char-pty: remove write_lock usage
[qemu/ar7.git] / hw / arm / boot.c
blobd90af2f17d25f02973940b17cd84124af5ceae6e
1 /*
2 * ARM kernel loader.
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu/error-report.h"
12 #include "qapi/error.h"
13 #include <libfdt.h>
14 #include "hw/hw.h"
15 #include "hw/arm/arm.h"
16 #include "hw/arm/linux-boot-if.h"
17 #include "sysemu/kvm.h"
18 #include "sysemu/sysemu.h"
19 #include "sysemu/numa.h"
20 #include "hw/boards.h"
21 #include "hw/loader.h"
22 #include "elf.h"
23 #include "sysemu/device_tree.h"
24 #include "qemu/config-file.h"
25 #include "qemu/option.h"
26 #include "exec/address-spaces.h"
27 #include "qemu/units.h"
29 /* Kernel boot protocol is specified in the kernel docs
30 * Documentation/arm/Booting and Documentation/arm64/booting.txt
31 * They have different preferred image load offsets from system RAM base.
33 #define KERNEL_ARGS_ADDR 0x100
34 #define KERNEL_NOLOAD_ADDR 0x02000000
35 #define KERNEL_LOAD_ADDR 0x00010000
36 #define KERNEL64_LOAD_ADDR 0x00080000
38 #define ARM64_TEXT_OFFSET_OFFSET 8
39 #define ARM64_MAGIC_OFFSET 56
41 #define BOOTLOADER_MAX_SIZE (4 * KiB)
43 AddressSpace *arm_boot_address_space(ARMCPU *cpu,
44 const struct arm_boot_info *info)
46 /* Return the address space to use for bootloader reads and writes.
47 * We prefer the secure address space if the CPU has it and we're
48 * going to boot the guest into it.
50 int asidx;
51 CPUState *cs = CPU(cpu);
53 if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
54 asidx = ARMASIdx_S;
55 } else {
56 asidx = ARMASIdx_NS;
59 return cpu_get_address_space(cs, asidx);
62 typedef enum {
63 FIXUP_NONE = 0, /* do nothing */
64 FIXUP_TERMINATOR, /* end of insns */
65 FIXUP_BOARDID, /* overwrite with board ID number */
66 FIXUP_BOARD_SETUP, /* overwrite with board specific setup code address */
67 FIXUP_ARGPTR_LO, /* overwrite with pointer to kernel args */
68 FIXUP_ARGPTR_HI, /* overwrite with pointer to kernel args (high half) */
69 FIXUP_ENTRYPOINT_LO, /* overwrite with kernel entry point */
70 FIXUP_ENTRYPOINT_HI, /* overwrite with kernel entry point (high half) */
71 FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */
72 FIXUP_BOOTREG, /* overwrite with boot register address */
73 FIXUP_DSB, /* overwrite with correct DSB insn for cpu */
74 FIXUP_MAX,
75 } FixupType;
77 typedef struct ARMInsnFixup {
78 uint32_t insn;
79 FixupType fixup;
80 } ARMInsnFixup;
82 static const ARMInsnFixup bootloader_aarch64[] = {
83 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
84 { 0xaa1f03e1 }, /* mov x1, xzr */
85 { 0xaa1f03e2 }, /* mov x2, xzr */
86 { 0xaa1f03e3 }, /* mov x3, xzr */
87 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
88 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
89 { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
90 { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
91 { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
92 { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
93 { 0, FIXUP_TERMINATOR }
96 /* A very small bootloader: call the board-setup code (if needed),
97 * set r0-r2, then jump to the kernel.
98 * If we're not calling boot setup code then we don't copy across
99 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
102 static const ARMInsnFixup bootloader[] = {
103 { 0xe28fe004 }, /* add lr, pc, #4 */
104 { 0xe51ff004 }, /* ldr pc, [pc, #-4] */
105 { 0, FIXUP_BOARD_SETUP },
106 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
107 { 0xe3a00000 }, /* mov r0, #0 */
108 { 0xe59f1004 }, /* ldr r1, [pc, #4] */
109 { 0xe59f2004 }, /* ldr r2, [pc, #4] */
110 { 0xe59ff004 }, /* ldr pc, [pc, #4] */
111 { 0, FIXUP_BOARDID },
112 { 0, FIXUP_ARGPTR_LO },
113 { 0, FIXUP_ENTRYPOINT_LO },
114 { 0, FIXUP_TERMINATOR }
117 /* Handling for secondary CPU boot in a multicore system.
118 * Unlike the uniprocessor/primary CPU boot, this is platform
119 * dependent. The default code here is based on the secondary
120 * CPU boot protocol used on realview/vexpress boards, with
121 * some parameterisation to increase its flexibility.
122 * QEMU platform models for which this code is not appropriate
123 * should override write_secondary_boot and secondary_cpu_reset_hook
124 * instead.
126 * This code enables the interrupt controllers for the secondary
127 * CPUs and then puts all the secondary CPUs into a loop waiting
128 * for an interprocessor interrupt and polling a configurable
129 * location for the kernel secondary CPU entry point.
131 #define DSB_INSN 0xf57ff04f
132 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
134 static const ARMInsnFixup smpboot[] = {
135 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
136 { 0xe59f0028 }, /* ldr r0, bootreg_addr */
137 { 0xe3a01001 }, /* mov r1, #1 */
138 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
139 { 0xe3a010ff }, /* mov r1, #0xff */
140 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
141 { 0, FIXUP_DSB }, /* dsb */
142 { 0xe320f003 }, /* wfi */
143 { 0xe5901000 }, /* ldr r1, [r0] */
144 { 0xe1110001 }, /* tst r1, r1 */
145 { 0x0afffffb }, /* beq <wfi> */
146 { 0xe12fff11 }, /* bx r1 */
147 { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
148 { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
149 { 0, FIXUP_TERMINATOR }
152 static void write_bootloader(const char *name, hwaddr addr,
153 const ARMInsnFixup *insns, uint32_t *fixupcontext,
154 AddressSpace *as)
156 /* Fix up the specified bootloader fragment and write it into
157 * guest memory using rom_add_blob_fixed(). fixupcontext is
158 * an array giving the values to write in for the fixup types
159 * which write a value into the code array.
161 int i, len;
162 uint32_t *code;
164 len = 0;
165 while (insns[len].fixup != FIXUP_TERMINATOR) {
166 len++;
169 code = g_new0(uint32_t, len);
171 for (i = 0; i < len; i++) {
172 uint32_t insn = insns[i].insn;
173 FixupType fixup = insns[i].fixup;
175 switch (fixup) {
176 case FIXUP_NONE:
177 break;
178 case FIXUP_BOARDID:
179 case FIXUP_BOARD_SETUP:
180 case FIXUP_ARGPTR_LO:
181 case FIXUP_ARGPTR_HI:
182 case FIXUP_ENTRYPOINT_LO:
183 case FIXUP_ENTRYPOINT_HI:
184 case FIXUP_GIC_CPU_IF:
185 case FIXUP_BOOTREG:
186 case FIXUP_DSB:
187 insn = fixupcontext[fixup];
188 break;
189 default:
190 abort();
192 code[i] = tswap32(insn);
195 assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
197 rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
199 g_free(code);
202 static void default_write_secondary(ARMCPU *cpu,
203 const struct arm_boot_info *info)
205 uint32_t fixupcontext[FIXUP_MAX];
206 AddressSpace *as = arm_boot_address_space(cpu, info);
208 fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
209 fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
210 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
211 fixupcontext[FIXUP_DSB] = DSB_INSN;
212 } else {
213 fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
216 write_bootloader("smpboot", info->smp_loader_start,
217 smpboot, fixupcontext, as);
220 void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
221 const struct arm_boot_info *info,
222 hwaddr mvbar_addr)
224 AddressSpace *as = arm_boot_address_space(cpu, info);
225 int n;
226 uint32_t mvbar_blob[] = {
227 /* mvbar_addr: secure monitor vectors
228 * Default unimplemented and unused vectors to spin. Makes it
229 * easier to debug (as opposed to the CPU running away).
231 0xeafffffe, /* (spin) */
232 0xeafffffe, /* (spin) */
233 0xe1b0f00e, /* movs pc, lr ;SMC exception return */
234 0xeafffffe, /* (spin) */
235 0xeafffffe, /* (spin) */
236 0xeafffffe, /* (spin) */
237 0xeafffffe, /* (spin) */
238 0xeafffffe, /* (spin) */
240 uint32_t board_setup_blob[] = {
241 /* board setup addr */
242 0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
243 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */
244 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */
245 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */
246 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */
247 0xe1a0100e, /* mov r1, lr ;save LR across SMC */
248 0xe1600070, /* smc #0 ;call monitor to flush SCR */
249 0xe1a0f001, /* mov pc, r1 ;return */
252 /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
253 assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
255 /* check that these blobs don't overlap */
256 assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
257 || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
259 for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
260 mvbar_blob[n] = tswap32(mvbar_blob[n]);
262 rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
263 mvbar_addr, as);
265 for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
266 board_setup_blob[n] = tswap32(board_setup_blob[n]);
268 rom_add_blob_fixed_as("board-setup", board_setup_blob,
269 sizeof(board_setup_blob), info->board_setup_addr, as);
272 static void default_reset_secondary(ARMCPU *cpu,
273 const struct arm_boot_info *info)
275 AddressSpace *as = arm_boot_address_space(cpu, info);
276 CPUState *cs = CPU(cpu);
278 address_space_stl_notdirty(as, info->smp_bootreg_addr,
279 0, MEMTXATTRS_UNSPECIFIED, NULL);
280 cpu_set_pc(cs, info->smp_loader_start);
283 static inline bool have_dtb(const struct arm_boot_info *info)
285 return info->dtb_filename || info->get_dtb;
288 #define WRITE_WORD(p, value) do { \
289 address_space_stl_notdirty(as, p, value, \
290 MEMTXATTRS_UNSPECIFIED, NULL); \
291 p += 4; \
292 } while (0)
294 static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
296 int initrd_size = info->initrd_size;
297 hwaddr base = info->loader_start;
298 hwaddr p;
300 p = base + KERNEL_ARGS_ADDR;
301 /* ATAG_CORE */
302 WRITE_WORD(p, 5);
303 WRITE_WORD(p, 0x54410001);
304 WRITE_WORD(p, 1);
305 WRITE_WORD(p, 0x1000);
306 WRITE_WORD(p, 0);
307 /* ATAG_MEM */
308 /* TODO: handle multiple chips on one ATAG list */
309 WRITE_WORD(p, 4);
310 WRITE_WORD(p, 0x54410002);
311 WRITE_WORD(p, info->ram_size);
312 WRITE_WORD(p, info->loader_start);
313 if (initrd_size) {
314 /* ATAG_INITRD2 */
315 WRITE_WORD(p, 4);
316 WRITE_WORD(p, 0x54420005);
317 WRITE_WORD(p, info->initrd_start);
318 WRITE_WORD(p, initrd_size);
320 if (info->kernel_cmdline && *info->kernel_cmdline) {
321 /* ATAG_CMDLINE */
322 int cmdline_size;
324 cmdline_size = strlen(info->kernel_cmdline);
325 address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
326 (const uint8_t *)info->kernel_cmdline,
327 cmdline_size + 1);
328 cmdline_size = (cmdline_size >> 2) + 1;
329 WRITE_WORD(p, cmdline_size + 2);
330 WRITE_WORD(p, 0x54410009);
331 p += cmdline_size * 4;
333 if (info->atag_board) {
334 /* ATAG_BOARD */
335 int atag_board_len;
336 uint8_t atag_board_buf[0x1000];
338 atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
339 WRITE_WORD(p, (atag_board_len + 8) >> 2);
340 WRITE_WORD(p, 0x414f4d50);
341 address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
342 atag_board_buf, atag_board_len);
343 p += atag_board_len;
345 /* ATAG_END */
346 WRITE_WORD(p, 0);
347 WRITE_WORD(p, 0);
350 static void set_kernel_args_old(const struct arm_boot_info *info,
351 AddressSpace *as)
353 hwaddr p;
354 const char *s;
355 int initrd_size = info->initrd_size;
356 hwaddr base = info->loader_start;
358 /* see linux/include/asm-arm/setup.h */
359 p = base + KERNEL_ARGS_ADDR;
360 /* page_size */
361 WRITE_WORD(p, 4096);
362 /* nr_pages */
363 WRITE_WORD(p, info->ram_size / 4096);
364 /* ramdisk_size */
365 WRITE_WORD(p, 0);
366 #define FLAG_READONLY 1
367 #define FLAG_RDLOAD 4
368 #define FLAG_RDPROMPT 8
369 /* flags */
370 WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
371 /* rootdev */
372 WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */
373 /* video_num_cols */
374 WRITE_WORD(p, 0);
375 /* video_num_rows */
376 WRITE_WORD(p, 0);
377 /* video_x */
378 WRITE_WORD(p, 0);
379 /* video_y */
380 WRITE_WORD(p, 0);
381 /* memc_control_reg */
382 WRITE_WORD(p, 0);
383 /* unsigned char sounddefault */
384 /* unsigned char adfsdrives */
385 /* unsigned char bytes_per_char_h */
386 /* unsigned char bytes_per_char_v */
387 WRITE_WORD(p, 0);
388 /* pages_in_bank[4] */
389 WRITE_WORD(p, 0);
390 WRITE_WORD(p, 0);
391 WRITE_WORD(p, 0);
392 WRITE_WORD(p, 0);
393 /* pages_in_vram */
394 WRITE_WORD(p, 0);
395 /* initrd_start */
396 if (initrd_size) {
397 WRITE_WORD(p, info->initrd_start);
398 } else {
399 WRITE_WORD(p, 0);
401 /* initrd_size */
402 WRITE_WORD(p, initrd_size);
403 /* rd_start */
404 WRITE_WORD(p, 0);
405 /* system_rev */
406 WRITE_WORD(p, 0);
407 /* system_serial_low */
408 WRITE_WORD(p, 0);
409 /* system_serial_high */
410 WRITE_WORD(p, 0);
411 /* mem_fclk_21285 */
412 WRITE_WORD(p, 0);
413 /* zero unused fields */
414 while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
415 WRITE_WORD(p, 0);
417 s = info->kernel_cmdline;
418 if (s) {
419 address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
420 (const uint8_t *)s, strlen(s) + 1);
421 } else {
422 WRITE_WORD(p, 0);
426 static void fdt_add_psci_node(void *fdt)
428 uint32_t cpu_suspend_fn;
429 uint32_t cpu_off_fn;
430 uint32_t cpu_on_fn;
431 uint32_t migrate_fn;
432 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
433 const char *psci_method;
434 int64_t psci_conduit;
435 int rc;
437 psci_conduit = object_property_get_int(OBJECT(armcpu),
438 "psci-conduit",
439 &error_abort);
440 switch (psci_conduit) {
441 case QEMU_PSCI_CONDUIT_DISABLED:
442 return;
443 case QEMU_PSCI_CONDUIT_HVC:
444 psci_method = "hvc";
445 break;
446 case QEMU_PSCI_CONDUIT_SMC:
447 psci_method = "smc";
448 break;
449 default:
450 g_assert_not_reached();
454 * If /psci node is present in provided DTB, assume that no fixup
455 * is necessary and all PSCI configuration should be taken as-is
457 rc = fdt_path_offset(fdt, "/psci");
458 if (rc >= 0) {
459 return;
462 qemu_fdt_add_subnode(fdt, "/psci");
463 if (armcpu->psci_version == 2) {
464 const char comp[] = "arm,psci-0.2\0arm,psci";
465 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
467 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
468 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
469 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
470 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
471 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
472 } else {
473 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
474 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
475 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
477 } else {
478 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
480 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
481 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
482 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
483 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
486 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
487 * to the instruction that should be used to invoke PSCI functions.
488 * However, the device tree binding uses 'method' instead, so that is
489 * what we should use here.
491 qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
493 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
494 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
495 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
496 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
499 int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
500 hwaddr addr_limit, AddressSpace *as)
502 void *fdt = NULL;
503 int size, rc, n = 0;
504 uint32_t acells, scells;
505 char *nodename;
506 unsigned int i;
507 hwaddr mem_base, mem_len;
508 char **node_path;
509 Error *err = NULL;
511 if (binfo->dtb_filename) {
512 char *filename;
513 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
514 if (!filename) {
515 fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
516 goto fail;
519 fdt = load_device_tree(filename, &size);
520 if (!fdt) {
521 fprintf(stderr, "Couldn't open dtb file %s\n", filename);
522 g_free(filename);
523 goto fail;
525 g_free(filename);
526 } else {
527 fdt = binfo->get_dtb(binfo, &size);
528 if (!fdt) {
529 fprintf(stderr, "Board was unable to create a dtb blob\n");
530 goto fail;
534 if (addr_limit > addr && size > (addr_limit - addr)) {
535 /* Installing the device tree blob at addr would exceed addr_limit.
536 * Whether this constitutes failure is up to the caller to decide,
537 * so just return 0 as size, i.e., no error.
539 g_free(fdt);
540 return 0;
543 acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
544 NULL, &error_fatal);
545 scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
546 NULL, &error_fatal);
547 if (acells == 0 || scells == 0) {
548 fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
549 goto fail;
552 if (scells < 2 && binfo->ram_size >= (1ULL << 32)) {
553 /* This is user error so deserves a friendlier error message
554 * than the failure of setprop_sized_cells would provide
556 fprintf(stderr, "qemu: dtb file not compatible with "
557 "RAM size > 4GB\n");
558 goto fail;
561 /* nop all root nodes matching /memory or /memory@unit-address */
562 node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
563 if (err) {
564 error_report_err(err);
565 goto fail;
567 while (node_path[n]) {
568 if (g_str_has_prefix(node_path[n], "/memory")) {
569 qemu_fdt_nop_node(fdt, node_path[n]);
571 n++;
573 g_strfreev(node_path);
575 if (nb_numa_nodes > 0) {
576 mem_base = binfo->loader_start;
577 for (i = 0; i < nb_numa_nodes; i++) {
578 mem_len = numa_info[i].node_mem;
579 nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
580 qemu_fdt_add_subnode(fdt, nodename);
581 qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
582 rc = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg",
583 acells, mem_base,
584 scells, mem_len);
585 if (rc < 0) {
586 fprintf(stderr, "couldn't set %s/reg for node %d\n", nodename,
588 goto fail;
591 qemu_fdt_setprop_cell(fdt, nodename, "numa-node-id", i);
592 mem_base += mem_len;
593 g_free(nodename);
595 } else {
596 nodename = g_strdup_printf("/memory@%" PRIx64, binfo->loader_start);
597 qemu_fdt_add_subnode(fdt, nodename);
598 qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
600 rc = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg",
601 acells, binfo->loader_start,
602 scells, binfo->ram_size);
603 if (rc < 0) {
604 fprintf(stderr, "couldn't set %s reg\n", nodename);
605 goto fail;
607 g_free(nodename);
610 rc = fdt_path_offset(fdt, "/chosen");
611 if (rc < 0) {
612 qemu_fdt_add_subnode(fdt, "/chosen");
615 if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
616 rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
617 binfo->kernel_cmdline);
618 if (rc < 0) {
619 fprintf(stderr, "couldn't set /chosen/bootargs\n");
620 goto fail;
624 if (binfo->initrd_size) {
625 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
626 binfo->initrd_start);
627 if (rc < 0) {
628 fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
629 goto fail;
632 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
633 binfo->initrd_start + binfo->initrd_size);
634 if (rc < 0) {
635 fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
636 goto fail;
640 fdt_add_psci_node(fdt);
642 if (binfo->modify_dtb) {
643 binfo->modify_dtb(binfo, fdt);
646 qemu_fdt_dumpdtb(fdt, size);
648 /* Put the DTB into the memory map as a ROM image: this will ensure
649 * the DTB is copied again upon reset, even if addr points into RAM.
651 rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
653 g_free(fdt);
655 return size;
657 fail:
658 g_free(fdt);
659 return -1;
662 static void do_cpu_reset(void *opaque)
664 ARMCPU *cpu = opaque;
665 CPUState *cs = CPU(cpu);
666 CPUARMState *env = &cpu->env;
667 const struct arm_boot_info *info = env->boot_info;
669 cpu_reset(cs);
670 if (info) {
671 if (!info->is_linux) {
672 int i;
673 /* Jump to the entry point. */
674 uint64_t entry = info->entry;
676 switch (info->endianness) {
677 case ARM_ENDIANNESS_LE:
678 env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
679 for (i = 1; i < 4; ++i) {
680 env->cp15.sctlr_el[i] &= ~SCTLR_EE;
682 env->uncached_cpsr &= ~CPSR_E;
683 break;
684 case ARM_ENDIANNESS_BE8:
685 env->cp15.sctlr_el[1] |= SCTLR_E0E;
686 for (i = 1; i < 4; ++i) {
687 env->cp15.sctlr_el[i] |= SCTLR_EE;
689 env->uncached_cpsr |= CPSR_E;
690 break;
691 case ARM_ENDIANNESS_BE32:
692 env->cp15.sctlr_el[1] |= SCTLR_B;
693 break;
694 case ARM_ENDIANNESS_UNKNOWN:
695 break; /* Board's decision */
696 default:
697 g_assert_not_reached();
700 cpu_set_pc(cs, entry);
701 } else {
702 /* If we are booting Linux then we need to check whether we are
703 * booting into secure or non-secure state and adjust the state
704 * accordingly. Out of reset, ARM is defined to be in secure state
705 * (SCR.NS = 0), we change that here if non-secure boot has been
706 * requested.
708 if (arm_feature(env, ARM_FEATURE_EL3)) {
709 /* AArch64 is defined to come out of reset into EL3 if enabled.
710 * If we are booting Linux then we need to adjust our EL as
711 * Linux expects us to be in EL2 or EL1. AArch32 resets into
712 * SVC, which Linux expects, so no privilege/exception level to
713 * adjust.
715 if (env->aarch64) {
716 env->cp15.scr_el3 |= SCR_RW;
717 if (arm_feature(env, ARM_FEATURE_EL2)) {
718 env->cp15.hcr_el2 |= HCR_RW;
719 env->pstate = PSTATE_MODE_EL2h;
720 } else {
721 env->pstate = PSTATE_MODE_EL1h;
723 /* AArch64 kernels never boot in secure mode */
724 assert(!info->secure_boot);
725 /* This hook is only supported for AArch32 currently:
726 * bootloader_aarch64[] will not call the hook, and
727 * the code above has already dropped us into EL2 or EL1.
729 assert(!info->secure_board_setup);
732 if (arm_feature(env, ARM_FEATURE_EL2)) {
733 /* If we have EL2 then Linux expects the HVC insn to work */
734 env->cp15.scr_el3 |= SCR_HCE;
737 /* Set to non-secure if not a secure boot */
738 if (!info->secure_boot &&
739 (cs != first_cpu || !info->secure_board_setup)) {
740 /* Linux expects non-secure state */
741 env->cp15.scr_el3 |= SCR_NS;
745 if (!env->aarch64 && !info->secure_boot &&
746 arm_feature(env, ARM_FEATURE_EL2)) {
748 * This is an AArch32 boot not to Secure state, and
749 * we have Hyp mode available, so boot the kernel into
750 * Hyp mode. This is not how the CPU comes out of reset,
751 * so we need to manually put it there.
753 cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw);
756 if (cs == first_cpu) {
757 AddressSpace *as = arm_boot_address_space(cpu, info);
759 cpu_set_pc(cs, info->loader_start);
761 if (!have_dtb(info)) {
762 if (old_param) {
763 set_kernel_args_old(info, as);
764 } else {
765 set_kernel_args(info, as);
768 } else {
769 info->secondary_cpu_reset_hook(cpu, info);
776 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
777 * by key.
778 * @fw_cfg: The firmware config instance to store the data in.
779 * @size_key: The firmware config key to store the size of the loaded
780 * data under, with fw_cfg_add_i32().
781 * @data_key: The firmware config key to store the loaded data under,
782 * with fw_cfg_add_bytes().
783 * @image_name: The name of the image file to load. If it is NULL, the
784 * function returns without doing anything.
785 * @try_decompress: Whether the image should be decompressed (gunzipped) before
786 * adding it to fw_cfg. If decompression fails, the image is
787 * loaded as-is.
789 * In case of failure, the function prints an error message to stderr and the
790 * process exits with status 1.
792 static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
793 uint16_t data_key, const char *image_name,
794 bool try_decompress)
796 size_t size = -1;
797 uint8_t *data;
799 if (image_name == NULL) {
800 return;
803 if (try_decompress) {
804 size = load_image_gzipped_buffer(image_name,
805 LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
808 if (size == (size_t)-1) {
809 gchar *contents;
810 gsize length;
812 if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
813 error_report("failed to load \"%s\"", image_name);
814 exit(1);
816 size = length;
817 data = (uint8_t *)contents;
820 fw_cfg_add_i32(fw_cfg, size_key, size);
821 fw_cfg_add_bytes(fw_cfg, data_key, data, size);
824 static int do_arm_linux_init(Object *obj, void *opaque)
826 if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
827 ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
828 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
829 struct arm_boot_info *info = opaque;
831 if (albifc->arm_linux_init) {
832 albifc->arm_linux_init(albif, info->secure_boot);
835 return 0;
838 static int64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
839 uint64_t *lowaddr, uint64_t *highaddr,
840 int elf_machine, AddressSpace *as)
842 bool elf_is64;
843 union {
844 Elf32_Ehdr h32;
845 Elf64_Ehdr h64;
846 } elf_header;
847 int data_swab = 0;
848 bool big_endian;
849 int64_t ret = -1;
850 Error *err = NULL;
853 load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
854 if (err) {
855 error_free(err);
856 return ret;
859 if (elf_is64) {
860 big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
861 info->endianness = big_endian ? ARM_ENDIANNESS_BE8
862 : ARM_ENDIANNESS_LE;
863 } else {
864 big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
865 if (big_endian) {
866 if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
867 info->endianness = ARM_ENDIANNESS_BE8;
868 } else {
869 info->endianness = ARM_ENDIANNESS_BE32;
870 /* In BE32, the CPU has a different view of the per-byte
871 * address map than the rest of the system. BE32 ELF files
872 * are organised such that they can be programmed through
873 * the CPU's per-word byte-reversed view of the world. QEMU
874 * however loads ELF files independently of the CPU. So
875 * tell the ELF loader to byte reverse the data for us.
877 data_swab = 2;
879 } else {
880 info->endianness = ARM_ENDIANNESS_LE;
884 ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL,
885 pentry, lowaddr, highaddr, big_endian, elf_machine,
886 1, data_swab, as);
887 if (ret <= 0) {
888 /* The header loaded but the image didn't */
889 exit(1);
892 return ret;
895 static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
896 hwaddr *entry, AddressSpace *as)
898 hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
899 uint8_t *buffer;
900 int size;
902 /* On aarch64, it's the bootloader's job to uncompress the kernel. */
903 size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
904 &buffer);
906 if (size < 0) {
907 gsize len;
909 /* Load as raw file otherwise */
910 if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
911 return -1;
913 size = len;
916 /* check the arm64 magic header value -- very old kernels may not have it */
917 if (size > ARM64_MAGIC_OFFSET + 4 &&
918 memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
919 uint64_t hdrvals[2];
921 /* The arm64 Image header has text_offset and image_size fields at 8 and
922 * 16 bytes into the Image header, respectively. The text_offset field
923 * is only valid if the image_size is non-zero.
925 memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
926 if (hdrvals[1] != 0) {
927 kernel_load_offset = le64_to_cpu(hdrvals[0]);
930 * We write our startup "bootloader" at the very bottom of RAM,
931 * so that bit can't be used for the image. Luckily the Image
932 * format specification is that the image requests only an offset
933 * from a 2MB boundary, not an absolute load address. So if the
934 * image requests an offset that might mean it overlaps with the
935 * bootloader, we can just load it starting at 2MB+offset rather
936 * than 0MB + offset.
938 if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
939 kernel_load_offset += 2 * MiB;
944 *entry = mem_base + kernel_load_offset;
945 rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
947 g_free(buffer);
949 return size;
952 static void arm_setup_direct_kernel_boot(ARMCPU *cpu,
953 struct arm_boot_info *info)
955 /* Set up for a direct boot of a kernel image file. */
956 CPUState *cs;
957 AddressSpace *as = arm_boot_address_space(cpu, info);
958 int kernel_size;
959 int initrd_size;
960 int is_linux = 0;
961 uint64_t elf_entry, elf_low_addr, elf_high_addr;
962 int elf_machine;
963 hwaddr entry;
964 static const ARMInsnFixup *primary_loader;
966 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
967 primary_loader = bootloader_aarch64;
968 elf_machine = EM_AARCH64;
969 } else {
970 primary_loader = bootloader;
971 if (!info->write_board_setup) {
972 primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
974 elf_machine = EM_ARM;
977 if (!info->secondary_cpu_reset_hook) {
978 info->secondary_cpu_reset_hook = default_reset_secondary;
980 if (!info->write_secondary_boot) {
981 info->write_secondary_boot = default_write_secondary;
984 if (info->nb_cpus == 0)
985 info->nb_cpus = 1;
988 * We want to put the initrd far enough into RAM that when the
989 * kernel is uncompressed it will not clobber the initrd. However
990 * on boards without much RAM we must ensure that we still leave
991 * enough room for a decent sized initrd, and on boards with large
992 * amounts of RAM we must avoid the initrd being so far up in RAM
993 * that it is outside lowmem and inaccessible to the kernel.
994 * So for boards with less than 256MB of RAM we put the initrd
995 * halfway into RAM, and for boards with 256MB of RAM or more we put
996 * the initrd at 128MB.
998 info->initrd_start = info->loader_start +
999 MIN(info->ram_size / 2, 128 * 1024 * 1024);
1001 /* Assume that raw images are linux kernels, and ELF images are not. */
1002 kernel_size = arm_load_elf(info, &elf_entry, &elf_low_addr,
1003 &elf_high_addr, elf_machine, as);
1004 if (kernel_size > 0 && have_dtb(info)) {
1006 * If there is still some room left at the base of RAM, try and put
1007 * the DTB there like we do for images loaded with -bios or -pflash.
1009 if (elf_low_addr > info->loader_start
1010 || elf_high_addr < info->loader_start) {
1012 * Set elf_low_addr as address limit for arm_load_dtb if it may be
1013 * pointing into RAM, otherwise pass '0' (no limit)
1015 if (elf_low_addr < info->loader_start) {
1016 elf_low_addr = 0;
1018 info->dtb_start = info->loader_start;
1019 info->dtb_limit = elf_low_addr;
1022 entry = elf_entry;
1023 if (kernel_size < 0) {
1024 uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR;
1025 kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr,
1026 &is_linux, NULL, NULL, as);
1028 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
1029 kernel_size = load_aarch64_image(info->kernel_filename,
1030 info->loader_start, &entry, as);
1031 is_linux = 1;
1032 } else if (kernel_size < 0) {
1033 /* 32-bit ARM */
1034 entry = info->loader_start + KERNEL_LOAD_ADDR;
1035 kernel_size = load_image_targphys_as(info->kernel_filename, entry,
1036 info->ram_size - KERNEL_LOAD_ADDR,
1037 as);
1038 is_linux = 1;
1040 if (kernel_size < 0) {
1041 error_report("could not load kernel '%s'", info->kernel_filename);
1042 exit(1);
1044 info->entry = entry;
1045 if (is_linux) {
1046 uint32_t fixupcontext[FIXUP_MAX];
1048 if (info->initrd_filename) {
1049 initrd_size = load_ramdisk_as(info->initrd_filename,
1050 info->initrd_start,
1051 info->ram_size - info->initrd_start,
1052 as);
1053 if (initrd_size < 0) {
1054 initrd_size = load_image_targphys_as(info->initrd_filename,
1055 info->initrd_start,
1056 info->ram_size -
1057 info->initrd_start,
1058 as);
1060 if (initrd_size < 0) {
1061 error_report("could not load initrd '%s'",
1062 info->initrd_filename);
1063 exit(1);
1065 } else {
1066 initrd_size = 0;
1068 info->initrd_size = initrd_size;
1070 fixupcontext[FIXUP_BOARDID] = info->board_id;
1071 fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
1074 * for device tree boot, we pass the DTB directly in r2. Otherwise
1075 * we point to the kernel args.
1077 if (have_dtb(info)) {
1078 hwaddr align;
1080 if (elf_machine == EM_AARCH64) {
1082 * Some AArch64 kernels on early bootup map the fdt region as
1084 * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1086 * Let's play safe and prealign it to 2MB to give us some space.
1088 align = 2 * 1024 * 1024;
1089 } else {
1091 * Some 32bit kernels will trash anything in the 4K page the
1092 * initrd ends in, so make sure the DTB isn't caught up in that.
1094 align = 4096;
1097 /* Place the DTB after the initrd in memory with alignment. */
1098 info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
1099 align);
1100 fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
1101 fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
1102 } else {
1103 fixupcontext[FIXUP_ARGPTR_LO] =
1104 info->loader_start + KERNEL_ARGS_ADDR;
1105 fixupcontext[FIXUP_ARGPTR_HI] =
1106 (info->loader_start + KERNEL_ARGS_ADDR) >> 32;
1107 if (info->ram_size >= (1ULL << 32)) {
1108 error_report("RAM size must be less than 4GB to boot"
1109 " Linux kernel using ATAGS (try passing a device tree"
1110 " using -dtb)");
1111 exit(1);
1114 fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
1115 fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
1117 write_bootloader("bootloader", info->loader_start,
1118 primary_loader, fixupcontext, as);
1120 if (info->nb_cpus > 1) {
1121 info->write_secondary_boot(cpu, info);
1123 if (info->write_board_setup) {
1124 info->write_board_setup(cpu, info);
1128 * Notify devices which need to fake up firmware initialization
1129 * that we're doing a direct kernel boot.
1131 object_child_foreach_recursive(object_get_root(),
1132 do_arm_linux_init, info);
1134 info->is_linux = is_linux;
1136 for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1137 ARM_CPU(cs)->env.boot_info = info;
1141 static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info)
1143 /* Set up for booting firmware (which might load a kernel via fw_cfg) */
1145 if (have_dtb(info)) {
1147 * If we have a device tree blob, but no kernel to supply it to (or
1148 * the kernel is supposed to be loaded by the bootloader), copy the
1149 * DTB to the base of RAM for the bootloader to pick up.
1151 info->dtb_start = info->loader_start;
1154 if (info->kernel_filename) {
1155 FWCfgState *fw_cfg;
1156 bool try_decompressing_kernel;
1158 fw_cfg = fw_cfg_find();
1159 try_decompressing_kernel = arm_feature(&cpu->env,
1160 ARM_FEATURE_AARCH64);
1163 * Expose the kernel, the command line, and the initrd in fw_cfg.
1164 * We don't process them here at all, it's all left to the
1165 * firmware.
1167 load_image_to_fw_cfg(fw_cfg,
1168 FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
1169 info->kernel_filename,
1170 try_decompressing_kernel);
1171 load_image_to_fw_cfg(fw_cfg,
1172 FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
1173 info->initrd_filename, false);
1175 if (info->kernel_cmdline) {
1176 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1177 strlen(info->kernel_cmdline) + 1);
1178 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
1179 info->kernel_cmdline);
1184 * We will start from address 0 (typically a boot ROM image) in the
1185 * same way as hardware. Leave env->boot_info NULL, so that
1186 * do_cpu_reset() knows it does not need to alter the PC on reset.
1190 void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
1192 CPUState *cs;
1193 AddressSpace *as = arm_boot_address_space(cpu, info);
1196 * CPU objects (unlike devices) are not automatically reset on system
1197 * reset, so we must always register a handler to do so. If we're
1198 * actually loading a kernel, the handler is also responsible for
1199 * arranging that we start it correctly.
1201 for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1202 qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1206 * The board code is not supposed to set secure_board_setup unless
1207 * running its code in secure mode is actually possible, and KVM
1208 * doesn't support secure.
1210 assert(!(info->secure_board_setup && kvm_enabled()));
1212 info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
1213 info->dtb_limit = 0;
1215 /* Load the kernel. */
1216 if (!info->kernel_filename || info->firmware_loaded) {
1217 arm_setup_firmware_boot(cpu, info);
1218 } else {
1219 arm_setup_direct_kernel_boot(cpu, info);
1222 if (!info->skip_dtb_autoload && have_dtb(info)) {
1223 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1224 exit(1);
1229 static const TypeInfo arm_linux_boot_if_info = {
1230 .name = TYPE_ARM_LINUX_BOOT_IF,
1231 .parent = TYPE_INTERFACE,
1232 .class_size = sizeof(ARMLinuxBootIfClass),
1235 static void arm_linux_boot_register_types(void)
1237 type_register_static(&arm_linux_boot_if_info);
1240 type_init(arm_linux_boot_register_types)