char-pty: remove write_lock usage
[qemu/ar7.git] / hw / arm / armsse.c
blob5d53071a5a06b12acf364f0f39cdeafba43de126
1 /*
2 * Arm SSE (Subsystems for Embedded): IoTKit
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "qapi/error.h"
15 #include "trace.h"
16 #include "hw/sysbus.h"
17 #include "hw/registerfields.h"
18 #include "hw/arm/armsse.h"
19 #include "hw/arm/arm.h"
21 /* Format of the System Information block SYS_CONFIG register */
22 typedef enum SysConfigFormat {
23 IoTKitFormat,
24 SSE200Format,
25 } SysConfigFormat;
27 struct ARMSSEInfo {
28 const char *name;
29 int sram_banks;
30 int num_cpus;
31 uint32_t sys_version;
32 SysConfigFormat sys_config_format;
33 bool has_mhus;
34 bool has_ppus;
35 bool has_cachectrl;
36 bool has_cpusecctrl;
37 bool has_cpuid;
40 static const ARMSSEInfo armsse_variants[] = {
42 .name = TYPE_IOTKIT,
43 .sram_banks = 1,
44 .num_cpus = 1,
45 .sys_version = 0x41743,
46 .sys_config_format = IoTKitFormat,
47 .has_mhus = false,
48 .has_ppus = false,
49 .has_cachectrl = false,
50 .has_cpusecctrl = false,
51 .has_cpuid = false,
54 .name = TYPE_SSE200,
55 .sram_banks = 4,
56 .num_cpus = 2,
57 .sys_version = 0x22041743,
58 .sys_config_format = SSE200Format,
59 .has_mhus = true,
60 .has_ppus = true,
61 .has_cachectrl = true,
62 .has_cpusecctrl = true,
63 .has_cpuid = true,
67 static uint32_t armsse_sys_config_value(ARMSSE *s, const ARMSSEInfo *info)
69 /* Return the SYS_CONFIG value for this SSE */
70 uint32_t sys_config;
72 switch (info->sys_config_format) {
73 case IoTKitFormat:
74 sys_config = 0;
75 sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
76 sys_config = deposit32(sys_config, 4, 4, s->sram_addr_width - 12);
77 break;
78 case SSE200Format:
79 sys_config = 0;
80 sys_config = deposit32(sys_config, 0, 4, info->sram_banks);
81 sys_config = deposit32(sys_config, 4, 5, s->sram_addr_width);
82 sys_config = deposit32(sys_config, 24, 4, 2);
83 if (info->num_cpus > 1) {
84 sys_config = deposit32(sys_config, 10, 1, 1);
85 sys_config = deposit32(sys_config, 20, 4, info->sram_banks - 1);
86 sys_config = deposit32(sys_config, 28, 4, 2);
88 break;
89 default:
90 g_assert_not_reached();
92 return sys_config;
95 /* Clock frequency in HZ of the 32KHz "slow clock" */
96 #define S32KCLK (32 * 1000)
98 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
99 static bool irq_is_common[32] = {
100 [0 ... 5] = true,
101 /* 6, 7: per-CPU MHU interrupts */
102 [8 ... 12] = true,
103 /* 13: per-CPU icache interrupt */
104 /* 14: reserved */
105 [15 ... 20] = true,
106 /* 21: reserved */
107 [22 ... 26] = true,
108 /* 27: reserved */
109 /* 28, 29: per-CPU CTI interrupts */
110 /* 30, 31: reserved */
113 /* Create an alias region of @size bytes starting at @base
114 * which mirrors the memory starting at @orig.
116 static void make_alias(ARMSSE *s, MemoryRegion *mr, const char *name,
117 hwaddr base, hwaddr size, hwaddr orig)
119 memory_region_init_alias(mr, NULL, name, &s->container, orig, size);
120 /* The alias is even lower priority than unimplemented_device regions */
121 memory_region_add_subregion_overlap(&s->container, base, mr, -1500);
124 static void irq_status_forwarder(void *opaque, int n, int level)
126 qemu_irq destirq = opaque;
128 qemu_set_irq(destirq, level);
131 static void nsccfg_handler(void *opaque, int n, int level)
133 ARMSSE *s = ARMSSE(opaque);
135 s->nsccfg = level;
138 static void armsse_forward_ppc(ARMSSE *s, const char *ppcname, int ppcnum)
140 /* Each of the 4 AHB and 4 APB PPCs that might be present in a
141 * system using the ARMSSE has a collection of control lines which
142 * are provided by the security controller and which we want to
143 * expose as control lines on the ARMSSE device itself, so the
144 * code using the ARMSSE can wire them up to the PPCs.
146 SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
147 DeviceState *armssedev = DEVICE(s);
148 DeviceState *dev_secctl = DEVICE(&s->secctl);
149 DeviceState *dev_splitter = DEVICE(splitter);
150 char *name;
152 name = g_strdup_printf("%s_nonsec", ppcname);
153 qdev_pass_gpios(dev_secctl, armssedev, name);
154 g_free(name);
155 name = g_strdup_printf("%s_ap", ppcname);
156 qdev_pass_gpios(dev_secctl, armssedev, name);
157 g_free(name);
158 name = g_strdup_printf("%s_irq_enable", ppcname);
159 qdev_pass_gpios(dev_secctl, armssedev, name);
160 g_free(name);
161 name = g_strdup_printf("%s_irq_clear", ppcname);
162 qdev_pass_gpios(dev_secctl, armssedev, name);
163 g_free(name);
165 /* irq_status is a little more tricky, because we need to
166 * split it so we can send it both to the security controller
167 * and to our OR gate for the NVIC interrupt line.
168 * Connect up the splitter's outputs, and create a GPIO input
169 * which will pass the line state to the input splitter.
171 name = g_strdup_printf("%s_irq_status", ppcname);
172 qdev_connect_gpio_out(dev_splitter, 0,
173 qdev_get_gpio_in_named(dev_secctl,
174 name, 0));
175 qdev_connect_gpio_out(dev_splitter, 1,
176 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
177 s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
178 qdev_init_gpio_in_named_with_opaque(armssedev, irq_status_forwarder,
179 s->irq_status_in[ppcnum], name, 1);
180 g_free(name);
183 static void armsse_forward_sec_resp_cfg(ARMSSE *s)
185 /* Forward the 3rd output from the splitter device as a
186 * named GPIO output of the armsse object.
188 DeviceState *dev = DEVICE(s);
189 DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);
191 qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
192 s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
193 s->sec_resp_cfg, 1);
194 qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
197 static void armsse_init(Object *obj)
199 ARMSSE *s = ARMSSE(obj);
200 ARMSSEClass *asc = ARMSSE_GET_CLASS(obj);
201 const ARMSSEInfo *info = asc->info;
202 int i;
204 assert(info->sram_banks <= MAX_SRAM_BANKS);
205 assert(info->num_cpus <= SSE_MAX_CPUS);
207 memory_region_init(&s->container, obj, "armsse-container", UINT64_MAX);
209 for (i = 0; i < info->num_cpus; i++) {
211 * We put each CPU in its own cluster as they are logically
212 * distinct and may be configured differently.
214 char *name;
216 name = g_strdup_printf("cluster%d", i);
217 object_initialize_child(obj, name, &s->cluster[i],
218 sizeof(s->cluster[i]), TYPE_CPU_CLUSTER,
219 &error_abort, NULL);
220 qdev_prop_set_uint32(DEVICE(&s->cluster[i]), "cluster-id", i);
221 g_free(name);
223 name = g_strdup_printf("armv7m%d", i);
224 sysbus_init_child_obj(OBJECT(&s->cluster[i]), name,
225 &s->armv7m[i], sizeof(s->armv7m), TYPE_ARMV7M);
226 qdev_prop_set_string(DEVICE(&s->armv7m[i]), "cpu-type",
227 ARM_CPU_TYPE_NAME("cortex-m33"));
228 g_free(name);
229 name = g_strdup_printf("arm-sse-cpu-container%d", i);
230 memory_region_init(&s->cpu_container[i], obj, name, UINT64_MAX);
231 g_free(name);
232 if (i > 0) {
233 name = g_strdup_printf("arm-sse-container-alias%d", i);
234 memory_region_init_alias(&s->container_alias[i - 1], obj,
235 name, &s->container, 0, UINT64_MAX);
236 g_free(name);
240 sysbus_init_child_obj(obj, "secctl", &s->secctl, sizeof(s->secctl),
241 TYPE_IOTKIT_SECCTL);
242 sysbus_init_child_obj(obj, "apb-ppc0", &s->apb_ppc0, sizeof(s->apb_ppc0),
243 TYPE_TZ_PPC);
244 sysbus_init_child_obj(obj, "apb-ppc1", &s->apb_ppc1, sizeof(s->apb_ppc1),
245 TYPE_TZ_PPC);
246 for (i = 0; i < info->sram_banks; i++) {
247 char *name = g_strdup_printf("mpc%d", i);
248 sysbus_init_child_obj(obj, name, &s->mpc[i],
249 sizeof(s->mpc[i]), TYPE_TZ_MPC);
250 g_free(name);
252 object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
253 sizeof(s->mpc_irq_orgate), TYPE_OR_IRQ,
254 &error_abort, NULL);
256 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
257 char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
258 SplitIRQ *splitter = &s->mpc_irq_splitter[i];
260 object_initialize_child(obj, name, splitter, sizeof(*splitter),
261 TYPE_SPLIT_IRQ, &error_abort, NULL);
262 g_free(name);
264 sysbus_init_child_obj(obj, "timer0", &s->timer0, sizeof(s->timer0),
265 TYPE_CMSDK_APB_TIMER);
266 sysbus_init_child_obj(obj, "timer1", &s->timer1, sizeof(s->timer1),
267 TYPE_CMSDK_APB_TIMER);
268 sysbus_init_child_obj(obj, "s32ktimer", &s->s32ktimer, sizeof(s->s32ktimer),
269 TYPE_CMSDK_APB_TIMER);
270 sysbus_init_child_obj(obj, "dualtimer", &s->dualtimer, sizeof(s->dualtimer),
271 TYPE_CMSDK_APB_DUALTIMER);
272 sysbus_init_child_obj(obj, "s32kwatchdog", &s->s32kwatchdog,
273 sizeof(s->s32kwatchdog), TYPE_CMSDK_APB_WATCHDOG);
274 sysbus_init_child_obj(obj, "nswatchdog", &s->nswatchdog,
275 sizeof(s->nswatchdog), TYPE_CMSDK_APB_WATCHDOG);
276 sysbus_init_child_obj(obj, "swatchdog", &s->swatchdog,
277 sizeof(s->swatchdog), TYPE_CMSDK_APB_WATCHDOG);
278 sysbus_init_child_obj(obj, "armsse-sysctl", &s->sysctl,
279 sizeof(s->sysctl), TYPE_IOTKIT_SYSCTL);
280 sysbus_init_child_obj(obj, "armsse-sysinfo", &s->sysinfo,
281 sizeof(s->sysinfo), TYPE_IOTKIT_SYSINFO);
282 if (info->has_mhus) {
283 sysbus_init_child_obj(obj, "mhu0", &s->mhu[0], sizeof(s->mhu[0]),
284 TYPE_UNIMPLEMENTED_DEVICE);
285 sysbus_init_child_obj(obj, "mhu1", &s->mhu[1], sizeof(s->mhu[1]),
286 TYPE_UNIMPLEMENTED_DEVICE);
288 if (info->has_ppus) {
289 for (i = 0; i < info->num_cpus; i++) {
290 char *name = g_strdup_printf("CPU%dCORE_PPU", i);
291 int ppuidx = CPU0CORE_PPU + i;
293 sysbus_init_child_obj(obj, name, &s->ppu[ppuidx],
294 sizeof(s->ppu[ppuidx]),
295 TYPE_UNIMPLEMENTED_DEVICE);
296 g_free(name);
298 sysbus_init_child_obj(obj, "DBG_PPU", &s->ppu[DBG_PPU],
299 sizeof(s->ppu[DBG_PPU]),
300 TYPE_UNIMPLEMENTED_DEVICE);
301 for (i = 0; i < info->sram_banks; i++) {
302 char *name = g_strdup_printf("RAM%d_PPU", i);
303 int ppuidx = RAM0_PPU + i;
305 sysbus_init_child_obj(obj, name, &s->ppu[ppuidx],
306 sizeof(s->ppu[ppuidx]),
307 TYPE_UNIMPLEMENTED_DEVICE);
308 g_free(name);
311 if (info->has_cachectrl) {
312 for (i = 0; i < info->num_cpus; i++) {
313 char *name = g_strdup_printf("cachectrl%d", i);
315 sysbus_init_child_obj(obj, name, &s->cachectrl[i],
316 sizeof(s->cachectrl[i]),
317 TYPE_UNIMPLEMENTED_DEVICE);
318 g_free(name);
321 if (info->has_cpusecctrl) {
322 for (i = 0; i < info->num_cpus; i++) {
323 char *name = g_strdup_printf("cpusecctrl%d", i);
325 sysbus_init_child_obj(obj, name, &s->cpusecctrl[i],
326 sizeof(s->cpusecctrl[i]),
327 TYPE_UNIMPLEMENTED_DEVICE);
328 g_free(name);
331 if (info->has_cpuid) {
332 for (i = 0; i < info->num_cpus; i++) {
333 char *name = g_strdup_printf("cpuid%d", i);
335 sysbus_init_child_obj(obj, name, &s->cpuid[i],
336 sizeof(s->cpuid[i]),
337 TYPE_ARMSSE_CPUID);
338 g_free(name);
341 object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate,
342 sizeof(s->nmi_orgate), TYPE_OR_IRQ,
343 &error_abort, NULL);
344 object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
345 sizeof(s->ppc_irq_orgate), TYPE_OR_IRQ,
346 &error_abort, NULL);
347 object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
348 sizeof(s->sec_resp_splitter), TYPE_SPLIT_IRQ,
349 &error_abort, NULL);
350 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
351 char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
352 SplitIRQ *splitter = &s->ppc_irq_splitter[i];
354 object_initialize_child(obj, name, splitter, sizeof(*splitter),
355 TYPE_SPLIT_IRQ, &error_abort, NULL);
356 g_free(name);
358 if (info->num_cpus > 1) {
359 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
360 if (irq_is_common[i]) {
361 char *name = g_strdup_printf("cpu-irq-splitter%d", i);
362 SplitIRQ *splitter = &s->cpu_irq_splitter[i];
364 object_initialize_child(obj, name, splitter, sizeof(*splitter),
365 TYPE_SPLIT_IRQ, &error_abort, NULL);
366 g_free(name);
372 static void armsse_exp_irq(void *opaque, int n, int level)
374 qemu_irq *irqarray = opaque;
376 qemu_set_irq(irqarray[n], level);
379 static void armsse_mpcexp_status(void *opaque, int n, int level)
381 ARMSSE *s = ARMSSE(opaque);
382 qemu_set_irq(s->mpcexp_status_in[n], level);
385 static qemu_irq armsse_get_common_irq_in(ARMSSE *s, int irqno)
388 * Return a qemu_irq which can be used to signal IRQ n to
389 * all CPUs in the SSE.
391 ARMSSEClass *asc = ARMSSE_GET_CLASS(s);
392 const ARMSSEInfo *info = asc->info;
394 assert(irq_is_common[irqno]);
396 if (info->num_cpus == 1) {
397 /* Only one CPU -- just connect directly to it */
398 return qdev_get_gpio_in(DEVICE(&s->armv7m[0]), irqno);
399 } else {
400 /* Connect to the splitter which feeds all CPUs */
401 return qdev_get_gpio_in(DEVICE(&s->cpu_irq_splitter[irqno]), 0);
405 static void map_ppu(ARMSSE *s, int ppuidx, const char *name, hwaddr addr)
407 /* Map a PPU unimplemented device stub */
408 DeviceState *dev = DEVICE(&s->ppu[ppuidx]);
410 qdev_prop_set_string(dev, "name", name);
411 qdev_prop_set_uint64(dev, "size", 0x1000);
412 qdev_init_nofail(dev);
413 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ppu[ppuidx]), 0, addr);
416 static void armsse_realize(DeviceState *dev, Error **errp)
418 ARMSSE *s = ARMSSE(dev);
419 ARMSSEClass *asc = ARMSSE_GET_CLASS(dev);
420 const ARMSSEInfo *info = asc->info;
421 int i;
422 MemoryRegion *mr;
423 Error *err = NULL;
424 SysBusDevice *sbd_apb_ppc0;
425 SysBusDevice *sbd_secctl;
426 DeviceState *dev_apb_ppc0;
427 DeviceState *dev_apb_ppc1;
428 DeviceState *dev_secctl;
429 DeviceState *dev_splitter;
430 uint32_t addr_width_max;
432 if (!s->board_memory) {
433 error_setg(errp, "memory property was not set");
434 return;
437 if (!s->mainclk_frq) {
438 error_setg(errp, "MAINCLK property was not set");
439 return;
442 /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
443 assert(is_power_of_2(info->sram_banks));
444 addr_width_max = 24 - ctz32(info->sram_banks);
445 if (s->sram_addr_width < 1 || s->sram_addr_width > addr_width_max) {
446 error_setg(errp, "SRAM_ADDR_WIDTH must be between 1 and %d",
447 addr_width_max);
448 return;
451 /* Handling of which devices should be available only to secure
452 * code is usually done differently for M profile than for A profile.
453 * Instead of putting some devices only into the secure address space,
454 * devices exist in both address spaces but with hard-wired security
455 * permissions that will cause the CPU to fault for non-secure accesses.
457 * The ARMSSE has an IDAU (Implementation Defined Access Unit),
458 * which specifies hard-wired security permissions for different
459 * areas of the physical address space. For the ARMSSE IDAU, the
460 * top 4 bits of the physical address are the IDAU region ID, and
461 * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
462 * region, otherwise it is an S region.
464 * The various devices and RAMs are generally all mapped twice,
465 * once into a region that the IDAU defines as secure and once
466 * into a non-secure region. They sit behind either a Memory
467 * Protection Controller (for RAM) or a Peripheral Protection
468 * Controller (for devices), which allow a more fine grained
469 * configuration of whether non-secure accesses are permitted.
471 * (The other place that guest software can configure security
472 * permissions is in the architected SAU (Security Attribution
473 * Unit), which is entirely inside the CPU. The IDAU can upgrade
474 * the security attributes for a region to more restrictive than
475 * the SAU specifies, but cannot downgrade them.)
477 * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff
478 * 0x20000000..0x2007ffff 32KB FPGA block RAM
479 * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff
480 * 0x40000000..0x4000ffff base peripheral region 1
481 * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE)
482 * 0x40020000..0x4002ffff system control element peripherals
483 * 0x40080000..0x400fffff base peripheral region 2
484 * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff
487 memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -2);
489 for (i = 0; i < info->num_cpus; i++) {
490 DeviceState *cpudev = DEVICE(&s->armv7m[i]);
491 Object *cpuobj = OBJECT(&s->armv7m[i]);
492 int j;
493 char *gpioname;
495 qdev_prop_set_uint32(cpudev, "num-irq", s->exp_numirq + 32);
497 * In real hardware the initial Secure VTOR is set from the INITSVTOR0
498 * register in the IoT Kit System Control Register block, and the
499 * initial value of that is in turn specifiable by the FPGA that
500 * instantiates the IoT Kit. In QEMU we don't implement this wrinkle,
501 * and simply set the CPU's init-svtor to the IoT Kit default value.
502 * In SSE-200 the situation is similar, except that the default value
503 * is a reset-time signal input. Typically a board using the SSE-200
504 * will have a system control processor whose boot firmware initializes
505 * the INITSVTOR* registers before powering up the CPUs in any case,
506 * so the hardware's default value doesn't matter. QEMU doesn't emulate
507 * the control processor, so instead we behave in the way that the
508 * firmware does. All boards currently known about have firmware that
509 * sets the INITSVTOR0 and INITSVTOR1 registers to 0x10000000, like the
510 * IoTKit default. We can make this more configurable if necessary.
512 qdev_prop_set_uint32(cpudev, "init-svtor", 0x10000000);
514 * Start all CPUs except CPU0 powered down. In real hardware it is
515 * a configurable property of the SSE-200 which CPUs start powered up
516 * (via the CPUWAIT0_RST and CPUWAIT1_RST parameters), but since all
517 * the boards we care about start CPU0 and leave CPU1 powered off,
518 * we hard-code that for now. We can add QOM properties for this
519 * later if necessary.
521 if (i > 0) {
522 object_property_set_bool(cpuobj, true, "start-powered-off", &err);
523 if (err) {
524 error_propagate(errp, err);
525 return;
529 if (i > 0) {
530 memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
531 &s->container_alias[i - 1], -1);
532 } else {
533 memory_region_add_subregion_overlap(&s->cpu_container[i], 0,
534 &s->container, -1);
536 object_property_set_link(cpuobj, OBJECT(&s->cpu_container[i]),
537 "memory", &err);
538 if (err) {
539 error_propagate(errp, err);
540 return;
542 object_property_set_link(cpuobj, OBJECT(s), "idau", &err);
543 if (err) {
544 error_propagate(errp, err);
545 return;
547 object_property_set_bool(cpuobj, true, "realized", &err);
548 if (err) {
549 error_propagate(errp, err);
550 return;
553 * The cluster must be realized after the armv7m container, as
554 * the container's CPU object is only created on realize, and the
555 * CPU must exist and have been parented into the cluster before
556 * the cluster is realized.
558 object_property_set_bool(OBJECT(&s->cluster[i]),
559 true, "realized", &err);
560 if (err) {
561 error_propagate(errp, err);
562 return;
565 /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
566 s->exp_irqs[i] = g_new(qemu_irq, s->exp_numirq);
567 for (j = 0; j < s->exp_numirq; j++) {
568 s->exp_irqs[i][j] = qdev_get_gpio_in(cpudev, i + 32);
570 if (i == 0) {
571 gpioname = g_strdup("EXP_IRQ");
572 } else {
573 gpioname = g_strdup_printf("EXP_CPU%d_IRQ", i);
575 qdev_init_gpio_in_named_with_opaque(dev, armsse_exp_irq,
576 s->exp_irqs[i],
577 gpioname, s->exp_numirq);
578 g_free(gpioname);
581 /* Wire up the splitters that connect common IRQs to all CPUs */
582 if (info->num_cpus > 1) {
583 for (i = 0; i < ARRAY_SIZE(s->cpu_irq_splitter); i++) {
584 if (irq_is_common[i]) {
585 Object *splitter = OBJECT(&s->cpu_irq_splitter[i]);
586 DeviceState *devs = DEVICE(splitter);
587 int cpunum;
589 object_property_set_int(splitter, info->num_cpus,
590 "num-lines", &err);
591 if (err) {
592 error_propagate(errp, err);
593 return;
595 object_property_set_bool(splitter, true, "realized", &err);
596 if (err) {
597 error_propagate(errp, err);
598 return;
600 for (cpunum = 0; cpunum < info->num_cpus; cpunum++) {
601 DeviceState *cpudev = DEVICE(&s->armv7m[cpunum]);
603 qdev_connect_gpio_out(devs, cpunum,
604 qdev_get_gpio_in(cpudev, i));
610 /* Set up the big aliases first */
611 make_alias(s, &s->alias1, "alias 1", 0x10000000, 0x10000000, 0x00000000);
612 make_alias(s, &s->alias2, "alias 2", 0x30000000, 0x10000000, 0x20000000);
613 /* The 0x50000000..0x5fffffff region is not a pure alias: it has
614 * a few extra devices that only appear there (generally the
615 * control interfaces for the protection controllers).
616 * We implement this by mapping those devices over the top of this
617 * alias MR at a higher priority.
619 make_alias(s, &s->alias3, "alias 3", 0x50000000, 0x10000000, 0x40000000);
622 /* Security controller */
623 object_property_set_bool(OBJECT(&s->secctl), true, "realized", &err);
624 if (err) {
625 error_propagate(errp, err);
626 return;
628 sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
629 dev_secctl = DEVICE(&s->secctl);
630 sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
631 sysbus_mmio_map(sbd_secctl, 1, 0x40080000);
633 s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
634 qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);
636 /* The sec_resp_cfg output from the security controller must be split into
637 * multiple lines, one for each of the PPCs within the ARMSSE and one
638 * that will be an output from the ARMSSE to the system.
640 object_property_set_int(OBJECT(&s->sec_resp_splitter), 3,
641 "num-lines", &err);
642 if (err) {
643 error_propagate(errp, err);
644 return;
646 object_property_set_bool(OBJECT(&s->sec_resp_splitter), true,
647 "realized", &err);
648 if (err) {
649 error_propagate(errp, err);
650 return;
652 dev_splitter = DEVICE(&s->sec_resp_splitter);
653 qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
654 qdev_get_gpio_in(dev_splitter, 0));
656 /* Each SRAM bank lives behind its own Memory Protection Controller */
657 for (i = 0; i < info->sram_banks; i++) {
658 char *ramname = g_strdup_printf("armsse.sram%d", i);
659 SysBusDevice *sbd_mpc;
660 uint32_t sram_bank_size = 1 << s->sram_addr_width;
662 memory_region_init_ram(&s->sram[i], NULL, ramname,
663 sram_bank_size, &err);
664 g_free(ramname);
665 if (err) {
666 error_propagate(errp, err);
667 return;
669 object_property_set_link(OBJECT(&s->mpc[i]), OBJECT(&s->sram[i]),
670 "downstream", &err);
671 if (err) {
672 error_propagate(errp, err);
673 return;
675 object_property_set_bool(OBJECT(&s->mpc[i]), true, "realized", &err);
676 if (err) {
677 error_propagate(errp, err);
678 return;
680 /* Map the upstream end of the MPC into the right place... */
681 sbd_mpc = SYS_BUS_DEVICE(&s->mpc[i]);
682 memory_region_add_subregion(&s->container,
683 0x20000000 + i * sram_bank_size,
684 sysbus_mmio_get_region(sbd_mpc, 1));
685 /* ...and its register interface */
686 memory_region_add_subregion(&s->container, 0x50083000 + i * 0x1000,
687 sysbus_mmio_get_region(sbd_mpc, 0));
690 /* We must OR together lines from the MPC splitters to go to the NVIC */
691 object_property_set_int(OBJECT(&s->mpc_irq_orgate),
692 IOTS_NUM_EXP_MPC + info->sram_banks,
693 "num-lines", &err);
694 if (err) {
695 error_propagate(errp, err);
696 return;
698 object_property_set_bool(OBJECT(&s->mpc_irq_orgate), true,
699 "realized", &err);
700 if (err) {
701 error_propagate(errp, err);
702 return;
704 qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
705 armsse_get_common_irq_in(s, 9));
707 /* Devices behind APB PPC0:
708 * 0x40000000: timer0
709 * 0x40001000: timer1
710 * 0x40002000: dual timer
711 * 0x40003000: MHU0 (SSE-200 only)
712 * 0x40004000: MHU1 (SSE-200 only)
713 * We must configure and realize each downstream device and connect
714 * it to the appropriate PPC port; then we can realize the PPC and
715 * map its upstream ends to the right place in the container.
717 qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
718 object_property_set_bool(OBJECT(&s->timer0), true, "realized", &err);
719 if (err) {
720 error_propagate(errp, err);
721 return;
723 sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
724 armsse_get_common_irq_in(s, 3));
725 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
726 object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err);
727 if (err) {
728 error_propagate(errp, err);
729 return;
732 qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
733 object_property_set_bool(OBJECT(&s->timer1), true, "realized", &err);
734 if (err) {
735 error_propagate(errp, err);
736 return;
738 sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
739 armsse_get_common_irq_in(s, 4));
740 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
741 object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err);
742 if (err) {
743 error_propagate(errp, err);
744 return;
748 qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq);
749 object_property_set_bool(OBJECT(&s->dualtimer), true, "realized", &err);
750 if (err) {
751 error_propagate(errp, err);
752 return;
754 sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
755 armsse_get_common_irq_in(s, 5));
756 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
757 object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err);
758 if (err) {
759 error_propagate(errp, err);
760 return;
763 if (info->has_mhus) {
764 for (i = 0; i < ARRAY_SIZE(s->mhu); i++) {
765 char *name = g_strdup_printf("MHU%d", i);
766 char *port = g_strdup_printf("port[%d]", i + 3);
768 qdev_prop_set_string(DEVICE(&s->mhu[i]), "name", name);
769 qdev_prop_set_uint64(DEVICE(&s->mhu[i]), "size", 0x1000);
770 object_property_set_bool(OBJECT(&s->mhu[i]), true,
771 "realized", &err);
772 if (err) {
773 error_propagate(errp, err);
774 return;
776 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->mhu[i]), 0);
777 object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr),
778 port, &err);
779 if (err) {
780 error_propagate(errp, err);
781 return;
783 g_free(name);
784 g_free(port);
788 object_property_set_bool(OBJECT(&s->apb_ppc0), true, "realized", &err);
789 if (err) {
790 error_propagate(errp, err);
791 return;
794 sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
795 dev_apb_ppc0 = DEVICE(&s->apb_ppc0);
797 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
798 memory_region_add_subregion(&s->container, 0x40000000, mr);
799 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
800 memory_region_add_subregion(&s->container, 0x40001000, mr);
801 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
802 memory_region_add_subregion(&s->container, 0x40002000, mr);
803 if (info->has_mhus) {
804 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 3);
805 memory_region_add_subregion(&s->container, 0x40003000, mr);
806 mr = sysbus_mmio_get_region(sbd_apb_ppc0, 4);
807 memory_region_add_subregion(&s->container, 0x40004000, mr);
809 for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
810 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
811 qdev_get_gpio_in_named(dev_apb_ppc0,
812 "cfg_nonsec", i));
813 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
814 qdev_get_gpio_in_named(dev_apb_ppc0,
815 "cfg_ap", i));
817 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
818 qdev_get_gpio_in_named(dev_apb_ppc0,
819 "irq_enable", 0));
820 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
821 qdev_get_gpio_in_named(dev_apb_ppc0,
822 "irq_clear", 0));
823 qdev_connect_gpio_out(dev_splitter, 0,
824 qdev_get_gpio_in_named(dev_apb_ppc0,
825 "cfg_sec_resp", 0));
827 /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
828 * ones) are sent individually to the security controller, and also
829 * ORed together to give a single combined PPC interrupt to the NVIC.
831 object_property_set_int(OBJECT(&s->ppc_irq_orgate),
832 NUM_PPCS, "num-lines", &err);
833 if (err) {
834 error_propagate(errp, err);
835 return;
837 object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true,
838 "realized", &err);
839 if (err) {
840 error_propagate(errp, err);
841 return;
843 qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
844 armsse_get_common_irq_in(s, 10));
847 * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
848 * private per-CPU region (all these devices are SSE-200 only):
849 * 0x50010000: L1 icache control registers
850 * 0x50011000: CPUSECCTRL (CPU local security control registers)
851 * 0x4001f000 and 0x5001f000: CPU_IDENTITY register block
853 if (info->has_cachectrl) {
854 for (i = 0; i < info->num_cpus; i++) {
855 char *name = g_strdup_printf("cachectrl%d", i);
856 MemoryRegion *mr;
858 qdev_prop_set_string(DEVICE(&s->cachectrl[i]), "name", name);
859 g_free(name);
860 qdev_prop_set_uint64(DEVICE(&s->cachectrl[i]), "size", 0x1000);
861 object_property_set_bool(OBJECT(&s->cachectrl[i]), true,
862 "realized", &err);
863 if (err) {
864 error_propagate(errp, err);
865 return;
868 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cachectrl[i]), 0);
869 memory_region_add_subregion(&s->cpu_container[i], 0x50010000, mr);
872 if (info->has_cpusecctrl) {
873 for (i = 0; i < info->num_cpus; i++) {
874 char *name = g_strdup_printf("CPUSECCTRL%d", i);
875 MemoryRegion *mr;
877 qdev_prop_set_string(DEVICE(&s->cpusecctrl[i]), "name", name);
878 g_free(name);
879 qdev_prop_set_uint64(DEVICE(&s->cpusecctrl[i]), "size", 0x1000);
880 object_property_set_bool(OBJECT(&s->cpusecctrl[i]), true,
881 "realized", &err);
882 if (err) {
883 error_propagate(errp, err);
884 return;
887 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpusecctrl[i]), 0);
888 memory_region_add_subregion(&s->cpu_container[i], 0x50011000, mr);
891 if (info->has_cpuid) {
892 for (i = 0; i < info->num_cpus; i++) {
893 MemoryRegion *mr;
895 qdev_prop_set_uint32(DEVICE(&s->cpuid[i]), "CPUID", i);
896 object_property_set_bool(OBJECT(&s->cpuid[i]), true,
897 "realized", &err);
898 if (err) {
899 error_propagate(errp, err);
900 return;
903 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->cpuid[i]), 0);
904 memory_region_add_subregion(&s->cpu_container[i], 0x4001F000, mr);
908 /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
909 /* Devices behind APB PPC1:
910 * 0x4002f000: S32K timer
912 qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK);
913 object_property_set_bool(OBJECT(&s->s32ktimer), true, "realized", &err);
914 if (err) {
915 error_propagate(errp, err);
916 return;
918 sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
919 armsse_get_common_irq_in(s, 2));
920 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
921 object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err);
922 if (err) {
923 error_propagate(errp, err);
924 return;
927 object_property_set_bool(OBJECT(&s->apb_ppc1), true, "realized", &err);
928 if (err) {
929 error_propagate(errp, err);
930 return;
932 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
933 memory_region_add_subregion(&s->container, 0x4002f000, mr);
935 dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
936 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
937 qdev_get_gpio_in_named(dev_apb_ppc1,
938 "cfg_nonsec", 0));
939 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
940 qdev_get_gpio_in_named(dev_apb_ppc1,
941 "cfg_ap", 0));
942 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
943 qdev_get_gpio_in_named(dev_apb_ppc1,
944 "irq_enable", 0));
945 qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
946 qdev_get_gpio_in_named(dev_apb_ppc1,
947 "irq_clear", 0));
948 qdev_connect_gpio_out(dev_splitter, 1,
949 qdev_get_gpio_in_named(dev_apb_ppc1,
950 "cfg_sec_resp", 0));
952 object_property_set_int(OBJECT(&s->sysinfo), info->sys_version,
953 "SYS_VERSION", &err);
954 if (err) {
955 error_propagate(errp, err);
956 return;
958 object_property_set_int(OBJECT(&s->sysinfo),
959 armsse_sys_config_value(s, info),
960 "SYS_CONFIG", &err);
961 if (err) {
962 error_propagate(errp, err);
963 return;
965 object_property_set_bool(OBJECT(&s->sysinfo), true, "realized", &err);
966 if (err) {
967 error_propagate(errp, err);
968 return;
970 /* System information registers */
971 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
972 /* System control registers */
973 object_property_set_bool(OBJECT(&s->sysctl), true, "realized", &err);
974 if (err) {
975 error_propagate(errp, err);
976 return;
978 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);
980 if (info->has_ppus) {
981 /* CPUnCORE_PPU for each CPU */
982 for (i = 0; i < info->num_cpus; i++) {
983 char *name = g_strdup_printf("CPU%dCORE_PPU", i);
985 map_ppu(s, CPU0CORE_PPU + i, name, 0x50023000 + i * 0x2000);
987 * We don't support CPU debug so don't create the
988 * CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
990 g_free(name);
992 map_ppu(s, DBG_PPU, "DBG_PPU", 0x50029000);
994 for (i = 0; i < info->sram_banks; i++) {
995 char *name = g_strdup_printf("RAM%d_PPU", i);
997 map_ppu(s, RAM0_PPU + i, name, 0x5002a000 + i * 0x1000);
998 g_free(name);
1002 /* This OR gate wires together outputs from the secure watchdogs to NMI */
1003 object_property_set_int(OBJECT(&s->nmi_orgate), 2, "num-lines", &err);
1004 if (err) {
1005 error_propagate(errp, err);
1006 return;
1008 object_property_set_bool(OBJECT(&s->nmi_orgate), true, "realized", &err);
1009 if (err) {
1010 error_propagate(errp, err);
1011 return;
1013 qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
1014 qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));
1016 qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK);
1017 object_property_set_bool(OBJECT(&s->s32kwatchdog), true, "realized", &err);
1018 if (err) {
1019 error_propagate(errp, err);
1020 return;
1022 sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
1023 qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
1024 sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);
1026 /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
1028 qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq);
1029 object_property_set_bool(OBJECT(&s->nswatchdog), true, "realized", &err);
1030 if (err) {
1031 error_propagate(errp, err);
1032 return;
1034 sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
1035 armsse_get_common_irq_in(s, 1));
1036 sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);
1038 qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq);
1039 object_property_set_bool(OBJECT(&s->swatchdog), true, "realized", &err);
1040 if (err) {
1041 error_propagate(errp, err);
1042 return;
1044 sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
1045 qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
1046 sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);
1048 for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
1049 Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);
1051 object_property_set_int(splitter, 2, "num-lines", &err);
1052 if (err) {
1053 error_propagate(errp, err);
1054 return;
1056 object_property_set_bool(splitter, true, "realized", &err);
1057 if (err) {
1058 error_propagate(errp, err);
1059 return;
1063 for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
1064 char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);
1066 armsse_forward_ppc(s, ppcname, i);
1067 g_free(ppcname);
1070 for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
1071 char *ppcname = g_strdup_printf("apb_ppcexp%d", i);
1073 armsse_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
1074 g_free(ppcname);
1077 for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
1078 /* Wire up IRQ splitter for internal PPCs */
1079 DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
1080 char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
1081 i - NUM_EXTERNAL_PPCS);
1082 TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;
1084 qdev_connect_gpio_out(devs, 0,
1085 qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
1086 qdev_connect_gpio_out(devs, 1,
1087 qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
1088 qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
1089 qdev_get_gpio_in(devs, 0));
1090 g_free(gpioname);
1093 /* Wire up the splitters for the MPC IRQs */
1094 for (i = 0; i < IOTS_NUM_EXP_MPC + info->sram_banks; i++) {
1095 SplitIRQ *splitter = &s->mpc_irq_splitter[i];
1096 DeviceState *dev_splitter = DEVICE(splitter);
1098 object_property_set_int(OBJECT(splitter), 2, "num-lines", &err);
1099 if (err) {
1100 error_propagate(errp, err);
1101 return;
1103 object_property_set_bool(OBJECT(splitter), true, "realized", &err);
1104 if (err) {
1105 error_propagate(errp, err);
1106 return;
1109 if (i < IOTS_NUM_EXP_MPC) {
1110 /* Splitter input is from GPIO input line */
1111 s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
1112 qdev_connect_gpio_out(dev_splitter, 0,
1113 qdev_get_gpio_in_named(dev_secctl,
1114 "mpcexp_status", i));
1115 } else {
1116 /* Splitter input is from our own MPC */
1117 qdev_connect_gpio_out_named(DEVICE(&s->mpc[i - IOTS_NUM_EXP_MPC]),
1118 "irq", 0,
1119 qdev_get_gpio_in(dev_splitter, 0));
1120 qdev_connect_gpio_out(dev_splitter, 0,
1121 qdev_get_gpio_in_named(dev_secctl,
1122 "mpc_status", 0));
1125 qdev_connect_gpio_out(dev_splitter, 1,
1126 qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
1128 /* Create GPIO inputs which will pass the line state for our
1129 * mpcexp_irq inputs to the correct splitter devices.
1131 qdev_init_gpio_in_named(dev, armsse_mpcexp_status, "mpcexp_status",
1132 IOTS_NUM_EXP_MPC);
1134 armsse_forward_sec_resp_cfg(s);
1136 /* Forward the MSC related signals */
1137 qdev_pass_gpios(dev_secctl, dev, "mscexp_status");
1138 qdev_pass_gpios(dev_secctl, dev, "mscexp_clear");
1139 qdev_pass_gpios(dev_secctl, dev, "mscexp_ns");
1140 qdev_connect_gpio_out_named(dev_secctl, "msc_irq", 0,
1141 armsse_get_common_irq_in(s, 11));
1144 * Expose our container region to the board model; this corresponds
1145 * to the AHB Slave Expansion ports which allow bus master devices
1146 * (eg DMA controllers) in the board model to make transactions into
1147 * devices in the ARMSSE.
1149 sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->container);
1151 system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
1154 static void armsse_idau_check(IDAUInterface *ii, uint32_t address,
1155 int *iregion, bool *exempt, bool *ns, bool *nsc)
1158 * For ARMSSE systems the IDAU responses are simple logical functions
1159 * of the address bits. The NSC attribute is guest-adjustable via the
1160 * NSCCFG register in the security controller.
1162 ARMSSE *s = ARMSSE(ii);
1163 int region = extract32(address, 28, 4);
1165 *ns = !(region & 1);
1166 *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
1167 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1168 *exempt = (address & 0xeff00000) == 0xe0000000;
1169 *iregion = region;
1172 static const VMStateDescription armsse_vmstate = {
1173 .name = "iotkit",
1174 .version_id = 1,
1175 .minimum_version_id = 1,
1176 .fields = (VMStateField[]) {
1177 VMSTATE_UINT32(nsccfg, ARMSSE),
1178 VMSTATE_END_OF_LIST()
1182 static Property armsse_properties[] = {
1183 DEFINE_PROP_LINK("memory", ARMSSE, board_memory, TYPE_MEMORY_REGION,
1184 MemoryRegion *),
1185 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE, exp_numirq, 64),
1186 DEFINE_PROP_UINT32("MAINCLK", ARMSSE, mainclk_frq, 0),
1187 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE, sram_addr_width, 15),
1188 DEFINE_PROP_END_OF_LIST()
1191 static void armsse_reset(DeviceState *dev)
1193 ARMSSE *s = ARMSSE(dev);
1195 s->nsccfg = 0;
1198 static void armsse_class_init(ObjectClass *klass, void *data)
1200 DeviceClass *dc = DEVICE_CLASS(klass);
1201 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);
1202 ARMSSEClass *asc = ARMSSE_CLASS(klass);
1204 dc->realize = armsse_realize;
1205 dc->vmsd = &armsse_vmstate;
1206 dc->props = armsse_properties;
1207 dc->reset = armsse_reset;
1208 iic->check = armsse_idau_check;
1209 asc->info = data;
1212 static const TypeInfo armsse_info = {
1213 .name = TYPE_ARMSSE,
1214 .parent = TYPE_SYS_BUS_DEVICE,
1215 .instance_size = sizeof(ARMSSE),
1216 .instance_init = armsse_init,
1217 .abstract = true,
1218 .interfaces = (InterfaceInfo[]) {
1219 { TYPE_IDAU_INTERFACE },
1224 static void armsse_register_types(void)
1226 int i;
1228 type_register_static(&armsse_info);
1230 for (i = 0; i < ARRAY_SIZE(armsse_variants); i++) {
1231 TypeInfo ti = {
1232 .name = armsse_variants[i].name,
1233 .parent = TYPE_ARMSSE,
1234 .class_init = armsse_class_init,
1235 .class_data = (void *)&armsse_variants[i],
1237 type_register(&ti);
1241 type_init(armsse_register_types);