2 * i386 helpers (without register variable usage)
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qapi/qapi-events-run-state.h"
23 #include "exec/exec-all.h"
24 #include "qemu/qemu-print.h"
25 #include "sysemu/kvm.h"
26 #include "sysemu/runstate.h"
28 #ifndef CONFIG_USER_ONLY
29 #include "sysemu/tcg.h"
30 #include "sysemu/hw_accel.h"
31 #include "monitor/monitor.h"
32 #include "hw/i386/apic_internal.h"
35 void cpu_sync_bndcs_hflags(CPUX86State
*env
)
37 uint32_t hflags
= env
->hflags
;
38 uint32_t hflags2
= env
->hflags2
;
41 if ((hflags
& HF_CPL_MASK
) == 3) {
42 bndcsr
= env
->bndcs_regs
.cfgu
;
44 bndcsr
= env
->msr_bndcfgs
;
47 if ((env
->cr
[4] & CR4_OSXSAVE_MASK
)
48 && (env
->xcr0
& XSTATE_BNDCSR_MASK
)
49 && (bndcsr
& BNDCFG_ENABLE
)) {
50 hflags
|= HF_MPX_EN_MASK
;
52 hflags
&= ~HF_MPX_EN_MASK
;
55 if (bndcsr
& BNDCFG_BNDPRESERVE
) {
56 hflags2
|= HF2_MPX_PR_MASK
;
58 hflags2
&= ~HF2_MPX_PR_MASK
;
62 env
->hflags2
= hflags2
;
65 static void cpu_x86_version(CPUX86State
*env
, int *family
, int *model
)
67 int cpuver
= env
->cpuid_version
;
69 if (family
== NULL
|| model
== NULL
) {
73 *family
= (cpuver
>> 8) & 0x0f;
74 *model
= ((cpuver
>> 12) & 0xf0) + ((cpuver
>> 4) & 0x0f);
77 /* Broadcast MCA signal for processor version 06H_EH and above */
78 int cpu_x86_support_mca_broadcast(CPUX86State
*env
)
83 cpu_x86_version(env
, &family
, &model
);
84 if ((family
== 6 && model
>= 14) || family
> 6) {
91 /***********************************************************/
94 static const char *cc_op_str
[CC_OP_NB
] = {
161 cpu_x86_dump_seg_cache(CPUX86State
*env
, FILE *f
,
162 const char *name
, struct SegmentCache
*sc
)
165 if (env
->hflags
& HF_CS64_MASK
) {
166 qemu_fprintf(f
, "%-3s=%04x %016" PRIx64
" %08x %08x", name
,
167 sc
->selector
, sc
->base
, sc
->limit
,
168 sc
->flags
& 0x00ffff00);
172 qemu_fprintf(f
, "%-3s=%04x %08x %08x %08x", name
, sc
->selector
,
173 (uint32_t)sc
->base
, sc
->limit
,
174 sc
->flags
& 0x00ffff00);
177 if (!(env
->hflags
& HF_PE_MASK
) || !(sc
->flags
& DESC_P_MASK
))
180 qemu_fprintf(f
, " DPL=%d ",
181 (sc
->flags
& DESC_DPL_MASK
) >> DESC_DPL_SHIFT
);
182 if (sc
->flags
& DESC_S_MASK
) {
183 if (sc
->flags
& DESC_CS_MASK
) {
184 qemu_fprintf(f
, (sc
->flags
& DESC_L_MASK
) ? "CS64" :
185 ((sc
->flags
& DESC_B_MASK
) ? "CS32" : "CS16"));
186 qemu_fprintf(f
, " [%c%c", (sc
->flags
& DESC_C_MASK
) ? 'C' : '-',
187 (sc
->flags
& DESC_R_MASK
) ? 'R' : '-');
189 qemu_fprintf(f
, (sc
->flags
& DESC_B_MASK
190 || env
->hflags
& HF_LMA_MASK
)
192 qemu_fprintf(f
, " [%c%c", (sc
->flags
& DESC_E_MASK
) ? 'E' : '-',
193 (sc
->flags
& DESC_W_MASK
) ? 'W' : '-');
195 qemu_fprintf(f
, "%c]", (sc
->flags
& DESC_A_MASK
) ? 'A' : '-');
197 static const char *sys_type_name
[2][16] = {
199 "Reserved", "TSS16-avl", "LDT", "TSS16-busy",
200 "CallGate16", "TaskGate", "IntGate16", "TrapGate16",
201 "Reserved", "TSS32-avl", "Reserved", "TSS32-busy",
202 "CallGate32", "Reserved", "IntGate32", "TrapGate32"
205 "<hiword>", "Reserved", "LDT", "Reserved", "Reserved",
206 "Reserved", "Reserved", "Reserved", "Reserved",
207 "TSS64-avl", "Reserved", "TSS64-busy", "CallGate64",
208 "Reserved", "IntGate64", "TrapGate64"
211 qemu_fprintf(f
, "%s",
212 sys_type_name
[(env
->hflags
& HF_LMA_MASK
) ? 1 : 0]
213 [(sc
->flags
& DESC_TYPE_MASK
) >> DESC_TYPE_SHIFT
]);
216 qemu_fprintf(f
, "\n");
219 #ifndef CONFIG_USER_ONLY
221 /* ARRAY_SIZE check is not required because
222 * DeliveryMode(dm) has a size of 3 bit.
224 static inline const char *dm2str(uint32_t dm
)
226 static const char *str
[] = {
239 static void dump_apic_lvt(const char *name
, uint32_t lvt
, bool is_timer
)
241 uint32_t dm
= (lvt
& APIC_LVT_DELIV_MOD
) >> APIC_LVT_DELIV_MOD_SHIFT
;
242 qemu_printf("%s\t 0x%08x %s %-5s %-6s %-7s %-12s %-6s",
244 lvt
& APIC_LVT_INT_POLARITY
? "active-lo" : "active-hi",
245 lvt
& APIC_LVT_LEVEL_TRIGGER
? "level" : "edge",
246 lvt
& APIC_LVT_MASKED
? "masked" : "",
247 lvt
& APIC_LVT_DELIV_STS
? "pending" : "",
249 "" : lvt
& APIC_LVT_TIMER_PERIODIC
?
250 "periodic" : lvt
& APIC_LVT_TIMER_TSCDEADLINE
?
251 "tsc-deadline" : "one-shot",
253 if (dm
!= APIC_DM_NMI
) {
254 qemu_printf(" (vec %u)\n", lvt
& APIC_VECTOR_MASK
);
260 /* ARRAY_SIZE check is not required because
261 * destination shorthand has a size of 2 bit.
263 static inline const char *shorthand2str(uint32_t shorthand
)
265 const char *str
[] = {
266 "no-shorthand", "self", "all-self", "all"
268 return str
[shorthand
];
271 static inline uint8_t divider_conf(uint32_t divide_conf
)
273 uint8_t divide_val
= ((divide_conf
& 0x8) >> 1) | (divide_conf
& 0x3);
275 return divide_val
== 7 ? 1 : 2 << divide_val
;
278 static inline void mask2str(char *str
, uint32_t val
, uint8_t size
)
281 *str
++ = (val
>> size
) & 1 ? '1' : '0';
286 #define MAX_LOGICAL_APIC_ID_MASK_SIZE 16
288 static void dump_apic_icr(APICCommonState
*s
, CPUX86State
*env
)
290 uint32_t icr
= s
->icr
[0], icr2
= s
->icr
[1];
291 uint8_t dest_shorthand
= \
292 (icr
& APIC_ICR_DEST_SHORT
) >> APIC_ICR_DEST_SHORT_SHIFT
;
293 bool logical_mod
= icr
& APIC_ICR_DEST_MOD
;
294 char apic_id_str
[MAX_LOGICAL_APIC_ID_MASK_SIZE
+ 1];
298 qemu_printf("ICR\t 0x%08x %s %s %s %s\n",
300 logical_mod
? "logical" : "physical",
301 icr
& APIC_ICR_TRIGGER_MOD
? "level" : "edge",
302 icr
& APIC_ICR_LEVEL
? "assert" : "de-assert",
303 shorthand2str(dest_shorthand
));
305 qemu_printf("ICR2\t 0x%08x", icr2
);
306 if (dest_shorthand
!= 0) {
310 x2apic
= env
->features
[FEAT_1_ECX
] & CPUID_EXT_X2APIC
;
311 dest_field
= x2apic
? icr2
: icr2
>> APIC_ICR_DEST_SHIFT
;
315 qemu_printf(" cpu %u (X2APIC ID)\n", dest_field
);
317 qemu_printf(" cpu %u (APIC ID)\n",
318 dest_field
& APIC_LOGDEST_XAPIC_ID
);
323 if (s
->dest_mode
== 0xf) { /* flat mode */
324 mask2str(apic_id_str
, icr2
>> APIC_ICR_DEST_SHIFT
, 8);
325 qemu_printf(" mask %s (APIC ID)\n", apic_id_str
);
326 } else if (s
->dest_mode
== 0) { /* cluster mode */
328 mask2str(apic_id_str
, dest_field
& APIC_LOGDEST_X2APIC_ID
, 16);
329 qemu_printf(" cluster %u mask %s (X2APIC ID)\n",
330 dest_field
>> APIC_LOGDEST_X2APIC_SHIFT
, apic_id_str
);
332 mask2str(apic_id_str
, dest_field
& APIC_LOGDEST_XAPIC_ID
, 4);
333 qemu_printf(" cluster %u mask %s (APIC ID)\n",
334 dest_field
>> APIC_LOGDEST_XAPIC_SHIFT
, apic_id_str
);
339 static void dump_apic_interrupt(const char *name
, uint32_t *ireg_tab
,
344 qemu_printf("%s\t ", name
);
345 for (i
= 0; i
< 256; i
++) {
346 if (apic_get_bit(ireg_tab
, i
)) {
347 qemu_printf("%u%s ", i
,
348 apic_get_bit(tmr_tab
, i
) ? "(level)" : "");
352 qemu_printf("%s\n", empty
? "(none)" : "");
355 void x86_cpu_dump_local_apic_state(CPUState
*cs
, int flags
)
357 X86CPU
*cpu
= X86_CPU(cs
);
358 APICCommonState
*s
= APIC_COMMON(cpu
->apic_state
);
360 qemu_printf("local apic state not available\n");
363 uint32_t *lvt
= s
->lvt
;
365 qemu_printf("dumping local APIC state for CPU %-2u\n\n",
366 CPU(cpu
)->cpu_index
);
367 dump_apic_lvt("LVT0", lvt
[APIC_LVT_LINT0
], false);
368 dump_apic_lvt("LVT1", lvt
[APIC_LVT_LINT1
], false);
369 dump_apic_lvt("LVTPC", lvt
[APIC_LVT_PERFORM
], false);
370 dump_apic_lvt("LVTERR", lvt
[APIC_LVT_ERROR
], false);
371 dump_apic_lvt("LVTTHMR", lvt
[APIC_LVT_THERMAL
], false);
372 dump_apic_lvt("LVTT", lvt
[APIC_LVT_TIMER
], true);
374 qemu_printf("Timer\t DCR=0x%x (divide by %u) initial_count = %u"
375 " current_count = %u\n",
376 s
->divide_conf
& APIC_DCR_MASK
,
377 divider_conf(s
->divide_conf
),
378 s
->initial_count
, apic_get_current_count(s
));
380 qemu_printf("SPIV\t 0x%08x APIC %s, focus=%s, spurious vec %u\n",
382 s
->spurious_vec
& APIC_SPURIO_ENABLED
? "enabled" : "disabled",
383 s
->spurious_vec
& APIC_SPURIO_FOCUS
? "on" : "off",
384 s
->spurious_vec
& APIC_VECTOR_MASK
);
386 dump_apic_icr(s
, &cpu
->env
);
388 qemu_printf("ESR\t 0x%08x\n", s
->esr
);
390 dump_apic_interrupt("ISR", s
->isr
, s
->tmr
);
391 dump_apic_interrupt("IRR", s
->irr
, s
->tmr
);
393 qemu_printf("\nAPR 0x%02x TPR 0x%02x DFR 0x%02x LDR 0x%02x",
394 s
->arb_id
, s
->tpr
, s
->dest_mode
, s
->log_dest
);
395 if (s
->dest_mode
== 0) {
396 qemu_printf("(cluster %u: id %u)",
397 s
->log_dest
>> APIC_LOGDEST_XAPIC_SHIFT
,
398 s
->log_dest
& APIC_LOGDEST_XAPIC_ID
);
400 qemu_printf(" PPR 0x%02x\n", apic_get_ppr(s
));
403 void x86_cpu_dump_local_apic_state(CPUState
*cs
, int flags
)
406 #endif /* !CONFIG_USER_ONLY */
408 #define DUMP_CODE_BYTES_TOTAL 50
409 #define DUMP_CODE_BYTES_BACKWARD 20
411 void x86_cpu_dump_state(CPUState
*cs
, FILE *f
, int flags
)
413 X86CPU
*cpu
= X86_CPU(cs
);
414 CPUX86State
*env
= &cpu
->env
;
417 static const char *seg_name
[6] = { "ES", "CS", "SS", "DS", "FS", "GS" };
419 eflags
= cpu_compute_eflags(env
);
421 if (env
->hflags
& HF_CS64_MASK
) {
422 qemu_fprintf(f
, "RAX=%016" PRIx64
" RBX=%016" PRIx64
" RCX=%016" PRIx64
" RDX=%016" PRIx64
"\n"
423 "RSI=%016" PRIx64
" RDI=%016" PRIx64
" RBP=%016" PRIx64
" RSP=%016" PRIx64
"\n"
424 "R8 =%016" PRIx64
" R9 =%016" PRIx64
" R10=%016" PRIx64
" R11=%016" PRIx64
"\n"
425 "R12=%016" PRIx64
" R13=%016" PRIx64
" R14=%016" PRIx64
" R15=%016" PRIx64
"\n"
426 "RIP=%016" PRIx64
" RFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
444 eflags
& DF_MASK
? 'D' : '-',
445 eflags
& CC_O
? 'O' : '-',
446 eflags
& CC_S
? 'S' : '-',
447 eflags
& CC_Z
? 'Z' : '-',
448 eflags
& CC_A
? 'A' : '-',
449 eflags
& CC_P
? 'P' : '-',
450 eflags
& CC_C
? 'C' : '-',
451 env
->hflags
& HF_CPL_MASK
,
452 (env
->hflags
>> HF_INHIBIT_IRQ_SHIFT
) & 1,
453 (env
->a20_mask
>> 20) & 1,
454 (env
->hflags
>> HF_SMM_SHIFT
) & 1,
459 qemu_fprintf(f
, "EAX=%08x EBX=%08x ECX=%08x EDX=%08x\n"
460 "ESI=%08x EDI=%08x EBP=%08x ESP=%08x\n"
461 "EIP=%08x EFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
462 (uint32_t)env
->regs
[R_EAX
],
463 (uint32_t)env
->regs
[R_EBX
],
464 (uint32_t)env
->regs
[R_ECX
],
465 (uint32_t)env
->regs
[R_EDX
],
466 (uint32_t)env
->regs
[R_ESI
],
467 (uint32_t)env
->regs
[R_EDI
],
468 (uint32_t)env
->regs
[R_EBP
],
469 (uint32_t)env
->regs
[R_ESP
],
470 (uint32_t)env
->eip
, eflags
,
471 eflags
& DF_MASK
? 'D' : '-',
472 eflags
& CC_O
? 'O' : '-',
473 eflags
& CC_S
? 'S' : '-',
474 eflags
& CC_Z
? 'Z' : '-',
475 eflags
& CC_A
? 'A' : '-',
476 eflags
& CC_P
? 'P' : '-',
477 eflags
& CC_C
? 'C' : '-',
478 env
->hflags
& HF_CPL_MASK
,
479 (env
->hflags
>> HF_INHIBIT_IRQ_SHIFT
) & 1,
480 (env
->a20_mask
>> 20) & 1,
481 (env
->hflags
>> HF_SMM_SHIFT
) & 1,
485 for(i
= 0; i
< 6; i
++) {
486 cpu_x86_dump_seg_cache(env
, f
, seg_name
[i
], &env
->segs
[i
]);
488 cpu_x86_dump_seg_cache(env
, f
, "LDT", &env
->ldt
);
489 cpu_x86_dump_seg_cache(env
, f
, "TR", &env
->tr
);
492 if (env
->hflags
& HF_LMA_MASK
) {
493 qemu_fprintf(f
, "GDT= %016" PRIx64
" %08x\n",
494 env
->gdt
.base
, env
->gdt
.limit
);
495 qemu_fprintf(f
, "IDT= %016" PRIx64
" %08x\n",
496 env
->idt
.base
, env
->idt
.limit
);
497 qemu_fprintf(f
, "CR0=%08x CR2=%016" PRIx64
" CR3=%016" PRIx64
" CR4=%08x\n",
498 (uint32_t)env
->cr
[0],
501 (uint32_t)env
->cr
[4]);
502 for(i
= 0; i
< 4; i
++)
503 qemu_fprintf(f
, "DR%d=%016" PRIx64
" ", i
, env
->dr
[i
]);
504 qemu_fprintf(f
, "\nDR6=%016" PRIx64
" DR7=%016" PRIx64
"\n",
505 env
->dr
[6], env
->dr
[7]);
509 qemu_fprintf(f
, "GDT= %08x %08x\n",
510 (uint32_t)env
->gdt
.base
, env
->gdt
.limit
);
511 qemu_fprintf(f
, "IDT= %08x %08x\n",
512 (uint32_t)env
->idt
.base
, env
->idt
.limit
);
513 qemu_fprintf(f
, "CR0=%08x CR2=%08x CR3=%08x CR4=%08x\n",
514 (uint32_t)env
->cr
[0],
515 (uint32_t)env
->cr
[2],
516 (uint32_t)env
->cr
[3],
517 (uint32_t)env
->cr
[4]);
518 for(i
= 0; i
< 4; i
++) {
519 qemu_fprintf(f
, "DR%d=" TARGET_FMT_lx
" ", i
, env
->dr
[i
]);
521 qemu_fprintf(f
, "\nDR6=" TARGET_FMT_lx
" DR7=" TARGET_FMT_lx
"\n",
522 env
->dr
[6], env
->dr
[7]);
524 if (flags
& CPU_DUMP_CCOP
) {
525 if ((unsigned)env
->cc_op
< CC_OP_NB
)
526 snprintf(cc_op_name
, sizeof(cc_op_name
), "%s", cc_op_str
[env
->cc_op
]);
528 snprintf(cc_op_name
, sizeof(cc_op_name
), "[%d]", env
->cc_op
);
530 if (env
->hflags
& HF_CS64_MASK
) {
531 qemu_fprintf(f
, "CCS=%016" PRIx64
" CCD=%016" PRIx64
" CCO=%-8s\n",
532 env
->cc_src
, env
->cc_dst
,
537 qemu_fprintf(f
, "CCS=%08x CCD=%08x CCO=%-8s\n",
538 (uint32_t)env
->cc_src
, (uint32_t)env
->cc_dst
,
542 qemu_fprintf(f
, "EFER=%016" PRIx64
"\n", env
->efer
);
543 if (flags
& CPU_DUMP_FPU
) {
546 for(i
= 0; i
< 8; i
++) {
547 fptag
|= ((!env
->fptags
[i
]) << i
);
549 update_mxcsr_from_sse_status(env
);
550 qemu_fprintf(f
, "FCW=%04x FSW=%04x [ST=%d] FTW=%02x MXCSR=%08x\n",
552 (env
->fpus
& ~0x3800) | (env
->fpstt
& 0x7) << 11,
558 u
.d
= env
->fpregs
[i
].d
;
559 qemu_fprintf(f
, "FPR%d=%016" PRIx64
" %04x",
560 i
, u
.l
.lower
, u
.l
.upper
);
562 qemu_fprintf(f
, "\n");
564 qemu_fprintf(f
, " ");
566 if (env
->hflags
& HF_CS64_MASK
)
571 qemu_fprintf(f
, "XMM%02d=%08x%08x%08x%08x",
573 env
->xmm_regs
[i
].ZMM_L(3),
574 env
->xmm_regs
[i
].ZMM_L(2),
575 env
->xmm_regs
[i
].ZMM_L(1),
576 env
->xmm_regs
[i
].ZMM_L(0));
578 qemu_fprintf(f
, "\n");
580 qemu_fprintf(f
, " ");
583 if (flags
& CPU_DUMP_CODE
) {
584 target_ulong base
= env
->segs
[R_CS
].base
+ env
->eip
;
585 target_ulong offs
= MIN(env
->eip
, DUMP_CODE_BYTES_BACKWARD
);
589 qemu_fprintf(f
, "Code=");
590 for (i
= 0; i
< DUMP_CODE_BYTES_TOTAL
; i
++) {
591 if (cpu_memory_rw_debug(cs
, base
- offs
+ i
, &code
, 1, 0) == 0) {
592 snprintf(codestr
, sizeof(codestr
), "%02x", code
);
594 snprintf(codestr
, sizeof(codestr
), "??");
596 qemu_fprintf(f
, "%s%s%s%s", i
> 0 ? " " : "",
597 i
== offs
? "<" : "", codestr
, i
== offs
? ">" : "");
599 qemu_fprintf(f
, "\n");
603 /***********************************************************/
605 /* XXX: add PGE support */
607 void x86_cpu_set_a20(X86CPU
*cpu
, int a20_state
)
609 CPUX86State
*env
= &cpu
->env
;
611 a20_state
= (a20_state
!= 0);
612 if (a20_state
!= ((env
->a20_mask
>> 20) & 1)) {
613 CPUState
*cs
= CPU(cpu
);
615 qemu_log_mask(CPU_LOG_MMU
, "A20 update: a20=%d\n", a20_state
);
616 /* if the cpu is currently executing code, we must unlink it and
617 all the potentially executing TB */
618 cpu_interrupt(cs
, CPU_INTERRUPT_EXITTB
);
620 /* when a20 is changed, all the MMU mappings are invalid, so
621 we must flush everything */
623 env
->a20_mask
= ~(1 << 20) | (a20_state
<< 20);
627 void cpu_x86_update_cr0(CPUX86State
*env
, uint32_t new_cr0
)
629 X86CPU
*cpu
= env_archcpu(env
);
632 qemu_log_mask(CPU_LOG_MMU
, "CR0 update: CR0=0x%08x\n", new_cr0
);
633 if ((new_cr0
& (CR0_PG_MASK
| CR0_WP_MASK
| CR0_PE_MASK
)) !=
634 (env
->cr
[0] & (CR0_PG_MASK
| CR0_WP_MASK
| CR0_PE_MASK
))) {
639 if (!(env
->cr
[0] & CR0_PG_MASK
) && (new_cr0
& CR0_PG_MASK
) &&
640 (env
->efer
& MSR_EFER_LME
)) {
641 /* enter in long mode */
642 /* XXX: generate an exception */
643 if (!(env
->cr
[4] & CR4_PAE_MASK
))
645 env
->efer
|= MSR_EFER_LMA
;
646 env
->hflags
|= HF_LMA_MASK
;
647 } else if ((env
->cr
[0] & CR0_PG_MASK
) && !(new_cr0
& CR0_PG_MASK
) &&
648 (env
->efer
& MSR_EFER_LMA
)) {
650 env
->efer
&= ~MSR_EFER_LMA
;
651 env
->hflags
&= ~(HF_LMA_MASK
| HF_CS64_MASK
);
652 env
->eip
&= 0xffffffff;
655 env
->cr
[0] = new_cr0
| CR0_ET_MASK
;
657 /* update PE flag in hidden flags */
658 pe_state
= (env
->cr
[0] & CR0_PE_MASK
);
659 env
->hflags
= (env
->hflags
& ~HF_PE_MASK
) | (pe_state
<< HF_PE_SHIFT
);
660 /* ensure that ADDSEG is always set in real mode */
661 env
->hflags
|= ((pe_state
^ 1) << HF_ADDSEG_SHIFT
);
662 /* update FPU flags */
663 env
->hflags
= (env
->hflags
& ~(HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
)) |
664 ((new_cr0
<< (HF_MP_SHIFT
- 1)) & (HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
));
667 /* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in
669 void cpu_x86_update_cr3(CPUX86State
*env
, target_ulong new_cr3
)
671 env
->cr
[3] = new_cr3
;
672 if (env
->cr
[0] & CR0_PG_MASK
) {
673 qemu_log_mask(CPU_LOG_MMU
,
674 "CR3 update: CR3=" TARGET_FMT_lx
"\n", new_cr3
);
675 tlb_flush(env_cpu(env
));
679 void cpu_x86_update_cr4(CPUX86State
*env
, uint32_t new_cr4
)
683 #if defined(DEBUG_MMU)
684 printf("CR4 update: %08x -> %08x\n", (uint32_t)env
->cr
[4], new_cr4
);
686 if ((new_cr4
^ env
->cr
[4]) &
687 (CR4_PGE_MASK
| CR4_PAE_MASK
| CR4_PSE_MASK
|
688 CR4_SMEP_MASK
| CR4_SMAP_MASK
| CR4_LA57_MASK
)) {
689 tlb_flush(env_cpu(env
));
692 /* Clear bits we're going to recompute. */
693 hflags
= env
->hflags
& ~(HF_OSFXSR_MASK
| HF_SMAP_MASK
);
696 if (!(env
->features
[FEAT_1_EDX
] & CPUID_SSE
)) {
697 new_cr4
&= ~CR4_OSFXSR_MASK
;
699 if (new_cr4
& CR4_OSFXSR_MASK
) {
700 hflags
|= HF_OSFXSR_MASK
;
703 if (!(env
->features
[FEAT_7_0_EBX
] & CPUID_7_0_EBX_SMAP
)) {
704 new_cr4
&= ~CR4_SMAP_MASK
;
706 if (new_cr4
& CR4_SMAP_MASK
) {
707 hflags
|= HF_SMAP_MASK
;
710 if (!(env
->features
[FEAT_7_0_ECX
] & CPUID_7_0_ECX_PKU
)) {
711 new_cr4
&= ~CR4_PKE_MASK
;
714 env
->cr
[4] = new_cr4
;
715 env
->hflags
= hflags
;
717 cpu_sync_bndcs_hflags(env
);
720 #if !defined(CONFIG_USER_ONLY)
721 hwaddr
x86_cpu_get_phys_page_attrs_debug(CPUState
*cs
, vaddr addr
,
724 X86CPU
*cpu
= X86_CPU(cs
);
725 CPUX86State
*env
= &cpu
->env
;
726 target_ulong pde_addr
, pte_addr
;
729 uint32_t page_offset
;
732 *attrs
= cpu_get_mem_attrs(env
);
734 a20_mask
= x86_get_a20_mask(env
);
735 if (!(env
->cr
[0] & CR0_PG_MASK
)) {
736 pte
= addr
& a20_mask
;
738 } else if (env
->cr
[4] & CR4_PAE_MASK
) {
739 target_ulong pdpe_addr
;
743 if (env
->hflags
& HF_LMA_MASK
) {
744 bool la57
= env
->cr
[4] & CR4_LA57_MASK
;
745 uint64_t pml5e_addr
, pml5e
;
746 uint64_t pml4e_addr
, pml4e
;
749 /* test virtual address sign extension */
750 sext
= la57
? (int64_t)addr
>> 56 : (int64_t)addr
>> 47;
751 if (sext
!= 0 && sext
!= -1) {
756 pml5e_addr
= ((env
->cr
[3] & ~0xfff) +
757 (((addr
>> 48) & 0x1ff) << 3)) & a20_mask
;
758 pml5e
= x86_ldq_phys(cs
, pml5e_addr
);
759 if (!(pml5e
& PG_PRESENT_MASK
)) {
766 pml4e_addr
= ((pml5e
& PG_ADDRESS_MASK
) +
767 (((addr
>> 39) & 0x1ff) << 3)) & a20_mask
;
768 pml4e
= x86_ldq_phys(cs
, pml4e_addr
);
769 if (!(pml4e
& PG_PRESENT_MASK
)) {
772 pdpe_addr
= ((pml4e
& PG_ADDRESS_MASK
) +
773 (((addr
>> 30) & 0x1ff) << 3)) & a20_mask
;
774 pdpe
= x86_ldq_phys(cs
, pdpe_addr
);
775 if (!(pdpe
& PG_PRESENT_MASK
)) {
778 if (pdpe
& PG_PSE_MASK
) {
779 page_size
= 1024 * 1024 * 1024;
787 pdpe_addr
= ((env
->cr
[3] & ~0x1f) + ((addr
>> 27) & 0x18)) &
789 pdpe
= x86_ldq_phys(cs
, pdpe_addr
);
790 if (!(pdpe
& PG_PRESENT_MASK
))
794 pde_addr
= ((pdpe
& PG_ADDRESS_MASK
) +
795 (((addr
>> 21) & 0x1ff) << 3)) & a20_mask
;
796 pde
= x86_ldq_phys(cs
, pde_addr
);
797 if (!(pde
& PG_PRESENT_MASK
)) {
800 if (pde
& PG_PSE_MASK
) {
802 page_size
= 2048 * 1024;
806 pte_addr
= ((pde
& PG_ADDRESS_MASK
) +
807 (((addr
>> 12) & 0x1ff) << 3)) & a20_mask
;
809 pte
= x86_ldq_phys(cs
, pte_addr
);
811 if (!(pte
& PG_PRESENT_MASK
)) {
817 /* page directory entry */
818 pde_addr
= ((env
->cr
[3] & ~0xfff) + ((addr
>> 20) & 0xffc)) & a20_mask
;
819 pde
= x86_ldl_phys(cs
, pde_addr
);
820 if (!(pde
& PG_PRESENT_MASK
))
822 if ((pde
& PG_PSE_MASK
) && (env
->cr
[4] & CR4_PSE_MASK
)) {
823 pte
= pde
| ((pde
& 0x1fe000LL
) << (32 - 13));
824 page_size
= 4096 * 1024;
826 /* page directory entry */
827 pte_addr
= ((pde
& ~0xfff) + ((addr
>> 10) & 0xffc)) & a20_mask
;
828 pte
= x86_ldl_phys(cs
, pte_addr
);
829 if (!(pte
& PG_PRESENT_MASK
)) {
834 pte
= pte
& a20_mask
;
840 pte
&= PG_ADDRESS_MASK
& ~(page_size
- 1);
841 page_offset
= (addr
& TARGET_PAGE_MASK
) & (page_size
- 1);
842 return pte
| page_offset
;
845 typedef struct MCEInjectionParams
{
853 } MCEInjectionParams
;
855 static void emit_guest_memory_failure(MemoryFailureAction action
, bool ar
,
858 MemoryFailureFlags mff
= {.action_required
= ar
, .recursive
= recursive
};
860 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_GUEST
, action
,
864 static void do_inject_x86_mce(CPUState
*cs
, run_on_cpu_data data
)
866 MCEInjectionParams
*params
= data
.host_ptr
;
867 X86CPU
*cpu
= X86_CPU(cs
);
868 CPUX86State
*cenv
= &cpu
->env
;
869 uint64_t *banks
= cenv
->mce_banks
+ 4 * params
->bank
;
870 g_autofree
char *msg
= NULL
;
871 bool need_reset
= false;
873 bool ar
= !!(params
->status
& MCI_STATUS_AR
);
875 cpu_synchronize_state(cs
);
876 recursive
= !!(cenv
->mcg_status
& MCG_STATUS_MCIP
);
879 * If there is an MCE exception being processed, ignore this SRAO MCE
880 * unless unconditional injection was requested.
882 if (!(params
->flags
& MCE_INJECT_UNCOND_AO
) && !ar
&& recursive
) {
883 emit_guest_memory_failure(MEMORY_FAILURE_ACTION_IGNORE
, ar
, recursive
);
887 if (params
->status
& MCI_STATUS_UC
) {
889 * if MSR_MCG_CTL is not all 1s, the uncorrected error
890 * reporting is disabled
892 if ((cenv
->mcg_cap
& MCG_CTL_P
) && cenv
->mcg_ctl
!= ~(uint64_t)0) {
893 monitor_printf(params
->mon
,
894 "CPU %d: Uncorrected error reporting disabled\n",
900 * if MSR_MCi_CTL is not all 1s, the uncorrected error
901 * reporting is disabled for the bank
903 if (banks
[0] != ~(uint64_t)0) {
904 monitor_printf(params
->mon
,
905 "CPU %d: Uncorrected error reporting disabled for"
907 cs
->cpu_index
, params
->bank
);
913 msg
= g_strdup_printf("CPU %d: Previous MCE still in progress, "
914 "raising triple fault", cs
->cpu_index
);
917 if (!(cenv
->cr
[4] & CR4_MCE_MASK
)) {
919 msg
= g_strdup_printf("CPU %d: MCE capability is not enabled, "
920 "raising triple fault", cs
->cpu_index
);
924 emit_guest_memory_failure(MEMORY_FAILURE_ACTION_RESET
, ar
,
926 monitor_printf(params
->mon
, "%s", msg
);
927 qemu_log_mask(CPU_LOG_RESET
, "%s\n", msg
);
928 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
932 if (banks
[1] & MCI_STATUS_VAL
) {
933 params
->status
|= MCI_STATUS_OVER
;
935 banks
[2] = params
->addr
;
936 banks
[3] = params
->misc
;
937 cenv
->mcg_status
= params
->mcg_status
;
938 banks
[1] = params
->status
;
939 cpu_interrupt(cs
, CPU_INTERRUPT_MCE
);
940 } else if (!(banks
[1] & MCI_STATUS_VAL
)
941 || !(banks
[1] & MCI_STATUS_UC
)) {
942 if (banks
[1] & MCI_STATUS_VAL
) {
943 params
->status
|= MCI_STATUS_OVER
;
945 banks
[2] = params
->addr
;
946 banks
[3] = params
->misc
;
947 banks
[1] = params
->status
;
949 banks
[1] |= MCI_STATUS_OVER
;
952 emit_guest_memory_failure(MEMORY_FAILURE_ACTION_INJECT
, ar
, recursive
);
955 void cpu_x86_inject_mce(Monitor
*mon
, X86CPU
*cpu
, int bank
,
956 uint64_t status
, uint64_t mcg_status
, uint64_t addr
,
957 uint64_t misc
, int flags
)
959 CPUState
*cs
= CPU(cpu
);
960 CPUX86State
*cenv
= &cpu
->env
;
961 MCEInjectionParams params
= {
965 .mcg_status
= mcg_status
,
970 unsigned bank_num
= cenv
->mcg_cap
& 0xff;
972 if (!cenv
->mcg_cap
) {
973 monitor_printf(mon
, "MCE injection not supported\n");
976 if (bank
>= bank_num
) {
977 monitor_printf(mon
, "Invalid MCE bank number\n");
980 if (!(status
& MCI_STATUS_VAL
)) {
981 monitor_printf(mon
, "Invalid MCE status code\n");
984 if ((flags
& MCE_INJECT_BROADCAST
)
985 && !cpu_x86_support_mca_broadcast(cenv
)) {
986 monitor_printf(mon
, "Guest CPU does not support MCA broadcast\n");
990 run_on_cpu(cs
, do_inject_x86_mce
, RUN_ON_CPU_HOST_PTR(¶ms
));
991 if (flags
& MCE_INJECT_BROADCAST
) {
995 params
.status
= MCI_STATUS_VAL
| MCI_STATUS_UC
;
996 params
.mcg_status
= MCG_STATUS_MCIP
| MCG_STATUS_RIPV
;
999 CPU_FOREACH(other_cs
) {
1000 if (other_cs
== cs
) {
1003 run_on_cpu(other_cs
, do_inject_x86_mce
, RUN_ON_CPU_HOST_PTR(¶ms
));
1008 void cpu_report_tpr_access(CPUX86State
*env
, TPRAccess access
)
1010 X86CPU
*cpu
= env_archcpu(env
);
1011 CPUState
*cs
= env_cpu(env
);
1013 if (kvm_enabled() || whpx_enabled()) {
1014 env
->tpr_access_type
= access
;
1016 cpu_interrupt(cs
, CPU_INTERRUPT_TPR
);
1017 } else if (tcg_enabled()) {
1018 cpu_restore_state(cs
, cs
->mem_io_pc
, false);
1020 apic_handle_tpr_access_report(cpu
->apic_state
, env
->eip
, access
);
1023 #endif /* !CONFIG_USER_ONLY */
1025 int cpu_x86_get_descr_debug(CPUX86State
*env
, unsigned int selector
,
1026 target_ulong
*base
, unsigned int *limit
,
1027 unsigned int *flags
)
1029 CPUState
*cs
= env_cpu(env
);
1039 index
= selector
& ~7;
1040 ptr
= dt
->base
+ index
;
1041 if ((index
+ 7) > dt
->limit
1042 || cpu_memory_rw_debug(cs
, ptr
, (uint8_t *)&e1
, sizeof(e1
), 0) != 0
1043 || cpu_memory_rw_debug(cs
, ptr
+4, (uint8_t *)&e2
, sizeof(e2
), 0) != 0)
1046 *base
= ((e1
>> 16) | ((e2
& 0xff) << 16) | (e2
& 0xff000000));
1047 *limit
= (e1
& 0xffff) | (e2
& 0x000f0000);
1048 if (e2
& DESC_G_MASK
)
1049 *limit
= (*limit
<< 12) | 0xfff;
1055 #if !defined(CONFIG_USER_ONLY)
1056 void do_cpu_init(X86CPU
*cpu
)
1058 CPUState
*cs
= CPU(cpu
);
1059 CPUX86State
*env
= &cpu
->env
;
1060 CPUX86State
*save
= g_new(CPUX86State
, 1);
1061 int sipi
= cs
->interrupt_request
& CPU_INTERRUPT_SIPI
;
1066 cs
->interrupt_request
= sipi
;
1067 memcpy(&env
->start_init_save
, &save
->start_init_save
,
1068 offsetof(CPUX86State
, end_init_save
) -
1069 offsetof(CPUX86State
, start_init_save
));
1072 if (kvm_enabled()) {
1073 kvm_arch_do_init_vcpu(cpu
);
1075 apic_init_reset(cpu
->apic_state
);
1078 void do_cpu_sipi(X86CPU
*cpu
)
1080 apic_sipi(cpu
->apic_state
);
1083 void do_cpu_init(X86CPU
*cpu
)
1086 void do_cpu_sipi(X86CPU
*cpu
)
1091 /* Frob eflags into and out of the CPU temporary format. */
1093 void x86_cpu_exec_enter(CPUState
*cs
)
1095 X86CPU
*cpu
= X86_CPU(cs
);
1096 CPUX86State
*env
= &cpu
->env
;
1098 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
1099 env
->df
= 1 - (2 * ((env
->eflags
>> 10) & 1));
1100 CC_OP
= CC_OP_EFLAGS
;
1101 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
1104 void x86_cpu_exec_exit(CPUState
*cs
)
1106 X86CPU
*cpu
= X86_CPU(cs
);
1107 CPUX86State
*env
= &cpu
->env
;
1109 env
->eflags
= cpu_compute_eflags(env
);
1112 #ifndef CONFIG_USER_ONLY
1113 uint8_t x86_ldub_phys(CPUState
*cs
, hwaddr addr
)
1115 X86CPU
*cpu
= X86_CPU(cs
);
1116 CPUX86State
*env
= &cpu
->env
;
1117 MemTxAttrs attrs
= cpu_get_mem_attrs(env
);
1118 AddressSpace
*as
= cpu_addressspace(cs
, attrs
);
1120 return address_space_ldub(as
, addr
, attrs
, NULL
);
1123 uint32_t x86_lduw_phys(CPUState
*cs
, hwaddr addr
)
1125 X86CPU
*cpu
= X86_CPU(cs
);
1126 CPUX86State
*env
= &cpu
->env
;
1127 MemTxAttrs attrs
= cpu_get_mem_attrs(env
);
1128 AddressSpace
*as
= cpu_addressspace(cs
, attrs
);
1130 return address_space_lduw(as
, addr
, attrs
, NULL
);
1133 uint32_t x86_ldl_phys(CPUState
*cs
, hwaddr addr
)
1135 X86CPU
*cpu
= X86_CPU(cs
);
1136 CPUX86State
*env
= &cpu
->env
;
1137 MemTxAttrs attrs
= cpu_get_mem_attrs(env
);
1138 AddressSpace
*as
= cpu_addressspace(cs
, attrs
);
1140 return address_space_ldl(as
, addr
, attrs
, NULL
);
1143 uint64_t x86_ldq_phys(CPUState
*cs
, hwaddr addr
)
1145 X86CPU
*cpu
= X86_CPU(cs
);
1146 CPUX86State
*env
= &cpu
->env
;
1147 MemTxAttrs attrs
= cpu_get_mem_attrs(env
);
1148 AddressSpace
*as
= cpu_addressspace(cs
, attrs
);
1150 return address_space_ldq(as
, addr
, attrs
, NULL
);
1153 void x86_stb_phys(CPUState
*cs
, hwaddr addr
, uint8_t val
)
1155 X86CPU
*cpu
= X86_CPU(cs
);
1156 CPUX86State
*env
= &cpu
->env
;
1157 MemTxAttrs attrs
= cpu_get_mem_attrs(env
);
1158 AddressSpace
*as
= cpu_addressspace(cs
, attrs
);
1160 address_space_stb(as
, addr
, val
, attrs
, NULL
);
1163 void x86_stl_phys_notdirty(CPUState
*cs
, hwaddr addr
, uint32_t val
)
1165 X86CPU
*cpu
= X86_CPU(cs
);
1166 CPUX86State
*env
= &cpu
->env
;
1167 MemTxAttrs attrs
= cpu_get_mem_attrs(env
);
1168 AddressSpace
*as
= cpu_addressspace(cs
, attrs
);
1170 address_space_stl_notdirty(as
, addr
, val
, attrs
, NULL
);
1173 void x86_stw_phys(CPUState
*cs
, hwaddr addr
, uint32_t val
)
1175 X86CPU
*cpu
= X86_CPU(cs
);
1176 CPUX86State
*env
= &cpu
->env
;
1177 MemTxAttrs attrs
= cpu_get_mem_attrs(env
);
1178 AddressSpace
*as
= cpu_addressspace(cs
, attrs
);
1180 address_space_stw(as
, addr
, val
, attrs
, NULL
);
1183 void x86_stl_phys(CPUState
*cs
, hwaddr addr
, uint32_t val
)
1185 X86CPU
*cpu
= X86_CPU(cs
);
1186 CPUX86State
*env
= &cpu
->env
;
1187 MemTxAttrs attrs
= cpu_get_mem_attrs(env
);
1188 AddressSpace
*as
= cpu_addressspace(cs
, attrs
);
1190 address_space_stl(as
, addr
, val
, attrs
, NULL
);
1193 void x86_stq_phys(CPUState
*cs
, hwaddr addr
, uint64_t val
)
1195 X86CPU
*cpu
= X86_CPU(cs
);
1196 CPUX86State
*env
= &cpu
->env
;
1197 MemTxAttrs attrs
= cpu_get_mem_attrs(env
);
1198 AddressSpace
*as
= cpu_addressspace(cs
, attrs
);
1200 address_space_stq(as
, addr
, val
, attrs
, NULL
);