2 * Arm SSE (Subsystems for Embedded): IoTKit
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 #include "qemu/osdep.h"
14 #include "qapi/error.h"
16 #include "hw/sysbus.h"
17 #include "hw/registerfields.h"
18 #include "hw/arm/armsse.h"
19 #include "hw/arm/arm.h"
21 /* Format of the System Information block SYS_CONFIG register */
22 typedef enum SysConfigFormat
{
32 SysConfigFormat sys_config_format
;
40 static const ARMSSEInfo armsse_variants
[] = {
45 .sys_version
= 0x41743,
46 .sys_config_format
= IoTKitFormat
,
49 .has_cachectrl
= false,
50 .has_cpusecctrl
= false,
57 .sys_version
= 0x22041743,
58 .sys_config_format
= SSE200Format
,
61 .has_cachectrl
= true,
62 .has_cpusecctrl
= true,
67 static uint32_t armsse_sys_config_value(ARMSSE
*s
, const ARMSSEInfo
*info
)
69 /* Return the SYS_CONFIG value for this SSE */
72 switch (info
->sys_config_format
) {
75 sys_config
= deposit32(sys_config
, 0, 4, info
->sram_banks
);
76 sys_config
= deposit32(sys_config
, 4, 4, s
->sram_addr_width
- 12);
80 sys_config
= deposit32(sys_config
, 0, 4, info
->sram_banks
);
81 sys_config
= deposit32(sys_config
, 4, 5, s
->sram_addr_width
);
82 sys_config
= deposit32(sys_config
, 24, 4, 2);
83 if (info
->num_cpus
> 1) {
84 sys_config
= deposit32(sys_config
, 10, 1, 1);
85 sys_config
= deposit32(sys_config
, 20, 4, info
->sram_banks
- 1);
86 sys_config
= deposit32(sys_config
, 28, 4, 2);
90 g_assert_not_reached();
95 /* Clock frequency in HZ of the 32KHz "slow clock" */
96 #define S32KCLK (32 * 1000)
98 /* Is internal IRQ n shared between CPUs in a multi-core SSE ? */
99 static bool irq_is_common
[32] = {
101 /* 6, 7: per-CPU MHU interrupts */
103 /* 13: per-CPU icache interrupt */
109 /* 28, 29: per-CPU CTI interrupts */
110 /* 30, 31: reserved */
113 /* Create an alias region of @size bytes starting at @base
114 * which mirrors the memory starting at @orig.
116 static void make_alias(ARMSSE
*s
, MemoryRegion
*mr
, const char *name
,
117 hwaddr base
, hwaddr size
, hwaddr orig
)
119 memory_region_init_alias(mr
, NULL
, name
, &s
->container
, orig
, size
);
120 /* The alias is even lower priority than unimplemented_device regions */
121 memory_region_add_subregion_overlap(&s
->container
, base
, mr
, -1500);
124 static void irq_status_forwarder(void *opaque
, int n
, int level
)
126 qemu_irq destirq
= opaque
;
128 qemu_set_irq(destirq
, level
);
131 static void nsccfg_handler(void *opaque
, int n
, int level
)
133 ARMSSE
*s
= ARMSSE(opaque
);
138 static void armsse_forward_ppc(ARMSSE
*s
, const char *ppcname
, int ppcnum
)
140 /* Each of the 4 AHB and 4 APB PPCs that might be present in a
141 * system using the ARMSSE has a collection of control lines which
142 * are provided by the security controller and which we want to
143 * expose as control lines on the ARMSSE device itself, so the
144 * code using the ARMSSE can wire them up to the PPCs.
146 SplitIRQ
*splitter
= &s
->ppc_irq_splitter
[ppcnum
];
147 DeviceState
*armssedev
= DEVICE(s
);
148 DeviceState
*dev_secctl
= DEVICE(&s
->secctl
);
149 DeviceState
*dev_splitter
= DEVICE(splitter
);
152 name
= g_strdup_printf("%s_nonsec", ppcname
);
153 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
155 name
= g_strdup_printf("%s_ap", ppcname
);
156 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
158 name
= g_strdup_printf("%s_irq_enable", ppcname
);
159 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
161 name
= g_strdup_printf("%s_irq_clear", ppcname
);
162 qdev_pass_gpios(dev_secctl
, armssedev
, name
);
165 /* irq_status is a little more tricky, because we need to
166 * split it so we can send it both to the security controller
167 * and to our OR gate for the NVIC interrupt line.
168 * Connect up the splitter's outputs, and create a GPIO input
169 * which will pass the line state to the input splitter.
171 name
= g_strdup_printf("%s_irq_status", ppcname
);
172 qdev_connect_gpio_out(dev_splitter
, 0,
173 qdev_get_gpio_in_named(dev_secctl
,
175 qdev_connect_gpio_out(dev_splitter
, 1,
176 qdev_get_gpio_in(DEVICE(&s
->ppc_irq_orgate
), ppcnum
));
177 s
->irq_status_in
[ppcnum
] = qdev_get_gpio_in(dev_splitter
, 0);
178 qdev_init_gpio_in_named_with_opaque(armssedev
, irq_status_forwarder
,
179 s
->irq_status_in
[ppcnum
], name
, 1);
183 static void armsse_forward_sec_resp_cfg(ARMSSE
*s
)
185 /* Forward the 3rd output from the splitter device as a
186 * named GPIO output of the armsse object.
188 DeviceState
*dev
= DEVICE(s
);
189 DeviceState
*dev_splitter
= DEVICE(&s
->sec_resp_splitter
);
191 qdev_init_gpio_out_named(dev
, &s
->sec_resp_cfg
, "sec_resp_cfg", 1);
192 s
->sec_resp_cfg_in
= qemu_allocate_irq(irq_status_forwarder
,
194 qdev_connect_gpio_out(dev_splitter
, 2, s
->sec_resp_cfg_in
);
197 static void armsse_init(Object
*obj
)
199 ARMSSE
*s
= ARMSSE(obj
);
200 ARMSSEClass
*asc
= ARMSSE_GET_CLASS(obj
);
201 const ARMSSEInfo
*info
= asc
->info
;
204 assert(info
->sram_banks
<= MAX_SRAM_BANKS
);
205 assert(info
->num_cpus
<= SSE_MAX_CPUS
);
207 memory_region_init(&s
->container
, obj
, "armsse-container", UINT64_MAX
);
209 for (i
= 0; i
< info
->num_cpus
; i
++) {
211 * We put each CPU in its own cluster as they are logically
212 * distinct and may be configured differently.
216 name
= g_strdup_printf("cluster%d", i
);
217 object_initialize_child(obj
, name
, &s
->cluster
[i
],
218 sizeof(s
->cluster
[i
]), TYPE_CPU_CLUSTER
,
220 qdev_prop_set_uint32(DEVICE(&s
->cluster
[i
]), "cluster-id", i
);
223 name
= g_strdup_printf("armv7m%d", i
);
224 sysbus_init_child_obj(OBJECT(&s
->cluster
[i
]), name
,
225 &s
->armv7m
[i
], sizeof(s
->armv7m
), TYPE_ARMV7M
);
226 qdev_prop_set_string(DEVICE(&s
->armv7m
[i
]), "cpu-type",
227 ARM_CPU_TYPE_NAME("cortex-m33"));
229 name
= g_strdup_printf("arm-sse-cpu-container%d", i
);
230 memory_region_init(&s
->cpu_container
[i
], obj
, name
, UINT64_MAX
);
233 name
= g_strdup_printf("arm-sse-container-alias%d", i
);
234 memory_region_init_alias(&s
->container_alias
[i
- 1], obj
,
235 name
, &s
->container
, 0, UINT64_MAX
);
240 sysbus_init_child_obj(obj
, "secctl", &s
->secctl
, sizeof(s
->secctl
),
242 sysbus_init_child_obj(obj
, "apb-ppc0", &s
->apb_ppc0
, sizeof(s
->apb_ppc0
),
244 sysbus_init_child_obj(obj
, "apb-ppc1", &s
->apb_ppc1
, sizeof(s
->apb_ppc1
),
246 for (i
= 0; i
< info
->sram_banks
; i
++) {
247 char *name
= g_strdup_printf("mpc%d", i
);
248 sysbus_init_child_obj(obj
, name
, &s
->mpc
[i
],
249 sizeof(s
->mpc
[i
]), TYPE_TZ_MPC
);
252 object_initialize_child(obj
, "mpc-irq-orgate", &s
->mpc_irq_orgate
,
253 sizeof(s
->mpc_irq_orgate
), TYPE_OR_IRQ
,
256 for (i
= 0; i
< IOTS_NUM_EXP_MPC
+ info
->sram_banks
; i
++) {
257 char *name
= g_strdup_printf("mpc-irq-splitter-%d", i
);
258 SplitIRQ
*splitter
= &s
->mpc_irq_splitter
[i
];
260 object_initialize_child(obj
, name
, splitter
, sizeof(*splitter
),
261 TYPE_SPLIT_IRQ
, &error_abort
, NULL
);
264 sysbus_init_child_obj(obj
, "timer0", &s
->timer0
, sizeof(s
->timer0
),
265 TYPE_CMSDK_APB_TIMER
);
266 sysbus_init_child_obj(obj
, "timer1", &s
->timer1
, sizeof(s
->timer1
),
267 TYPE_CMSDK_APB_TIMER
);
268 sysbus_init_child_obj(obj
, "s32ktimer", &s
->s32ktimer
, sizeof(s
->s32ktimer
),
269 TYPE_CMSDK_APB_TIMER
);
270 sysbus_init_child_obj(obj
, "dualtimer", &s
->dualtimer
, sizeof(s
->dualtimer
),
271 TYPE_CMSDK_APB_DUALTIMER
);
272 sysbus_init_child_obj(obj
, "s32kwatchdog", &s
->s32kwatchdog
,
273 sizeof(s
->s32kwatchdog
), TYPE_CMSDK_APB_WATCHDOG
);
274 sysbus_init_child_obj(obj
, "nswatchdog", &s
->nswatchdog
,
275 sizeof(s
->nswatchdog
), TYPE_CMSDK_APB_WATCHDOG
);
276 sysbus_init_child_obj(obj
, "swatchdog", &s
->swatchdog
,
277 sizeof(s
->swatchdog
), TYPE_CMSDK_APB_WATCHDOG
);
278 sysbus_init_child_obj(obj
, "armsse-sysctl", &s
->sysctl
,
279 sizeof(s
->sysctl
), TYPE_IOTKIT_SYSCTL
);
280 sysbus_init_child_obj(obj
, "armsse-sysinfo", &s
->sysinfo
,
281 sizeof(s
->sysinfo
), TYPE_IOTKIT_SYSINFO
);
282 if (info
->has_mhus
) {
283 sysbus_init_child_obj(obj
, "mhu0", &s
->mhu
[0], sizeof(s
->mhu
[0]),
284 TYPE_UNIMPLEMENTED_DEVICE
);
285 sysbus_init_child_obj(obj
, "mhu1", &s
->mhu
[1], sizeof(s
->mhu
[1]),
286 TYPE_UNIMPLEMENTED_DEVICE
);
288 if (info
->has_ppus
) {
289 for (i
= 0; i
< info
->num_cpus
; i
++) {
290 char *name
= g_strdup_printf("CPU%dCORE_PPU", i
);
291 int ppuidx
= CPU0CORE_PPU
+ i
;
293 sysbus_init_child_obj(obj
, name
, &s
->ppu
[ppuidx
],
294 sizeof(s
->ppu
[ppuidx
]),
295 TYPE_UNIMPLEMENTED_DEVICE
);
298 sysbus_init_child_obj(obj
, "DBG_PPU", &s
->ppu
[DBG_PPU
],
299 sizeof(s
->ppu
[DBG_PPU
]),
300 TYPE_UNIMPLEMENTED_DEVICE
);
301 for (i
= 0; i
< info
->sram_banks
; i
++) {
302 char *name
= g_strdup_printf("RAM%d_PPU", i
);
303 int ppuidx
= RAM0_PPU
+ i
;
305 sysbus_init_child_obj(obj
, name
, &s
->ppu
[ppuidx
],
306 sizeof(s
->ppu
[ppuidx
]),
307 TYPE_UNIMPLEMENTED_DEVICE
);
311 if (info
->has_cachectrl
) {
312 for (i
= 0; i
< info
->num_cpus
; i
++) {
313 char *name
= g_strdup_printf("cachectrl%d", i
);
315 sysbus_init_child_obj(obj
, name
, &s
->cachectrl
[i
],
316 sizeof(s
->cachectrl
[i
]),
317 TYPE_UNIMPLEMENTED_DEVICE
);
321 if (info
->has_cpusecctrl
) {
322 for (i
= 0; i
< info
->num_cpus
; i
++) {
323 char *name
= g_strdup_printf("cpusecctrl%d", i
);
325 sysbus_init_child_obj(obj
, name
, &s
->cpusecctrl
[i
],
326 sizeof(s
->cpusecctrl
[i
]),
327 TYPE_UNIMPLEMENTED_DEVICE
);
331 if (info
->has_cpuid
) {
332 for (i
= 0; i
< info
->num_cpus
; i
++) {
333 char *name
= g_strdup_printf("cpuid%d", i
);
335 sysbus_init_child_obj(obj
, name
, &s
->cpuid
[i
],
341 object_initialize_child(obj
, "nmi-orgate", &s
->nmi_orgate
,
342 sizeof(s
->nmi_orgate
), TYPE_OR_IRQ
,
344 object_initialize_child(obj
, "ppc-irq-orgate", &s
->ppc_irq_orgate
,
345 sizeof(s
->ppc_irq_orgate
), TYPE_OR_IRQ
,
347 object_initialize_child(obj
, "sec-resp-splitter", &s
->sec_resp_splitter
,
348 sizeof(s
->sec_resp_splitter
), TYPE_SPLIT_IRQ
,
350 for (i
= 0; i
< ARRAY_SIZE(s
->ppc_irq_splitter
); i
++) {
351 char *name
= g_strdup_printf("ppc-irq-splitter-%d", i
);
352 SplitIRQ
*splitter
= &s
->ppc_irq_splitter
[i
];
354 object_initialize_child(obj
, name
, splitter
, sizeof(*splitter
),
355 TYPE_SPLIT_IRQ
, &error_abort
, NULL
);
358 if (info
->num_cpus
> 1) {
359 for (i
= 0; i
< ARRAY_SIZE(s
->cpu_irq_splitter
); i
++) {
360 if (irq_is_common
[i
]) {
361 char *name
= g_strdup_printf("cpu-irq-splitter%d", i
);
362 SplitIRQ
*splitter
= &s
->cpu_irq_splitter
[i
];
364 object_initialize_child(obj
, name
, splitter
, sizeof(*splitter
),
365 TYPE_SPLIT_IRQ
, &error_abort
, NULL
);
372 static void armsse_exp_irq(void *opaque
, int n
, int level
)
374 qemu_irq
*irqarray
= opaque
;
376 qemu_set_irq(irqarray
[n
], level
);
379 static void armsse_mpcexp_status(void *opaque
, int n
, int level
)
381 ARMSSE
*s
= ARMSSE(opaque
);
382 qemu_set_irq(s
->mpcexp_status_in
[n
], level
);
385 static qemu_irq
armsse_get_common_irq_in(ARMSSE
*s
, int irqno
)
388 * Return a qemu_irq which can be used to signal IRQ n to
389 * all CPUs in the SSE.
391 ARMSSEClass
*asc
= ARMSSE_GET_CLASS(s
);
392 const ARMSSEInfo
*info
= asc
->info
;
394 assert(irq_is_common
[irqno
]);
396 if (info
->num_cpus
== 1) {
397 /* Only one CPU -- just connect directly to it */
398 return qdev_get_gpio_in(DEVICE(&s
->armv7m
[0]), irqno
);
400 /* Connect to the splitter which feeds all CPUs */
401 return qdev_get_gpio_in(DEVICE(&s
->cpu_irq_splitter
[irqno
]), 0);
405 static void map_ppu(ARMSSE
*s
, int ppuidx
, const char *name
, hwaddr addr
)
407 /* Map a PPU unimplemented device stub */
408 DeviceState
*dev
= DEVICE(&s
->ppu
[ppuidx
]);
410 qdev_prop_set_string(dev
, "name", name
);
411 qdev_prop_set_uint64(dev
, "size", 0x1000);
412 qdev_init_nofail(dev
);
413 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->ppu
[ppuidx
]), 0, addr
);
416 static void armsse_realize(DeviceState
*dev
, Error
**errp
)
418 ARMSSE
*s
= ARMSSE(dev
);
419 ARMSSEClass
*asc
= ARMSSE_GET_CLASS(dev
);
420 const ARMSSEInfo
*info
= asc
->info
;
424 SysBusDevice
*sbd_apb_ppc0
;
425 SysBusDevice
*sbd_secctl
;
426 DeviceState
*dev_apb_ppc0
;
427 DeviceState
*dev_apb_ppc1
;
428 DeviceState
*dev_secctl
;
429 DeviceState
*dev_splitter
;
430 uint32_t addr_width_max
;
432 if (!s
->board_memory
) {
433 error_setg(errp
, "memory property was not set");
437 if (!s
->mainclk_frq
) {
438 error_setg(errp
, "MAINCLK property was not set");
442 /* max SRAM_ADDR_WIDTH: 24 - log2(SRAM_NUM_BANK) */
443 assert(is_power_of_2(info
->sram_banks
));
444 addr_width_max
= 24 - ctz32(info
->sram_banks
);
445 if (s
->sram_addr_width
< 1 || s
->sram_addr_width
> addr_width_max
) {
446 error_setg(errp
, "SRAM_ADDR_WIDTH must be between 1 and %d",
451 /* Handling of which devices should be available only to secure
452 * code is usually done differently for M profile than for A profile.
453 * Instead of putting some devices only into the secure address space,
454 * devices exist in both address spaces but with hard-wired security
455 * permissions that will cause the CPU to fault for non-secure accesses.
457 * The ARMSSE has an IDAU (Implementation Defined Access Unit),
458 * which specifies hard-wired security permissions for different
459 * areas of the physical address space. For the ARMSSE IDAU, the
460 * top 4 bits of the physical address are the IDAU region ID, and
461 * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
462 * region, otherwise it is an S region.
464 * The various devices and RAMs are generally all mapped twice,
465 * once into a region that the IDAU defines as secure and once
466 * into a non-secure region. They sit behind either a Memory
467 * Protection Controller (for RAM) or a Peripheral Protection
468 * Controller (for devices), which allow a more fine grained
469 * configuration of whether non-secure accesses are permitted.
471 * (The other place that guest software can configure security
472 * permissions is in the architected SAU (Security Attribution
473 * Unit), which is entirely inside the CPU. The IDAU can upgrade
474 * the security attributes for a region to more restrictive than
475 * the SAU specifies, but cannot downgrade them.)
477 * 0x10000000..0x1fffffff alias of 0x00000000..0x0fffffff
478 * 0x20000000..0x2007ffff 32KB FPGA block RAM
479 * 0x30000000..0x3fffffff alias of 0x20000000..0x2fffffff
480 * 0x40000000..0x4000ffff base peripheral region 1
481 * 0x40010000..0x4001ffff CPU peripherals (none for ARMSSE)
482 * 0x40020000..0x4002ffff system control element peripherals
483 * 0x40080000..0x400fffff base peripheral region 2
484 * 0x50000000..0x5fffffff alias of 0x40000000..0x4fffffff
487 memory_region_add_subregion_overlap(&s
->container
, 0, s
->board_memory
, -2);
489 for (i
= 0; i
< info
->num_cpus
; i
++) {
490 DeviceState
*cpudev
= DEVICE(&s
->armv7m
[i
]);
491 Object
*cpuobj
= OBJECT(&s
->armv7m
[i
]);
495 qdev_prop_set_uint32(cpudev
, "num-irq", s
->exp_numirq
+ 32);
497 * In real hardware the initial Secure VTOR is set from the INITSVTOR0
498 * register in the IoT Kit System Control Register block, and the
499 * initial value of that is in turn specifiable by the FPGA that
500 * instantiates the IoT Kit. In QEMU we don't implement this wrinkle,
501 * and simply set the CPU's init-svtor to the IoT Kit default value.
502 * In SSE-200 the situation is similar, except that the default value
503 * is a reset-time signal input. Typically a board using the SSE-200
504 * will have a system control processor whose boot firmware initializes
505 * the INITSVTOR* registers before powering up the CPUs in any case,
506 * so the hardware's default value doesn't matter. QEMU doesn't emulate
507 * the control processor, so instead we behave in the way that the
508 * firmware does. All boards currently known about have firmware that
509 * sets the INITSVTOR0 and INITSVTOR1 registers to 0x10000000, like the
510 * IoTKit default. We can make this more configurable if necessary.
512 qdev_prop_set_uint32(cpudev
, "init-svtor", 0x10000000);
514 * Start all CPUs except CPU0 powered down. In real hardware it is
515 * a configurable property of the SSE-200 which CPUs start powered up
516 * (via the CPUWAIT0_RST and CPUWAIT1_RST parameters), but since all
517 * the boards we care about start CPU0 and leave CPU1 powered off,
518 * we hard-code that for now. We can add QOM properties for this
519 * later if necessary.
522 object_property_set_bool(cpuobj
, true, "start-powered-off", &err
);
524 error_propagate(errp
, err
);
530 memory_region_add_subregion_overlap(&s
->cpu_container
[i
], 0,
531 &s
->container_alias
[i
- 1], -1);
533 memory_region_add_subregion_overlap(&s
->cpu_container
[i
], 0,
536 object_property_set_link(cpuobj
, OBJECT(&s
->cpu_container
[i
]),
539 error_propagate(errp
, err
);
542 object_property_set_link(cpuobj
, OBJECT(s
), "idau", &err
);
544 error_propagate(errp
, err
);
547 object_property_set_bool(cpuobj
, true, "realized", &err
);
549 error_propagate(errp
, err
);
553 * The cluster must be realized after the armv7m container, as
554 * the container's CPU object is only created on realize, and the
555 * CPU must exist and have been parented into the cluster before
556 * the cluster is realized.
558 object_property_set_bool(OBJECT(&s
->cluster
[i
]),
559 true, "realized", &err
);
561 error_propagate(errp
, err
);
565 /* Connect EXP_IRQ/EXP_CPUn_IRQ GPIOs to the NVIC's lines 32 and up */
566 s
->exp_irqs
[i
] = g_new(qemu_irq
, s
->exp_numirq
);
567 for (j
= 0; j
< s
->exp_numirq
; j
++) {
568 s
->exp_irqs
[i
][j
] = qdev_get_gpio_in(cpudev
, i
+ 32);
571 gpioname
= g_strdup("EXP_IRQ");
573 gpioname
= g_strdup_printf("EXP_CPU%d_IRQ", i
);
575 qdev_init_gpio_in_named_with_opaque(dev
, armsse_exp_irq
,
577 gpioname
, s
->exp_numirq
);
581 /* Wire up the splitters that connect common IRQs to all CPUs */
582 if (info
->num_cpus
> 1) {
583 for (i
= 0; i
< ARRAY_SIZE(s
->cpu_irq_splitter
); i
++) {
584 if (irq_is_common
[i
]) {
585 Object
*splitter
= OBJECT(&s
->cpu_irq_splitter
[i
]);
586 DeviceState
*devs
= DEVICE(splitter
);
589 object_property_set_int(splitter
, info
->num_cpus
,
592 error_propagate(errp
, err
);
595 object_property_set_bool(splitter
, true, "realized", &err
);
597 error_propagate(errp
, err
);
600 for (cpunum
= 0; cpunum
< info
->num_cpus
; cpunum
++) {
601 DeviceState
*cpudev
= DEVICE(&s
->armv7m
[cpunum
]);
603 qdev_connect_gpio_out(devs
, cpunum
,
604 qdev_get_gpio_in(cpudev
, i
));
610 /* Set up the big aliases first */
611 make_alias(s
, &s
->alias1
, "alias 1", 0x10000000, 0x10000000, 0x00000000);
612 make_alias(s
, &s
->alias2
, "alias 2", 0x30000000, 0x10000000, 0x20000000);
613 /* The 0x50000000..0x5fffffff region is not a pure alias: it has
614 * a few extra devices that only appear there (generally the
615 * control interfaces for the protection controllers).
616 * We implement this by mapping those devices over the top of this
617 * alias MR at a higher priority.
619 make_alias(s
, &s
->alias3
, "alias 3", 0x50000000, 0x10000000, 0x40000000);
622 /* Security controller */
623 object_property_set_bool(OBJECT(&s
->secctl
), true, "realized", &err
);
625 error_propagate(errp
, err
);
628 sbd_secctl
= SYS_BUS_DEVICE(&s
->secctl
);
629 dev_secctl
= DEVICE(&s
->secctl
);
630 sysbus_mmio_map(sbd_secctl
, 0, 0x50080000);
631 sysbus_mmio_map(sbd_secctl
, 1, 0x40080000);
633 s
->nsc_cfg_in
= qemu_allocate_irq(nsccfg_handler
, s
, 1);
634 qdev_connect_gpio_out_named(dev_secctl
, "nsc_cfg", 0, s
->nsc_cfg_in
);
636 /* The sec_resp_cfg output from the security controller must be split into
637 * multiple lines, one for each of the PPCs within the ARMSSE and one
638 * that will be an output from the ARMSSE to the system.
640 object_property_set_int(OBJECT(&s
->sec_resp_splitter
), 3,
643 error_propagate(errp
, err
);
646 object_property_set_bool(OBJECT(&s
->sec_resp_splitter
), true,
649 error_propagate(errp
, err
);
652 dev_splitter
= DEVICE(&s
->sec_resp_splitter
);
653 qdev_connect_gpio_out_named(dev_secctl
, "sec_resp_cfg", 0,
654 qdev_get_gpio_in(dev_splitter
, 0));
656 /* Each SRAM bank lives behind its own Memory Protection Controller */
657 for (i
= 0; i
< info
->sram_banks
; i
++) {
658 char *ramname
= g_strdup_printf("armsse.sram%d", i
);
659 SysBusDevice
*sbd_mpc
;
660 uint32_t sram_bank_size
= 1 << s
->sram_addr_width
;
662 memory_region_init_ram(&s
->sram
[i
], NULL
, ramname
,
663 sram_bank_size
, &err
);
666 error_propagate(errp
, err
);
669 object_property_set_link(OBJECT(&s
->mpc
[i
]), OBJECT(&s
->sram
[i
]),
672 error_propagate(errp
, err
);
675 object_property_set_bool(OBJECT(&s
->mpc
[i
]), true, "realized", &err
);
677 error_propagate(errp
, err
);
680 /* Map the upstream end of the MPC into the right place... */
681 sbd_mpc
= SYS_BUS_DEVICE(&s
->mpc
[i
]);
682 memory_region_add_subregion(&s
->container
,
683 0x20000000 + i
* sram_bank_size
,
684 sysbus_mmio_get_region(sbd_mpc
, 1));
685 /* ...and its register interface */
686 memory_region_add_subregion(&s
->container
, 0x50083000 + i
* 0x1000,
687 sysbus_mmio_get_region(sbd_mpc
, 0));
690 /* We must OR together lines from the MPC splitters to go to the NVIC */
691 object_property_set_int(OBJECT(&s
->mpc_irq_orgate
),
692 IOTS_NUM_EXP_MPC
+ info
->sram_banks
,
695 error_propagate(errp
, err
);
698 object_property_set_bool(OBJECT(&s
->mpc_irq_orgate
), true,
701 error_propagate(errp
, err
);
704 qdev_connect_gpio_out(DEVICE(&s
->mpc_irq_orgate
), 0,
705 armsse_get_common_irq_in(s
, 9));
707 /* Devices behind APB PPC0:
710 * 0x40002000: dual timer
711 * 0x40003000: MHU0 (SSE-200 only)
712 * 0x40004000: MHU1 (SSE-200 only)
713 * We must configure and realize each downstream device and connect
714 * it to the appropriate PPC port; then we can realize the PPC and
715 * map its upstream ends to the right place in the container.
717 qdev_prop_set_uint32(DEVICE(&s
->timer0
), "pclk-frq", s
->mainclk_frq
);
718 object_property_set_bool(OBJECT(&s
->timer0
), true, "realized", &err
);
720 error_propagate(errp
, err
);
723 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->timer0
), 0,
724 armsse_get_common_irq_in(s
, 3));
725 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->timer0
), 0);
726 object_property_set_link(OBJECT(&s
->apb_ppc0
), OBJECT(mr
), "port[0]", &err
);
728 error_propagate(errp
, err
);
732 qdev_prop_set_uint32(DEVICE(&s
->timer1
), "pclk-frq", s
->mainclk_frq
);
733 object_property_set_bool(OBJECT(&s
->timer1
), true, "realized", &err
);
735 error_propagate(errp
, err
);
738 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->timer1
), 0,
739 armsse_get_common_irq_in(s
, 4));
740 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->timer1
), 0);
741 object_property_set_link(OBJECT(&s
->apb_ppc0
), OBJECT(mr
), "port[1]", &err
);
743 error_propagate(errp
, err
);
748 qdev_prop_set_uint32(DEVICE(&s
->dualtimer
), "pclk-frq", s
->mainclk_frq
);
749 object_property_set_bool(OBJECT(&s
->dualtimer
), true, "realized", &err
);
751 error_propagate(errp
, err
);
754 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->dualtimer
), 0,
755 armsse_get_common_irq_in(s
, 5));
756 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->dualtimer
), 0);
757 object_property_set_link(OBJECT(&s
->apb_ppc0
), OBJECT(mr
), "port[2]", &err
);
759 error_propagate(errp
, err
);
763 if (info
->has_mhus
) {
764 for (i
= 0; i
< ARRAY_SIZE(s
->mhu
); i
++) {
765 char *name
= g_strdup_printf("MHU%d", i
);
766 char *port
= g_strdup_printf("port[%d]", i
+ 3);
768 qdev_prop_set_string(DEVICE(&s
->mhu
[i
]), "name", name
);
769 qdev_prop_set_uint64(DEVICE(&s
->mhu
[i
]), "size", 0x1000);
770 object_property_set_bool(OBJECT(&s
->mhu
[i
]), true,
773 error_propagate(errp
, err
);
776 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->mhu
[i
]), 0);
777 object_property_set_link(OBJECT(&s
->apb_ppc0
), OBJECT(mr
),
780 error_propagate(errp
, err
);
788 object_property_set_bool(OBJECT(&s
->apb_ppc0
), true, "realized", &err
);
790 error_propagate(errp
, err
);
794 sbd_apb_ppc0
= SYS_BUS_DEVICE(&s
->apb_ppc0
);
795 dev_apb_ppc0
= DEVICE(&s
->apb_ppc0
);
797 mr
= sysbus_mmio_get_region(sbd_apb_ppc0
, 0);
798 memory_region_add_subregion(&s
->container
, 0x40000000, mr
);
799 mr
= sysbus_mmio_get_region(sbd_apb_ppc0
, 1);
800 memory_region_add_subregion(&s
->container
, 0x40001000, mr
);
801 mr
= sysbus_mmio_get_region(sbd_apb_ppc0
, 2);
802 memory_region_add_subregion(&s
->container
, 0x40002000, mr
);
803 if (info
->has_mhus
) {
804 mr
= sysbus_mmio_get_region(sbd_apb_ppc0
, 3);
805 memory_region_add_subregion(&s
->container
, 0x40003000, mr
);
806 mr
= sysbus_mmio_get_region(sbd_apb_ppc0
, 4);
807 memory_region_add_subregion(&s
->container
, 0x40004000, mr
);
809 for (i
= 0; i
< IOTS_APB_PPC0_NUM_PORTS
; i
++) {
810 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_nonsec", i
,
811 qdev_get_gpio_in_named(dev_apb_ppc0
,
813 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_ap", i
,
814 qdev_get_gpio_in_named(dev_apb_ppc0
,
817 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_irq_enable", 0,
818 qdev_get_gpio_in_named(dev_apb_ppc0
,
820 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc0_irq_clear", 0,
821 qdev_get_gpio_in_named(dev_apb_ppc0
,
823 qdev_connect_gpio_out(dev_splitter
, 0,
824 qdev_get_gpio_in_named(dev_apb_ppc0
,
827 /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
828 * ones) are sent individually to the security controller, and also
829 * ORed together to give a single combined PPC interrupt to the NVIC.
831 object_property_set_int(OBJECT(&s
->ppc_irq_orgate
),
832 NUM_PPCS
, "num-lines", &err
);
834 error_propagate(errp
, err
);
837 object_property_set_bool(OBJECT(&s
->ppc_irq_orgate
), true,
840 error_propagate(errp
, err
);
843 qdev_connect_gpio_out(DEVICE(&s
->ppc_irq_orgate
), 0,
844 armsse_get_common_irq_in(s
, 10));
847 * 0x40010000 .. 0x4001ffff (and the 0x5001000... secure-only alias):
848 * private per-CPU region (all these devices are SSE-200 only):
849 * 0x50010000: L1 icache control registers
850 * 0x50011000: CPUSECCTRL (CPU local security control registers)
851 * 0x4001f000 and 0x5001f000: CPU_IDENTITY register block
853 if (info
->has_cachectrl
) {
854 for (i
= 0; i
< info
->num_cpus
; i
++) {
855 char *name
= g_strdup_printf("cachectrl%d", i
);
858 qdev_prop_set_string(DEVICE(&s
->cachectrl
[i
]), "name", name
);
860 qdev_prop_set_uint64(DEVICE(&s
->cachectrl
[i
]), "size", 0x1000);
861 object_property_set_bool(OBJECT(&s
->cachectrl
[i
]), true,
864 error_propagate(errp
, err
);
868 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->cachectrl
[i
]), 0);
869 memory_region_add_subregion(&s
->cpu_container
[i
], 0x50010000, mr
);
872 if (info
->has_cpusecctrl
) {
873 for (i
= 0; i
< info
->num_cpus
; i
++) {
874 char *name
= g_strdup_printf("CPUSECCTRL%d", i
);
877 qdev_prop_set_string(DEVICE(&s
->cpusecctrl
[i
]), "name", name
);
879 qdev_prop_set_uint64(DEVICE(&s
->cpusecctrl
[i
]), "size", 0x1000);
880 object_property_set_bool(OBJECT(&s
->cpusecctrl
[i
]), true,
883 error_propagate(errp
, err
);
887 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->cpusecctrl
[i
]), 0);
888 memory_region_add_subregion(&s
->cpu_container
[i
], 0x50011000, mr
);
891 if (info
->has_cpuid
) {
892 for (i
= 0; i
< info
->num_cpus
; i
++) {
895 qdev_prop_set_uint32(DEVICE(&s
->cpuid
[i
]), "CPUID", i
);
896 object_property_set_bool(OBJECT(&s
->cpuid
[i
]), true,
899 error_propagate(errp
, err
);
903 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->cpuid
[i
]), 0);
904 memory_region_add_subregion(&s
->cpu_container
[i
], 0x4001F000, mr
);
908 /* 0x40020000 .. 0x4002ffff : ARMSSE system control peripheral region */
909 /* Devices behind APB PPC1:
910 * 0x4002f000: S32K timer
912 qdev_prop_set_uint32(DEVICE(&s
->s32ktimer
), "pclk-frq", S32KCLK
);
913 object_property_set_bool(OBJECT(&s
->s32ktimer
), true, "realized", &err
);
915 error_propagate(errp
, err
);
918 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->s32ktimer
), 0,
919 armsse_get_common_irq_in(s
, 2));
920 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->s32ktimer
), 0);
921 object_property_set_link(OBJECT(&s
->apb_ppc1
), OBJECT(mr
), "port[0]", &err
);
923 error_propagate(errp
, err
);
927 object_property_set_bool(OBJECT(&s
->apb_ppc1
), true, "realized", &err
);
929 error_propagate(errp
, err
);
932 mr
= sysbus_mmio_get_region(SYS_BUS_DEVICE(&s
->apb_ppc1
), 0);
933 memory_region_add_subregion(&s
->container
, 0x4002f000, mr
);
935 dev_apb_ppc1
= DEVICE(&s
->apb_ppc1
);
936 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_nonsec", 0,
937 qdev_get_gpio_in_named(dev_apb_ppc1
,
939 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_ap", 0,
940 qdev_get_gpio_in_named(dev_apb_ppc1
,
942 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_irq_enable", 0,
943 qdev_get_gpio_in_named(dev_apb_ppc1
,
945 qdev_connect_gpio_out_named(dev_secctl
, "apb_ppc1_irq_clear", 0,
946 qdev_get_gpio_in_named(dev_apb_ppc1
,
948 qdev_connect_gpio_out(dev_splitter
, 1,
949 qdev_get_gpio_in_named(dev_apb_ppc1
,
952 object_property_set_int(OBJECT(&s
->sysinfo
), info
->sys_version
,
953 "SYS_VERSION", &err
);
955 error_propagate(errp
, err
);
958 object_property_set_int(OBJECT(&s
->sysinfo
),
959 armsse_sys_config_value(s
, info
),
962 error_propagate(errp
, err
);
965 object_property_set_bool(OBJECT(&s
->sysinfo
), true, "realized", &err
);
967 error_propagate(errp
, err
);
970 /* System information registers */
971 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->sysinfo
), 0, 0x40020000);
972 /* System control registers */
973 object_property_set_bool(OBJECT(&s
->sysctl
), true, "realized", &err
);
975 error_propagate(errp
, err
);
978 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->sysctl
), 0, 0x50021000);
980 if (info
->has_ppus
) {
981 /* CPUnCORE_PPU for each CPU */
982 for (i
= 0; i
< info
->num_cpus
; i
++) {
983 char *name
= g_strdup_printf("CPU%dCORE_PPU", i
);
985 map_ppu(s
, CPU0CORE_PPU
+ i
, name
, 0x50023000 + i
* 0x2000);
987 * We don't support CPU debug so don't create the
988 * CPU0DEBUG_PPU at 0x50024000 and 0x50026000.
992 map_ppu(s
, DBG_PPU
, "DBG_PPU", 0x50029000);
994 for (i
= 0; i
< info
->sram_banks
; i
++) {
995 char *name
= g_strdup_printf("RAM%d_PPU", i
);
997 map_ppu(s
, RAM0_PPU
+ i
, name
, 0x5002a000 + i
* 0x1000);
1002 /* This OR gate wires together outputs from the secure watchdogs to NMI */
1003 object_property_set_int(OBJECT(&s
->nmi_orgate
), 2, "num-lines", &err
);
1005 error_propagate(errp
, err
);
1008 object_property_set_bool(OBJECT(&s
->nmi_orgate
), true, "realized", &err
);
1010 error_propagate(errp
, err
);
1013 qdev_connect_gpio_out(DEVICE(&s
->nmi_orgate
), 0,
1014 qdev_get_gpio_in_named(DEVICE(&s
->armv7m
), "NMI", 0));
1016 qdev_prop_set_uint32(DEVICE(&s
->s32kwatchdog
), "wdogclk-frq", S32KCLK
);
1017 object_property_set_bool(OBJECT(&s
->s32kwatchdog
), true, "realized", &err
);
1019 error_propagate(errp
, err
);
1022 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->s32kwatchdog
), 0,
1023 qdev_get_gpio_in(DEVICE(&s
->nmi_orgate
), 0));
1024 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->s32kwatchdog
), 0, 0x5002e000);
1026 /* 0x40080000 .. 0x4008ffff : ARMSSE second Base peripheral region */
1028 qdev_prop_set_uint32(DEVICE(&s
->nswatchdog
), "wdogclk-frq", s
->mainclk_frq
);
1029 object_property_set_bool(OBJECT(&s
->nswatchdog
), true, "realized", &err
);
1031 error_propagate(errp
, err
);
1034 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->nswatchdog
), 0,
1035 armsse_get_common_irq_in(s
, 1));
1036 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->nswatchdog
), 0, 0x40081000);
1038 qdev_prop_set_uint32(DEVICE(&s
->swatchdog
), "wdogclk-frq", s
->mainclk_frq
);
1039 object_property_set_bool(OBJECT(&s
->swatchdog
), true, "realized", &err
);
1041 error_propagate(errp
, err
);
1044 sysbus_connect_irq(SYS_BUS_DEVICE(&s
->swatchdog
), 0,
1045 qdev_get_gpio_in(DEVICE(&s
->nmi_orgate
), 1));
1046 sysbus_mmio_map(SYS_BUS_DEVICE(&s
->swatchdog
), 0, 0x50081000);
1048 for (i
= 0; i
< ARRAY_SIZE(s
->ppc_irq_splitter
); i
++) {
1049 Object
*splitter
= OBJECT(&s
->ppc_irq_splitter
[i
]);
1051 object_property_set_int(splitter
, 2, "num-lines", &err
);
1053 error_propagate(errp
, err
);
1056 object_property_set_bool(splitter
, true, "realized", &err
);
1058 error_propagate(errp
, err
);
1063 for (i
= 0; i
< IOTS_NUM_AHB_EXP_PPC
; i
++) {
1064 char *ppcname
= g_strdup_printf("ahb_ppcexp%d", i
);
1066 armsse_forward_ppc(s
, ppcname
, i
);
1070 for (i
= 0; i
< IOTS_NUM_APB_EXP_PPC
; i
++) {
1071 char *ppcname
= g_strdup_printf("apb_ppcexp%d", i
);
1073 armsse_forward_ppc(s
, ppcname
, i
+ IOTS_NUM_AHB_EXP_PPC
);
1077 for (i
= NUM_EXTERNAL_PPCS
; i
< NUM_PPCS
; i
++) {
1078 /* Wire up IRQ splitter for internal PPCs */
1079 DeviceState
*devs
= DEVICE(&s
->ppc_irq_splitter
[i
]);
1080 char *gpioname
= g_strdup_printf("apb_ppc%d_irq_status",
1081 i
- NUM_EXTERNAL_PPCS
);
1082 TZPPC
*ppc
= (i
== NUM_EXTERNAL_PPCS
) ? &s
->apb_ppc0
: &s
->apb_ppc1
;
1084 qdev_connect_gpio_out(devs
, 0,
1085 qdev_get_gpio_in_named(dev_secctl
, gpioname
, 0));
1086 qdev_connect_gpio_out(devs
, 1,
1087 qdev_get_gpio_in(DEVICE(&s
->ppc_irq_orgate
), i
));
1088 qdev_connect_gpio_out_named(DEVICE(ppc
), "irq", 0,
1089 qdev_get_gpio_in(devs
, 0));
1093 /* Wire up the splitters for the MPC IRQs */
1094 for (i
= 0; i
< IOTS_NUM_EXP_MPC
+ info
->sram_banks
; i
++) {
1095 SplitIRQ
*splitter
= &s
->mpc_irq_splitter
[i
];
1096 DeviceState
*dev_splitter
= DEVICE(splitter
);
1098 object_property_set_int(OBJECT(splitter
), 2, "num-lines", &err
);
1100 error_propagate(errp
, err
);
1103 object_property_set_bool(OBJECT(splitter
), true, "realized", &err
);
1105 error_propagate(errp
, err
);
1109 if (i
< IOTS_NUM_EXP_MPC
) {
1110 /* Splitter input is from GPIO input line */
1111 s
->mpcexp_status_in
[i
] = qdev_get_gpio_in(dev_splitter
, 0);
1112 qdev_connect_gpio_out(dev_splitter
, 0,
1113 qdev_get_gpio_in_named(dev_secctl
,
1114 "mpcexp_status", i
));
1116 /* Splitter input is from our own MPC */
1117 qdev_connect_gpio_out_named(DEVICE(&s
->mpc
[i
- IOTS_NUM_EXP_MPC
]),
1119 qdev_get_gpio_in(dev_splitter
, 0));
1120 qdev_connect_gpio_out(dev_splitter
, 0,
1121 qdev_get_gpio_in_named(dev_secctl
,
1125 qdev_connect_gpio_out(dev_splitter
, 1,
1126 qdev_get_gpio_in(DEVICE(&s
->mpc_irq_orgate
), i
));
1128 /* Create GPIO inputs which will pass the line state for our
1129 * mpcexp_irq inputs to the correct splitter devices.
1131 qdev_init_gpio_in_named(dev
, armsse_mpcexp_status
, "mpcexp_status",
1134 armsse_forward_sec_resp_cfg(s
);
1136 /* Forward the MSC related signals */
1137 qdev_pass_gpios(dev_secctl
, dev
, "mscexp_status");
1138 qdev_pass_gpios(dev_secctl
, dev
, "mscexp_clear");
1139 qdev_pass_gpios(dev_secctl
, dev
, "mscexp_ns");
1140 qdev_connect_gpio_out_named(dev_secctl
, "msc_irq", 0,
1141 armsse_get_common_irq_in(s
, 11));
1144 * Expose our container region to the board model; this corresponds
1145 * to the AHB Slave Expansion ports which allow bus master devices
1146 * (eg DMA controllers) in the board model to make transactions into
1147 * devices in the ARMSSE.
1149 sysbus_init_mmio(SYS_BUS_DEVICE(s
), &s
->container
);
1151 system_clock_scale
= NANOSECONDS_PER_SECOND
/ s
->mainclk_frq
;
1154 static void armsse_idau_check(IDAUInterface
*ii
, uint32_t address
,
1155 int *iregion
, bool *exempt
, bool *ns
, bool *nsc
)
1158 * For ARMSSE systems the IDAU responses are simple logical functions
1159 * of the address bits. The NSC attribute is guest-adjustable via the
1160 * NSCCFG register in the security controller.
1162 ARMSSE
*s
= ARMSSE(ii
);
1163 int region
= extract32(address
, 28, 4);
1165 *ns
= !(region
& 1);
1166 *nsc
= (region
== 1 && (s
->nsccfg
& 1)) || (region
== 3 && (s
->nsccfg
& 2));
1167 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
1168 *exempt
= (address
& 0xeff00000) == 0xe0000000;
1172 static const VMStateDescription armsse_vmstate
= {
1175 .minimum_version_id
= 1,
1176 .fields
= (VMStateField
[]) {
1177 VMSTATE_UINT32(nsccfg
, ARMSSE
),
1178 VMSTATE_END_OF_LIST()
1182 static Property armsse_properties
[] = {
1183 DEFINE_PROP_LINK("memory", ARMSSE
, board_memory
, TYPE_MEMORY_REGION
,
1185 DEFINE_PROP_UINT32("EXP_NUMIRQ", ARMSSE
, exp_numirq
, 64),
1186 DEFINE_PROP_UINT32("MAINCLK", ARMSSE
, mainclk_frq
, 0),
1187 DEFINE_PROP_UINT32("SRAM_ADDR_WIDTH", ARMSSE
, sram_addr_width
, 15),
1188 DEFINE_PROP_END_OF_LIST()
1191 static void armsse_reset(DeviceState
*dev
)
1193 ARMSSE
*s
= ARMSSE(dev
);
1198 static void armsse_class_init(ObjectClass
*klass
, void *data
)
1200 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1201 IDAUInterfaceClass
*iic
= IDAU_INTERFACE_CLASS(klass
);
1202 ARMSSEClass
*asc
= ARMSSE_CLASS(klass
);
1204 dc
->realize
= armsse_realize
;
1205 dc
->vmsd
= &armsse_vmstate
;
1206 dc
->props
= armsse_properties
;
1207 dc
->reset
= armsse_reset
;
1208 iic
->check
= armsse_idau_check
;
1212 static const TypeInfo armsse_info
= {
1213 .name
= TYPE_ARMSSE
,
1214 .parent
= TYPE_SYS_BUS_DEVICE
,
1215 .instance_size
= sizeof(ARMSSE
),
1216 .instance_init
= armsse_init
,
1218 .interfaces
= (InterfaceInfo
[]) {
1219 { TYPE_IDAU_INTERFACE
},
1224 static void armsse_register_types(void)
1228 type_register_static(&armsse_info
);
1230 for (i
= 0; i
< ARRAY_SIZE(armsse_variants
); i
++) {
1232 .name
= armsse_variants
[i
].name
,
1233 .parent
= TYPE_ARMSSE
,
1234 .class_init
= armsse_class_init
,
1235 .class_data
= (void *)&armsse_variants
[i
],
1241 type_init(armsse_register_types
);