block: implement the bdrv_reopen_prepare helper for LUKS driver
[qemu/ar7.git] / target / xtensa / op_helper.c
blob7486b9979935d7e9229371a8f02892a777680449
1 /*
2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #include "qemu/osdep.h"
29 #include "qemu/main-loop.h"
30 #include "cpu.h"
31 #include "exec/helper-proto.h"
32 #include "qemu/host-utils.h"
33 #include "exec/exec-all.h"
34 #include "exec/cpu_ldst.h"
35 #include "exec/address-spaces.h"
36 #include "qemu/timer.h"
37 #include "fpu/softfloat.h"
39 void xtensa_cpu_do_unaligned_access(CPUState *cs,
40 vaddr addr, MMUAccessType access_type,
41 int mmu_idx, uintptr_t retaddr)
43 XtensaCPU *cpu = XTENSA_CPU(cs);
44 CPUXtensaState *env = &cpu->env;
46 if (xtensa_option_enabled(env->config, XTENSA_OPTION_UNALIGNED_EXCEPTION) &&
47 !xtensa_option_enabled(env->config, XTENSA_OPTION_HW_ALIGNMENT)) {
48 cpu_restore_state(CPU(cpu), retaddr);
49 HELPER(exception_cause_vaddr)(env,
50 env->pc, LOAD_STORE_ALIGNMENT_CAUSE, addr);
54 void tlb_fill(CPUState *cs, target_ulong vaddr, int size,
55 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
57 XtensaCPU *cpu = XTENSA_CPU(cs);
58 CPUXtensaState *env = &cpu->env;
59 uint32_t paddr;
60 uint32_t page_size;
61 unsigned access;
62 int ret = xtensa_get_physical_addr(env, true, vaddr, access_type, mmu_idx,
63 &paddr, &page_size, &access);
65 qemu_log_mask(CPU_LOG_MMU, "%s(%08x, %d, %d) -> %08x, ret = %d\n",
66 __func__, vaddr, access_type, mmu_idx, paddr, ret);
68 if (ret == 0) {
69 tlb_set_page(cs,
70 vaddr & TARGET_PAGE_MASK,
71 paddr & TARGET_PAGE_MASK,
72 access, mmu_idx, page_size);
73 } else {
74 cpu_restore_state(cs, retaddr);
75 HELPER(exception_cause_vaddr)(env, env->pc, ret, vaddr);
79 void xtensa_cpu_do_unassigned_access(CPUState *cs, hwaddr addr,
80 bool is_write, bool is_exec, int opaque,
81 unsigned size)
83 XtensaCPU *cpu = XTENSA_CPU(cs);
84 CPUXtensaState *env = &cpu->env;
86 HELPER(exception_cause_vaddr)(env, env->pc,
87 is_exec ?
88 INSTR_PIF_ADDR_ERROR_CAUSE :
89 LOAD_STORE_PIF_ADDR_ERROR_CAUSE,
90 is_exec ? addr : cs->mem_io_vaddr);
93 static void tb_invalidate_virtual_addr(CPUXtensaState *env, uint32_t vaddr)
95 uint32_t paddr;
96 uint32_t page_size;
97 unsigned access;
98 int ret = xtensa_get_physical_addr(env, false, vaddr, 2, 0,
99 &paddr, &page_size, &access);
100 if (ret == 0) {
101 tb_invalidate_phys_addr(&address_space_memory, paddr);
105 void HELPER(exception)(CPUXtensaState *env, uint32_t excp)
107 CPUState *cs = CPU(xtensa_env_get_cpu(env));
109 cs->exception_index = excp;
110 if (excp == EXCP_YIELD) {
111 env->yield_needed = 0;
113 if (excp == EXCP_DEBUG) {
114 env->exception_taken = 0;
116 cpu_loop_exit(cs);
119 void HELPER(exception_cause)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
121 uint32_t vector;
123 env->pc = pc;
124 if (env->sregs[PS] & PS_EXCM) {
125 if (env->config->ndepc) {
126 env->sregs[DEPC] = pc;
127 } else {
128 env->sregs[EPC1] = pc;
130 vector = EXC_DOUBLE;
131 } else {
132 env->sregs[EPC1] = pc;
133 vector = (env->sregs[PS] & PS_UM) ? EXC_USER : EXC_KERNEL;
136 env->sregs[EXCCAUSE] = cause;
137 env->sregs[PS] |= PS_EXCM;
139 HELPER(exception)(env, vector);
142 void HELPER(exception_cause_vaddr)(CPUXtensaState *env,
143 uint32_t pc, uint32_t cause, uint32_t vaddr)
145 env->sregs[EXCVADDR] = vaddr;
146 HELPER(exception_cause)(env, pc, cause);
149 void debug_exception_env(CPUXtensaState *env, uint32_t cause)
151 if (xtensa_get_cintlevel(env) < env->config->debug_level) {
152 HELPER(debug_exception)(env, env->pc, cause);
156 void HELPER(debug_exception)(CPUXtensaState *env, uint32_t pc, uint32_t cause)
158 unsigned level = env->config->debug_level;
160 env->pc = pc;
161 env->sregs[DEBUGCAUSE] = cause;
162 env->sregs[EPC1 + level - 1] = pc;
163 env->sregs[EPS2 + level - 2] = env->sregs[PS];
164 env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) | PS_EXCM |
165 (level << PS_INTLEVEL_SHIFT);
166 HELPER(exception)(env, EXC_DEBUG);
169 static void copy_window_from_phys(CPUXtensaState *env,
170 uint32_t window, uint32_t phys, uint32_t n)
172 assert(phys < env->config->nareg);
173 if (phys + n <= env->config->nareg) {
174 memcpy(env->regs + window, env->phys_regs + phys,
175 n * sizeof(uint32_t));
176 } else {
177 uint32_t n1 = env->config->nareg - phys;
178 memcpy(env->regs + window, env->phys_regs + phys,
179 n1 * sizeof(uint32_t));
180 memcpy(env->regs + window + n1, env->phys_regs,
181 (n - n1) * sizeof(uint32_t));
185 static void copy_phys_from_window(CPUXtensaState *env,
186 uint32_t phys, uint32_t window, uint32_t n)
188 assert(phys < env->config->nareg);
189 if (phys + n <= env->config->nareg) {
190 memcpy(env->phys_regs + phys, env->regs + window,
191 n * sizeof(uint32_t));
192 } else {
193 uint32_t n1 = env->config->nareg - phys;
194 memcpy(env->phys_regs + phys, env->regs + window,
195 n1 * sizeof(uint32_t));
196 memcpy(env->phys_regs, env->regs + window + n1,
197 (n - n1) * sizeof(uint32_t));
202 static inline unsigned windowbase_bound(unsigned a, const CPUXtensaState *env)
204 return a & (env->config->nareg / 4 - 1);
207 static inline unsigned windowstart_bit(unsigned a, const CPUXtensaState *env)
209 return 1 << windowbase_bound(a, env);
212 void xtensa_sync_window_from_phys(CPUXtensaState *env)
214 copy_window_from_phys(env, 0, env->sregs[WINDOW_BASE] * 4, 16);
217 void xtensa_sync_phys_from_window(CPUXtensaState *env)
219 copy_phys_from_window(env, env->sregs[WINDOW_BASE] * 4, 0, 16);
222 static void rotate_window_abs(CPUXtensaState *env, uint32_t position)
224 xtensa_sync_phys_from_window(env);
225 env->sregs[WINDOW_BASE] = windowbase_bound(position, env);
226 xtensa_sync_window_from_phys(env);
229 static void rotate_window(CPUXtensaState *env, uint32_t delta)
231 rotate_window_abs(env, env->sregs[WINDOW_BASE] + delta);
234 void HELPER(wsr_windowbase)(CPUXtensaState *env, uint32_t v)
236 rotate_window_abs(env, v);
239 void HELPER(entry)(CPUXtensaState *env, uint32_t pc, uint32_t s, uint32_t imm)
241 int callinc = (env->sregs[PS] & PS_CALLINC) >> PS_CALLINC_SHIFT;
242 if (s > 3 || ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
243 qemu_log_mask(LOG_GUEST_ERROR, "Illegal entry instruction(pc = %08x), PS = %08x\n",
244 pc, env->sregs[PS]);
245 HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
246 } else {
247 uint32_t windowstart = xtensa_replicate_windowstart(env) >>
248 (env->sregs[WINDOW_BASE] + 1);
250 if (windowstart & ((1 << callinc) - 1)) {
251 HELPER(window_check)(env, pc, callinc);
253 env->regs[(callinc << 2) | (s & 3)] = env->regs[s] - imm;
254 rotate_window(env, callinc);
255 env->sregs[WINDOW_START] |=
256 windowstart_bit(env->sregs[WINDOW_BASE], env);
260 void HELPER(window_check)(CPUXtensaState *env, uint32_t pc, uint32_t w)
262 uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
263 uint32_t windowstart = xtensa_replicate_windowstart(env) >>
264 (env->sregs[WINDOW_BASE] + 1);
265 uint32_t n = ctz32(windowstart) + 1;
267 assert(n <= w);
269 rotate_window(env, n);
270 env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
271 (windowbase << PS_OWB_SHIFT) | PS_EXCM;
272 env->sregs[EPC1] = env->pc = pc;
274 switch (ctz32(windowstart >> n)) {
275 case 0:
276 HELPER(exception)(env, EXC_WINDOW_OVERFLOW4);
277 break;
278 case 1:
279 HELPER(exception)(env, EXC_WINDOW_OVERFLOW8);
280 break;
281 default:
282 HELPER(exception)(env, EXC_WINDOW_OVERFLOW12);
283 break;
287 uint32_t HELPER(retw)(CPUXtensaState *env, uint32_t pc)
289 int n = (env->regs[0] >> 30) & 0x3;
290 int m = 0;
291 uint32_t windowbase = windowbase_bound(env->sregs[WINDOW_BASE], env);
292 uint32_t windowstart = env->sregs[WINDOW_START];
293 uint32_t ret_pc = 0;
295 if (windowstart & windowstart_bit(windowbase - 1, env)) {
296 m = 1;
297 } else if (windowstart & windowstart_bit(windowbase - 2, env)) {
298 m = 2;
299 } else if (windowstart & windowstart_bit(windowbase - 3, env)) {
300 m = 3;
303 if (n == 0 || (m != 0 && m != n) ||
304 ((env->sregs[PS] & (PS_WOE | PS_EXCM)) ^ PS_WOE) != 0) {
305 qemu_log_mask(LOG_GUEST_ERROR, "Illegal retw instruction(pc = %08x), "
306 "PS = %08x, m = %d, n = %d\n",
307 pc, env->sregs[PS], m, n);
308 HELPER(exception_cause)(env, pc, ILLEGAL_INSTRUCTION_CAUSE);
309 } else {
310 int owb = windowbase;
312 ret_pc = (pc & 0xc0000000) | (env->regs[0] & 0x3fffffff);
314 rotate_window(env, -n);
315 if (windowstart & windowstart_bit(env->sregs[WINDOW_BASE], env)) {
316 env->sregs[WINDOW_START] &= ~windowstart_bit(owb, env);
317 } else {
318 /* window underflow */
319 env->sregs[PS] = (env->sregs[PS] & ~PS_OWB) |
320 (windowbase << PS_OWB_SHIFT) | PS_EXCM;
321 env->sregs[EPC1] = env->pc = pc;
323 if (n == 1) {
324 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW4);
325 } else if (n == 2) {
326 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW8);
327 } else if (n == 3) {
328 HELPER(exception)(env, EXC_WINDOW_UNDERFLOW12);
332 return ret_pc;
335 void HELPER(rotw)(CPUXtensaState *env, uint32_t imm4)
337 rotate_window(env, imm4);
340 void HELPER(restore_owb)(CPUXtensaState *env)
342 rotate_window_abs(env, (env->sregs[PS] & PS_OWB) >> PS_OWB_SHIFT);
345 void HELPER(movsp)(CPUXtensaState *env, uint32_t pc)
347 if ((env->sregs[WINDOW_START] &
348 (windowstart_bit(env->sregs[WINDOW_BASE] - 3, env) |
349 windowstart_bit(env->sregs[WINDOW_BASE] - 2, env) |
350 windowstart_bit(env->sregs[WINDOW_BASE] - 1, env))) == 0) {
351 HELPER(exception_cause)(env, pc, ALLOCA_CAUSE);
355 void HELPER(wsr_lbeg)(CPUXtensaState *env, uint32_t v)
357 if (env->sregs[LBEG] != v) {
358 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
359 env->sregs[LBEG] = v;
363 void HELPER(wsr_lend)(CPUXtensaState *env, uint32_t v)
365 if (env->sregs[LEND] != v) {
366 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
367 env->sregs[LEND] = v;
368 tb_invalidate_virtual_addr(env, env->sregs[LEND] - 1);
372 void HELPER(dump_state)(CPUXtensaState *env)
374 XtensaCPU *cpu = xtensa_env_get_cpu(env);
376 cpu_dump_state(CPU(cpu), stderr, fprintf, 0);
379 void HELPER(waiti)(CPUXtensaState *env, uint32_t pc, uint32_t intlevel)
381 CPUState *cpu;
383 env->pc = pc;
384 env->sregs[PS] = (env->sregs[PS] & ~PS_INTLEVEL) |
385 (intlevel << PS_INTLEVEL_SHIFT);
387 qemu_mutex_lock_iothread();
388 check_interrupts(env);
389 qemu_mutex_unlock_iothread();
391 if (env->pending_irq_level) {
392 cpu_loop_exit(CPU(xtensa_env_get_cpu(env)));
393 return;
396 cpu = CPU(xtensa_env_get_cpu(env));
397 cpu->halted = 1;
398 HELPER(exception)(env, EXCP_HLT);
401 void HELPER(update_ccount)(CPUXtensaState *env)
403 uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
405 env->ccount_time = now;
406 env->sregs[CCOUNT] = env->ccount_base +
407 (uint32_t)((now - env->time_base) *
408 env->config->clock_freq_khz / 1000000);
411 void HELPER(wsr_ccount)(CPUXtensaState *env, uint32_t v)
413 int i;
415 HELPER(update_ccount)(env);
416 env->ccount_base += v - env->sregs[CCOUNT];
417 for (i = 0; i < env->config->nccompare; ++i) {
418 HELPER(update_ccompare)(env, i);
422 void HELPER(update_ccompare)(CPUXtensaState *env, uint32_t i)
424 uint64_t dcc;
426 HELPER(update_ccount)(env);
427 dcc = (uint64_t)(env->sregs[CCOMPARE + i] - env->sregs[CCOUNT] - 1) + 1;
428 timer_mod(env->ccompare[i].timer,
429 env->ccount_time + (dcc * 1000000) / env->config->clock_freq_khz);
430 env->yield_needed = 1;
433 void HELPER(check_interrupts)(CPUXtensaState *env)
435 qemu_mutex_lock_iothread();
436 check_interrupts(env);
437 qemu_mutex_unlock_iothread();
440 void HELPER(itlb_hit_test)(CPUXtensaState *env, uint32_t vaddr)
442 get_page_addr_code(env, vaddr);
446 * Check vaddr accessibility/cache attributes and raise an exception if
447 * specified by the ATOMCTL SR.
449 * Note: local memory exclusion is not implemented
451 void HELPER(check_atomctl)(CPUXtensaState *env, uint32_t pc, uint32_t vaddr)
453 uint32_t paddr, page_size, access;
454 uint32_t atomctl = env->sregs[ATOMCTL];
455 int rc = xtensa_get_physical_addr(env, true, vaddr, 1,
456 xtensa_get_cring(env), &paddr, &page_size, &access);
459 * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
460 * see opcode description in the ISA
462 if (rc == 0 &&
463 (access & (PAGE_READ | PAGE_WRITE)) != (PAGE_READ | PAGE_WRITE)) {
464 rc = STORE_PROHIBITED_CAUSE;
467 if (rc) {
468 HELPER(exception_cause_vaddr)(env, pc, rc, vaddr);
472 * When data cache is not configured use ATOMCTL bypass field.
473 * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
474 * under the Conditional Store Option.
476 if (!xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
477 access = PAGE_CACHE_BYPASS;
480 switch (access & PAGE_CACHE_MASK) {
481 case PAGE_CACHE_WB:
482 atomctl >>= 2;
483 /* fall through */
484 case PAGE_CACHE_WT:
485 atomctl >>= 2;
486 /* fall through */
487 case PAGE_CACHE_BYPASS:
488 if ((atomctl & 0x3) == 0) {
489 HELPER(exception_cause_vaddr)(env, pc,
490 LOAD_STORE_ERROR_CAUSE, vaddr);
492 break;
494 case PAGE_CACHE_ISOLATE:
495 HELPER(exception_cause_vaddr)(env, pc,
496 LOAD_STORE_ERROR_CAUSE, vaddr);
497 break;
499 default:
500 break;
504 void HELPER(wsr_memctl)(CPUXtensaState *env, uint32_t v)
506 if (xtensa_option_enabled(env->config, XTENSA_OPTION_ICACHE)) {
507 if (extract32(v, MEMCTL_IUSEWAYS_SHIFT, MEMCTL_IUSEWAYS_LEN) >
508 env->config->icache_ways) {
509 deposit32(v, MEMCTL_IUSEWAYS_SHIFT, MEMCTL_IUSEWAYS_LEN,
510 env->config->icache_ways);
513 if (xtensa_option_enabled(env->config, XTENSA_OPTION_DCACHE)) {
514 if (extract32(v, MEMCTL_DUSEWAYS_SHIFT, MEMCTL_DUSEWAYS_LEN) >
515 env->config->dcache_ways) {
516 deposit32(v, MEMCTL_DUSEWAYS_SHIFT, MEMCTL_DUSEWAYS_LEN,
517 env->config->dcache_ways);
519 if (extract32(v, MEMCTL_DALLOCWAYS_SHIFT, MEMCTL_DALLOCWAYS_LEN) >
520 env->config->dcache_ways) {
521 deposit32(v, MEMCTL_DALLOCWAYS_SHIFT, MEMCTL_DALLOCWAYS_LEN,
522 env->config->dcache_ways);
525 env->sregs[MEMCTL] = v & env->config->memctl_mask;
528 void HELPER(wsr_rasid)(CPUXtensaState *env, uint32_t v)
530 XtensaCPU *cpu = xtensa_env_get_cpu(env);
532 v = (v & 0xffffff00) | 0x1;
533 if (v != env->sregs[RASID]) {
534 env->sregs[RASID] = v;
535 tlb_flush(CPU(cpu));
539 static uint32_t get_page_size(const CPUXtensaState *env, bool dtlb, uint32_t way)
541 uint32_t tlbcfg = env->sregs[dtlb ? DTLBCFG : ITLBCFG];
543 switch (way) {
544 case 4:
545 return (tlbcfg >> 16) & 0x3;
547 case 5:
548 return (tlbcfg >> 20) & 0x1;
550 case 6:
551 return (tlbcfg >> 24) & 0x1;
553 default:
554 return 0;
559 * Get bit mask for the virtual address bits translated by the TLB way
561 uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
563 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
564 bool varway56 = dtlb ?
565 env->config->dtlb.varway56 :
566 env->config->itlb.varway56;
568 switch (way) {
569 case 4:
570 return 0xfff00000 << get_page_size(env, dtlb, way) * 2;
572 case 5:
573 if (varway56) {
574 return 0xf8000000 << get_page_size(env, dtlb, way);
575 } else {
576 return 0xf8000000;
579 case 6:
580 if (varway56) {
581 return 0xf0000000 << (1 - get_page_size(env, dtlb, way));
582 } else {
583 return 0xf0000000;
586 default:
587 return 0xfffff000;
589 } else {
590 return REGION_PAGE_MASK;
595 * Get bit mask for the 'VPN without index' field.
596 * See ISA, 4.6.5.6, data format for RxTLB0
598 static uint32_t get_vpn_mask(const CPUXtensaState *env, bool dtlb, uint32_t way)
600 if (way < 4) {
601 bool is32 = (dtlb ?
602 env->config->dtlb.nrefillentries :
603 env->config->itlb.nrefillentries) == 32;
604 return is32 ? 0xffff8000 : 0xffffc000;
605 } else if (way == 4) {
606 return xtensa_tlb_get_addr_mask(env, dtlb, way) << 2;
607 } else if (way <= 6) {
608 uint32_t mask = xtensa_tlb_get_addr_mask(env, dtlb, way);
609 bool varway56 = dtlb ?
610 env->config->dtlb.varway56 :
611 env->config->itlb.varway56;
613 if (varway56) {
614 return mask << (way == 5 ? 2 : 3);
615 } else {
616 return mask << 1;
618 } else {
619 return 0xfffff000;
624 * Split virtual address into VPN (with index) and entry index
625 * for the given TLB way
627 void split_tlb_entry_spec_way(const CPUXtensaState *env, uint32_t v, bool dtlb,
628 uint32_t *vpn, uint32_t wi, uint32_t *ei)
630 bool varway56 = dtlb ?
631 env->config->dtlb.varway56 :
632 env->config->itlb.varway56;
634 if (!dtlb) {
635 wi &= 7;
638 if (wi < 4) {
639 bool is32 = (dtlb ?
640 env->config->dtlb.nrefillentries :
641 env->config->itlb.nrefillentries) == 32;
642 *ei = (v >> 12) & (is32 ? 0x7 : 0x3);
643 } else {
644 switch (wi) {
645 case 4:
647 uint32_t eibase = 20 + get_page_size(env, dtlb, wi) * 2;
648 *ei = (v >> eibase) & 0x3;
650 break;
652 case 5:
653 if (varway56) {
654 uint32_t eibase = 27 + get_page_size(env, dtlb, wi);
655 *ei = (v >> eibase) & 0x3;
656 } else {
657 *ei = (v >> 27) & 0x1;
659 break;
661 case 6:
662 if (varway56) {
663 uint32_t eibase = 29 - get_page_size(env, dtlb, wi);
664 *ei = (v >> eibase) & 0x7;
665 } else {
666 *ei = (v >> 28) & 0x1;
668 break;
670 default:
671 *ei = 0;
672 break;
675 *vpn = v & xtensa_tlb_get_addr_mask(env, dtlb, wi);
679 * Split TLB address into TLB way, entry index and VPN (with index).
680 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
682 static void split_tlb_entry_spec(CPUXtensaState *env, uint32_t v, bool dtlb,
683 uint32_t *vpn, uint32_t *wi, uint32_t *ei)
685 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
686 *wi = v & (dtlb ? 0xf : 0x7);
687 split_tlb_entry_spec_way(env, v, dtlb, vpn, *wi, ei);
688 } else {
689 *vpn = v & REGION_PAGE_MASK;
690 *wi = 0;
691 *ei = (v >> 29) & 0x7;
695 static xtensa_tlb_entry *get_tlb_entry(CPUXtensaState *env,
696 uint32_t v, bool dtlb, uint32_t *pwi)
698 uint32_t vpn;
699 uint32_t wi;
700 uint32_t ei;
702 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
703 if (pwi) {
704 *pwi = wi;
706 return xtensa_tlb_get_entry(env, dtlb, wi, ei);
709 uint32_t HELPER(rtlb0)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
711 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
712 uint32_t wi;
713 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
714 return (entry->vaddr & get_vpn_mask(env, dtlb, wi)) | entry->asid;
715 } else {
716 return v & REGION_PAGE_MASK;
720 uint32_t HELPER(rtlb1)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
722 const xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, NULL);
723 return entry->paddr | entry->attr;
726 void HELPER(itlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
728 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
729 uint32_t wi;
730 xtensa_tlb_entry *entry = get_tlb_entry(env, v, dtlb, &wi);
731 if (entry->variable && entry->asid) {
732 tlb_flush_page(CPU(xtensa_env_get_cpu(env)), entry->vaddr);
733 entry->asid = 0;
738 uint32_t HELPER(ptlb)(CPUXtensaState *env, uint32_t v, uint32_t dtlb)
740 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
741 uint32_t wi;
742 uint32_t ei;
743 uint8_t ring;
744 int res = xtensa_tlb_lookup(env, v, dtlb, &wi, &ei, &ring);
746 switch (res) {
747 case 0:
748 if (ring >= xtensa_get_ring(env)) {
749 return (v & 0xfffff000) | wi | (dtlb ? 0x10 : 0x8);
751 break;
753 case INST_TLB_MULTI_HIT_CAUSE:
754 case LOAD_STORE_TLB_MULTI_HIT_CAUSE:
755 HELPER(exception_cause_vaddr)(env, env->pc, res, v);
756 break;
758 return 0;
759 } else {
760 return (v & REGION_PAGE_MASK) | 0x1;
764 void xtensa_tlb_set_entry_mmu(const CPUXtensaState *env,
765 xtensa_tlb_entry *entry, bool dtlb,
766 unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
768 entry->vaddr = vpn;
769 entry->paddr = pte & xtensa_tlb_get_addr_mask(env, dtlb, wi);
770 entry->asid = (env->sregs[RASID] >> ((pte >> 1) & 0x18)) & 0xff;
771 entry->attr = pte & 0xf;
774 void xtensa_tlb_set_entry(CPUXtensaState *env, bool dtlb,
775 unsigned wi, unsigned ei, uint32_t vpn, uint32_t pte)
777 XtensaCPU *cpu = xtensa_env_get_cpu(env);
778 CPUState *cs = CPU(cpu);
779 xtensa_tlb_entry *entry = xtensa_tlb_get_entry(env, dtlb, wi, ei);
781 if (xtensa_option_enabled(env->config, XTENSA_OPTION_MMU)) {
782 if (entry->variable) {
783 if (entry->asid) {
784 tlb_flush_page(cs, entry->vaddr);
786 xtensa_tlb_set_entry_mmu(env, entry, dtlb, wi, ei, vpn, pte);
787 tlb_flush_page(cs, entry->vaddr);
788 } else {
789 qemu_log_mask(LOG_GUEST_ERROR, "%s %d, %d, %d trying to set immutable entry\n",
790 __func__, dtlb, wi, ei);
792 } else {
793 tlb_flush_page(cs, entry->vaddr);
794 if (xtensa_option_enabled(env->config,
795 XTENSA_OPTION_REGION_TRANSLATION)) {
796 entry->paddr = pte & REGION_PAGE_MASK;
798 entry->attr = pte & 0xf;
802 void HELPER(wtlb)(CPUXtensaState *env, uint32_t p, uint32_t v, uint32_t dtlb)
804 uint32_t vpn;
805 uint32_t wi;
806 uint32_t ei;
807 split_tlb_entry_spec(env, v, dtlb, &vpn, &wi, &ei);
808 xtensa_tlb_set_entry(env, dtlb, wi, ei, vpn, p);
812 void HELPER(wsr_ibreakenable)(CPUXtensaState *env, uint32_t v)
814 uint32_t change = v ^ env->sregs[IBREAKENABLE];
815 unsigned i;
817 for (i = 0; i < env->config->nibreak; ++i) {
818 if (change & (1 << i)) {
819 tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
822 env->sregs[IBREAKENABLE] = v & ((1 << env->config->nibreak) - 1);
825 void HELPER(wsr_ibreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
827 if (env->sregs[IBREAKENABLE] & (1 << i) && env->sregs[IBREAKA + i] != v) {
828 tb_invalidate_virtual_addr(env, env->sregs[IBREAKA + i]);
829 tb_invalidate_virtual_addr(env, v);
831 env->sregs[IBREAKA + i] = v;
834 static void set_dbreak(CPUXtensaState *env, unsigned i, uint32_t dbreaka,
835 uint32_t dbreakc)
837 CPUState *cs = CPU(xtensa_env_get_cpu(env));
838 int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
839 uint32_t mask = dbreakc | ~DBREAKC_MASK;
841 if (env->cpu_watchpoint[i]) {
842 cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
844 if (dbreakc & DBREAKC_SB) {
845 flags |= BP_MEM_WRITE;
847 if (dbreakc & DBREAKC_LB) {
848 flags |= BP_MEM_READ;
850 /* contiguous mask after inversion is one less than some power of 2 */
851 if ((~mask + 1) & ~mask) {
852 qemu_log_mask(LOG_GUEST_ERROR, "DBREAKC mask is not contiguous: 0x%08x\n", dbreakc);
853 /* cut mask after the first zero bit */
854 mask = 0xffffffff << (32 - clo32(mask));
856 if (cpu_watchpoint_insert(cs, dbreaka & mask, ~mask + 1,
857 flags, &env->cpu_watchpoint[i])) {
858 env->cpu_watchpoint[i] = NULL;
859 qemu_log_mask(LOG_GUEST_ERROR, "Failed to set data breakpoint at 0x%08x/%d\n",
860 dbreaka & mask, ~mask + 1);
864 void HELPER(wsr_dbreaka)(CPUXtensaState *env, uint32_t i, uint32_t v)
866 uint32_t dbreakc = env->sregs[DBREAKC + i];
868 if ((dbreakc & DBREAKC_SB_LB) &&
869 env->sregs[DBREAKA + i] != v) {
870 set_dbreak(env, i, v, dbreakc);
872 env->sregs[DBREAKA + i] = v;
875 void HELPER(wsr_dbreakc)(CPUXtensaState *env, uint32_t i, uint32_t v)
877 if ((env->sregs[DBREAKC + i] ^ v) & (DBREAKC_SB_LB | DBREAKC_MASK)) {
878 if (v & DBREAKC_SB_LB) {
879 set_dbreak(env, i, env->sregs[DBREAKA + i], v);
880 } else {
881 if (env->cpu_watchpoint[i]) {
882 CPUState *cs = CPU(xtensa_env_get_cpu(env));
884 cpu_watchpoint_remove_by_ref(cs, env->cpu_watchpoint[i]);
885 env->cpu_watchpoint[i] = NULL;
889 env->sregs[DBREAKC + i] = v;
892 void HELPER(wur_fcr)(CPUXtensaState *env, uint32_t v)
894 static const int rounding_mode[] = {
895 float_round_nearest_even,
896 float_round_to_zero,
897 float_round_up,
898 float_round_down,
901 env->uregs[FCR] = v & 0xfffff07f;
902 set_float_rounding_mode(rounding_mode[v & 3], &env->fp_status);
905 float32 HELPER(abs_s)(float32 v)
907 return float32_abs(v);
910 float32 HELPER(neg_s)(float32 v)
912 return float32_chs(v);
915 float32 HELPER(add_s)(CPUXtensaState *env, float32 a, float32 b)
917 return float32_add(a, b, &env->fp_status);
920 float32 HELPER(sub_s)(CPUXtensaState *env, float32 a, float32 b)
922 return float32_sub(a, b, &env->fp_status);
925 float32 HELPER(mul_s)(CPUXtensaState *env, float32 a, float32 b)
927 return float32_mul(a, b, &env->fp_status);
930 float32 HELPER(madd_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
932 return float32_muladd(b, c, a, 0,
933 &env->fp_status);
936 float32 HELPER(msub_s)(CPUXtensaState *env, float32 a, float32 b, float32 c)
938 return float32_muladd(b, c, a, float_muladd_negate_product,
939 &env->fp_status);
942 uint32_t HELPER(ftoi)(float32 v, uint32_t rounding_mode, uint32_t scale)
944 float_status fp_status = {0};
946 set_float_rounding_mode(rounding_mode, &fp_status);
947 return float32_to_int32(
948 float32_scalbn(v, scale, &fp_status), &fp_status);
951 uint32_t HELPER(ftoui)(float32 v, uint32_t rounding_mode, uint32_t scale)
953 float_status fp_status = {0};
954 float32 res;
956 set_float_rounding_mode(rounding_mode, &fp_status);
958 res = float32_scalbn(v, scale, &fp_status);
960 if (float32_is_neg(v) && !float32_is_any_nan(v)) {
961 return float32_to_int32(res, &fp_status);
962 } else {
963 return float32_to_uint32(res, &fp_status);
967 float32 HELPER(itof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
969 return float32_scalbn(int32_to_float32(v, &env->fp_status),
970 (int32_t)scale, &env->fp_status);
973 float32 HELPER(uitof)(CPUXtensaState *env, uint32_t v, uint32_t scale)
975 return float32_scalbn(uint32_to_float32(v, &env->fp_status),
976 (int32_t)scale, &env->fp_status);
979 static inline void set_br(CPUXtensaState *env, bool v, uint32_t br)
981 if (v) {
982 env->sregs[BR] |= br;
983 } else {
984 env->sregs[BR] &= ~br;
988 void HELPER(un_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
990 set_br(env, float32_unordered_quiet(a, b, &env->fp_status), br);
993 void HELPER(oeq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
995 set_br(env, float32_eq_quiet(a, b, &env->fp_status), br);
998 void HELPER(ueq_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1000 int v = float32_compare_quiet(a, b, &env->fp_status);
1001 set_br(env, v == float_relation_equal || v == float_relation_unordered, br);
1004 void HELPER(olt_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1006 set_br(env, float32_lt_quiet(a, b, &env->fp_status), br);
1009 void HELPER(ult_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1011 int v = float32_compare_quiet(a, b, &env->fp_status);
1012 set_br(env, v == float_relation_less || v == float_relation_unordered, br);
1015 void HELPER(ole_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1017 set_br(env, float32_le_quiet(a, b, &env->fp_status), br);
1020 void HELPER(ule_s)(CPUXtensaState *env, uint32_t br, float32 a, float32 b)
1022 int v = float32_compare_quiet(a, b, &env->fp_status);
1023 set_br(env, v != float_relation_greater, br);
1026 uint32_t HELPER(rer)(CPUXtensaState *env, uint32_t addr)
1028 return address_space_ldl(env->address_space_er, addr,
1029 MEMTXATTRS_UNSPECIFIED, NULL);
1032 void HELPER(wer)(CPUXtensaState *env, uint32_t data, uint32_t addr)
1034 address_space_stl(env->address_space_er, addr, data,
1035 MEMTXATTRS_UNSPECIFIED, NULL);