */
3049 static struct mm_struct
*vma_init(void);
3050 static void vma_delete(struct mm_struct
*);
3051 static int vma_add_mapping(struct mm_struct
*, target_ulong
,
3052 target_ulong
, abi_ulong
);
3053 static int vma_get_mapping_count(const struct mm_struct
*);
3054 static struct vm_area_struct
*vma_first(const struct mm_struct
*);
3055 static struct vm_area_struct
*vma_next(struct vm_area_struct
*);
3056 static abi_ulong
vma_dump_size(const struct vm_area_struct
*);
3057 static int vma_walker(void *priv
, target_ulong start
, target_ulong end
,
3058 unsigned long flags
);
3060 static void fill_elf_header(struct elfhdr
*, int, uint16_t, uint32_t);
3061 static void fill_note(struct memelfnote
*, const char *, int,
3062 unsigned int, void *);
3063 static void fill_prstatus(struct target_elf_prstatus
*, const TaskState
*, int);
3064 static int fill_psinfo(struct target_elf_prpsinfo
*, const TaskState
*);
3065 static void fill_auxv_note(struct memelfnote
*, const TaskState
*);
3066 static void fill_elf_note_phdr(struct elf_phdr
*, int, off_t
);
3067 static size_t note_size(const struct memelfnote
*);
3068 static void free_note_info(struct elf_note_info
*);
3069 static int fill_note_info(struct elf_note_info
*, long, const CPUArchState
*);
3070 static void fill_thread_info(struct elf_note_info
*, const CPUArchState
*);
3071 static int core_dump_filename(const TaskState
*, char *, size_t);
3073 static int dump_write(int, const void *, size_t);
3074 static int write_note(struct memelfnote
*, int);
3075 static int write_note_info(struct elf_note_info
*, int);
3078 static void bswap_prstatus(struct target_elf_prstatus
*prstatus
)
3080 prstatus
->pr_info
.si_signo
= tswap32(prstatus
->pr_info
.si_signo
);
3081 prstatus
->pr_info
.si_code
= tswap32(prstatus
->pr_info
.si_code
);
3082 prstatus
->pr_info
.si_errno
= tswap32(prstatus
->pr_info
.si_errno
);
3083 prstatus
->pr_cursig
= tswap16(prstatus
->pr_cursig
);
3084 prstatus
->pr_sigpend
= tswapal(prstatus
->pr_sigpend
);
3085 prstatus
->pr_sighold
= tswapal(prstatus
->pr_sighold
);
3086 prstatus
->pr_pid
= tswap32(prstatus
->pr_pid
);
3087 prstatus
->pr_ppid
= tswap32(prstatus
->pr_ppid
);
3088 prstatus
->pr_pgrp
= tswap32(prstatus
->pr_pgrp
);
3089 prstatus
->pr_sid
= tswap32(prstatus
->pr_sid
);
3090 /* cpu times are not filled, so we skip them */
3091 /* regs should be in correct format already */
3092 prstatus
->pr_fpvalid
= tswap32(prstatus
->pr_fpvalid
);
3095 static void bswap_psinfo(struct target_elf_prpsinfo
*psinfo
)
3097 psinfo
->pr_flag
= tswapal(psinfo
->pr_flag
);
3098 psinfo
->pr_uid
= tswap16(psinfo
->pr_uid
);
3099 psinfo
->pr_gid
= tswap16(psinfo
->pr_gid
);
3100 psinfo
->pr_pid
= tswap32(psinfo
->pr_pid
);
3101 psinfo
->pr_ppid
= tswap32(psinfo
->pr_ppid
);
3102 psinfo
->pr_pgrp
= tswap32(psinfo
->pr_pgrp
);
3103 psinfo
->pr_sid
= tswap32(psinfo
->pr_sid
);
3106 static void bswap_note(struct elf_note
*en
)
3108 bswap32s(&en
->n_namesz
);
3109 bswap32s(&en
->n_descsz
);
3110 bswap32s(&en
->n_type
);
3113 static inline void bswap_prstatus(struct target_elf_prstatus
*p
) { }
3114 static inline void bswap_psinfo(struct target_elf_prpsinfo
*p
) {}
3115 static inline void bswap_note(struct elf_note
*en
) { }
3116 #endif /* BSWAP_NEEDED */
3119 * Minimal support for linux memory regions. These are needed
3120 * when we are finding out what memory exactly belongs to
3121 * emulated process. No locks needed here, as long as
3122 * thread that received the signal is stopped.
3125 static struct mm_struct
*vma_init(void)
3127 struct mm_struct
*mm
;
3129 if ((mm
= g_malloc(sizeof (*mm
))) == NULL
)
3133 QTAILQ_INIT(&mm
->mm_mmap
);
3138 static void vma_delete(struct mm_struct
*mm
)
3140 struct vm_area_struct
*vma
;
3142 while ((vma
= vma_first(mm
)) != NULL
) {
3143 QTAILQ_REMOVE(&mm
->mm_mmap
, vma
, vma_link
);
3149 static int vma_add_mapping(struct mm_struct
*mm
, target_ulong start
,
3150 target_ulong end
, abi_ulong flags
)
3152 struct vm_area_struct
*vma
;
3154 if ((vma
= g_malloc0(sizeof (*vma
))) == NULL
)
3157 vma
->vma_start
= start
;
3159 vma
->vma_flags
= flags
;
3161 QTAILQ_INSERT_TAIL(&mm
->mm_mmap
, vma
, vma_link
);
3167 static struct vm_area_struct
*vma_first(const struct mm_struct
*mm
)
3169 return (QTAILQ_FIRST(&mm
->mm_mmap
));
3172 static struct vm_area_struct
*vma_next(struct vm_area_struct
*vma
)
3174 return (QTAILQ_NEXT(vma
, vma_link
));
3177 static int vma_get_mapping_count(const struct mm_struct
*mm
)
3179 return (mm
->mm_count
);
3183 * Calculate file (dump) size of given memory region.
3185 static abi_ulong
vma_dump_size(const struct vm_area_struct
*vma
)
3187 /* if we cannot even read the first page, skip it */
3188 if (!access_ok(VERIFY_READ
, vma
->vma_start
, TARGET_PAGE_SIZE
))
3192 * Usually we don't dump executable pages as they contain
3193 * non-writable code that debugger can read directly from
3194 * target library etc. However, thread stacks are marked
3195 * also executable so we read in first page of given region
3196 * and check whether it contains elf header. If there is
3197 * no elf header, we dump it.
3199 if (vma
->vma_flags
& PROT_EXEC
) {
3200 char page
[TARGET_PAGE_SIZE
];
3202 copy_from_user(page
, vma
->vma_start
, sizeof (page
));
3203 if ((page
[EI_MAG0
] == ELFMAG0
) &&
3204 (page
[EI_MAG1
] == ELFMAG1
) &&
3205 (page
[EI_MAG2
] == ELFMAG2
) &&
3206 (page
[EI_MAG3
] == ELFMAG3
)) {
3208 * Mappings are possibly from ELF binary. Don't dump
3215 return (vma
->vma_end
- vma
->vma_start
);
3218 static int vma_walker(void *priv
, target_ulong start
, target_ulong end
,
3219 unsigned long flags
)
3221 struct mm_struct
*mm
= (struct mm_struct
*)priv
;
3223 vma_add_mapping(mm
, start
, end
, flags
);
3227 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
3228 unsigned int sz
, void *data
)
3230 unsigned int namesz
;
3232 namesz
= strlen(name
) + 1;
3234 note
->namesz
= namesz
;
3235 note
->namesz_rounded
= roundup(namesz
, sizeof (int32_t));
3238 note
->datasz_rounded
= roundup(sz
, sizeof (int32_t));
3243 * We calculate rounded up note size here as specified by
3246 note
->notesz
= sizeof (struct elf_note
) +
3247 note
->namesz_rounded
+ note
->datasz_rounded
;
3250 static void fill_elf_header(struct elfhdr
*elf
, int segs
, uint16_t machine
,
3253 (void) memset(elf
, 0, sizeof(*elf
));
3255 (void) memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
3256 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
3257 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
3258 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
3259 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
3261 elf
->e_type
= ET_CORE
;
3262 elf
->e_machine
= machine
;
3263 elf
->e_version
= EV_CURRENT
;
3264 elf
->e_phoff
= sizeof(struct elfhdr
);
3265 elf
->e_flags
= flags
;
3266 elf
->e_ehsize
= sizeof(struct elfhdr
);
3267 elf
->e_phentsize
= sizeof(struct elf_phdr
);
3268 elf
->e_phnum
= segs
;
3273 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, off_t offset
)
3275 phdr
->p_type
= PT_NOTE
;
3276 phdr
->p_offset
= offset
;
3279 phdr
->p_filesz
= sz
;
3284 bswap_phdr(phdr
, 1);
3287 static size_t note_size(const struct memelfnote
*note
)
3289 return (note
->notesz
);
3292 static void fill_prstatus(struct target_elf_prstatus
*prstatus
,
3293 const TaskState
*ts
, int signr
)
3295 (void) memset(prstatus
, 0, sizeof (*prstatus
));
3296 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
3297 prstatus
->pr_pid
= ts
->ts_tid
;
3298 prstatus
->pr_ppid
= getppid();
3299 prstatus
->pr_pgrp
= getpgrp();
3300 prstatus
->pr_sid
= getsid(0);
3302 bswap_prstatus(prstatus
);
3305 static int fill_psinfo(struct target_elf_prpsinfo
*psinfo
, const TaskState
*ts
)
3307 char *base_filename
;
3308 unsigned int i
, len
;
3310 (void) memset(psinfo
, 0, sizeof (*psinfo
));
3312 len
= ts
->info
->arg_end
- ts
->info
->arg_start
;
3313 if (len
>= ELF_PRARGSZ
)
3314 len
= ELF_PRARGSZ
- 1;
3315 if (copy_from_user(&psinfo
->pr_psargs
, ts
->info
->arg_start
, len
))
3317 for (i
= 0; i
< len
; i
++)
3318 if (psinfo
->pr_psargs
[i
] == 0)
3319 psinfo
->pr_psargs
[i
] = ' ';
3320 psinfo
->pr_psargs
[len
] = 0;
3322 psinfo
->pr_pid
= getpid();
3323 psinfo
->pr_ppid
= getppid();
3324 psinfo
->pr_pgrp
= getpgrp();
3325 psinfo
->pr_sid
= getsid(0);
3326 psinfo
->pr_uid
= getuid();
3327 psinfo
->pr_gid
= getgid();
3329 base_filename
= g_path_get_basename(ts
->bprm
->filename
);
3331 * Using strncpy here is fine: at max-length,
3332 * this field is not NUL-terminated.
3334 (void) strncpy(psinfo
->pr_fname
, base_filename
,
3335 sizeof(psinfo
->pr_fname
));
3337 g_free(base_filename
);
3338 bswap_psinfo(psinfo
);
3342 static void fill_auxv_note(struct memelfnote
*note
, const TaskState
*ts
)
3344 elf_addr_t auxv
= (elf_addr_t
)ts
->info
->saved_auxv
;
3345 elf_addr_t orig_auxv
= auxv
;
3347 int len
= ts
->info
->auxv_len
;
3350 * Auxiliary vector is stored in target process stack. It contains
3351 * {type, value} pairs that we need to dump into note. This is not
3352 * strictly necessary but we do it here for sake of completeness.
3355 /* read in whole auxv vector and copy it to memelfnote */
3356 ptr
= lock_user(VERIFY_READ
, orig_auxv
, len
, 0);
3358 fill_note(note
, "CORE", NT_AUXV
, len
, ptr
);
3359 unlock_user(ptr
, auxv
, len
);
3364 * Constructs name of coredump file. We have following convention
3366 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3368 * Returns 0 in case of success, -1 otherwise (errno is set).
3370 static int core_dump_filename(const TaskState
*ts
, char *buf
,
3374 char *base_filename
= NULL
;
3378 assert(bufsize
>= PATH_MAX
);
3380 if (gettimeofday(&tv
, NULL
) < 0) {
3381 (void) fprintf(stderr
, "unable to get current timestamp: %s",
3386 base_filename
= g_path_get_basename(ts
->bprm
->filename
);
3387 (void) strftime(timestamp
, sizeof (timestamp
), "%Y%m%d-%H%M%S",
3388 localtime_r(&tv
.tv_sec
, &tm
));
3389 (void) snprintf(buf
, bufsize
, "qemu_%s_%s_%d.core",
3390 base_filename
, timestamp
, (int)getpid());
3391 g_free(base_filename
);
3396 static int dump_write(int fd
, const void *ptr
, size_t size
)
3398 const char *bufp
= (const char *)ptr
;
3399 ssize_t bytes_written
, bytes_left
;
3400 struct rlimit dumpsize
;
3404 getrlimit(RLIMIT_CORE
, &dumpsize
);
3405 if ((pos
= lseek(fd
, 0, SEEK_CUR
))==-1) {
3406 if (errno
== ESPIPE
) { /* not a seekable stream */
3412 if (dumpsize
.rlim_cur
<= pos
) {
3414 } else if (dumpsize
.rlim_cur
== RLIM_INFINITY
) {
3417 size_t limit_left
=dumpsize
.rlim_cur
- pos
;
3418 bytes_left
= limit_left
>= size
? size
: limit_left
;
3423 * In normal conditions, single write(2) should do but
3424 * in case of socket etc. this mechanism is more portable.
3427 bytes_written
= write(fd
, bufp
, bytes_left
);
3428 if (bytes_written
< 0) {
3432 } else if (bytes_written
== 0) { /* eof */
3435 bufp
+= bytes_written
;
3436 bytes_left
-= bytes_written
;
3437 } while (bytes_left
> 0);
3442 static int write_note(struct memelfnote
*men
, int fd
)
3446 en
.n_namesz
= men
->namesz
;
3447 en
.n_type
= men
->type
;
3448 en
.n_descsz
= men
->datasz
;
3452 if (dump_write(fd
, &en
, sizeof(en
)) != 0)
3454 if (dump_write(fd
, men
->name
, men
->namesz_rounded
) != 0)
3456 if (dump_write(fd
, men
->data
, men
->datasz_rounded
) != 0)
3462 static void fill_thread_info(struct elf_note_info
*info
, const CPUArchState
*env
)
3464 CPUState
*cpu
= env_cpu((CPUArchState
*)env
);
3465 TaskState
*ts
= (TaskState
*)cpu
->opaque
;
3466 struct elf_thread_status
*ets
;
3468 ets
= g_malloc0(sizeof (*ets
));
3469 ets
->num_notes
= 1; /* only prstatus is dumped */
3470 fill_prstatus(&ets
->prstatus
, ts
, 0);
3471 elf_core_copy_regs(&ets
->prstatus
.pr_reg
, env
);
3472 fill_note(&ets
->notes
[0], "CORE", NT_PRSTATUS
, sizeof (ets
->prstatus
),
3475 QTAILQ_INSERT_TAIL(&info
->thread_list
, ets
, ets_link
);
3477 info
->notes_size
+= note_size(&ets
->notes
[0]);
3480 static void init_note_info(struct elf_note_info
*info
)
3482 /* Initialize the elf_note_info structure so that it is at
3483 * least safe to call free_note_info() on it. Must be
3484 * called before calling fill_note_info().
3486 memset(info
, 0, sizeof (*info
));
3487 QTAILQ_INIT(&info
->thread_list
);
3490 static int fill_note_info(struct elf_note_info
*info
,
3491 long signr
, const CPUArchState
*env
)
3494 CPUState
*cpu
= env_cpu((CPUArchState
*)env
);
3495 TaskState
*ts
= (TaskState
*)cpu
->opaque
;
3498 info
->notes
= g_new0(struct memelfnote
, NUMNOTES
);
3499 if (info
->notes
== NULL
)
3501 info
->prstatus
= g_malloc0(sizeof (*info
->prstatus
));
3502 if (info
->prstatus
== NULL
)
3504 info
->psinfo
= g_malloc0(sizeof (*info
->psinfo
));
3505 if (info
->prstatus
== NULL
)
3509 * First fill in status (and registers) of current thread
3510 * including process info & aux vector.
3512 fill_prstatus(info
->prstatus
, ts
, signr
);
3513 elf_core_copy_regs(&info
->prstatus
->pr_reg
, env
);
3514 fill_note(&info
->notes
[0], "CORE", NT_PRSTATUS
,
3515 sizeof (*info
->prstatus
), info
->prstatus
);
3516 fill_psinfo(info
->psinfo
, ts
);
3517 fill_note(&info
->notes
[1], "CORE", NT_PRPSINFO
,
3518 sizeof (*info
->psinfo
), info
->psinfo
);
3519 fill_auxv_note(&info
->notes
[2], ts
);
3522 info
->notes_size
= 0;
3523 for (i
= 0; i
< info
->numnote
; i
++)
3524 info
->notes_size
+= note_size(&info
->notes
[i
]);
3526 /* read and fill status of all threads */
3529 if (cpu
== thread_cpu
) {
3532 fill_thread_info(info
, (CPUArchState
*)cpu
->env_ptr
);
3539 static void free_note_info(struct elf_note_info
*info
)
3541 struct elf_thread_status
*ets
;
3543 while (!QTAILQ_EMPTY(&info
->thread_list
)) {
3544 ets
= QTAILQ_FIRST(&info
->thread_list
);
3545 QTAILQ_REMOVE(&info
->thread_list
, ets
, ets_link
);
3549 g_free(info
->prstatus
);
3550 g_free(info
->psinfo
);
3551 g_free(info
->notes
);
3554 static int write_note_info(struct elf_note_info
*info
, int fd
)
3556 struct elf_thread_status
*ets
;
3559 /* write prstatus, psinfo and auxv for current thread */
3560 for (i
= 0; i
< info
->numnote
; i
++)
3561 if ((error
= write_note(&info
->notes
[i
], fd
)) != 0)
3564 /* write prstatus for each thread */
3565 QTAILQ_FOREACH(ets
, &info
->thread_list
, ets_link
) {
3566 if ((error
= write_note(&ets
->notes
[0], fd
)) != 0)
3574 * Write out ELF coredump.
3576 * See documentation of ELF object file format in:
3577 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3579 * Coredump format in linux is following:
3581 * 0 +----------------------+ \
3582 * | ELF header | ET_CORE |
3583 * +----------------------+ |
3584 * | ELF program headers | |--- headers
3585 * | - NOTE section | |
3586 * | - PT_LOAD sections | |
3587 * +----------------------+ /
3592 * +----------------------+ <-- aligned to target page
3593 * | Process memory dump |
3598 * +----------------------+
3600 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3601 * NT_PRSINFO -> struct elf_prpsinfo
3602 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3604 * Format follows System V format as close as possible. Current
3605 * version limitations are as follows:
3606 * - no floating point registers are dumped
3608 * Function returns 0 in case of success, negative errno otherwise.
3610 * TODO: make this work also during runtime: it should be
3611 * possible to force coredump from running process and then
3612 * continue processing. For example qemu could set up SIGUSR2
3613 * handler (provided that target process haven't registered
3614 * handler for that) that does the dump when signal is received.
3616 static int elf_core_dump(int signr
, const CPUArchState
*env
)
3618 const CPUState
*cpu
= env_cpu((CPUArchState
*)env
);
3619 const TaskState
*ts
= (const TaskState
*)cpu
->opaque
;
3620 struct vm_area_struct
*vma
= NULL
;
3621 char corefile
[PATH_MAX
];
3622 struct elf_note_info info
;
3624 struct elf_phdr phdr
;
3625 struct rlimit dumpsize
;
3626 struct mm_struct
*mm
= NULL
;
3627 off_t offset
= 0, data_offset
= 0;
3631 init_note_info(&info
);
3634 getrlimit(RLIMIT_CORE
, &dumpsize
);
3635 if (dumpsize
.rlim_cur
== 0)
3638 if (core_dump_filename(ts
, corefile
, sizeof (corefile
)) < 0)
3641 if ((fd
= open(corefile
, O_WRONLY
| O_CREAT
,
3642 S_IRUSR
|S_IWUSR
|S_IRGRP
|S_IROTH
)) < 0)
3646 * Walk through target process memory mappings and
3647 * set up structure containing this information. After
3648 * this point vma_xxx functions can be used.
3650 if ((mm
= vma_init()) == NULL
)
3653 walk_memory_regions(mm
, vma_walker
);
3654 segs
= vma_get_mapping_count(mm
);
3657 * Construct valid coredump ELF header. We also
3658 * add one more segment for notes.
3660 fill_elf_header(&elf
, segs
+ 1, ELF_MACHINE
, 0);
3661 if (dump_write(fd
, &elf
, sizeof (elf
)) != 0)
3664 /* fill in the in-memory version of notes */
3665 if (fill_note_info(&info
, signr
, env
) < 0)
3668 offset
+= sizeof (elf
); /* elf header */
3669 offset
+= (segs
+ 1) * sizeof (struct elf_phdr
); /* program headers */
3671 /* write out notes program header */
3672 fill_elf_note_phdr(&phdr
, info
.notes_size
, offset
);
3674 offset
+= info
.notes_size
;
3675 if (dump_write(fd
, &phdr
, sizeof (phdr
)) != 0)
3679 * ELF specification wants data to start at page boundary so
3682 data_offset
= offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
3685 * Write program headers for memory regions mapped in
3686 * the target process.
3688 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
3689 (void) memset(&phdr
, 0, sizeof (phdr
));
3691 phdr
.p_type
= PT_LOAD
;
3692 phdr
.p_offset
= offset
;
3693 phdr
.p_vaddr
= vma
->vma_start
;
3695 phdr
.p_filesz
= vma_dump_size(vma
);
3696 offset
+= phdr
.p_filesz
;
3697 phdr
.p_memsz
= vma
->vma_end
- vma
->vma_start
;
3698 phdr
.p_flags
= vma
->vma_flags
& PROT_READ
? PF_R
: 0;
3699 if (vma
->vma_flags
& PROT_WRITE
)
3700 phdr
.p_flags
|= PF_W
;
3701 if (vma
->vma_flags
& PROT_EXEC
)
3702 phdr
.p_flags
|= PF_X
;
3703 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
3705 bswap_phdr(&phdr
, 1);
3706 if (dump_write(fd
, &phdr
, sizeof(phdr
)) != 0) {
3712 * Next we write notes just after program headers. No
3713 * alignment needed here.
3715 if (write_note_info(&info
, fd
) < 0)
3718 /* align data to page boundary */
3719 if (lseek(fd
, data_offset
, SEEK_SET
) != data_offset
)
3723 * Finally we can dump process memory into corefile as well.
3725 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
3729 end
= vma
->vma_start
+ vma_dump_size(vma
);
3731 for (addr
= vma
->vma_start
; addr
< end
;
3732 addr
+= TARGET_PAGE_SIZE
) {
3733 char page
[TARGET_PAGE_SIZE
];
3737 * Read in page from target process memory and
3738 * write it to coredump file.
3740 error
= copy_from_user(page
, addr
, sizeof (page
));
3742 (void) fprintf(stderr
, "unable to dump " TARGET_ABI_FMT_lx
"\n",
3747 if (dump_write(fd
, page
, TARGET_PAGE_SIZE
) < 0)
3753 free_note_info(&info
);
3762 #endif /* USE_ELF_CORE_DUMP */
3764 void do_init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
3766 init_thread(regs
, infop
);