4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
10 #include "qemu/osdep.h"
11 #include "qemu/error-report.h"
12 #include "qapi/error.h"
15 #include "hw/arm/arm.h"
16 #include "hw/arm/linux-boot-if.h"
17 #include "sysemu/kvm.h"
18 #include "sysemu/sysemu.h"
19 #include "sysemu/numa.h"
20 #include "hw/boards.h"
21 #include "hw/loader.h"
23 #include "sysemu/device_tree.h"
24 #include "qemu/config-file.h"
25 #include "qemu/option.h"
26 #include "exec/address-spaces.h"
27 #include "qemu/units.h"
29 /* Kernel boot protocol is specified in the kernel docs
30 * Documentation/arm/Booting and Documentation/arm64/booting.txt
31 * They have different preferred image load offsets from system RAM base.
33 #define KERNEL_ARGS_ADDR 0x100
34 #define KERNEL_NOLOAD_ADDR 0x02000000
35 #define KERNEL_LOAD_ADDR 0x00010000
36 #define KERNEL64_LOAD_ADDR 0x00080000
38 #define ARM64_TEXT_OFFSET_OFFSET 8
39 #define ARM64_MAGIC_OFFSET 56
41 #define BOOTLOADER_MAX_SIZE (4 * KiB)
43 AddressSpace
*arm_boot_address_space(ARMCPU
*cpu
,
44 const struct arm_boot_info
*info
)
46 /* Return the address space to use for bootloader reads and writes.
47 * We prefer the secure address space if the CPU has it and we're
48 * going to boot the guest into it.
51 CPUState
*cs
= CPU(cpu
);
53 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL3
) && info
->secure_boot
) {
59 return cpu_get_address_space(cs
, asidx
);
63 FIXUP_NONE
= 0, /* do nothing */
64 FIXUP_TERMINATOR
, /* end of insns */
65 FIXUP_BOARDID
, /* overwrite with board ID number */
66 FIXUP_BOARD_SETUP
, /* overwrite with board specific setup code address */
67 FIXUP_ARGPTR_LO
, /* overwrite with pointer to kernel args */
68 FIXUP_ARGPTR_HI
, /* overwrite with pointer to kernel args (high half) */
69 FIXUP_ENTRYPOINT_LO
, /* overwrite with kernel entry point */
70 FIXUP_ENTRYPOINT_HI
, /* overwrite with kernel entry point (high half) */
71 FIXUP_GIC_CPU_IF
, /* overwrite with GIC CPU interface address */
72 FIXUP_BOOTREG
, /* overwrite with boot register address */
73 FIXUP_DSB
, /* overwrite with correct DSB insn for cpu */
77 typedef struct ARMInsnFixup
{
82 static const ARMInsnFixup bootloader_aarch64
[] = {
83 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
84 { 0xaa1f03e1 }, /* mov x1, xzr */
85 { 0xaa1f03e2 }, /* mov x2, xzr */
86 { 0xaa1f03e3 }, /* mov x3, xzr */
87 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
88 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
89 { 0, FIXUP_ARGPTR_LO
}, /* arg: .word @DTB Lower 32-bits */
90 { 0, FIXUP_ARGPTR_HI
}, /* .word @DTB Higher 32-bits */
91 { 0, FIXUP_ENTRYPOINT_LO
}, /* entry: .word @Kernel Entry Lower 32-bits */
92 { 0, FIXUP_ENTRYPOINT_HI
}, /* .word @Kernel Entry Higher 32-bits */
93 { 0, FIXUP_TERMINATOR
}
96 /* A very small bootloader: call the board-setup code (if needed),
97 * set r0-r2, then jump to the kernel.
98 * If we're not calling boot setup code then we don't copy across
99 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
102 static const ARMInsnFixup bootloader
[] = {
103 { 0xe28fe004 }, /* add lr, pc, #4 */
104 { 0xe51ff004 }, /* ldr pc, [pc, #-4] */
105 { 0, FIXUP_BOARD_SETUP
},
106 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
107 { 0xe3a00000 }, /* mov r0, #0 */
108 { 0xe59f1004 }, /* ldr r1, [pc, #4] */
109 { 0xe59f2004 }, /* ldr r2, [pc, #4] */
110 { 0xe59ff004 }, /* ldr pc, [pc, #4] */
111 { 0, FIXUP_BOARDID
},
112 { 0, FIXUP_ARGPTR_LO
},
113 { 0, FIXUP_ENTRYPOINT_LO
},
114 { 0, FIXUP_TERMINATOR
}
117 /* Handling for secondary CPU boot in a multicore system.
118 * Unlike the uniprocessor/primary CPU boot, this is platform
119 * dependent. The default code here is based on the secondary
120 * CPU boot protocol used on realview/vexpress boards, with
121 * some parameterisation to increase its flexibility.
122 * QEMU platform models for which this code is not appropriate
123 * should override write_secondary_boot and secondary_cpu_reset_hook
126 * This code enables the interrupt controllers for the secondary
127 * CPUs and then puts all the secondary CPUs into a loop waiting
128 * for an interprocessor interrupt and polling a configurable
129 * location for the kernel secondary CPU entry point.
131 #define DSB_INSN 0xf57ff04f
132 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
134 static const ARMInsnFixup smpboot
[] = {
135 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
136 { 0xe59f0028 }, /* ldr r0, bootreg_addr */
137 { 0xe3a01001 }, /* mov r1, #1 */
138 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
139 { 0xe3a010ff }, /* mov r1, #0xff */
140 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
141 { 0, FIXUP_DSB
}, /* dsb */
142 { 0xe320f003 }, /* wfi */
143 { 0xe5901000 }, /* ldr r1, [r0] */
144 { 0xe1110001 }, /* tst r1, r1 */
145 { 0x0afffffb }, /* beq <wfi> */
146 { 0xe12fff11 }, /* bx r1 */
147 { 0, FIXUP_GIC_CPU_IF
}, /* gic_cpu_if: .word 0x.... */
148 { 0, FIXUP_BOOTREG
}, /* bootreg_addr: .word 0x.... */
149 { 0, FIXUP_TERMINATOR
}
152 static void write_bootloader(const char *name
, hwaddr addr
,
153 const ARMInsnFixup
*insns
, uint32_t *fixupcontext
,
156 /* Fix up the specified bootloader fragment and write it into
157 * guest memory using rom_add_blob_fixed(). fixupcontext is
158 * an array giving the values to write in for the fixup types
159 * which write a value into the code array.
165 while (insns
[len
].fixup
!= FIXUP_TERMINATOR
) {
169 code
= g_new0(uint32_t, len
);
171 for (i
= 0; i
< len
; i
++) {
172 uint32_t insn
= insns
[i
].insn
;
173 FixupType fixup
= insns
[i
].fixup
;
179 case FIXUP_BOARD_SETUP
:
180 case FIXUP_ARGPTR_LO
:
181 case FIXUP_ARGPTR_HI
:
182 case FIXUP_ENTRYPOINT_LO
:
183 case FIXUP_ENTRYPOINT_HI
:
184 case FIXUP_GIC_CPU_IF
:
187 insn
= fixupcontext
[fixup
];
192 code
[i
] = tswap32(insn
);
195 assert((len
* sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE
);
197 rom_add_blob_fixed_as(name
, code
, len
* sizeof(uint32_t), addr
, as
);
202 static void default_write_secondary(ARMCPU
*cpu
,
203 const struct arm_boot_info
*info
)
205 uint32_t fixupcontext
[FIXUP_MAX
];
206 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
208 fixupcontext
[FIXUP_GIC_CPU_IF
] = info
->gic_cpu_if_addr
;
209 fixupcontext
[FIXUP_BOOTREG
] = info
->smp_bootreg_addr
;
210 if (arm_feature(&cpu
->env
, ARM_FEATURE_V7
)) {
211 fixupcontext
[FIXUP_DSB
] = DSB_INSN
;
213 fixupcontext
[FIXUP_DSB
] = CP15_DSB_INSN
;
216 write_bootloader("smpboot", info
->smp_loader_start
,
217 smpboot
, fixupcontext
, as
);
220 void arm_write_secure_board_setup_dummy_smc(ARMCPU
*cpu
,
221 const struct arm_boot_info
*info
,
224 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
226 uint32_t mvbar_blob
[] = {
227 /* mvbar_addr: secure monitor vectors
228 * Default unimplemented and unused vectors to spin. Makes it
229 * easier to debug (as opposed to the CPU running away).
231 0xeafffffe, /* (spin) */
232 0xeafffffe, /* (spin) */
233 0xe1b0f00e, /* movs pc, lr ;SMC exception return */
234 0xeafffffe, /* (spin) */
235 0xeafffffe, /* (spin) */
236 0xeafffffe, /* (spin) */
237 0xeafffffe, /* (spin) */
238 0xeafffffe, /* (spin) */
240 uint32_t board_setup_blob
[] = {
241 /* board setup addr */
242 0xe3a00e00 + (mvbar_addr
>> 4), /* mov r0, #mvbar_addr */
243 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */
244 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */
245 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */
246 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */
247 0xe1a0100e, /* mov r1, lr ;save LR across SMC */
248 0xe1600070, /* smc #0 ;call monitor to flush SCR */
249 0xe1a0f001, /* mov pc, r1 ;return */
252 /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
253 assert((mvbar_addr
& 0x1f) == 0 && (mvbar_addr
>> 4) < 0x100);
255 /* check that these blobs don't overlap */
256 assert((mvbar_addr
+ sizeof(mvbar_blob
) <= info
->board_setup_addr
)
257 || (info
->board_setup_addr
+ sizeof(board_setup_blob
) <= mvbar_addr
));
259 for (n
= 0; n
< ARRAY_SIZE(mvbar_blob
); n
++) {
260 mvbar_blob
[n
] = tswap32(mvbar_blob
[n
]);
262 rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob
, sizeof(mvbar_blob
),
265 for (n
= 0; n
< ARRAY_SIZE(board_setup_blob
); n
++) {
266 board_setup_blob
[n
] = tswap32(board_setup_blob
[n
]);
268 rom_add_blob_fixed_as("board-setup", board_setup_blob
,
269 sizeof(board_setup_blob
), info
->board_setup_addr
, as
);
272 static void default_reset_secondary(ARMCPU
*cpu
,
273 const struct arm_boot_info
*info
)
275 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
276 CPUState
*cs
= CPU(cpu
);
278 address_space_stl_notdirty(as
, info
->smp_bootreg_addr
,
279 0, MEMTXATTRS_UNSPECIFIED
, NULL
);
280 cpu_set_pc(cs
, info
->smp_loader_start
);
283 static inline bool have_dtb(const struct arm_boot_info
*info
)
285 return info
->dtb_filename
|| info
->get_dtb
;
288 #define WRITE_WORD(p, value) do { \
289 address_space_stl_notdirty(as, p, value, \
290 MEMTXATTRS_UNSPECIFIED, NULL); \
294 static void set_kernel_args(const struct arm_boot_info
*info
, AddressSpace
*as
)
296 int initrd_size
= info
->initrd_size
;
297 hwaddr base
= info
->loader_start
;
300 p
= base
+ KERNEL_ARGS_ADDR
;
303 WRITE_WORD(p
, 0x54410001);
305 WRITE_WORD(p
, 0x1000);
308 /* TODO: handle multiple chips on one ATAG list */
310 WRITE_WORD(p
, 0x54410002);
311 WRITE_WORD(p
, info
->ram_size
);
312 WRITE_WORD(p
, info
->loader_start
);
316 WRITE_WORD(p
, 0x54420005);
317 WRITE_WORD(p
, info
->initrd_start
);
318 WRITE_WORD(p
, initrd_size
);
320 if (info
->kernel_cmdline
&& *info
->kernel_cmdline
) {
324 cmdline_size
= strlen(info
->kernel_cmdline
);
325 address_space_write(as
, p
+ 8, MEMTXATTRS_UNSPECIFIED
,
326 (const uint8_t *)info
->kernel_cmdline
,
328 cmdline_size
= (cmdline_size
>> 2) + 1;
329 WRITE_WORD(p
, cmdline_size
+ 2);
330 WRITE_WORD(p
, 0x54410009);
331 p
+= cmdline_size
* 4;
333 if (info
->atag_board
) {
336 uint8_t atag_board_buf
[0x1000];
338 atag_board_len
= (info
->atag_board(info
, atag_board_buf
) + 3) & ~3;
339 WRITE_WORD(p
, (atag_board_len
+ 8) >> 2);
340 WRITE_WORD(p
, 0x414f4d50);
341 address_space_write(as
, p
, MEMTXATTRS_UNSPECIFIED
,
342 atag_board_buf
, atag_board_len
);
350 static void set_kernel_args_old(const struct arm_boot_info
*info
,
355 int initrd_size
= info
->initrd_size
;
356 hwaddr base
= info
->loader_start
;
358 /* see linux/include/asm-arm/setup.h */
359 p
= base
+ KERNEL_ARGS_ADDR
;
363 WRITE_WORD(p
, info
->ram_size
/ 4096);
366 #define FLAG_READONLY 1
367 #define FLAG_RDLOAD 4
368 #define FLAG_RDPROMPT 8
370 WRITE_WORD(p
, FLAG_READONLY
| FLAG_RDLOAD
| FLAG_RDPROMPT
);
372 WRITE_WORD(p
, (31 << 8) | 0); /* /dev/mtdblock0 */
381 /* memc_control_reg */
383 /* unsigned char sounddefault */
384 /* unsigned char adfsdrives */
385 /* unsigned char bytes_per_char_h */
386 /* unsigned char bytes_per_char_v */
388 /* pages_in_bank[4] */
397 WRITE_WORD(p
, info
->initrd_start
);
402 WRITE_WORD(p
, initrd_size
);
407 /* system_serial_low */
409 /* system_serial_high */
413 /* zero unused fields */
414 while (p
< base
+ KERNEL_ARGS_ADDR
+ 256 + 1024) {
417 s
= info
->kernel_cmdline
;
419 address_space_write(as
, p
, MEMTXATTRS_UNSPECIFIED
,
420 (const uint8_t *)s
, strlen(s
) + 1);
426 static void fdt_add_psci_node(void *fdt
)
428 uint32_t cpu_suspend_fn
;
432 ARMCPU
*armcpu
= ARM_CPU(qemu_get_cpu(0));
433 const char *psci_method
;
434 int64_t psci_conduit
;
437 psci_conduit
= object_property_get_int(OBJECT(armcpu
),
440 switch (psci_conduit
) {
441 case QEMU_PSCI_CONDUIT_DISABLED
:
443 case QEMU_PSCI_CONDUIT_HVC
:
446 case QEMU_PSCI_CONDUIT_SMC
:
450 g_assert_not_reached();
454 * If /psci node is present in provided DTB, assume that no fixup
455 * is necessary and all PSCI configuration should be taken as-is
457 rc
= fdt_path_offset(fdt
, "/psci");
462 qemu_fdt_add_subnode(fdt
, "/psci");
463 if (armcpu
->psci_version
== 2) {
464 const char comp
[] = "arm,psci-0.2\0arm,psci";
465 qemu_fdt_setprop(fdt
, "/psci", "compatible", comp
, sizeof(comp
));
467 cpu_off_fn
= QEMU_PSCI_0_2_FN_CPU_OFF
;
468 if (arm_feature(&armcpu
->env
, ARM_FEATURE_AARCH64
)) {
469 cpu_suspend_fn
= QEMU_PSCI_0_2_FN64_CPU_SUSPEND
;
470 cpu_on_fn
= QEMU_PSCI_0_2_FN64_CPU_ON
;
471 migrate_fn
= QEMU_PSCI_0_2_FN64_MIGRATE
;
473 cpu_suspend_fn
= QEMU_PSCI_0_2_FN_CPU_SUSPEND
;
474 cpu_on_fn
= QEMU_PSCI_0_2_FN_CPU_ON
;
475 migrate_fn
= QEMU_PSCI_0_2_FN_MIGRATE
;
478 qemu_fdt_setprop_string(fdt
, "/psci", "compatible", "arm,psci");
480 cpu_suspend_fn
= QEMU_PSCI_0_1_FN_CPU_SUSPEND
;
481 cpu_off_fn
= QEMU_PSCI_0_1_FN_CPU_OFF
;
482 cpu_on_fn
= QEMU_PSCI_0_1_FN_CPU_ON
;
483 migrate_fn
= QEMU_PSCI_0_1_FN_MIGRATE
;
486 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
487 * to the instruction that should be used to invoke PSCI functions.
488 * However, the device tree binding uses 'method' instead, so that is
489 * what we should use here.
491 qemu_fdt_setprop_string(fdt
, "/psci", "method", psci_method
);
493 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_suspend", cpu_suspend_fn
);
494 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_off", cpu_off_fn
);
495 qemu_fdt_setprop_cell(fdt
, "/psci", "cpu_on", cpu_on_fn
);
496 qemu_fdt_setprop_cell(fdt
, "/psci", "migrate", migrate_fn
);
499 int arm_load_dtb(hwaddr addr
, const struct arm_boot_info
*binfo
,
500 hwaddr addr_limit
, AddressSpace
*as
)
504 uint32_t acells
, scells
;
507 hwaddr mem_base
, mem_len
;
511 if (binfo
->dtb_filename
) {
513 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, binfo
->dtb_filename
);
515 fprintf(stderr
, "Couldn't open dtb file %s\n", binfo
->dtb_filename
);
519 fdt
= load_device_tree(filename
, &size
);
521 fprintf(stderr
, "Couldn't open dtb file %s\n", filename
);
527 fdt
= binfo
->get_dtb(binfo
, &size
);
529 fprintf(stderr
, "Board was unable to create a dtb blob\n");
534 if (addr_limit
> addr
&& size
> (addr_limit
- addr
)) {
535 /* Installing the device tree blob at addr would exceed addr_limit.
536 * Whether this constitutes failure is up to the caller to decide,
537 * so just return 0 as size, i.e., no error.
543 acells
= qemu_fdt_getprop_cell(fdt
, "/", "#address-cells",
545 scells
= qemu_fdt_getprop_cell(fdt
, "/", "#size-cells",
547 if (acells
== 0 || scells
== 0) {
548 fprintf(stderr
, "dtb file invalid (#address-cells or #size-cells 0)\n");
552 if (scells
< 2 && binfo
->ram_size
>= (1ULL << 32)) {
553 /* This is user error so deserves a friendlier error message
554 * than the failure of setprop_sized_cells would provide
556 fprintf(stderr
, "qemu: dtb file not compatible with "
561 /* nop all root nodes matching /memory or /memory@unit-address */
562 node_path
= qemu_fdt_node_unit_path(fdt
, "memory", &err
);
564 error_report_err(err
);
567 while (node_path
[n
]) {
568 if (g_str_has_prefix(node_path
[n
], "/memory")) {
569 qemu_fdt_nop_node(fdt
, node_path
[n
]);
573 g_strfreev(node_path
);
575 if (nb_numa_nodes
> 0) {
576 mem_base
= binfo
->loader_start
;
577 for (i
= 0; i
< nb_numa_nodes
; i
++) {
578 mem_len
= numa_info
[i
].node_mem
;
579 nodename
= g_strdup_printf("/memory@%" PRIx64
, mem_base
);
580 qemu_fdt_add_subnode(fdt
, nodename
);
581 qemu_fdt_setprop_string(fdt
, nodename
, "device_type", "memory");
582 rc
= qemu_fdt_setprop_sized_cells(fdt
, nodename
, "reg",
586 fprintf(stderr
, "couldn't set %s/reg for node %d\n", nodename
,
591 qemu_fdt_setprop_cell(fdt
, nodename
, "numa-node-id", i
);
596 nodename
= g_strdup_printf("/memory@%" PRIx64
, binfo
->loader_start
);
597 qemu_fdt_add_subnode(fdt
, nodename
);
598 qemu_fdt_setprop_string(fdt
, nodename
, "device_type", "memory");
600 rc
= qemu_fdt_setprop_sized_cells(fdt
, nodename
, "reg",
601 acells
, binfo
->loader_start
,
602 scells
, binfo
->ram_size
);
604 fprintf(stderr
, "couldn't set %s reg\n", nodename
);
610 rc
= fdt_path_offset(fdt
, "/chosen");
612 qemu_fdt_add_subnode(fdt
, "/chosen");
615 if (binfo
->kernel_cmdline
&& *binfo
->kernel_cmdline
) {
616 rc
= qemu_fdt_setprop_string(fdt
, "/chosen", "bootargs",
617 binfo
->kernel_cmdline
);
619 fprintf(stderr
, "couldn't set /chosen/bootargs\n");
624 if (binfo
->initrd_size
) {
625 rc
= qemu_fdt_setprop_cell(fdt
, "/chosen", "linux,initrd-start",
626 binfo
->initrd_start
);
628 fprintf(stderr
, "couldn't set /chosen/linux,initrd-start\n");
632 rc
= qemu_fdt_setprop_cell(fdt
, "/chosen", "linux,initrd-end",
633 binfo
->initrd_start
+ binfo
->initrd_size
);
635 fprintf(stderr
, "couldn't set /chosen/linux,initrd-end\n");
640 fdt_add_psci_node(fdt
);
642 if (binfo
->modify_dtb
) {
643 binfo
->modify_dtb(binfo
, fdt
);
646 qemu_fdt_dumpdtb(fdt
, size
);
648 /* Put the DTB into the memory map as a ROM image: this will ensure
649 * the DTB is copied again upon reset, even if addr points into RAM.
651 rom_add_blob_fixed_as("dtb", fdt
, size
, addr
, as
);
662 static void do_cpu_reset(void *opaque
)
664 ARMCPU
*cpu
= opaque
;
665 CPUState
*cs
= CPU(cpu
);
666 CPUARMState
*env
= &cpu
->env
;
667 const struct arm_boot_info
*info
= env
->boot_info
;
671 if (!info
->is_linux
) {
673 /* Jump to the entry point. */
674 uint64_t entry
= info
->entry
;
676 switch (info
->endianness
) {
677 case ARM_ENDIANNESS_LE
:
678 env
->cp15
.sctlr_el
[1] &= ~SCTLR_E0E
;
679 for (i
= 1; i
< 4; ++i
) {
680 env
->cp15
.sctlr_el
[i
] &= ~SCTLR_EE
;
682 env
->uncached_cpsr
&= ~CPSR_E
;
684 case ARM_ENDIANNESS_BE8
:
685 env
->cp15
.sctlr_el
[1] |= SCTLR_E0E
;
686 for (i
= 1; i
< 4; ++i
) {
687 env
->cp15
.sctlr_el
[i
] |= SCTLR_EE
;
689 env
->uncached_cpsr
|= CPSR_E
;
691 case ARM_ENDIANNESS_BE32
:
692 env
->cp15
.sctlr_el
[1] |= SCTLR_B
;
694 case ARM_ENDIANNESS_UNKNOWN
:
695 break; /* Board's decision */
697 g_assert_not_reached();
700 cpu_set_pc(cs
, entry
);
702 /* If we are booting Linux then we need to check whether we are
703 * booting into secure or non-secure state and adjust the state
704 * accordingly. Out of reset, ARM is defined to be in secure state
705 * (SCR.NS = 0), we change that here if non-secure boot has been
708 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
709 /* AArch64 is defined to come out of reset into EL3 if enabled.
710 * If we are booting Linux then we need to adjust our EL as
711 * Linux expects us to be in EL2 or EL1. AArch32 resets into
712 * SVC, which Linux expects, so no privilege/exception level to
716 env
->cp15
.scr_el3
|= SCR_RW
;
717 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
718 env
->cp15
.hcr_el2
|= HCR_RW
;
719 env
->pstate
= PSTATE_MODE_EL2h
;
721 env
->pstate
= PSTATE_MODE_EL1h
;
723 /* AArch64 kernels never boot in secure mode */
724 assert(!info
->secure_boot
);
725 /* This hook is only supported for AArch32 currently:
726 * bootloader_aarch64[] will not call the hook, and
727 * the code above has already dropped us into EL2 or EL1.
729 assert(!info
->secure_board_setup
);
732 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
733 /* If we have EL2 then Linux expects the HVC insn to work */
734 env
->cp15
.scr_el3
|= SCR_HCE
;
737 /* Set to non-secure if not a secure boot */
738 if (!info
->secure_boot
&&
739 (cs
!= first_cpu
|| !info
->secure_board_setup
)) {
740 /* Linux expects non-secure state */
741 env
->cp15
.scr_el3
|= SCR_NS
;
745 if (!env
->aarch64
&& !info
->secure_boot
&&
746 arm_feature(env
, ARM_FEATURE_EL2
)) {
748 * This is an AArch32 boot not to Secure state, and
749 * we have Hyp mode available, so boot the kernel into
750 * Hyp mode. This is not how the CPU comes out of reset,
751 * so we need to manually put it there.
753 cpsr_write(env
, ARM_CPU_MODE_HYP
, CPSR_M
, CPSRWriteRaw
);
756 if (cs
== first_cpu
) {
757 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
759 cpu_set_pc(cs
, info
->loader_start
);
761 if (!have_dtb(info
)) {
763 set_kernel_args_old(info
, as
);
765 set_kernel_args(info
, as
);
769 info
->secondary_cpu_reset_hook(cpu
, info
);
776 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
778 * @fw_cfg: The firmware config instance to store the data in.
779 * @size_key: The firmware config key to store the size of the loaded
780 * data under, with fw_cfg_add_i32().
781 * @data_key: The firmware config key to store the loaded data under,
782 * with fw_cfg_add_bytes().
783 * @image_name: The name of the image file to load. If it is NULL, the
784 * function returns without doing anything.
785 * @try_decompress: Whether the image should be decompressed (gunzipped) before
786 * adding it to fw_cfg. If decompression fails, the image is
789 * In case of failure, the function prints an error message to stderr and the
790 * process exits with status 1.
792 static void load_image_to_fw_cfg(FWCfgState
*fw_cfg
, uint16_t size_key
,
793 uint16_t data_key
, const char *image_name
,
799 if (image_name
== NULL
) {
803 if (try_decompress
) {
804 size
= load_image_gzipped_buffer(image_name
,
805 LOAD_IMAGE_MAX_GUNZIP_BYTES
, &data
);
808 if (size
== (size_t)-1) {
812 if (!g_file_get_contents(image_name
, &contents
, &length
, NULL
)) {
813 error_report("failed to load \"%s\"", image_name
);
817 data
= (uint8_t *)contents
;
820 fw_cfg_add_i32(fw_cfg
, size_key
, size
);
821 fw_cfg_add_bytes(fw_cfg
, data_key
, data
, size
);
824 static int do_arm_linux_init(Object
*obj
, void *opaque
)
826 if (object_dynamic_cast(obj
, TYPE_ARM_LINUX_BOOT_IF
)) {
827 ARMLinuxBootIf
*albif
= ARM_LINUX_BOOT_IF(obj
);
828 ARMLinuxBootIfClass
*albifc
= ARM_LINUX_BOOT_IF_GET_CLASS(obj
);
829 struct arm_boot_info
*info
= opaque
;
831 if (albifc
->arm_linux_init
) {
832 albifc
->arm_linux_init(albif
, info
->secure_boot
);
838 static int64_t arm_load_elf(struct arm_boot_info
*info
, uint64_t *pentry
,
839 uint64_t *lowaddr
, uint64_t *highaddr
,
840 int elf_machine
, AddressSpace
*as
)
853 load_elf_hdr(info
->kernel_filename
, &elf_header
, &elf_is64
, &err
);
860 big_endian
= elf_header
.h64
.e_ident
[EI_DATA
] == ELFDATA2MSB
;
861 info
->endianness
= big_endian
? ARM_ENDIANNESS_BE8
864 big_endian
= elf_header
.h32
.e_ident
[EI_DATA
] == ELFDATA2MSB
;
866 if (bswap32(elf_header
.h32
.e_flags
) & EF_ARM_BE8
) {
867 info
->endianness
= ARM_ENDIANNESS_BE8
;
869 info
->endianness
= ARM_ENDIANNESS_BE32
;
870 /* In BE32, the CPU has a different view of the per-byte
871 * address map than the rest of the system. BE32 ELF files
872 * are organised such that they can be programmed through
873 * the CPU's per-word byte-reversed view of the world. QEMU
874 * however loads ELF files independently of the CPU. So
875 * tell the ELF loader to byte reverse the data for us.
880 info
->endianness
= ARM_ENDIANNESS_LE
;
884 ret
= load_elf_as(info
->kernel_filename
, NULL
, NULL
, NULL
,
885 pentry
, lowaddr
, highaddr
, big_endian
, elf_machine
,
888 /* The header loaded but the image didn't */
895 static uint64_t load_aarch64_image(const char *filename
, hwaddr mem_base
,
896 hwaddr
*entry
, AddressSpace
*as
)
898 hwaddr kernel_load_offset
= KERNEL64_LOAD_ADDR
;
902 /* On aarch64, it's the bootloader's job to uncompress the kernel. */
903 size
= load_image_gzipped_buffer(filename
, LOAD_IMAGE_MAX_GUNZIP_BYTES
,
909 /* Load as raw file otherwise */
910 if (!g_file_get_contents(filename
, (char **)&buffer
, &len
, NULL
)) {
916 /* check the arm64 magic header value -- very old kernels may not have it */
917 if (size
> ARM64_MAGIC_OFFSET
+ 4 &&
918 memcmp(buffer
+ ARM64_MAGIC_OFFSET
, "ARM\x64", 4) == 0) {
921 /* The arm64 Image header has text_offset and image_size fields at 8 and
922 * 16 bytes into the Image header, respectively. The text_offset field
923 * is only valid if the image_size is non-zero.
925 memcpy(&hdrvals
, buffer
+ ARM64_TEXT_OFFSET_OFFSET
, sizeof(hdrvals
));
926 if (hdrvals
[1] != 0) {
927 kernel_load_offset
= le64_to_cpu(hdrvals
[0]);
930 * We write our startup "bootloader" at the very bottom of RAM,
931 * so that bit can't be used for the image. Luckily the Image
932 * format specification is that the image requests only an offset
933 * from a 2MB boundary, not an absolute load address. So if the
934 * image requests an offset that might mean it overlaps with the
935 * bootloader, we can just load it starting at 2MB+offset rather
938 if (kernel_load_offset
< BOOTLOADER_MAX_SIZE
) {
939 kernel_load_offset
+= 2 * MiB
;
944 *entry
= mem_base
+ kernel_load_offset
;
945 rom_add_blob_fixed_as(filename
, buffer
, size
, *entry
, as
);
952 static void arm_setup_direct_kernel_boot(ARMCPU
*cpu
,
953 struct arm_boot_info
*info
)
955 /* Set up for a direct boot of a kernel image file. */
957 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
961 uint64_t elf_entry
, elf_low_addr
, elf_high_addr
;
964 static const ARMInsnFixup
*primary_loader
;
966 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
967 primary_loader
= bootloader_aarch64
;
968 elf_machine
= EM_AARCH64
;
970 primary_loader
= bootloader
;
971 if (!info
->write_board_setup
) {
972 primary_loader
+= BOOTLOADER_NO_BOARD_SETUP_OFFSET
;
974 elf_machine
= EM_ARM
;
977 if (!info
->secondary_cpu_reset_hook
) {
978 info
->secondary_cpu_reset_hook
= default_reset_secondary
;
980 if (!info
->write_secondary_boot
) {
981 info
->write_secondary_boot
= default_write_secondary
;
984 if (info
->nb_cpus
== 0)
988 * We want to put the initrd far enough into RAM that when the
989 * kernel is uncompressed it will not clobber the initrd. However
990 * on boards without much RAM we must ensure that we still leave
991 * enough room for a decent sized initrd, and on boards with large
992 * amounts of RAM we must avoid the initrd being so far up in RAM
993 * that it is outside lowmem and inaccessible to the kernel.
994 * So for boards with less than 256MB of RAM we put the initrd
995 * halfway into RAM, and for boards with 256MB of RAM or more we put
996 * the initrd at 128MB.
998 info
->initrd_start
= info
->loader_start
+
999 MIN(info
->ram_size
/ 2, 128 * 1024 * 1024);
1001 /* Assume that raw images are linux kernels, and ELF images are not. */
1002 kernel_size
= arm_load_elf(info
, &elf_entry
, &elf_low_addr
,
1003 &elf_high_addr
, elf_machine
, as
);
1004 if (kernel_size
> 0 && have_dtb(info
)) {
1006 * If there is still some room left at the base of RAM, try and put
1007 * the DTB there like we do for images loaded with -bios or -pflash.
1009 if (elf_low_addr
> info
->loader_start
1010 || elf_high_addr
< info
->loader_start
) {
1012 * Set elf_low_addr as address limit for arm_load_dtb if it may be
1013 * pointing into RAM, otherwise pass '0' (no limit)
1015 if (elf_low_addr
< info
->loader_start
) {
1018 info
->dtb_start
= info
->loader_start
;
1019 info
->dtb_limit
= elf_low_addr
;
1023 if (kernel_size
< 0) {
1024 uint64_t loadaddr
= info
->loader_start
+ KERNEL_NOLOAD_ADDR
;
1025 kernel_size
= load_uimage_as(info
->kernel_filename
, &entry
, &loadaddr
,
1026 &is_linux
, NULL
, NULL
, as
);
1028 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
) && kernel_size
< 0) {
1029 kernel_size
= load_aarch64_image(info
->kernel_filename
,
1030 info
->loader_start
, &entry
, as
);
1032 } else if (kernel_size
< 0) {
1034 entry
= info
->loader_start
+ KERNEL_LOAD_ADDR
;
1035 kernel_size
= load_image_targphys_as(info
->kernel_filename
, entry
,
1036 info
->ram_size
- KERNEL_LOAD_ADDR
,
1040 if (kernel_size
< 0) {
1041 error_report("could not load kernel '%s'", info
->kernel_filename
);
1044 info
->entry
= entry
;
1046 uint32_t fixupcontext
[FIXUP_MAX
];
1048 if (info
->initrd_filename
) {
1049 initrd_size
= load_ramdisk_as(info
->initrd_filename
,
1051 info
->ram_size
- info
->initrd_start
,
1053 if (initrd_size
< 0) {
1054 initrd_size
= load_image_targphys_as(info
->initrd_filename
,
1060 if (initrd_size
< 0) {
1061 error_report("could not load initrd '%s'",
1062 info
->initrd_filename
);
1068 info
->initrd_size
= initrd_size
;
1070 fixupcontext
[FIXUP_BOARDID
] = info
->board_id
;
1071 fixupcontext
[FIXUP_BOARD_SETUP
] = info
->board_setup_addr
;
1074 * for device tree boot, we pass the DTB directly in r2. Otherwise
1075 * we point to the kernel args.
1077 if (have_dtb(info
)) {
1080 if (elf_machine
== EM_AARCH64
) {
1082 * Some AArch64 kernels on early bootup map the fdt region as
1084 * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1086 * Let's play safe and prealign it to 2MB to give us some space.
1088 align
= 2 * 1024 * 1024;
1091 * Some 32bit kernels will trash anything in the 4K page the
1092 * initrd ends in, so make sure the DTB isn't caught up in that.
1097 /* Place the DTB after the initrd in memory with alignment. */
1098 info
->dtb_start
= QEMU_ALIGN_UP(info
->initrd_start
+ initrd_size
,
1100 fixupcontext
[FIXUP_ARGPTR_LO
] = info
->dtb_start
;
1101 fixupcontext
[FIXUP_ARGPTR_HI
] = info
->dtb_start
>> 32;
1103 fixupcontext
[FIXUP_ARGPTR_LO
] =
1104 info
->loader_start
+ KERNEL_ARGS_ADDR
;
1105 fixupcontext
[FIXUP_ARGPTR_HI
] =
1106 (info
->loader_start
+ KERNEL_ARGS_ADDR
) >> 32;
1107 if (info
->ram_size
>= (1ULL << 32)) {
1108 error_report("RAM size must be less than 4GB to boot"
1109 " Linux kernel using ATAGS (try passing a device tree"
1114 fixupcontext
[FIXUP_ENTRYPOINT_LO
] = entry
;
1115 fixupcontext
[FIXUP_ENTRYPOINT_HI
] = entry
>> 32;
1117 write_bootloader("bootloader", info
->loader_start
,
1118 primary_loader
, fixupcontext
, as
);
1120 if (info
->nb_cpus
> 1) {
1121 info
->write_secondary_boot(cpu
, info
);
1123 if (info
->write_board_setup
) {
1124 info
->write_board_setup(cpu
, info
);
1128 * Notify devices which need to fake up firmware initialization
1129 * that we're doing a direct kernel boot.
1131 object_child_foreach_recursive(object_get_root(),
1132 do_arm_linux_init
, info
);
1134 info
->is_linux
= is_linux
;
1136 for (cs
= first_cpu
; cs
; cs
= CPU_NEXT(cs
)) {
1137 ARM_CPU(cs
)->env
.boot_info
= info
;
1141 static void arm_setup_firmware_boot(ARMCPU
*cpu
, struct arm_boot_info
*info
)
1143 /* Set up for booting firmware (which might load a kernel via fw_cfg) */
1145 if (have_dtb(info
)) {
1147 * If we have a device tree blob, but no kernel to supply it to (or
1148 * the kernel is supposed to be loaded by the bootloader), copy the
1149 * DTB to the base of RAM for the bootloader to pick up.
1151 info
->dtb_start
= info
->loader_start
;
1154 if (info
->kernel_filename
) {
1156 bool try_decompressing_kernel
;
1158 fw_cfg
= fw_cfg_find();
1159 try_decompressing_kernel
= arm_feature(&cpu
->env
,
1160 ARM_FEATURE_AARCH64
);
1163 * Expose the kernel, the command line, and the initrd in fw_cfg.
1164 * We don't process them here at all, it's all left to the
1167 load_image_to_fw_cfg(fw_cfg
,
1168 FW_CFG_KERNEL_SIZE
, FW_CFG_KERNEL_DATA
,
1169 info
->kernel_filename
,
1170 try_decompressing_kernel
);
1171 load_image_to_fw_cfg(fw_cfg
,
1172 FW_CFG_INITRD_SIZE
, FW_CFG_INITRD_DATA
,
1173 info
->initrd_filename
, false);
1175 if (info
->kernel_cmdline
) {
1176 fw_cfg_add_i32(fw_cfg
, FW_CFG_CMDLINE_SIZE
,
1177 strlen(info
->kernel_cmdline
) + 1);
1178 fw_cfg_add_string(fw_cfg
, FW_CFG_CMDLINE_DATA
,
1179 info
->kernel_cmdline
);
1184 * We will start from address 0 (typically a boot ROM image) in the
1185 * same way as hardware. Leave env->boot_info NULL, so that
1186 * do_cpu_reset() knows it does not need to alter the PC on reset.
1190 void arm_load_kernel(ARMCPU
*cpu
, struct arm_boot_info
*info
)
1193 AddressSpace
*as
= arm_boot_address_space(cpu
, info
);
1196 * CPU objects (unlike devices) are not automatically reset on system
1197 * reset, so we must always register a handler to do so. If we're
1198 * actually loading a kernel, the handler is also responsible for
1199 * arranging that we start it correctly.
1201 for (cs
= first_cpu
; cs
; cs
= CPU_NEXT(cs
)) {
1202 qemu_register_reset(do_cpu_reset
, ARM_CPU(cs
));
1206 * The board code is not supposed to set secure_board_setup unless
1207 * running its code in secure mode is actually possible, and KVM
1208 * doesn't support secure.
1210 assert(!(info
->secure_board_setup
&& kvm_enabled()));
1212 info
->dtb_filename
= qemu_opt_get(qemu_get_machine_opts(), "dtb");
1213 info
->dtb_limit
= 0;
1215 /* Load the kernel. */
1216 if (!info
->kernel_filename
|| info
->firmware_loaded
) {
1217 arm_setup_firmware_boot(cpu
, info
);
1219 arm_setup_direct_kernel_boot(cpu
, info
);
1222 if (!info
->skip_dtb_autoload
&& have_dtb(info
)) {
1223 if (arm_load_dtb(info
->dtb_start
, info
, info
->dtb_limit
, as
) < 0) {
1229 static const TypeInfo arm_linux_boot_if_info
= {
1230 .name
= TYPE_ARM_LINUX_BOOT_IF
,
1231 .parent
= TYPE_INTERFACE
,
1232 .class_size
= sizeof(ARMLinuxBootIfClass
),
1235 static void arm_linux_boot_register_types(void)
1237 type_register_static(&arm_linux_boot_if_info
);
1240 type_init(arm_linux_boot_register_types
)