block: implement the bdrv_reopen_prepare helper for LUKS driver
[qemu/ar7.git] / target / s390x / kvm.c
blobf570896dc16b91776fe8375254baafecb32f5c43
1 /*
2 * QEMU S390x KVM implementation
4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5 * Copyright IBM Corp. 2012
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * Contributions after 2012-10-29 are licensed under the terms of the
18 * GNU GPL, version 2 or (at your option) any later version.
20 * You should have received a copy of the GNU (Lesser) General Public
21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include <sys/ioctl.h>
27 #include <linux/kvm.h>
28 #include <asm/ptrace.h>
30 #include "qemu-common.h"
31 #include "cpu.h"
32 #include "internal.h"
33 #include "kvm_s390x.h"
34 #include "qapi/error.h"
35 #include "qemu/error-report.h"
36 #include "qemu/timer.h"
37 #include "sysemu/sysemu.h"
38 #include "sysemu/hw_accel.h"
39 #include "hw/hw.h"
40 #include "sysemu/device_tree.h"
41 #include "exec/gdbstub.h"
42 #include "exec/address-spaces.h"
43 #include "trace.h"
44 #include "hw/s390x/s390-pci-inst.h"
45 #include "hw/s390x/s390-pci-bus.h"
46 #include "hw/s390x/ipl.h"
47 #include "hw/s390x/ebcdic.h"
48 #include "exec/memattrs.h"
49 #include "hw/s390x/s390-virtio-ccw.h"
50 #include "hw/s390x/s390-virtio-hcall.h"
52 #ifndef DEBUG_KVM
53 #define DEBUG_KVM 0
54 #endif
56 #define DPRINTF(fmt, ...) do { \
57 if (DEBUG_KVM) { \
58 fprintf(stderr, fmt, ## __VA_ARGS__); \
59 } \
60 } while (0)
62 #define kvm_vm_check_mem_attr(s, attr) \
63 kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr)
65 #define IPA0_DIAG 0x8300
66 #define IPA0_SIGP 0xae00
67 #define IPA0_B2 0xb200
68 #define IPA0_B9 0xb900
69 #define IPA0_EB 0xeb00
70 #define IPA0_E3 0xe300
72 #define PRIV_B2_SCLP_CALL 0x20
73 #define PRIV_B2_CSCH 0x30
74 #define PRIV_B2_HSCH 0x31
75 #define PRIV_B2_MSCH 0x32
76 #define PRIV_B2_SSCH 0x33
77 #define PRIV_B2_STSCH 0x34
78 #define PRIV_B2_TSCH 0x35
79 #define PRIV_B2_TPI 0x36
80 #define PRIV_B2_SAL 0x37
81 #define PRIV_B2_RSCH 0x38
82 #define PRIV_B2_STCRW 0x39
83 #define PRIV_B2_STCPS 0x3a
84 #define PRIV_B2_RCHP 0x3b
85 #define PRIV_B2_SCHM 0x3c
86 #define PRIV_B2_CHSC 0x5f
87 #define PRIV_B2_SIGA 0x74
88 #define PRIV_B2_XSCH 0x76
90 #define PRIV_EB_SQBS 0x8a
91 #define PRIV_EB_PCISTB 0xd0
92 #define PRIV_EB_SIC 0xd1
94 #define PRIV_B9_EQBS 0x9c
95 #define PRIV_B9_CLP 0xa0
96 #define PRIV_B9_PCISTG 0xd0
97 #define PRIV_B9_PCILG 0xd2
98 #define PRIV_B9_RPCIT 0xd3
100 #define PRIV_E3_MPCIFC 0xd0
101 #define PRIV_E3_STPCIFC 0xd4
103 #define DIAG_TIMEREVENT 0x288
104 #define DIAG_IPL 0x308
105 #define DIAG_KVM_HYPERCALL 0x500
106 #define DIAG_KVM_BREAKPOINT 0x501
108 #define ICPT_INSTRUCTION 0x04
109 #define ICPT_PROGRAM 0x08
110 #define ICPT_EXT_INT 0x14
111 #define ICPT_WAITPSW 0x1c
112 #define ICPT_SOFT_INTERCEPT 0x24
113 #define ICPT_CPU_STOP 0x28
114 #define ICPT_OPEREXC 0x2c
115 #define ICPT_IO 0x40
117 #define NR_LOCAL_IRQS 32
119 * Needs to be big enough to contain max_cpus emergency signals
120 * and in addition NR_LOCAL_IRQS interrupts
122 #define VCPU_IRQ_BUF_SIZE (sizeof(struct kvm_s390_irq) * \
123 (max_cpus + NR_LOCAL_IRQS))
125 static CPUWatchpoint hw_watchpoint;
127 * We don't use a list because this structure is also used to transmit the
128 * hardware breakpoints to the kernel.
130 static struct kvm_hw_breakpoint *hw_breakpoints;
131 static int nb_hw_breakpoints;
133 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
134 KVM_CAP_LAST_INFO
137 static int cap_sync_regs;
138 static int cap_async_pf;
139 static int cap_mem_op;
140 static int cap_s390_irq;
141 static int cap_ri;
142 static int cap_gs;
144 static int active_cmma;
146 static void *legacy_s390_alloc(size_t size, uint64_t *align, bool shared);
148 static int kvm_s390_query_mem_limit(uint64_t *memory_limit)
150 struct kvm_device_attr attr = {
151 .group = KVM_S390_VM_MEM_CTRL,
152 .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
153 .addr = (uint64_t) memory_limit,
156 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
159 int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit)
161 int rc;
163 struct kvm_device_attr attr = {
164 .group = KVM_S390_VM_MEM_CTRL,
165 .attr = KVM_S390_VM_MEM_LIMIT_SIZE,
166 .addr = (uint64_t) &new_limit,
169 if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) {
170 return 0;
173 rc = kvm_s390_query_mem_limit(hw_limit);
174 if (rc) {
175 return rc;
176 } else if (*hw_limit < new_limit) {
177 return -E2BIG;
180 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
183 int kvm_s390_cmma_active(void)
185 return active_cmma;
188 static bool kvm_s390_cmma_available(void)
190 static bool initialized, value;
192 if (!initialized) {
193 initialized = true;
194 value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) &&
195 kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA);
197 return value;
200 void kvm_s390_cmma_reset(void)
202 int rc;
203 struct kvm_device_attr attr = {
204 .group = KVM_S390_VM_MEM_CTRL,
205 .attr = KVM_S390_VM_MEM_CLR_CMMA,
208 if (!kvm_s390_cmma_active()) {
209 return;
212 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
213 trace_kvm_clear_cmma(rc);
216 static void kvm_s390_enable_cmma(void)
218 int rc;
219 struct kvm_device_attr attr = {
220 .group = KVM_S390_VM_MEM_CTRL,
221 .attr = KVM_S390_VM_MEM_ENABLE_CMMA,
224 if (mem_path) {
225 warn_report("CMM will not be enabled because it is not "
226 "compatible with hugetlbfs.");
227 return;
229 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
230 active_cmma = !rc;
231 trace_kvm_enable_cmma(rc);
234 static void kvm_s390_set_attr(uint64_t attr)
236 struct kvm_device_attr attribute = {
237 .group = KVM_S390_VM_CRYPTO,
238 .attr = attr,
241 int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute);
243 if (ret) {
244 error_report("Failed to set crypto device attribute %lu: %s",
245 attr, strerror(-ret));
249 static void kvm_s390_init_aes_kw(void)
251 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW;
253 if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap",
254 NULL)) {
255 attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW;
258 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
259 kvm_s390_set_attr(attr);
263 static void kvm_s390_init_dea_kw(void)
265 uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW;
267 if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap",
268 NULL)) {
269 attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW;
272 if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) {
273 kvm_s390_set_attr(attr);
277 void kvm_s390_crypto_reset(void)
279 if (s390_has_feat(S390_FEAT_MSA_EXT_3)) {
280 kvm_s390_init_aes_kw();
281 kvm_s390_init_dea_kw();
285 int kvm_arch_init(MachineState *ms, KVMState *s)
287 MachineClass *mc = MACHINE_GET_CLASS(ms);
289 mc->default_cpu_type = S390_CPU_TYPE_NAME("host");
290 cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS);
291 cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
292 cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP);
293 cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ);
295 if (!kvm_check_extension(s, KVM_CAP_S390_GMAP)
296 || !kvm_check_extension(s, KVM_CAP_S390_COW)) {
297 phys_mem_set_alloc(legacy_s390_alloc);
300 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0);
301 kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0);
302 kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0);
303 if (ri_allowed()) {
304 if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) {
305 cap_ri = 1;
308 if (cpu_model_allowed()) {
309 if (kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0) == 0) {
310 cap_gs = 1;
315 * The migration interface for ais was introduced with kernel 4.13
316 * but the capability itself had been active since 4.12. As migration
317 * support is considered necessary let's disable ais in the 2.10
318 * machine.
320 /* kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0); */
322 return 0;
325 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
327 return 0;
330 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
332 return cpu->cpu_index;
335 int kvm_arch_init_vcpu(CPUState *cs)
337 S390CPU *cpu = S390_CPU(cs);
338 kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state);
339 cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE);
340 return 0;
343 void kvm_s390_reset_vcpu(S390CPU *cpu)
345 CPUState *cs = CPU(cpu);
347 /* The initial reset call is needed here to reset in-kernel
348 * vcpu data that we can't access directly from QEMU
349 * (i.e. with older kernels which don't support sync_regs/ONE_REG).
350 * Before this ioctl cpu_synchronize_state() is called in common kvm
351 * code (kvm-all) */
352 if (kvm_vcpu_ioctl(cs, KVM_S390_INITIAL_RESET, NULL)) {
353 error_report("Initial CPU reset failed on CPU %i", cs->cpu_index);
357 static int can_sync_regs(CPUState *cs, int regs)
359 return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs;
362 int kvm_arch_put_registers(CPUState *cs, int level)
364 S390CPU *cpu = S390_CPU(cs);
365 CPUS390XState *env = &cpu->env;
366 struct kvm_sregs sregs;
367 struct kvm_regs regs;
368 struct kvm_fpu fpu = {};
369 int r;
370 int i;
372 /* always save the PSW and the GPRS*/
373 cs->kvm_run->psw_addr = env->psw.addr;
374 cs->kvm_run->psw_mask = env->psw.mask;
376 if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
377 for (i = 0; i < 16; i++) {
378 cs->kvm_run->s.regs.gprs[i] = env->regs[i];
379 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
381 } else {
382 for (i = 0; i < 16; i++) {
383 regs.gprs[i] = env->regs[i];
385 r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
386 if (r < 0) {
387 return r;
391 if (can_sync_regs(cs, KVM_SYNC_VRS)) {
392 for (i = 0; i < 32; i++) {
393 cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0].ll;
394 cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1].ll;
396 cs->kvm_run->s.regs.fpc = env->fpc;
397 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS;
398 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
399 for (i = 0; i < 16; i++) {
400 cs->kvm_run->s.regs.fprs[i] = get_freg(env, i)->ll;
402 cs->kvm_run->s.regs.fpc = env->fpc;
403 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS;
404 } else {
405 /* Floating point */
406 for (i = 0; i < 16; i++) {
407 fpu.fprs[i] = get_freg(env, i)->ll;
409 fpu.fpc = env->fpc;
411 r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu);
412 if (r < 0) {
413 return r;
417 /* Do we need to save more than that? */
418 if (level == KVM_PUT_RUNTIME_STATE) {
419 return 0;
422 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
423 cs->kvm_run->s.regs.cputm = env->cputm;
424 cs->kvm_run->s.regs.ckc = env->ckc;
425 cs->kvm_run->s.regs.todpr = env->todpr;
426 cs->kvm_run->s.regs.gbea = env->gbea;
427 cs->kvm_run->s.regs.pp = env->pp;
428 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0;
429 } else {
431 * These ONE_REGS are not protected by a capability. As they are only
432 * necessary for migration we just trace a possible error, but don't
433 * return with an error return code.
435 kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
436 kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
437 kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
438 kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
439 kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp);
442 if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
443 memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64);
444 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB;
447 /* pfault parameters */
448 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
449 cs->kvm_run->s.regs.pft = env->pfault_token;
450 cs->kvm_run->s.regs.pfs = env->pfault_select;
451 cs->kvm_run->s.regs.pfc = env->pfault_compare;
452 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT;
453 } else if (cap_async_pf) {
454 r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
455 if (r < 0) {
456 return r;
458 r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
459 if (r < 0) {
460 return r;
462 r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
463 if (r < 0) {
464 return r;
468 /* access registers and control registers*/
469 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
470 for (i = 0; i < 16; i++) {
471 cs->kvm_run->s.regs.acrs[i] = env->aregs[i];
472 cs->kvm_run->s.regs.crs[i] = env->cregs[i];
474 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS;
475 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS;
476 } else {
477 for (i = 0; i < 16; i++) {
478 sregs.acrs[i] = env->aregs[i];
479 sregs.crs[i] = env->cregs[i];
481 r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
482 if (r < 0) {
483 return r;
487 if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
488 memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32);
489 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB;
492 if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
493 cs->kvm_run->s.regs.bpbc = env->bpbc;
494 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC;
497 /* Finally the prefix */
498 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
499 cs->kvm_run->s.regs.prefix = env->psa;
500 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX;
501 } else {
502 /* prefix is only supported via sync regs */
504 return 0;
507 int kvm_arch_get_registers(CPUState *cs)
509 S390CPU *cpu = S390_CPU(cs);
510 CPUS390XState *env = &cpu->env;
511 struct kvm_sregs sregs;
512 struct kvm_regs regs;
513 struct kvm_fpu fpu;
514 int i, r;
516 /* get the PSW */
517 env->psw.addr = cs->kvm_run->psw_addr;
518 env->psw.mask = cs->kvm_run->psw_mask;
520 /* the GPRS */
521 if (can_sync_regs(cs, KVM_SYNC_GPRS)) {
522 for (i = 0; i < 16; i++) {
523 env->regs[i] = cs->kvm_run->s.regs.gprs[i];
525 } else {
526 r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
527 if (r < 0) {
528 return r;
530 for (i = 0; i < 16; i++) {
531 env->regs[i] = regs.gprs[i];
535 /* The ACRS and CRS */
536 if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) {
537 for (i = 0; i < 16; i++) {
538 env->aregs[i] = cs->kvm_run->s.regs.acrs[i];
539 env->cregs[i] = cs->kvm_run->s.regs.crs[i];
541 } else {
542 r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
543 if (r < 0) {
544 return r;
546 for (i = 0; i < 16; i++) {
547 env->aregs[i] = sregs.acrs[i];
548 env->cregs[i] = sregs.crs[i];
552 /* Floating point and vector registers */
553 if (can_sync_regs(cs, KVM_SYNC_VRS)) {
554 for (i = 0; i < 32; i++) {
555 env->vregs[i][0].ll = cs->kvm_run->s.regs.vrs[i][0];
556 env->vregs[i][1].ll = cs->kvm_run->s.regs.vrs[i][1];
558 env->fpc = cs->kvm_run->s.regs.fpc;
559 } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) {
560 for (i = 0; i < 16; i++) {
561 get_freg(env, i)->ll = cs->kvm_run->s.regs.fprs[i];
563 env->fpc = cs->kvm_run->s.regs.fpc;
564 } else {
565 r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu);
566 if (r < 0) {
567 return r;
569 for (i = 0; i < 16; i++) {
570 get_freg(env, i)->ll = fpu.fprs[i];
572 env->fpc = fpu.fpc;
575 /* The prefix */
576 if (can_sync_regs(cs, KVM_SYNC_PREFIX)) {
577 env->psa = cs->kvm_run->s.regs.prefix;
580 if (can_sync_regs(cs, KVM_SYNC_ARCH0)) {
581 env->cputm = cs->kvm_run->s.regs.cputm;
582 env->ckc = cs->kvm_run->s.regs.ckc;
583 env->todpr = cs->kvm_run->s.regs.todpr;
584 env->gbea = cs->kvm_run->s.regs.gbea;
585 env->pp = cs->kvm_run->s.regs.pp;
586 } else {
588 * These ONE_REGS are not protected by a capability. As they are only
589 * necessary for migration we just trace a possible error, but don't
590 * return with an error return code.
592 kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm);
593 kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc);
594 kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr);
595 kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea);
596 kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp);
599 if (can_sync_regs(cs, KVM_SYNC_RICCB)) {
600 memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64);
603 if (can_sync_regs(cs, KVM_SYNC_GSCB)) {
604 memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32);
607 if (can_sync_regs(cs, KVM_SYNC_BPBC)) {
608 env->bpbc = cs->kvm_run->s.regs.bpbc;
611 /* pfault parameters */
612 if (can_sync_regs(cs, KVM_SYNC_PFAULT)) {
613 env->pfault_token = cs->kvm_run->s.regs.pft;
614 env->pfault_select = cs->kvm_run->s.regs.pfs;
615 env->pfault_compare = cs->kvm_run->s.regs.pfc;
616 } else if (cap_async_pf) {
617 r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token);
618 if (r < 0) {
619 return r;
621 r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare);
622 if (r < 0) {
623 return r;
625 r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select);
626 if (r < 0) {
627 return r;
631 return 0;
634 int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
636 int r;
637 struct kvm_device_attr attr = {
638 .group = KVM_S390_VM_TOD,
639 .attr = KVM_S390_VM_TOD_LOW,
640 .addr = (uint64_t)tod_low,
643 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
644 if (r) {
645 return r;
648 attr.attr = KVM_S390_VM_TOD_HIGH;
649 attr.addr = (uint64_t)tod_high;
650 return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
653 int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low)
655 int r;
656 struct kvm_s390_vm_tod_clock gtod;
657 struct kvm_device_attr attr = {
658 .group = KVM_S390_VM_TOD,
659 .attr = KVM_S390_VM_TOD_EXT,
660 .addr = (uint64_t)&gtod,
663 r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
664 *tod_high = gtod.epoch_idx;
665 *tod_low = gtod.tod;
667 return r;
670 int kvm_s390_set_clock(uint8_t *tod_high, uint64_t *tod_low)
672 int r;
673 struct kvm_device_attr attr = {
674 .group = KVM_S390_VM_TOD,
675 .attr = KVM_S390_VM_TOD_LOW,
676 .addr = (uint64_t)tod_low,
679 r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
680 if (r) {
681 return r;
684 attr.attr = KVM_S390_VM_TOD_HIGH;
685 attr.addr = (uint64_t)tod_high;
686 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
689 int kvm_s390_set_clock_ext(uint8_t *tod_high, uint64_t *tod_low)
691 struct kvm_s390_vm_tod_clock gtod = {
692 .epoch_idx = *tod_high,
693 .tod = *tod_low,
695 struct kvm_device_attr attr = {
696 .group = KVM_S390_VM_TOD,
697 .attr = KVM_S390_VM_TOD_EXT,
698 .addr = (uint64_t)&gtod,
701 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
705 * kvm_s390_mem_op:
706 * @addr: the logical start address in guest memory
707 * @ar: the access register number
708 * @hostbuf: buffer in host memory. NULL = do only checks w/o copying
709 * @len: length that should be transferred
710 * @is_write: true = write, false = read
711 * Returns: 0 on success, non-zero if an exception or error occurred
713 * Use KVM ioctl to read/write from/to guest memory. An access exception
714 * is injected into the vCPU in case of translation errors.
716 int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf,
717 int len, bool is_write)
719 struct kvm_s390_mem_op mem_op = {
720 .gaddr = addr,
721 .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION,
722 .size = len,
723 .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE
724 : KVM_S390_MEMOP_LOGICAL_READ,
725 .buf = (uint64_t)hostbuf,
726 .ar = ar,
728 int ret;
730 if (!cap_mem_op) {
731 return -ENOSYS;
733 if (!hostbuf) {
734 mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY;
737 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op);
738 if (ret < 0) {
739 error_printf("KVM_S390_MEM_OP failed: %s\n", strerror(-ret));
741 return ret;
745 * Legacy layout for s390:
746 * Older S390 KVM requires the topmost vma of the RAM to be
747 * smaller than an system defined value, which is at least 256GB.
748 * Larger systems have larger values. We put the guest between
749 * the end of data segment (system break) and this value. We
750 * use 32GB as a base to have enough room for the system break
751 * to grow. We also have to use MAP parameters that avoid
752 * read-only mapping of guest pages.
754 static void *legacy_s390_alloc(size_t size, uint64_t *align, bool shared)
756 void *mem;
758 mem = mmap((void *) 0x800000000ULL, size,
759 PROT_EXEC|PROT_READ|PROT_WRITE,
760 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
761 return mem == MAP_FAILED ? NULL : mem;
764 static uint8_t const *sw_bp_inst;
765 static uint8_t sw_bp_ilen;
767 static void determine_sw_breakpoint_instr(void)
769 /* DIAG 501 is used for sw breakpoints with old kernels */
770 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
771 /* Instruction 0x0000 is used for sw breakpoints with recent kernels */
772 static const uint8_t instr_0x0000[] = {0x00, 0x00};
774 if (sw_bp_inst) {
775 return;
777 if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) {
778 sw_bp_inst = diag_501;
779 sw_bp_ilen = sizeof(diag_501);
780 DPRINTF("KVM: will use 4-byte sw breakpoints.\n");
781 } else {
782 sw_bp_inst = instr_0x0000;
783 sw_bp_ilen = sizeof(instr_0x0000);
784 DPRINTF("KVM: will use 2-byte sw breakpoints.\n");
788 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
790 determine_sw_breakpoint_instr();
792 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
793 sw_bp_ilen, 0) ||
794 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) {
795 return -EINVAL;
797 return 0;
800 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
802 uint8_t t[MAX_ILEN];
804 if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) {
805 return -EINVAL;
806 } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) {
807 return -EINVAL;
808 } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn,
809 sw_bp_ilen, 1)) {
810 return -EINVAL;
813 return 0;
816 static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr,
817 int len, int type)
819 int n;
821 for (n = 0; n < nb_hw_breakpoints; n++) {
822 if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type &&
823 (hw_breakpoints[n].len == len || len == -1)) {
824 return &hw_breakpoints[n];
828 return NULL;
831 static int insert_hw_breakpoint(target_ulong addr, int len, int type)
833 int size;
835 if (find_hw_breakpoint(addr, len, type)) {
836 return -EEXIST;
839 size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint);
841 if (!hw_breakpoints) {
842 nb_hw_breakpoints = 0;
843 hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size);
844 } else {
845 hw_breakpoints =
846 (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size);
849 if (!hw_breakpoints) {
850 nb_hw_breakpoints = 0;
851 return -ENOMEM;
854 hw_breakpoints[nb_hw_breakpoints].addr = addr;
855 hw_breakpoints[nb_hw_breakpoints].len = len;
856 hw_breakpoints[nb_hw_breakpoints].type = type;
858 nb_hw_breakpoints++;
860 return 0;
863 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
864 target_ulong len, int type)
866 switch (type) {
867 case GDB_BREAKPOINT_HW:
868 type = KVM_HW_BP;
869 break;
870 case GDB_WATCHPOINT_WRITE:
871 if (len < 1) {
872 return -EINVAL;
874 type = KVM_HW_WP_WRITE;
875 break;
876 default:
877 return -ENOSYS;
879 return insert_hw_breakpoint(addr, len, type);
882 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
883 target_ulong len, int type)
885 int size;
886 struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type);
888 if (bp == NULL) {
889 return -ENOENT;
892 nb_hw_breakpoints--;
893 if (nb_hw_breakpoints > 0) {
895 * In order to trim the array, move the last element to the position to
896 * be removed - if necessary.
898 if (bp != &hw_breakpoints[nb_hw_breakpoints]) {
899 *bp = hw_breakpoints[nb_hw_breakpoints];
901 size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint);
902 hw_breakpoints =
903 (struct kvm_hw_breakpoint *)g_realloc(hw_breakpoints, size);
904 } else {
905 g_free(hw_breakpoints);
906 hw_breakpoints = NULL;
909 return 0;
912 void kvm_arch_remove_all_hw_breakpoints(void)
914 nb_hw_breakpoints = 0;
915 g_free(hw_breakpoints);
916 hw_breakpoints = NULL;
919 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
921 int i;
923 if (nb_hw_breakpoints > 0) {
924 dbg->arch.nr_hw_bp = nb_hw_breakpoints;
925 dbg->arch.hw_bp = hw_breakpoints;
927 for (i = 0; i < nb_hw_breakpoints; ++i) {
928 hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu,
929 hw_breakpoints[i].addr);
931 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
932 } else {
933 dbg->arch.nr_hw_bp = 0;
934 dbg->arch.hw_bp = NULL;
938 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
942 MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
944 return MEMTXATTRS_UNSPECIFIED;
947 int kvm_arch_process_async_events(CPUState *cs)
949 return cs->halted;
952 static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq,
953 struct kvm_s390_interrupt *interrupt)
955 int r = 0;
957 interrupt->type = irq->type;
958 switch (irq->type) {
959 case KVM_S390_INT_VIRTIO:
960 interrupt->parm = irq->u.ext.ext_params;
961 /* fall through */
962 case KVM_S390_INT_PFAULT_INIT:
963 case KVM_S390_INT_PFAULT_DONE:
964 interrupt->parm64 = irq->u.ext.ext_params2;
965 break;
966 case KVM_S390_PROGRAM_INT:
967 interrupt->parm = irq->u.pgm.code;
968 break;
969 case KVM_S390_SIGP_SET_PREFIX:
970 interrupt->parm = irq->u.prefix.address;
971 break;
972 case KVM_S390_INT_SERVICE:
973 interrupt->parm = irq->u.ext.ext_params;
974 break;
975 case KVM_S390_MCHK:
976 interrupt->parm = irq->u.mchk.cr14;
977 interrupt->parm64 = irq->u.mchk.mcic;
978 break;
979 case KVM_S390_INT_EXTERNAL_CALL:
980 interrupt->parm = irq->u.extcall.code;
981 break;
982 case KVM_S390_INT_EMERGENCY:
983 interrupt->parm = irq->u.emerg.code;
984 break;
985 case KVM_S390_SIGP_STOP:
986 case KVM_S390_RESTART:
987 break; /* These types have no parameters */
988 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
989 interrupt->parm = irq->u.io.subchannel_id << 16;
990 interrupt->parm |= irq->u.io.subchannel_nr;
991 interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32;
992 interrupt->parm64 |= irq->u.io.io_int_word;
993 break;
994 default:
995 r = -EINVAL;
996 break;
998 return r;
1001 static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq)
1003 struct kvm_s390_interrupt kvmint = {};
1004 int r;
1006 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1007 if (r < 0) {
1008 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1009 exit(1);
1012 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
1013 if (r < 0) {
1014 fprintf(stderr, "KVM failed to inject interrupt\n");
1015 exit(1);
1019 void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq)
1021 CPUState *cs = CPU(cpu);
1022 int r;
1024 if (cap_s390_irq) {
1025 r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq);
1026 if (!r) {
1027 return;
1029 error_report("KVM failed to inject interrupt %llx", irq->type);
1030 exit(1);
1033 inject_vcpu_irq_legacy(cs, irq);
1036 void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq)
1038 struct kvm_s390_interrupt kvmint = {};
1039 int r;
1041 r = s390_kvm_irq_to_interrupt(irq, &kvmint);
1042 if (r < 0) {
1043 fprintf(stderr, "%s called with bogus interrupt\n", __func__);
1044 exit(1);
1047 r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint);
1048 if (r < 0) {
1049 fprintf(stderr, "KVM failed to inject interrupt\n");
1050 exit(1);
1054 void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code)
1056 struct kvm_s390_irq irq = {
1057 .type = KVM_S390_PROGRAM_INT,
1058 .u.pgm.code = code,
1061 kvm_s390_vcpu_interrupt(cpu, &irq);
1064 void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code)
1066 struct kvm_s390_irq irq = {
1067 .type = KVM_S390_PROGRAM_INT,
1068 .u.pgm.code = code,
1069 .u.pgm.trans_exc_code = te_code,
1070 .u.pgm.exc_access_id = te_code & 3,
1073 kvm_s390_vcpu_interrupt(cpu, &irq);
1076 static int kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
1077 uint16_t ipbh0)
1079 CPUS390XState *env = &cpu->env;
1080 uint64_t sccb;
1081 uint32_t code;
1082 int r = 0;
1084 cpu_synchronize_state(CPU(cpu));
1085 sccb = env->regs[ipbh0 & 0xf];
1086 code = env->regs[(ipbh0 & 0xf0) >> 4];
1088 r = sclp_service_call(env, sccb, code);
1089 if (r < 0) {
1090 kvm_s390_program_interrupt(cpu, -r);
1091 } else {
1092 setcc(cpu, r);
1095 return 0;
1098 static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1100 CPUS390XState *env = &cpu->env;
1101 int rc = 0;
1102 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
1104 cpu_synchronize_state(CPU(cpu));
1106 switch (ipa1) {
1107 case PRIV_B2_XSCH:
1108 ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED);
1109 break;
1110 case PRIV_B2_CSCH:
1111 ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED);
1112 break;
1113 case PRIV_B2_HSCH:
1114 ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED);
1115 break;
1116 case PRIV_B2_MSCH:
1117 ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1118 break;
1119 case PRIV_B2_SSCH:
1120 ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1121 break;
1122 case PRIV_B2_STCRW:
1123 ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED);
1124 break;
1125 case PRIV_B2_STSCH:
1126 ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED);
1127 break;
1128 case PRIV_B2_TSCH:
1129 /* We should only get tsch via KVM_EXIT_S390_TSCH. */
1130 fprintf(stderr, "Spurious tsch intercept\n");
1131 break;
1132 case PRIV_B2_CHSC:
1133 ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED);
1134 break;
1135 case PRIV_B2_TPI:
1136 /* This should have been handled by kvm already. */
1137 fprintf(stderr, "Spurious tpi intercept\n");
1138 break;
1139 case PRIV_B2_SCHM:
1140 ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
1141 run->s390_sieic.ipb, RA_IGNORED);
1142 break;
1143 case PRIV_B2_RSCH:
1144 ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED);
1145 break;
1146 case PRIV_B2_RCHP:
1147 ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED);
1148 break;
1149 case PRIV_B2_STCPS:
1150 /* We do not provide this instruction, it is suppressed. */
1151 break;
1152 case PRIV_B2_SAL:
1153 ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED);
1154 break;
1155 case PRIV_B2_SIGA:
1156 /* Not provided, set CC = 3 for subchannel not operational */
1157 setcc(cpu, 3);
1158 break;
1159 case PRIV_B2_SCLP_CALL:
1160 rc = kvm_sclp_service_call(cpu, run, ipbh0);
1161 break;
1162 default:
1163 rc = -1;
1164 DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1);
1165 break;
1168 return rc;
1171 static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run,
1172 uint8_t *ar)
1174 CPUS390XState *env = &cpu->env;
1175 uint32_t x2 = (run->s390_sieic.ipa & 0x000f);
1176 uint32_t base2 = run->s390_sieic.ipb >> 28;
1177 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1178 ((run->s390_sieic.ipb & 0xff00) << 4);
1180 if (disp2 & 0x80000) {
1181 disp2 += 0xfff00000;
1183 if (ar) {
1184 *ar = base2;
1187 return (base2 ? env->regs[base2] : 0) +
1188 (x2 ? env->regs[x2] : 0) + (long)(int)disp2;
1191 static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run,
1192 uint8_t *ar)
1194 CPUS390XState *env = &cpu->env;
1195 uint32_t base2 = run->s390_sieic.ipb >> 28;
1196 uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) +
1197 ((run->s390_sieic.ipb & 0xff00) << 4);
1199 if (disp2 & 0x80000) {
1200 disp2 += 0xfff00000;
1202 if (ar) {
1203 *ar = base2;
1206 return (base2 ? env->regs[base2] : 0) + (long)(int)disp2;
1209 static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run)
1211 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1213 if (s390_has_feat(S390_FEAT_ZPCI)) {
1214 return clp_service_call(cpu, r2, RA_IGNORED);
1215 } else {
1216 return -1;
1220 static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run)
1222 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1223 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1225 if (s390_has_feat(S390_FEAT_ZPCI)) {
1226 return pcilg_service_call(cpu, r1, r2, RA_IGNORED);
1227 } else {
1228 return -1;
1232 static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run)
1234 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1235 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1237 if (s390_has_feat(S390_FEAT_ZPCI)) {
1238 return pcistg_service_call(cpu, r1, r2, RA_IGNORED);
1239 } else {
1240 return -1;
1244 static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1246 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1247 uint64_t fiba;
1248 uint8_t ar;
1250 if (s390_has_feat(S390_FEAT_ZPCI)) {
1251 cpu_synchronize_state(CPU(cpu));
1252 fiba = get_base_disp_rxy(cpu, run, &ar);
1254 return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1255 } else {
1256 return -1;
1260 static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run)
1262 CPUS390XState *env = &cpu->env;
1263 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1264 uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1265 uint8_t isc;
1266 uint16_t mode;
1267 int r;
1269 cpu_synchronize_state(CPU(cpu));
1270 mode = env->regs[r1] & 0xffff;
1271 isc = (env->regs[r3] >> 27) & 0x7;
1272 r = css_do_sic(env, isc, mode);
1273 if (r) {
1274 kvm_s390_program_interrupt(cpu, -r);
1277 return 0;
1280 static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run)
1282 uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20;
1283 uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16;
1285 if (s390_has_feat(S390_FEAT_ZPCI)) {
1286 return rpcit_service_call(cpu, r1, r2, RA_IGNORED);
1287 } else {
1288 return -1;
1292 static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run)
1294 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1295 uint8_t r3 = run->s390_sieic.ipa & 0x000f;
1296 uint64_t gaddr;
1297 uint8_t ar;
1299 if (s390_has_feat(S390_FEAT_ZPCI)) {
1300 cpu_synchronize_state(CPU(cpu));
1301 gaddr = get_base_disp_rsy(cpu, run, &ar);
1303 return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED);
1304 } else {
1305 return -1;
1309 static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run)
1311 uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1312 uint64_t fiba;
1313 uint8_t ar;
1315 if (s390_has_feat(S390_FEAT_ZPCI)) {
1316 cpu_synchronize_state(CPU(cpu));
1317 fiba = get_base_disp_rxy(cpu, run, &ar);
1319 return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED);
1320 } else {
1321 return -1;
1325 static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
1327 int r = 0;
1329 switch (ipa1) {
1330 case PRIV_B9_CLP:
1331 r = kvm_clp_service_call(cpu, run);
1332 break;
1333 case PRIV_B9_PCISTG:
1334 r = kvm_pcistg_service_call(cpu, run);
1335 break;
1336 case PRIV_B9_PCILG:
1337 r = kvm_pcilg_service_call(cpu, run);
1338 break;
1339 case PRIV_B9_RPCIT:
1340 r = kvm_rpcit_service_call(cpu, run);
1341 break;
1342 case PRIV_B9_EQBS:
1343 /* just inject exception */
1344 r = -1;
1345 break;
1346 default:
1347 r = -1;
1348 DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1);
1349 break;
1352 return r;
1355 static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1357 int r = 0;
1359 switch (ipbl) {
1360 case PRIV_EB_PCISTB:
1361 r = kvm_pcistb_service_call(cpu, run);
1362 break;
1363 case PRIV_EB_SIC:
1364 r = kvm_sic_service_call(cpu, run);
1365 break;
1366 case PRIV_EB_SQBS:
1367 /* just inject exception */
1368 r = -1;
1369 break;
1370 default:
1371 r = -1;
1372 DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl);
1373 break;
1376 return r;
1379 static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl)
1381 int r = 0;
1383 switch (ipbl) {
1384 case PRIV_E3_MPCIFC:
1385 r = kvm_mpcifc_service_call(cpu, run);
1386 break;
1387 case PRIV_E3_STPCIFC:
1388 r = kvm_stpcifc_service_call(cpu, run);
1389 break;
1390 default:
1391 r = -1;
1392 DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl);
1393 break;
1396 return r;
1399 static int handle_hypercall(S390CPU *cpu, struct kvm_run *run)
1401 CPUS390XState *env = &cpu->env;
1402 int ret;
1404 cpu_synchronize_state(CPU(cpu));
1405 ret = s390_virtio_hypercall(env);
1406 if (ret == -EINVAL) {
1407 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1408 return 0;
1411 return ret;
1414 static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run)
1416 uint64_t r1, r3;
1417 int rc;
1419 cpu_synchronize_state(CPU(cpu));
1420 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1421 r3 = run->s390_sieic.ipa & 0x000f;
1422 rc = handle_diag_288(&cpu->env, r1, r3);
1423 if (rc) {
1424 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1428 static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
1430 uint64_t r1, r3;
1432 cpu_synchronize_state(CPU(cpu));
1433 r1 = (run->s390_sieic.ipa & 0x00f0) >> 4;
1434 r3 = run->s390_sieic.ipa & 0x000f;
1435 handle_diag_308(&cpu->env, r1, r3, RA_IGNORED);
1438 static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run)
1440 CPUS390XState *env = &cpu->env;
1441 unsigned long pc;
1443 cpu_synchronize_state(CPU(cpu));
1445 pc = env->psw.addr - sw_bp_ilen;
1446 if (kvm_find_sw_breakpoint(CPU(cpu), pc)) {
1447 env->psw.addr = pc;
1448 return EXCP_DEBUG;
1451 return -ENOENT;
1454 #define DIAG_KVM_CODE_MASK 0x000000000000ffff
1456 static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
1458 int r = 0;
1459 uint16_t func_code;
1462 * For any diagnose call we support, bits 48-63 of the resulting
1463 * address specify the function code; the remainder is ignored.
1465 func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK;
1466 switch (func_code) {
1467 case DIAG_TIMEREVENT:
1468 kvm_handle_diag_288(cpu, run);
1469 break;
1470 case DIAG_IPL:
1471 kvm_handle_diag_308(cpu, run);
1472 break;
1473 case DIAG_KVM_HYPERCALL:
1474 r = handle_hypercall(cpu, run);
1475 break;
1476 case DIAG_KVM_BREAKPOINT:
1477 r = handle_sw_breakpoint(cpu, run);
1478 break;
1479 default:
1480 DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code);
1481 kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION);
1482 break;
1485 return r;
1488 static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb)
1490 CPUS390XState *env = &cpu->env;
1491 const uint8_t r1 = ipa1 >> 4;
1492 const uint8_t r3 = ipa1 & 0x0f;
1493 int ret;
1494 uint8_t order;
1496 cpu_synchronize_state(CPU(cpu));
1498 /* get order code */
1499 order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK;
1501 ret = handle_sigp(env, order, r1, r3);
1502 setcc(cpu, ret);
1503 return 0;
1506 static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
1508 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
1509 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
1510 int r = -1;
1512 DPRINTF("handle_instruction 0x%x 0x%x\n",
1513 run->s390_sieic.ipa, run->s390_sieic.ipb);
1514 switch (ipa0) {
1515 case IPA0_B2:
1516 r = handle_b2(cpu, run, ipa1);
1517 break;
1518 case IPA0_B9:
1519 r = handle_b9(cpu, run, ipa1);
1520 break;
1521 case IPA0_EB:
1522 r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff);
1523 break;
1524 case IPA0_E3:
1525 r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff);
1526 break;
1527 case IPA0_DIAG:
1528 r = handle_diag(cpu, run, run->s390_sieic.ipb);
1529 break;
1530 case IPA0_SIGP:
1531 r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb);
1532 break;
1535 if (r < 0) {
1536 r = 0;
1537 kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1540 return r;
1543 static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason,
1544 int pswoffset)
1546 CPUState *cs = CPU(cpu);
1548 s390_cpu_halt(cpu);
1549 cpu->env.crash_reason = reason;
1550 qemu_system_guest_panicked(cpu_get_crash_info(cs));
1553 /* try to detect pgm check loops */
1554 static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run)
1556 CPUState *cs = CPU(cpu);
1557 PSW oldpsw, newpsw;
1559 cpu_synchronize_state(cs);
1560 newpsw.mask = ldq_phys(cs->as, cpu->env.psa +
1561 offsetof(LowCore, program_new_psw));
1562 newpsw.addr = ldq_phys(cs->as, cpu->env.psa +
1563 offsetof(LowCore, program_new_psw) + 8);
1564 oldpsw.mask = run->psw_mask;
1565 oldpsw.addr = run->psw_addr;
1567 * Avoid endless loops of operation exceptions, if the pgm new
1568 * PSW will cause a new operation exception.
1569 * The heuristic checks if the pgm new psw is within 6 bytes before
1570 * the faulting psw address (with same DAT, AS settings) and the
1571 * new psw is not a wait psw and the fault was not triggered by
1572 * problem state. In that case go into crashed state.
1575 if (oldpsw.addr - newpsw.addr <= 6 &&
1576 !(newpsw.mask & PSW_MASK_WAIT) &&
1577 !(oldpsw.mask & PSW_MASK_PSTATE) &&
1578 (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) &&
1579 (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) {
1580 unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP,
1581 offsetof(LowCore, program_new_psw));
1582 return EXCP_HALTED;
1584 return 0;
1587 static int handle_intercept(S390CPU *cpu)
1589 CPUState *cs = CPU(cpu);
1590 struct kvm_run *run = cs->kvm_run;
1591 int icpt_code = run->s390_sieic.icptcode;
1592 int r = 0;
1594 DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code,
1595 (long)cs->kvm_run->psw_addr);
1596 switch (icpt_code) {
1597 case ICPT_INSTRUCTION:
1598 r = handle_instruction(cpu, run);
1599 break;
1600 case ICPT_PROGRAM:
1601 unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP,
1602 offsetof(LowCore, program_new_psw));
1603 r = EXCP_HALTED;
1604 break;
1605 case ICPT_EXT_INT:
1606 unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP,
1607 offsetof(LowCore, external_new_psw));
1608 r = EXCP_HALTED;
1609 break;
1610 case ICPT_WAITPSW:
1611 /* disabled wait, since enabled wait is handled in kernel */
1612 cpu_synchronize_state(cs);
1613 s390_handle_wait(cpu);
1614 r = EXCP_HALTED;
1615 break;
1616 case ICPT_CPU_STOP:
1617 do_stop_interrupt(&cpu->env);
1618 r = EXCP_HALTED;
1619 break;
1620 case ICPT_OPEREXC:
1621 /* check for break points */
1622 r = handle_sw_breakpoint(cpu, run);
1623 if (r == -ENOENT) {
1624 /* Then check for potential pgm check loops */
1625 r = handle_oper_loop(cpu, run);
1626 if (r == 0) {
1627 kvm_s390_program_interrupt(cpu, PGM_OPERATION);
1630 break;
1631 case ICPT_SOFT_INTERCEPT:
1632 fprintf(stderr, "KVM unimplemented icpt SOFT\n");
1633 exit(1);
1634 break;
1635 case ICPT_IO:
1636 fprintf(stderr, "KVM unimplemented icpt IO\n");
1637 exit(1);
1638 break;
1639 default:
1640 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
1641 exit(1);
1642 break;
1645 return r;
1648 static int handle_tsch(S390CPU *cpu)
1650 CPUState *cs = CPU(cpu);
1651 struct kvm_run *run = cs->kvm_run;
1652 int ret;
1654 cpu_synchronize_state(cs);
1656 ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb,
1657 RA_IGNORED);
1658 if (ret < 0) {
1660 * Failure.
1661 * If an I/O interrupt had been dequeued, we have to reinject it.
1663 if (run->s390_tsch.dequeued) {
1664 s390_io_interrupt(run->s390_tsch.subchannel_id,
1665 run->s390_tsch.subchannel_nr,
1666 run->s390_tsch.io_int_parm,
1667 run->s390_tsch.io_int_word);
1669 ret = 0;
1671 return ret;
1674 static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar)
1676 SysIB_322 sysib;
1677 int del;
1679 if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) {
1680 return;
1682 /* Shift the stack of Extended Names to prepare for our own data */
1683 memmove(&sysib.ext_names[1], &sysib.ext_names[0],
1684 sizeof(sysib.ext_names[0]) * (sysib.count - 1));
1685 /* First virt level, that doesn't provide Ext Names delimits stack. It is
1686 * assumed it's not capable of managing Extended Names for lower levels.
1688 for (del = 1; del < sysib.count; del++) {
1689 if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) {
1690 break;
1693 if (del < sysib.count) {
1694 memset(sysib.ext_names[del], 0,
1695 sizeof(sysib.ext_names[0]) * (sysib.count - del));
1697 /* Insert short machine name in EBCDIC, padded with blanks */
1698 if (qemu_name) {
1699 memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name));
1700 ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name),
1701 strlen(qemu_name)));
1703 sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */
1704 memset(sysib.ext_names[0], 0, sizeof(sysib.ext_names[0]));
1705 /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's
1706 * considered by s390 as not capable of providing any Extended Name.
1707 * Therefore if no name was specified on qemu invocation, we go with the
1708 * same "KVMguest" default, which KVM has filled into short name field.
1710 if (qemu_name) {
1711 strncpy((char *)sysib.ext_names[0], qemu_name,
1712 sizeof(sysib.ext_names[0]));
1713 } else {
1714 strcpy((char *)sysib.ext_names[0], "KVMguest");
1716 /* Insert UUID */
1717 memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid));
1719 s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib));
1722 static int handle_stsi(S390CPU *cpu)
1724 CPUState *cs = CPU(cpu);
1725 struct kvm_run *run = cs->kvm_run;
1727 switch (run->s390_stsi.fc) {
1728 case 3:
1729 if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) {
1730 return 0;
1732 /* Only sysib 3.2.2 needs post-handling for now. */
1733 insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar);
1734 return 0;
1735 default:
1736 return 0;
1740 static int kvm_arch_handle_debug_exit(S390CPU *cpu)
1742 CPUState *cs = CPU(cpu);
1743 struct kvm_run *run = cs->kvm_run;
1745 int ret = 0;
1746 struct kvm_debug_exit_arch *arch_info = &run->debug.arch;
1748 switch (arch_info->type) {
1749 case KVM_HW_WP_WRITE:
1750 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1751 cs->watchpoint_hit = &hw_watchpoint;
1752 hw_watchpoint.vaddr = arch_info->addr;
1753 hw_watchpoint.flags = BP_MEM_WRITE;
1754 ret = EXCP_DEBUG;
1756 break;
1757 case KVM_HW_BP:
1758 if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) {
1759 ret = EXCP_DEBUG;
1761 break;
1762 case KVM_SINGLESTEP:
1763 if (cs->singlestep_enabled) {
1764 ret = EXCP_DEBUG;
1766 break;
1767 default:
1768 ret = -ENOSYS;
1771 return ret;
1774 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
1776 S390CPU *cpu = S390_CPU(cs);
1777 int ret = 0;
1779 qemu_mutex_lock_iothread();
1781 switch (run->exit_reason) {
1782 case KVM_EXIT_S390_SIEIC:
1783 ret = handle_intercept(cpu);
1784 break;
1785 case KVM_EXIT_S390_RESET:
1786 s390_reipl_request();
1787 break;
1788 case KVM_EXIT_S390_TSCH:
1789 ret = handle_tsch(cpu);
1790 break;
1791 case KVM_EXIT_S390_STSI:
1792 ret = handle_stsi(cpu);
1793 break;
1794 case KVM_EXIT_DEBUG:
1795 ret = kvm_arch_handle_debug_exit(cpu);
1796 break;
1797 default:
1798 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
1799 break;
1801 qemu_mutex_unlock_iothread();
1803 if (ret == 0) {
1804 ret = EXCP_INTERRUPT;
1806 return ret;
1809 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
1811 return true;
1814 void kvm_s390_enable_css_support(S390CPU *cpu)
1816 int r;
1818 /* Activate host kernel channel subsystem support. */
1819 r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0);
1820 assert(r == 0);
1823 void kvm_arch_init_irq_routing(KVMState *s)
1826 * Note that while irqchip capabilities generally imply that cpustates
1827 * are handled in-kernel, it is not true for s390 (yet); therefore, we
1828 * have to override the common code kvm_halt_in_kernel_allowed setting.
1830 if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
1831 kvm_gsi_routing_allowed = true;
1832 kvm_halt_in_kernel_allowed = false;
1836 int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
1837 int vq, bool assign)
1839 struct kvm_ioeventfd kick = {
1840 .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
1841 KVM_IOEVENTFD_FLAG_DATAMATCH,
1842 .fd = event_notifier_get_fd(notifier),
1843 .datamatch = vq,
1844 .addr = sch,
1845 .len = 8,
1847 if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
1848 return -ENOSYS;
1850 if (!assign) {
1851 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1853 return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1856 int kvm_s390_get_ri(void)
1858 return cap_ri;
1861 int kvm_s390_get_gs(void)
1863 return cap_gs;
1866 int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
1868 struct kvm_mp_state mp_state = {};
1869 int ret;
1871 /* the kvm part might not have been initialized yet */
1872 if (CPU(cpu)->kvm_state == NULL) {
1873 return 0;
1876 switch (cpu_state) {
1877 case S390_CPU_STATE_STOPPED:
1878 mp_state.mp_state = KVM_MP_STATE_STOPPED;
1879 break;
1880 case S390_CPU_STATE_CHECK_STOP:
1881 mp_state.mp_state = KVM_MP_STATE_CHECK_STOP;
1882 break;
1883 case S390_CPU_STATE_OPERATING:
1884 mp_state.mp_state = KVM_MP_STATE_OPERATING;
1885 break;
1886 case S390_CPU_STATE_LOAD:
1887 mp_state.mp_state = KVM_MP_STATE_LOAD;
1888 break;
1889 default:
1890 error_report("Requested CPU state is not a valid S390 CPU state: %u",
1891 cpu_state);
1892 exit(1);
1895 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1896 if (ret) {
1897 trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state,
1898 strerror(-ret));
1901 return ret;
1904 void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu)
1906 struct kvm_s390_irq_state irq_state = {
1907 .buf = (uint64_t) cpu->irqstate,
1908 .len = VCPU_IRQ_BUF_SIZE,
1910 CPUState *cs = CPU(cpu);
1911 int32_t bytes;
1913 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
1914 return;
1917 bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state);
1918 if (bytes < 0) {
1919 cpu->irqstate_saved_size = 0;
1920 error_report("Migration of interrupt state failed");
1921 return;
1924 cpu->irqstate_saved_size = bytes;
1927 int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu)
1929 CPUState *cs = CPU(cpu);
1930 struct kvm_s390_irq_state irq_state = {
1931 .buf = (uint64_t) cpu->irqstate,
1932 .len = cpu->irqstate_saved_size,
1934 int r;
1936 if (cpu->irqstate_saved_size == 0) {
1937 return 0;
1940 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) {
1941 return -ENOSYS;
1944 r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state);
1945 if (r) {
1946 error_report("Setting interrupt state failed %d", r);
1948 return r;
1951 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
1952 uint64_t address, uint32_t data, PCIDevice *dev)
1954 S390PCIBusDevice *pbdev;
1955 uint32_t vec = data & ZPCI_MSI_VEC_MASK;
1957 if (!dev) {
1958 DPRINTF("add_msi_route no pci device\n");
1959 return -ENODEV;
1962 pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id);
1963 if (!pbdev) {
1964 DPRINTF("add_msi_route no zpci device\n");
1965 return -ENODEV;
1968 route->type = KVM_IRQ_ROUTING_S390_ADAPTER;
1969 route->flags = 0;
1970 route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr;
1971 route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr;
1972 route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset;
1973 route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec;
1974 route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id;
1975 return 0;
1978 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
1979 int vector, PCIDevice *dev)
1981 return 0;
1984 int kvm_arch_release_virq_post(int virq)
1986 return 0;
1989 int kvm_arch_msi_data_to_gsi(uint32_t data)
1991 abort();
1994 static int query_cpu_subfunc(S390FeatBitmap features)
1996 struct kvm_s390_vm_cpu_subfunc prop;
1997 struct kvm_device_attr attr = {
1998 .group = KVM_S390_VM_CPU_MODEL,
1999 .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC,
2000 .addr = (uint64_t) &prop,
2002 int rc;
2004 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2005 if (rc) {
2006 return rc;
2010 * We're going to add all subfunctions now, if the corresponding feature
2011 * is available that unlocks the query functions.
2013 s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2014 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2015 s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2017 if (test_bit(S390_FEAT_MSA, features)) {
2018 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2019 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2020 s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2021 s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2022 s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2024 if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2025 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2027 if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2028 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2029 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2030 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2031 s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2033 if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2034 s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2036 if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2037 s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2039 return 0;
2042 static int configure_cpu_subfunc(const S390FeatBitmap features)
2044 struct kvm_s390_vm_cpu_subfunc prop = {};
2045 struct kvm_device_attr attr = {
2046 .group = KVM_S390_VM_CPU_MODEL,
2047 .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC,
2048 .addr = (uint64_t) &prop,
2051 if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2052 KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) {
2053 /* hardware support might be missing, IBC will handle most of this */
2054 return 0;
2057 s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo);
2058 if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) {
2059 s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff);
2061 if (test_bit(S390_FEAT_MSA, features)) {
2062 s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac);
2063 s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc);
2064 s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km);
2065 s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd);
2066 s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd);
2068 if (test_bit(S390_FEAT_MSA_EXT_3, features)) {
2069 s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo);
2071 if (test_bit(S390_FEAT_MSA_EXT_4, features)) {
2072 s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr);
2073 s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf);
2074 s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo);
2075 s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc);
2077 if (test_bit(S390_FEAT_MSA_EXT_5, features)) {
2078 s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno);
2080 if (test_bit(S390_FEAT_MSA_EXT_8, features)) {
2081 s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma);
2083 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2086 static int kvm_to_feat[][2] = {
2087 { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP },
2088 { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 },
2089 { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO },
2090 { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF },
2091 { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE },
2092 { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS },
2093 { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB },
2094 { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI },
2095 { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS },
2096 { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY },
2097 { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA },
2098 { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI},
2099 { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF},
2100 { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS},
2103 static int query_cpu_feat(S390FeatBitmap features)
2105 struct kvm_s390_vm_cpu_feat prop;
2106 struct kvm_device_attr attr = {
2107 .group = KVM_S390_VM_CPU_MODEL,
2108 .attr = KVM_S390_VM_CPU_MACHINE_FEAT,
2109 .addr = (uint64_t) &prop,
2111 int rc;
2112 int i;
2114 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2115 if (rc) {
2116 return rc;
2119 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2120 if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) {
2121 set_bit(kvm_to_feat[i][1], features);
2124 return 0;
2127 static int configure_cpu_feat(const S390FeatBitmap features)
2129 struct kvm_s390_vm_cpu_feat prop = {};
2130 struct kvm_device_attr attr = {
2131 .group = KVM_S390_VM_CPU_MODEL,
2132 .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT,
2133 .addr = (uint64_t) &prop,
2135 int i;
2137 for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) {
2138 if (test_bit(kvm_to_feat[i][1], features)) {
2139 set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat);
2142 return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2145 bool kvm_s390_cpu_models_supported(void)
2147 if (!cpu_model_allowed()) {
2148 /* compatibility machines interfere with the cpu model */
2149 return false;
2151 return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2152 KVM_S390_VM_CPU_MACHINE) &&
2153 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2154 KVM_S390_VM_CPU_PROCESSOR) &&
2155 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2156 KVM_S390_VM_CPU_MACHINE_FEAT) &&
2157 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2158 KVM_S390_VM_CPU_PROCESSOR_FEAT) &&
2159 kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL,
2160 KVM_S390_VM_CPU_MACHINE_SUBFUNC);
2163 void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp)
2165 struct kvm_s390_vm_cpu_machine prop = {};
2166 struct kvm_device_attr attr = {
2167 .group = KVM_S390_VM_CPU_MODEL,
2168 .attr = KVM_S390_VM_CPU_MACHINE,
2169 .addr = (uint64_t) &prop,
2171 uint16_t unblocked_ibc = 0, cpu_type = 0;
2172 int rc;
2174 memset(model, 0, sizeof(*model));
2176 if (!kvm_s390_cpu_models_supported()) {
2177 error_setg(errp, "KVM doesn't support CPU models");
2178 return;
2181 /* query the basic cpu model properties */
2182 rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr);
2183 if (rc) {
2184 error_setg(errp, "KVM: Error querying host CPU model: %d", rc);
2185 return;
2188 cpu_type = cpuid_type(prop.cpuid);
2189 if (has_ibc(prop.ibc)) {
2190 model->lowest_ibc = lowest_ibc(prop.ibc);
2191 unblocked_ibc = unblocked_ibc(prop.ibc);
2193 model->cpu_id = cpuid_id(prop.cpuid);
2194 model->cpu_id_format = cpuid_format(prop.cpuid);
2195 model->cpu_ver = 0xff;
2197 /* get supported cpu features indicated via STFL(E) */
2198 s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL,
2199 (uint8_t *) prop.fac_mask);
2200 /* dat-enhancement facility 2 has no bit but was introduced with stfle */
2201 if (test_bit(S390_FEAT_STFLE, model->features)) {
2202 set_bit(S390_FEAT_DAT_ENH_2, model->features);
2204 /* get supported cpu features indicated e.g. via SCLP */
2205 rc = query_cpu_feat(model->features);
2206 if (rc) {
2207 error_setg(errp, "KVM: Error querying CPU features: %d", rc);
2208 return;
2210 /* get supported cpu subfunctions indicated via query / test bit */
2211 rc = query_cpu_subfunc(model->features);
2212 if (rc) {
2213 error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc);
2214 return;
2217 /* PTFF subfunctions might be indicated although kernel support missing */
2218 if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) {
2219 clear_bit(S390_FEAT_PTFF_QSIE, model->features);
2220 clear_bit(S390_FEAT_PTFF_QTOUE, model->features);
2221 clear_bit(S390_FEAT_PTFF_STOE, model->features);
2222 clear_bit(S390_FEAT_PTFF_STOUE, model->features);
2225 /* with cpu model support, CMM is only indicated if really available */
2226 if (kvm_s390_cmma_available()) {
2227 set_bit(S390_FEAT_CMM, model->features);
2228 } else {
2229 /* no cmm -> no cmm nt */
2230 clear_bit(S390_FEAT_CMM_NT, model->features);
2233 /* bpb needs kernel support for migration, VSIE and reset */
2234 if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) {
2235 clear_bit(S390_FEAT_BPB, model->features);
2238 /* We emulate a zPCI bus and AEN, therefore we don't need HW support */
2239 if (pci_available) {
2240 set_bit(S390_FEAT_ZPCI, model->features);
2242 set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features);
2244 if (s390_known_cpu_type(cpu_type)) {
2245 /* we want the exact model, even if some features are missing */
2246 model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc),
2247 ibc_ec_ga(unblocked_ibc), NULL);
2248 } else {
2249 /* model unknown, e.g. too new - search using features */
2250 model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc),
2251 ibc_ec_ga(unblocked_ibc),
2252 model->features);
2254 if (!model->def) {
2255 error_setg(errp, "KVM: host CPU model could not be identified");
2256 return;
2258 /* strip of features that are not part of the maximum model */
2259 bitmap_and(model->features, model->features, model->def->full_feat,
2260 S390_FEAT_MAX);
2263 void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp)
2265 struct kvm_s390_vm_cpu_processor prop = {
2266 .fac_list = { 0 },
2268 struct kvm_device_attr attr = {
2269 .group = KVM_S390_VM_CPU_MODEL,
2270 .attr = KVM_S390_VM_CPU_PROCESSOR,
2271 .addr = (uint64_t) &prop,
2273 int rc;
2275 if (!model) {
2276 /* compatibility handling if cpu models are disabled */
2277 if (kvm_s390_cmma_available()) {
2278 kvm_s390_enable_cmma();
2280 return;
2282 if (!kvm_s390_cpu_models_supported()) {
2283 error_setg(errp, "KVM doesn't support CPU models");
2284 return;
2286 prop.cpuid = s390_cpuid_from_cpu_model(model);
2287 prop.ibc = s390_ibc_from_cpu_model(model);
2288 /* configure cpu features indicated via STFL(e) */
2289 s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL,
2290 (uint8_t *) prop.fac_list);
2291 rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr);
2292 if (rc) {
2293 error_setg(errp, "KVM: Error configuring the CPU model: %d", rc);
2294 return;
2296 /* configure cpu features indicated e.g. via SCLP */
2297 rc = configure_cpu_feat(model->features);
2298 if (rc) {
2299 error_setg(errp, "KVM: Error configuring CPU features: %d", rc);
2300 return;
2302 /* configure cpu subfunctions indicated via query / test bit */
2303 rc = configure_cpu_subfunc(model->features);
2304 if (rc) {
2305 error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc);
2306 return;
2308 /* enable CMM via CMMA */
2309 if (test_bit(S390_FEAT_CMM, model->features)) {
2310 kvm_s390_enable_cmma();
2314 void kvm_s390_restart_interrupt(S390CPU *cpu)
2316 struct kvm_s390_irq irq = {
2317 .type = KVM_S390_RESTART,
2320 kvm_s390_vcpu_interrupt(cpu, &irq);
2323 void kvm_s390_stop_interrupt(S390CPU *cpu)
2325 struct kvm_s390_irq irq = {
2326 .type = KVM_S390_SIGP_STOP,
2329 kvm_s390_vcpu_interrupt(cpu, &irq);