char-pty: remove write_lock usage
[qemu/ar7.git] / gdbstub.c
blobff19579452dab940f96e573b6151c18b7c97d71e
1 /*
2 * gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
21 #include "qemu/error-report.h"
22 #include "qemu/cutils.h"
23 #include "trace-root.h"
24 #ifdef CONFIG_USER_ONLY
25 #include "qemu.h"
26 #else
27 #include "monitor/monitor.h"
28 #include "chardev/char.h"
29 #include "chardev/char-fe.h"
30 #include "sysemu/sysemu.h"
31 #include "exec/gdbstub.h"
32 #include "hw/cpu/cluster.h"
33 #endif
35 #define MAX_PACKET_LENGTH 4096
37 #include "qemu/sockets.h"
38 #include "sysemu/hw_accel.h"
39 #include "sysemu/kvm.h"
40 #include "exec/semihost.h"
41 #include "exec/exec-all.h"
43 #ifdef CONFIG_USER_ONLY
44 #define GDB_ATTACHED "0"
45 #else
46 #define GDB_ATTACHED "1"
47 #endif
49 static inline int target_memory_rw_debug(CPUState *cpu, target_ulong addr,
50 uint8_t *buf, int len, bool is_write)
52 CPUClass *cc = CPU_GET_CLASS(cpu);
54 if (cc->memory_rw_debug) {
55 return cc->memory_rw_debug(cpu, addr, buf, len, is_write);
57 return cpu_memory_rw_debug(cpu, addr, buf, len, is_write);
60 /* Return the GDB index for a given vCPU state.
62 * For user mode this is simply the thread id. In system mode GDB
63 * numbers CPUs from 1 as 0 is reserved as an "any cpu" index.
65 static inline int cpu_gdb_index(CPUState *cpu)
67 #if defined(CONFIG_USER_ONLY)
68 TaskState *ts = (TaskState *) cpu->opaque;
69 return ts->ts_tid;
70 #else
71 return cpu->cpu_index + 1;
72 #endif
75 enum {
76 GDB_SIGNAL_0 = 0,
77 GDB_SIGNAL_INT = 2,
78 GDB_SIGNAL_QUIT = 3,
79 GDB_SIGNAL_TRAP = 5,
80 GDB_SIGNAL_ABRT = 6,
81 GDB_SIGNAL_ALRM = 14,
82 GDB_SIGNAL_IO = 23,
83 GDB_SIGNAL_XCPU = 24,
84 GDB_SIGNAL_UNKNOWN = 143
87 #ifdef CONFIG_USER_ONLY
89 /* Map target signal numbers to GDB protocol signal numbers and vice
90 * versa. For user emulation's currently supported systems, we can
91 * assume most signals are defined.
94 static int gdb_signal_table[] = {
96 TARGET_SIGHUP,
97 TARGET_SIGINT,
98 TARGET_SIGQUIT,
99 TARGET_SIGILL,
100 TARGET_SIGTRAP,
101 TARGET_SIGABRT,
102 -1, /* SIGEMT */
103 TARGET_SIGFPE,
104 TARGET_SIGKILL,
105 TARGET_SIGBUS,
106 TARGET_SIGSEGV,
107 TARGET_SIGSYS,
108 TARGET_SIGPIPE,
109 TARGET_SIGALRM,
110 TARGET_SIGTERM,
111 TARGET_SIGURG,
112 TARGET_SIGSTOP,
113 TARGET_SIGTSTP,
114 TARGET_SIGCONT,
115 TARGET_SIGCHLD,
116 TARGET_SIGTTIN,
117 TARGET_SIGTTOU,
118 TARGET_SIGIO,
119 TARGET_SIGXCPU,
120 TARGET_SIGXFSZ,
121 TARGET_SIGVTALRM,
122 TARGET_SIGPROF,
123 TARGET_SIGWINCH,
124 -1, /* SIGLOST */
125 TARGET_SIGUSR1,
126 TARGET_SIGUSR2,
127 #ifdef TARGET_SIGPWR
128 TARGET_SIGPWR,
129 #else
131 #endif
132 -1, /* SIGPOLL */
144 #ifdef __SIGRTMIN
145 __SIGRTMIN + 1,
146 __SIGRTMIN + 2,
147 __SIGRTMIN + 3,
148 __SIGRTMIN + 4,
149 __SIGRTMIN + 5,
150 __SIGRTMIN + 6,
151 __SIGRTMIN + 7,
152 __SIGRTMIN + 8,
153 __SIGRTMIN + 9,
154 __SIGRTMIN + 10,
155 __SIGRTMIN + 11,
156 __SIGRTMIN + 12,
157 __SIGRTMIN + 13,
158 __SIGRTMIN + 14,
159 __SIGRTMIN + 15,
160 __SIGRTMIN + 16,
161 __SIGRTMIN + 17,
162 __SIGRTMIN + 18,
163 __SIGRTMIN + 19,
164 __SIGRTMIN + 20,
165 __SIGRTMIN + 21,
166 __SIGRTMIN + 22,
167 __SIGRTMIN + 23,
168 __SIGRTMIN + 24,
169 __SIGRTMIN + 25,
170 __SIGRTMIN + 26,
171 __SIGRTMIN + 27,
172 __SIGRTMIN + 28,
173 __SIGRTMIN + 29,
174 __SIGRTMIN + 30,
175 __SIGRTMIN + 31,
176 -1, /* SIGCANCEL */
177 __SIGRTMIN,
178 __SIGRTMIN + 32,
179 __SIGRTMIN + 33,
180 __SIGRTMIN + 34,
181 __SIGRTMIN + 35,
182 __SIGRTMIN + 36,
183 __SIGRTMIN + 37,
184 __SIGRTMIN + 38,
185 __SIGRTMIN + 39,
186 __SIGRTMIN + 40,
187 __SIGRTMIN + 41,
188 __SIGRTMIN + 42,
189 __SIGRTMIN + 43,
190 __SIGRTMIN + 44,
191 __SIGRTMIN + 45,
192 __SIGRTMIN + 46,
193 __SIGRTMIN + 47,
194 __SIGRTMIN + 48,
195 __SIGRTMIN + 49,
196 __SIGRTMIN + 50,
197 __SIGRTMIN + 51,
198 __SIGRTMIN + 52,
199 __SIGRTMIN + 53,
200 __SIGRTMIN + 54,
201 __SIGRTMIN + 55,
202 __SIGRTMIN + 56,
203 __SIGRTMIN + 57,
204 __SIGRTMIN + 58,
205 __SIGRTMIN + 59,
206 __SIGRTMIN + 60,
207 __SIGRTMIN + 61,
208 __SIGRTMIN + 62,
209 __SIGRTMIN + 63,
210 __SIGRTMIN + 64,
211 __SIGRTMIN + 65,
212 __SIGRTMIN + 66,
213 __SIGRTMIN + 67,
214 __SIGRTMIN + 68,
215 __SIGRTMIN + 69,
216 __SIGRTMIN + 70,
217 __SIGRTMIN + 71,
218 __SIGRTMIN + 72,
219 __SIGRTMIN + 73,
220 __SIGRTMIN + 74,
221 __SIGRTMIN + 75,
222 __SIGRTMIN + 76,
223 __SIGRTMIN + 77,
224 __SIGRTMIN + 78,
225 __SIGRTMIN + 79,
226 __SIGRTMIN + 80,
227 __SIGRTMIN + 81,
228 __SIGRTMIN + 82,
229 __SIGRTMIN + 83,
230 __SIGRTMIN + 84,
231 __SIGRTMIN + 85,
232 __SIGRTMIN + 86,
233 __SIGRTMIN + 87,
234 __SIGRTMIN + 88,
235 __SIGRTMIN + 89,
236 __SIGRTMIN + 90,
237 __SIGRTMIN + 91,
238 __SIGRTMIN + 92,
239 __SIGRTMIN + 93,
240 __SIGRTMIN + 94,
241 __SIGRTMIN + 95,
242 -1, /* SIGINFO */
243 -1, /* UNKNOWN */
244 -1, /* DEFAULT */
251 #endif
253 #else
254 /* In system mode we only need SIGINT and SIGTRAP; other signals
255 are not yet supported. */
257 enum {
258 TARGET_SIGINT = 2,
259 TARGET_SIGTRAP = 5
262 static int gdb_signal_table[] = {
265 TARGET_SIGINT,
268 TARGET_SIGTRAP
270 #endif
272 #ifdef CONFIG_USER_ONLY
273 static int target_signal_to_gdb (int sig)
275 int i;
276 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
277 if (gdb_signal_table[i] == sig)
278 return i;
279 return GDB_SIGNAL_UNKNOWN;
281 #endif
283 static int gdb_signal_to_target (int sig)
285 if (sig < ARRAY_SIZE (gdb_signal_table))
286 return gdb_signal_table[sig];
287 else
288 return -1;
291 typedef struct GDBRegisterState {
292 int base_reg;
293 int num_regs;
294 gdb_reg_cb get_reg;
295 gdb_reg_cb set_reg;
296 const char *xml;
297 struct GDBRegisterState *next;
298 } GDBRegisterState;
300 typedef struct GDBProcess {
301 uint32_t pid;
302 bool attached;
304 char target_xml[1024];
305 } GDBProcess;
307 enum RSState {
308 RS_INACTIVE,
309 RS_IDLE,
310 RS_GETLINE,
311 RS_GETLINE_ESC,
312 RS_GETLINE_RLE,
313 RS_CHKSUM1,
314 RS_CHKSUM2,
316 typedef struct GDBState {
317 CPUState *c_cpu; /* current CPU for step/continue ops */
318 CPUState *g_cpu; /* current CPU for other ops */
319 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
320 enum RSState state; /* parsing state */
321 char line_buf[MAX_PACKET_LENGTH];
322 int line_buf_index;
323 int line_sum; /* running checksum */
324 int line_csum; /* checksum at the end of the packet */
325 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
326 int last_packet_len;
327 int signal;
328 #ifdef CONFIG_USER_ONLY
329 int fd;
330 int running_state;
331 #else
332 CharBackend chr;
333 Chardev *mon_chr;
334 #endif
335 bool multiprocess;
336 GDBProcess *processes;
337 int process_num;
338 char syscall_buf[256];
339 gdb_syscall_complete_cb current_syscall_cb;
340 } GDBState;
342 /* By default use no IRQs and no timers while single stepping so as to
343 * make single stepping like an ICE HW step.
345 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
347 static GDBState *gdbserver_state;
349 bool gdb_has_xml;
351 #ifdef CONFIG_USER_ONLY
352 /* XXX: This is not thread safe. Do we care? */
353 static int gdbserver_fd = -1;
355 static int get_char(GDBState *s)
357 uint8_t ch;
358 int ret;
360 for(;;) {
361 ret = qemu_recv(s->fd, &ch, 1, 0);
362 if (ret < 0) {
363 if (errno == ECONNRESET)
364 s->fd = -1;
365 if (errno != EINTR)
366 return -1;
367 } else if (ret == 0) {
368 close(s->fd);
369 s->fd = -1;
370 return -1;
371 } else {
372 break;
375 return ch;
377 #endif
379 static enum {
380 GDB_SYS_UNKNOWN,
381 GDB_SYS_ENABLED,
382 GDB_SYS_DISABLED,
383 } gdb_syscall_mode;
385 /* Decide if either remote gdb syscalls or native file IO should be used. */
386 int use_gdb_syscalls(void)
388 SemihostingTarget target = semihosting_get_target();
389 if (target == SEMIHOSTING_TARGET_NATIVE) {
390 /* -semihosting-config target=native */
391 return false;
392 } else if (target == SEMIHOSTING_TARGET_GDB) {
393 /* -semihosting-config target=gdb */
394 return true;
397 /* -semihosting-config target=auto */
398 /* On the first call check if gdb is connected and remember. */
399 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
400 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
401 : GDB_SYS_DISABLED);
403 return gdb_syscall_mode == GDB_SYS_ENABLED;
406 /* Resume execution. */
407 static inline void gdb_continue(GDBState *s)
410 #ifdef CONFIG_USER_ONLY
411 s->running_state = 1;
412 trace_gdbstub_op_continue();
413 #else
414 if (!runstate_needs_reset()) {
415 trace_gdbstub_op_continue();
416 vm_start();
418 #endif
422 * Resume execution, per CPU actions. For user-mode emulation it's
423 * equivalent to gdb_continue.
425 static int gdb_continue_partial(GDBState *s, char *newstates)
427 CPUState *cpu;
428 int res = 0;
429 #ifdef CONFIG_USER_ONLY
431 * This is not exactly accurate, but it's an improvement compared to the
432 * previous situation, where only one CPU would be single-stepped.
434 CPU_FOREACH(cpu) {
435 if (newstates[cpu->cpu_index] == 's') {
436 trace_gdbstub_op_stepping(cpu->cpu_index);
437 cpu_single_step(cpu, sstep_flags);
440 s->running_state = 1;
441 #else
442 int flag = 0;
444 if (!runstate_needs_reset()) {
445 if (vm_prepare_start()) {
446 return 0;
449 CPU_FOREACH(cpu) {
450 switch (newstates[cpu->cpu_index]) {
451 case 0:
452 case 1:
453 break; /* nothing to do here */
454 case 's':
455 trace_gdbstub_op_stepping(cpu->cpu_index);
456 cpu_single_step(cpu, sstep_flags);
457 cpu_resume(cpu);
458 flag = 1;
459 break;
460 case 'c':
461 trace_gdbstub_op_continue_cpu(cpu->cpu_index);
462 cpu_resume(cpu);
463 flag = 1;
464 break;
465 default:
466 res = -1;
467 break;
471 if (flag) {
472 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
474 #endif
475 return res;
478 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
480 #ifdef CONFIG_USER_ONLY
481 int ret;
483 while (len > 0) {
484 ret = send(s->fd, buf, len, 0);
485 if (ret < 0) {
486 if (errno != EINTR)
487 return;
488 } else {
489 buf += ret;
490 len -= ret;
493 #else
494 /* XXX this blocks entire thread. Rewrite to use
495 * qemu_chr_fe_write and background I/O callbacks */
496 qemu_chr_fe_write_all(&s->chr, buf, len);
497 #endif
500 static inline int fromhex(int v)
502 if (v >= '0' && v <= '9')
503 return v - '0';
504 else if (v >= 'A' && v <= 'F')
505 return v - 'A' + 10;
506 else if (v >= 'a' && v <= 'f')
507 return v - 'a' + 10;
508 else
509 return 0;
512 static inline int tohex(int v)
514 if (v < 10)
515 return v + '0';
516 else
517 return v - 10 + 'a';
520 /* writes 2*len+1 bytes in buf */
521 static void memtohex(char *buf, const uint8_t *mem, int len)
523 int i, c;
524 char *q;
525 q = buf;
526 for(i = 0; i < len; i++) {
527 c = mem[i];
528 *q++ = tohex(c >> 4);
529 *q++ = tohex(c & 0xf);
531 *q = '\0';
534 static void hextomem(uint8_t *mem, const char *buf, int len)
536 int i;
538 for(i = 0; i < len; i++) {
539 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
540 buf += 2;
544 static void hexdump(const char *buf, int len,
545 void (*trace_fn)(size_t ofs, char const *text))
547 char line_buffer[3 * 16 + 4 + 16 + 1];
549 size_t i;
550 for (i = 0; i < len || (i & 0xF); ++i) {
551 size_t byte_ofs = i & 15;
553 if (byte_ofs == 0) {
554 memset(line_buffer, ' ', 3 * 16 + 4 + 16);
555 line_buffer[3 * 16 + 4 + 16] = 0;
558 size_t col_group = (i >> 2) & 3;
559 size_t hex_col = byte_ofs * 3 + col_group;
560 size_t txt_col = 3 * 16 + 4 + byte_ofs;
562 if (i < len) {
563 char value = buf[i];
565 line_buffer[hex_col + 0] = tohex((value >> 4) & 0xF);
566 line_buffer[hex_col + 1] = tohex((value >> 0) & 0xF);
567 line_buffer[txt_col + 0] = (value >= ' ' && value < 127)
568 ? value
569 : '.';
572 if (byte_ofs == 0xF)
573 trace_fn(i & -16, line_buffer);
577 /* return -1 if error, 0 if OK */
578 static int put_packet_binary(GDBState *s, const char *buf, int len, bool dump)
580 int csum, i;
581 uint8_t *p;
583 if (dump && trace_event_get_state_backends(TRACE_GDBSTUB_IO_BINARYREPLY)) {
584 hexdump(buf, len, trace_gdbstub_io_binaryreply);
587 for(;;) {
588 p = s->last_packet;
589 *(p++) = '$';
590 memcpy(p, buf, len);
591 p += len;
592 csum = 0;
593 for(i = 0; i < len; i++) {
594 csum += buf[i];
596 *(p++) = '#';
597 *(p++) = tohex((csum >> 4) & 0xf);
598 *(p++) = tohex((csum) & 0xf);
600 s->last_packet_len = p - s->last_packet;
601 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
603 #ifdef CONFIG_USER_ONLY
604 i = get_char(s);
605 if (i < 0)
606 return -1;
607 if (i == '+')
608 break;
609 #else
610 break;
611 #endif
613 return 0;
616 /* return -1 if error, 0 if OK */
617 static int put_packet(GDBState *s, const char *buf)
619 trace_gdbstub_io_reply(buf);
621 return put_packet_binary(s, buf, strlen(buf), false);
624 /* Encode data using the encoding for 'x' packets. */
625 static int memtox(char *buf, const char *mem, int len)
627 char *p = buf;
628 char c;
630 while (len--) {
631 c = *(mem++);
632 switch (c) {
633 case '#': case '$': case '*': case '}':
634 *(p++) = '}';
635 *(p++) = c ^ 0x20;
636 break;
637 default:
638 *(p++) = c;
639 break;
642 return p - buf;
645 static uint32_t gdb_get_cpu_pid(const GDBState *s, CPUState *cpu)
647 /* TODO: In user mode, we should use the task state PID */
648 if (cpu->cluster_index == UNASSIGNED_CLUSTER_INDEX) {
649 /* Return the default process' PID */
650 return s->processes[s->process_num - 1].pid;
652 return cpu->cluster_index + 1;
655 static GDBProcess *gdb_get_process(const GDBState *s, uint32_t pid)
657 int i;
659 if (!pid) {
660 /* 0 means any process, we take the first one */
661 return &s->processes[0];
664 for (i = 0; i < s->process_num; i++) {
665 if (s->processes[i].pid == pid) {
666 return &s->processes[i];
670 return NULL;
673 static GDBProcess *gdb_get_cpu_process(const GDBState *s, CPUState *cpu)
675 return gdb_get_process(s, gdb_get_cpu_pid(s, cpu));
678 static CPUState *find_cpu(uint32_t thread_id)
680 CPUState *cpu;
682 CPU_FOREACH(cpu) {
683 if (cpu_gdb_index(cpu) == thread_id) {
684 return cpu;
688 return NULL;
691 static CPUState *get_first_cpu_in_process(const GDBState *s,
692 GDBProcess *process)
694 CPUState *cpu;
696 CPU_FOREACH(cpu) {
697 if (gdb_get_cpu_pid(s, cpu) == process->pid) {
698 return cpu;
702 return NULL;
705 static CPUState *gdb_next_cpu_in_process(const GDBState *s, CPUState *cpu)
707 uint32_t pid = gdb_get_cpu_pid(s, cpu);
708 cpu = CPU_NEXT(cpu);
710 while (cpu) {
711 if (gdb_get_cpu_pid(s, cpu) == pid) {
712 break;
715 cpu = CPU_NEXT(cpu);
718 return cpu;
721 /* Return the cpu following @cpu, while ignoring unattached processes. */
722 static CPUState *gdb_next_attached_cpu(const GDBState *s, CPUState *cpu)
724 cpu = CPU_NEXT(cpu);
726 while (cpu) {
727 if (gdb_get_cpu_process(s, cpu)->attached) {
728 break;
731 cpu = CPU_NEXT(cpu);
734 return cpu;
737 /* Return the first attached cpu */
738 static CPUState *gdb_first_attached_cpu(const GDBState *s)
740 CPUState *cpu = first_cpu;
741 GDBProcess *process = gdb_get_cpu_process(s, cpu);
743 if (!process->attached) {
744 return gdb_next_attached_cpu(s, cpu);
747 return cpu;
750 static CPUState *gdb_get_cpu(const GDBState *s, uint32_t pid, uint32_t tid)
752 GDBProcess *process;
753 CPUState *cpu;
755 if (!pid && !tid) {
756 /* 0 means any process/thread, we take the first attached one */
757 return gdb_first_attached_cpu(s);
758 } else if (pid && !tid) {
759 /* any thread in a specific process */
760 process = gdb_get_process(s, pid);
762 if (process == NULL) {
763 return NULL;
766 if (!process->attached) {
767 return NULL;
770 return get_first_cpu_in_process(s, process);
771 } else {
772 /* a specific thread */
773 cpu = find_cpu(tid);
775 if (cpu == NULL) {
776 return NULL;
779 process = gdb_get_cpu_process(s, cpu);
781 if (pid && process->pid != pid) {
782 return NULL;
785 if (!process->attached) {
786 return NULL;
789 return cpu;
793 static const char *get_feature_xml(const GDBState *s, const char *p,
794 const char **newp, GDBProcess *process)
796 size_t len;
797 int i;
798 const char *name;
799 CPUState *cpu = get_first_cpu_in_process(s, process);
800 CPUClass *cc = CPU_GET_CLASS(cpu);
802 len = 0;
803 while (p[len] && p[len] != ':')
804 len++;
805 *newp = p + len;
807 name = NULL;
808 if (strncmp(p, "target.xml", len) == 0) {
809 char *buf = process->target_xml;
810 const size_t buf_sz = sizeof(process->target_xml);
812 /* Generate the XML description for this CPU. */
813 if (!buf[0]) {
814 GDBRegisterState *r;
816 pstrcat(buf, buf_sz,
817 "<?xml version=\"1.0\"?>"
818 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
819 "<target>");
820 if (cc->gdb_arch_name) {
821 gchar *arch = cc->gdb_arch_name(cpu);
822 pstrcat(buf, buf_sz, "<architecture>");
823 pstrcat(buf, buf_sz, arch);
824 pstrcat(buf, buf_sz, "</architecture>");
825 g_free(arch);
827 pstrcat(buf, buf_sz, "<xi:include href=\"");
828 pstrcat(buf, buf_sz, cc->gdb_core_xml_file);
829 pstrcat(buf, buf_sz, "\"/>");
830 for (r = cpu->gdb_regs; r; r = r->next) {
831 pstrcat(buf, buf_sz, "<xi:include href=\"");
832 pstrcat(buf, buf_sz, r->xml);
833 pstrcat(buf, buf_sz, "\"/>");
835 pstrcat(buf, buf_sz, "</target>");
837 return buf;
839 if (cc->gdb_get_dynamic_xml) {
840 char *xmlname = g_strndup(p, len);
841 const char *xml = cc->gdb_get_dynamic_xml(cpu, xmlname);
843 g_free(xmlname);
844 if (xml) {
845 return xml;
848 for (i = 0; ; i++) {
849 name = xml_builtin[i][0];
850 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
851 break;
853 return name ? xml_builtin[i][1] : NULL;
856 static int gdb_read_register(CPUState *cpu, uint8_t *mem_buf, int reg)
858 CPUClass *cc = CPU_GET_CLASS(cpu);
859 CPUArchState *env = cpu->env_ptr;
860 GDBRegisterState *r;
862 if (reg < cc->gdb_num_core_regs) {
863 return cc->gdb_read_register(cpu, mem_buf, reg);
866 for (r = cpu->gdb_regs; r; r = r->next) {
867 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
868 return r->get_reg(env, mem_buf, reg - r->base_reg);
871 return 0;
874 static int gdb_write_register(CPUState *cpu, uint8_t *mem_buf, int reg)
876 CPUClass *cc = CPU_GET_CLASS(cpu);
877 CPUArchState *env = cpu->env_ptr;
878 GDBRegisterState *r;
880 if (reg < cc->gdb_num_core_regs) {
881 return cc->gdb_write_register(cpu, mem_buf, reg);
884 for (r = cpu->gdb_regs; r; r = r->next) {
885 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
886 return r->set_reg(env, mem_buf, reg - r->base_reg);
889 return 0;
892 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
893 specifies the first register number and these registers are included in
894 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
895 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
898 void gdb_register_coprocessor(CPUState *cpu,
899 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
900 int num_regs, const char *xml, int g_pos)
902 GDBRegisterState *s;
903 GDBRegisterState **p;
905 p = &cpu->gdb_regs;
906 while (*p) {
907 /* Check for duplicates. */
908 if (strcmp((*p)->xml, xml) == 0)
909 return;
910 p = &(*p)->next;
913 s = g_new0(GDBRegisterState, 1);
914 s->base_reg = cpu->gdb_num_regs;
915 s->num_regs = num_regs;
916 s->get_reg = get_reg;
917 s->set_reg = set_reg;
918 s->xml = xml;
920 /* Add to end of list. */
921 cpu->gdb_num_regs += num_regs;
922 *p = s;
923 if (g_pos) {
924 if (g_pos != s->base_reg) {
925 error_report("Error: Bad gdb register numbering for '%s', "
926 "expected %d got %d", xml, g_pos, s->base_reg);
927 } else {
928 cpu->gdb_num_g_regs = cpu->gdb_num_regs;
933 #ifndef CONFIG_USER_ONLY
934 /* Translate GDB watchpoint type to a flags value for cpu_watchpoint_* */
935 static inline int xlat_gdb_type(CPUState *cpu, int gdbtype)
937 static const int xlat[] = {
938 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
939 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
940 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
943 CPUClass *cc = CPU_GET_CLASS(cpu);
944 int cputype = xlat[gdbtype];
946 if (cc->gdb_stop_before_watchpoint) {
947 cputype |= BP_STOP_BEFORE_ACCESS;
949 return cputype;
951 #endif
953 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
955 CPUState *cpu;
956 int err = 0;
958 if (kvm_enabled()) {
959 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
962 switch (type) {
963 case GDB_BREAKPOINT_SW:
964 case GDB_BREAKPOINT_HW:
965 CPU_FOREACH(cpu) {
966 err = cpu_breakpoint_insert(cpu, addr, BP_GDB, NULL);
967 if (err) {
968 break;
971 return err;
972 #ifndef CONFIG_USER_ONLY
973 case GDB_WATCHPOINT_WRITE:
974 case GDB_WATCHPOINT_READ:
975 case GDB_WATCHPOINT_ACCESS:
976 CPU_FOREACH(cpu) {
977 err = cpu_watchpoint_insert(cpu, addr, len,
978 xlat_gdb_type(cpu, type), NULL);
979 if (err) {
980 break;
983 return err;
984 #endif
985 default:
986 return -ENOSYS;
990 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
992 CPUState *cpu;
993 int err = 0;
995 if (kvm_enabled()) {
996 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
999 switch (type) {
1000 case GDB_BREAKPOINT_SW:
1001 case GDB_BREAKPOINT_HW:
1002 CPU_FOREACH(cpu) {
1003 err = cpu_breakpoint_remove(cpu, addr, BP_GDB);
1004 if (err) {
1005 break;
1008 return err;
1009 #ifndef CONFIG_USER_ONLY
1010 case GDB_WATCHPOINT_WRITE:
1011 case GDB_WATCHPOINT_READ:
1012 case GDB_WATCHPOINT_ACCESS:
1013 CPU_FOREACH(cpu) {
1014 err = cpu_watchpoint_remove(cpu, addr, len,
1015 xlat_gdb_type(cpu, type));
1016 if (err)
1017 break;
1019 return err;
1020 #endif
1021 default:
1022 return -ENOSYS;
1026 static inline void gdb_cpu_breakpoint_remove_all(CPUState *cpu)
1028 cpu_breakpoint_remove_all(cpu, BP_GDB);
1029 #ifndef CONFIG_USER_ONLY
1030 cpu_watchpoint_remove_all(cpu, BP_GDB);
1031 #endif
1034 static void gdb_process_breakpoint_remove_all(const GDBState *s, GDBProcess *p)
1036 CPUState *cpu = get_first_cpu_in_process(s, p);
1038 while (cpu) {
1039 gdb_cpu_breakpoint_remove_all(cpu);
1040 cpu = gdb_next_cpu_in_process(s, cpu);
1044 static void gdb_breakpoint_remove_all(void)
1046 CPUState *cpu;
1048 if (kvm_enabled()) {
1049 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1050 return;
1053 CPU_FOREACH(cpu) {
1054 gdb_cpu_breakpoint_remove_all(cpu);
1058 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
1060 CPUState *cpu = s->c_cpu;
1062 cpu_synchronize_state(cpu);
1063 cpu_set_pc(cpu, pc);
1066 static char *gdb_fmt_thread_id(const GDBState *s, CPUState *cpu,
1067 char *buf, size_t buf_size)
1069 if (s->multiprocess) {
1070 snprintf(buf, buf_size, "p%02x.%02x",
1071 gdb_get_cpu_pid(s, cpu), cpu_gdb_index(cpu));
1072 } else {
1073 snprintf(buf, buf_size, "%02x", cpu_gdb_index(cpu));
1076 return buf;
1079 typedef enum GDBThreadIdKind {
1080 GDB_ONE_THREAD = 0,
1081 GDB_ALL_THREADS, /* One process, all threads */
1082 GDB_ALL_PROCESSES,
1083 GDB_READ_THREAD_ERR
1084 } GDBThreadIdKind;
1086 static GDBThreadIdKind read_thread_id(const char *buf, const char **end_buf,
1087 uint32_t *pid, uint32_t *tid)
1089 unsigned long p, t;
1090 int ret;
1092 if (*buf == 'p') {
1093 buf++;
1094 ret = qemu_strtoul(buf, &buf, 16, &p);
1096 if (ret) {
1097 return GDB_READ_THREAD_ERR;
1100 /* Skip '.' */
1101 buf++;
1102 } else {
1103 p = 1;
1106 ret = qemu_strtoul(buf, &buf, 16, &t);
1108 if (ret) {
1109 return GDB_READ_THREAD_ERR;
1112 *end_buf = buf;
1114 if (p == -1) {
1115 return GDB_ALL_PROCESSES;
1118 if (pid) {
1119 *pid = p;
1122 if (t == -1) {
1123 return GDB_ALL_THREADS;
1126 if (tid) {
1127 *tid = t;
1130 return GDB_ONE_THREAD;
1133 static int is_query_packet(const char *p, const char *query, char separator)
1135 unsigned int query_len = strlen(query);
1137 return strncmp(p, query, query_len) == 0 &&
1138 (p[query_len] == '\0' || p[query_len] == separator);
1142 * gdb_handle_vcont - Parses and handles a vCont packet.
1143 * returns -ENOTSUP if a command is unsupported, -EINVAL or -ERANGE if there is
1144 * a format error, 0 on success.
1146 static int gdb_handle_vcont(GDBState *s, const char *p)
1148 int res, signal = 0;
1149 char cur_action;
1150 char *newstates;
1151 unsigned long tmp;
1152 uint32_t pid, tid;
1153 GDBProcess *process;
1154 CPUState *cpu;
1155 #ifdef CONFIG_USER_ONLY
1156 int max_cpus = 1; /* global variable max_cpus exists only in system mode */
1158 CPU_FOREACH(cpu) {
1159 max_cpus = max_cpus <= cpu->cpu_index ? cpu->cpu_index + 1 : max_cpus;
1161 #endif
1162 /* uninitialised CPUs stay 0 */
1163 newstates = g_new0(char, max_cpus);
1165 /* mark valid CPUs with 1 */
1166 CPU_FOREACH(cpu) {
1167 newstates[cpu->cpu_index] = 1;
1171 * res keeps track of what error we are returning, with -ENOTSUP meaning
1172 * that the command is unknown or unsupported, thus returning an empty
1173 * packet, while -EINVAL and -ERANGE cause an E22 packet, due to invalid,
1174 * or incorrect parameters passed.
1176 res = 0;
1177 while (*p) {
1178 if (*p++ != ';') {
1179 res = -ENOTSUP;
1180 goto out;
1183 cur_action = *p++;
1184 if (cur_action == 'C' || cur_action == 'S') {
1185 cur_action = qemu_tolower(cur_action);
1186 res = qemu_strtoul(p + 1, &p, 16, &tmp);
1187 if (res) {
1188 goto out;
1190 signal = gdb_signal_to_target(tmp);
1191 } else if (cur_action != 'c' && cur_action != 's') {
1192 /* unknown/invalid/unsupported command */
1193 res = -ENOTSUP;
1194 goto out;
1197 if (*p++ != ':') {
1198 res = -ENOTSUP;
1199 goto out;
1202 switch (read_thread_id(p, &p, &pid, &tid)) {
1203 case GDB_READ_THREAD_ERR:
1204 res = -EINVAL;
1205 goto out;
1207 case GDB_ALL_PROCESSES:
1208 cpu = gdb_first_attached_cpu(s);
1209 while (cpu) {
1210 if (newstates[cpu->cpu_index] == 1) {
1211 newstates[cpu->cpu_index] = cur_action;
1214 cpu = gdb_next_attached_cpu(s, cpu);
1216 break;
1218 case GDB_ALL_THREADS:
1219 process = gdb_get_process(s, pid);
1221 if (!process->attached) {
1222 res = -EINVAL;
1223 goto out;
1226 cpu = get_first_cpu_in_process(s, process);
1227 while (cpu) {
1228 if (newstates[cpu->cpu_index] == 1) {
1229 newstates[cpu->cpu_index] = cur_action;
1232 cpu = gdb_next_cpu_in_process(s, cpu);
1234 break;
1236 case GDB_ONE_THREAD:
1237 cpu = gdb_get_cpu(s, pid, tid);
1239 /* invalid CPU/thread specified */
1240 if (!cpu) {
1241 res = -EINVAL;
1242 goto out;
1245 /* only use if no previous match occourred */
1246 if (newstates[cpu->cpu_index] == 1) {
1247 newstates[cpu->cpu_index] = cur_action;
1249 break;
1252 s->signal = signal;
1253 gdb_continue_partial(s, newstates);
1255 out:
1256 g_free(newstates);
1258 return res;
1261 static int gdb_handle_packet(GDBState *s, const char *line_buf)
1263 CPUState *cpu;
1264 GDBProcess *process;
1265 CPUClass *cc;
1266 const char *p;
1267 uint32_t pid, tid;
1268 int ch, reg_size, type, res;
1269 uint8_t mem_buf[MAX_PACKET_LENGTH];
1270 char buf[sizeof(mem_buf) + 1 /* trailing NUL */];
1271 char thread_id[16];
1272 uint8_t *registers;
1273 target_ulong addr, len;
1274 GDBThreadIdKind thread_kind;
1276 trace_gdbstub_io_command(line_buf);
1278 p = line_buf;
1279 ch = *p++;
1280 switch(ch) {
1281 case '!':
1282 put_packet(s, "OK");
1283 break;
1284 case '?':
1285 /* TODO: Make this return the correct value for user-mode. */
1286 snprintf(buf, sizeof(buf), "T%02xthread:%s;", GDB_SIGNAL_TRAP,
1287 gdb_fmt_thread_id(s, s->c_cpu, thread_id, sizeof(thread_id)));
1288 put_packet(s, buf);
1289 /* Remove all the breakpoints when this query is issued,
1290 * because gdb is doing and initial connect and the state
1291 * should be cleaned up.
1293 gdb_breakpoint_remove_all();
1294 break;
1295 case 'c':
1296 if (*p != '\0') {
1297 addr = strtoull(p, (char **)&p, 16);
1298 gdb_set_cpu_pc(s, addr);
1300 s->signal = 0;
1301 gdb_continue(s);
1302 return RS_IDLE;
1303 case 'C':
1304 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
1305 if (s->signal == -1)
1306 s->signal = 0;
1307 gdb_continue(s);
1308 return RS_IDLE;
1309 case 'v':
1310 if (strncmp(p, "Cont", 4) == 0) {
1311 p += 4;
1312 if (*p == '?') {
1313 put_packet(s, "vCont;c;C;s;S");
1314 break;
1317 res = gdb_handle_vcont(s, p);
1319 if (res) {
1320 if ((res == -EINVAL) || (res == -ERANGE)) {
1321 put_packet(s, "E22");
1322 break;
1324 goto unknown_command;
1326 break;
1327 } else if (strncmp(p, "Attach;", 7) == 0) {
1328 unsigned long pid;
1330 p += 7;
1332 if (qemu_strtoul(p, &p, 16, &pid)) {
1333 put_packet(s, "E22");
1334 break;
1337 process = gdb_get_process(s, pid);
1339 if (process == NULL) {
1340 put_packet(s, "E22");
1341 break;
1344 cpu = get_first_cpu_in_process(s, process);
1346 if (cpu == NULL) {
1347 /* Refuse to attach an empty process */
1348 put_packet(s, "E22");
1349 break;
1352 process->attached = true;
1354 s->g_cpu = cpu;
1355 s->c_cpu = cpu;
1357 snprintf(buf, sizeof(buf), "T%02xthread:%s;", GDB_SIGNAL_TRAP,
1358 gdb_fmt_thread_id(s, cpu, thread_id, sizeof(thread_id)));
1360 put_packet(s, buf);
1361 break;
1362 } else if (strncmp(p, "Kill;", 5) == 0) {
1363 /* Kill the target */
1364 error_report("QEMU: Terminated via GDBstub");
1365 exit(0);
1366 } else {
1367 goto unknown_command;
1369 case 'k':
1370 /* Kill the target */
1371 error_report("QEMU: Terminated via GDBstub");
1372 exit(0);
1373 case 'D':
1374 /* Detach packet */
1375 pid = 1;
1377 if (s->multiprocess) {
1378 unsigned long lpid;
1379 if (*p != ';') {
1380 put_packet(s, "E22");
1381 break;
1384 if (qemu_strtoul(p + 1, &p, 16, &lpid)) {
1385 put_packet(s, "E22");
1386 break;
1389 pid = lpid;
1392 process = gdb_get_process(s, pid);
1393 gdb_process_breakpoint_remove_all(s, process);
1394 process->attached = false;
1396 if (pid == gdb_get_cpu_pid(s, s->c_cpu)) {
1397 s->c_cpu = gdb_first_attached_cpu(s);
1400 if (pid == gdb_get_cpu_pid(s, s->g_cpu)) {
1401 s->g_cpu = gdb_first_attached_cpu(s);
1404 if (s->c_cpu == NULL) {
1405 /* No more process attached */
1406 gdb_syscall_mode = GDB_SYS_DISABLED;
1407 gdb_continue(s);
1409 put_packet(s, "OK");
1410 break;
1411 case 's':
1412 if (*p != '\0') {
1413 addr = strtoull(p, (char **)&p, 16);
1414 gdb_set_cpu_pc(s, addr);
1416 cpu_single_step(s->c_cpu, sstep_flags);
1417 gdb_continue(s);
1418 return RS_IDLE;
1419 case 'F':
1421 target_ulong ret;
1422 target_ulong err;
1424 ret = strtoull(p, (char **)&p, 16);
1425 if (*p == ',') {
1426 p++;
1427 err = strtoull(p, (char **)&p, 16);
1428 } else {
1429 err = 0;
1431 if (*p == ',')
1432 p++;
1433 type = *p;
1434 if (s->current_syscall_cb) {
1435 s->current_syscall_cb(s->c_cpu, ret, err);
1436 s->current_syscall_cb = NULL;
1438 if (type == 'C') {
1439 put_packet(s, "T02");
1440 } else {
1441 gdb_continue(s);
1444 break;
1445 case 'g':
1446 cpu_synchronize_state(s->g_cpu);
1447 len = 0;
1448 for (addr = 0; addr < s->g_cpu->gdb_num_g_regs; addr++) {
1449 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1450 len += reg_size;
1452 memtohex(buf, mem_buf, len);
1453 put_packet(s, buf);
1454 break;
1455 case 'G':
1456 cpu_synchronize_state(s->g_cpu);
1457 registers = mem_buf;
1458 len = strlen(p) / 2;
1459 hextomem((uint8_t *)registers, p, len);
1460 for (addr = 0; addr < s->g_cpu->gdb_num_g_regs && len > 0; addr++) {
1461 reg_size = gdb_write_register(s->g_cpu, registers, addr);
1462 len -= reg_size;
1463 registers += reg_size;
1465 put_packet(s, "OK");
1466 break;
1467 case 'm':
1468 addr = strtoull(p, (char **)&p, 16);
1469 if (*p == ',')
1470 p++;
1471 len = strtoull(p, NULL, 16);
1473 /* memtohex() doubles the required space */
1474 if (len > MAX_PACKET_LENGTH / 2) {
1475 put_packet (s, "E22");
1476 break;
1479 if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len, false) != 0) {
1480 put_packet (s, "E14");
1481 } else {
1482 memtohex(buf, mem_buf, len);
1483 put_packet(s, buf);
1485 break;
1486 case 'M':
1487 addr = strtoull(p, (char **)&p, 16);
1488 if (*p == ',')
1489 p++;
1490 len = strtoull(p, (char **)&p, 16);
1491 if (*p == ':')
1492 p++;
1494 /* hextomem() reads 2*len bytes */
1495 if (len > strlen(p) / 2) {
1496 put_packet (s, "E22");
1497 break;
1499 hextomem(mem_buf, p, len);
1500 if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len,
1501 true) != 0) {
1502 put_packet(s, "E14");
1503 } else {
1504 put_packet(s, "OK");
1506 break;
1507 case 'p':
1508 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1509 This works, but can be very slow. Anything new enough to
1510 understand XML also knows how to use this properly. */
1511 if (!gdb_has_xml)
1512 goto unknown_command;
1513 addr = strtoull(p, (char **)&p, 16);
1514 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1515 if (reg_size) {
1516 memtohex(buf, mem_buf, reg_size);
1517 put_packet(s, buf);
1518 } else {
1519 put_packet(s, "E14");
1521 break;
1522 case 'P':
1523 if (!gdb_has_xml)
1524 goto unknown_command;
1525 addr = strtoull(p, (char **)&p, 16);
1526 if (*p == '=')
1527 p++;
1528 reg_size = strlen(p) / 2;
1529 hextomem(mem_buf, p, reg_size);
1530 gdb_write_register(s->g_cpu, mem_buf, addr);
1531 put_packet(s, "OK");
1532 break;
1533 case 'Z':
1534 case 'z':
1535 type = strtoul(p, (char **)&p, 16);
1536 if (*p == ',')
1537 p++;
1538 addr = strtoull(p, (char **)&p, 16);
1539 if (*p == ',')
1540 p++;
1541 len = strtoull(p, (char **)&p, 16);
1542 if (ch == 'Z')
1543 res = gdb_breakpoint_insert(addr, len, type);
1544 else
1545 res = gdb_breakpoint_remove(addr, len, type);
1546 if (res >= 0)
1547 put_packet(s, "OK");
1548 else if (res == -ENOSYS)
1549 put_packet(s, "");
1550 else
1551 put_packet(s, "E22");
1552 break;
1553 case 'H':
1554 type = *p++;
1556 thread_kind = read_thread_id(p, &p, &pid, &tid);
1557 if (thread_kind == GDB_READ_THREAD_ERR) {
1558 put_packet(s, "E22");
1559 break;
1562 if (thread_kind != GDB_ONE_THREAD) {
1563 put_packet(s, "OK");
1564 break;
1566 cpu = gdb_get_cpu(s, pid, tid);
1567 if (cpu == NULL) {
1568 put_packet(s, "E22");
1569 break;
1571 switch (type) {
1572 case 'c':
1573 s->c_cpu = cpu;
1574 put_packet(s, "OK");
1575 break;
1576 case 'g':
1577 s->g_cpu = cpu;
1578 put_packet(s, "OK");
1579 break;
1580 default:
1581 put_packet(s, "E22");
1582 break;
1584 break;
1585 case 'T':
1586 thread_kind = read_thread_id(p, &p, &pid, &tid);
1587 if (thread_kind == GDB_READ_THREAD_ERR) {
1588 put_packet(s, "E22");
1589 break;
1591 cpu = gdb_get_cpu(s, pid, tid);
1593 if (cpu != NULL) {
1594 put_packet(s, "OK");
1595 } else {
1596 put_packet(s, "E22");
1598 break;
1599 case 'q':
1600 case 'Q':
1601 /* parse any 'q' packets here */
1602 if (!strcmp(p,"qemu.sstepbits")) {
1603 /* Query Breakpoint bit definitions */
1604 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1605 SSTEP_ENABLE,
1606 SSTEP_NOIRQ,
1607 SSTEP_NOTIMER);
1608 put_packet(s, buf);
1609 break;
1610 } else if (is_query_packet(p, "qemu.sstep", '=')) {
1611 /* Display or change the sstep_flags */
1612 p += 10;
1613 if (*p != '=') {
1614 /* Display current setting */
1615 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1616 put_packet(s, buf);
1617 break;
1619 p++;
1620 type = strtoul(p, (char **)&p, 16);
1621 sstep_flags = type;
1622 put_packet(s, "OK");
1623 break;
1624 } else if (strcmp(p,"C") == 0) {
1626 * "Current thread" remains vague in the spec, so always return
1627 * the first thread of the current process (gdb returns the
1628 * first thread).
1630 cpu = get_first_cpu_in_process(s, gdb_get_cpu_process(s, s->g_cpu));
1631 snprintf(buf, sizeof(buf), "QC%s",
1632 gdb_fmt_thread_id(s, cpu, thread_id, sizeof(thread_id)));
1633 put_packet(s, buf);
1634 break;
1635 } else if (strcmp(p,"fThreadInfo") == 0) {
1636 s->query_cpu = gdb_first_attached_cpu(s);
1637 goto report_cpuinfo;
1638 } else if (strcmp(p,"sThreadInfo") == 0) {
1639 report_cpuinfo:
1640 if (s->query_cpu) {
1641 snprintf(buf, sizeof(buf), "m%s",
1642 gdb_fmt_thread_id(s, s->query_cpu,
1643 thread_id, sizeof(thread_id)));
1644 put_packet(s, buf);
1645 s->query_cpu = gdb_next_attached_cpu(s, s->query_cpu);
1646 } else
1647 put_packet(s, "l");
1648 break;
1649 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
1650 if (read_thread_id(p + 16, &p, &pid, &tid) == GDB_READ_THREAD_ERR) {
1651 put_packet(s, "E22");
1652 break;
1654 cpu = gdb_get_cpu(s, pid, tid);
1655 if (cpu != NULL) {
1656 cpu_synchronize_state(cpu);
1658 if (s->multiprocess && (s->process_num > 1)) {
1659 /* Print the CPU model and name in multiprocess mode */
1660 ObjectClass *oc = object_get_class(OBJECT(cpu));
1661 const char *cpu_model = object_class_get_name(oc);
1662 char *cpu_name =
1663 object_get_canonical_path_component(OBJECT(cpu));
1664 len = snprintf((char *)mem_buf, sizeof(buf) / 2,
1665 "%s %s [%s]", cpu_model, cpu_name,
1666 cpu->halted ? "halted " : "running");
1667 g_free(cpu_name);
1668 } else {
1669 /* memtohex() doubles the required space */
1670 len = snprintf((char *)mem_buf, sizeof(buf) / 2,
1671 "CPU#%d [%s]", cpu->cpu_index,
1672 cpu->halted ? "halted " : "running");
1674 trace_gdbstub_op_extra_info((char *)mem_buf);
1675 memtohex(buf, mem_buf, len);
1676 put_packet(s, buf);
1678 break;
1680 #ifdef CONFIG_USER_ONLY
1681 else if (strcmp(p, "Offsets") == 0) {
1682 TaskState *ts = s->c_cpu->opaque;
1684 snprintf(buf, sizeof(buf),
1685 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1686 ";Bss=" TARGET_ABI_FMT_lx,
1687 ts->info->code_offset,
1688 ts->info->data_offset,
1689 ts->info->data_offset);
1690 put_packet(s, buf);
1691 break;
1693 #else /* !CONFIG_USER_ONLY */
1694 else if (strncmp(p, "Rcmd,", 5) == 0) {
1695 int len = strlen(p + 5);
1697 if ((len % 2) != 0) {
1698 put_packet(s, "E01");
1699 break;
1701 len = len / 2;
1702 hextomem(mem_buf, p + 5, len);
1703 mem_buf[len++] = 0;
1704 qemu_chr_be_write(s->mon_chr, mem_buf, len);
1705 put_packet(s, "OK");
1706 break;
1708 #endif /* !CONFIG_USER_ONLY */
1709 if (is_query_packet(p, "Supported", ':')) {
1710 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
1711 cc = CPU_GET_CLASS(first_cpu);
1712 if (cc->gdb_core_xml_file != NULL) {
1713 pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
1716 if (strstr(p, "multiprocess+")) {
1717 s->multiprocess = true;
1719 pstrcat(buf, sizeof(buf), ";multiprocess+");
1721 put_packet(s, buf);
1722 break;
1724 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
1725 const char *xml;
1726 target_ulong total_len;
1728 process = gdb_get_cpu_process(s, s->g_cpu);
1729 cc = CPU_GET_CLASS(s->g_cpu);
1730 if (cc->gdb_core_xml_file == NULL) {
1731 goto unknown_command;
1734 gdb_has_xml = true;
1735 p += 19;
1736 xml = get_feature_xml(s, p, &p, process);
1737 if (!xml) {
1738 snprintf(buf, sizeof(buf), "E00");
1739 put_packet(s, buf);
1740 break;
1743 if (*p == ':')
1744 p++;
1745 addr = strtoul(p, (char **)&p, 16);
1746 if (*p == ',')
1747 p++;
1748 len = strtoul(p, (char **)&p, 16);
1750 total_len = strlen(xml);
1751 if (addr > total_len) {
1752 snprintf(buf, sizeof(buf), "E00");
1753 put_packet(s, buf);
1754 break;
1756 if (len > (MAX_PACKET_LENGTH - 5) / 2)
1757 len = (MAX_PACKET_LENGTH - 5) / 2;
1758 if (len < total_len - addr) {
1759 buf[0] = 'm';
1760 len = memtox(buf + 1, xml + addr, len);
1761 } else {
1762 buf[0] = 'l';
1763 len = memtox(buf + 1, xml + addr, total_len - addr);
1765 put_packet_binary(s, buf, len + 1, true);
1766 break;
1768 if (is_query_packet(p, "Attached", ':')) {
1769 put_packet(s, GDB_ATTACHED);
1770 break;
1772 /* Unrecognised 'q' command. */
1773 goto unknown_command;
1775 default:
1776 unknown_command:
1777 /* put empty packet */
1778 buf[0] = '\0';
1779 put_packet(s, buf);
1780 break;
1782 return RS_IDLE;
1785 void gdb_set_stop_cpu(CPUState *cpu)
1787 GDBProcess *p = gdb_get_cpu_process(gdbserver_state, cpu);
1789 if (!p->attached) {
1791 * Having a stop CPU corresponding to a process that is not attached
1792 * confuses GDB. So we ignore the request.
1794 return;
1797 gdbserver_state->c_cpu = cpu;
1798 gdbserver_state->g_cpu = cpu;
1801 #ifndef CONFIG_USER_ONLY
1802 static void gdb_vm_state_change(void *opaque, int running, RunState state)
1804 GDBState *s = gdbserver_state;
1805 CPUState *cpu = s->c_cpu;
1806 char buf[256];
1807 char thread_id[16];
1808 const char *type;
1809 int ret;
1811 if (running || s->state == RS_INACTIVE) {
1812 return;
1814 /* Is there a GDB syscall waiting to be sent? */
1815 if (s->current_syscall_cb) {
1816 put_packet(s, s->syscall_buf);
1817 return;
1820 if (cpu == NULL) {
1821 /* No process attached */
1822 return;
1825 gdb_fmt_thread_id(s, cpu, thread_id, sizeof(thread_id));
1827 switch (state) {
1828 case RUN_STATE_DEBUG:
1829 if (cpu->watchpoint_hit) {
1830 switch (cpu->watchpoint_hit->flags & BP_MEM_ACCESS) {
1831 case BP_MEM_READ:
1832 type = "r";
1833 break;
1834 case BP_MEM_ACCESS:
1835 type = "a";
1836 break;
1837 default:
1838 type = "";
1839 break;
1841 trace_gdbstub_hit_watchpoint(type, cpu_gdb_index(cpu),
1842 (target_ulong)cpu->watchpoint_hit->vaddr);
1843 snprintf(buf, sizeof(buf),
1844 "T%02xthread:%s;%swatch:" TARGET_FMT_lx ";",
1845 GDB_SIGNAL_TRAP, thread_id, type,
1846 (target_ulong)cpu->watchpoint_hit->vaddr);
1847 cpu->watchpoint_hit = NULL;
1848 goto send_packet;
1849 } else {
1850 trace_gdbstub_hit_break();
1852 tb_flush(cpu);
1853 ret = GDB_SIGNAL_TRAP;
1854 break;
1855 case RUN_STATE_PAUSED:
1856 trace_gdbstub_hit_paused();
1857 ret = GDB_SIGNAL_INT;
1858 break;
1859 case RUN_STATE_SHUTDOWN:
1860 trace_gdbstub_hit_shutdown();
1861 ret = GDB_SIGNAL_QUIT;
1862 break;
1863 case RUN_STATE_IO_ERROR:
1864 trace_gdbstub_hit_io_error();
1865 ret = GDB_SIGNAL_IO;
1866 break;
1867 case RUN_STATE_WATCHDOG:
1868 trace_gdbstub_hit_watchdog();
1869 ret = GDB_SIGNAL_ALRM;
1870 break;
1871 case RUN_STATE_INTERNAL_ERROR:
1872 trace_gdbstub_hit_internal_error();
1873 ret = GDB_SIGNAL_ABRT;
1874 break;
1875 case RUN_STATE_SAVE_VM:
1876 case RUN_STATE_RESTORE_VM:
1877 return;
1878 case RUN_STATE_FINISH_MIGRATE:
1879 ret = GDB_SIGNAL_XCPU;
1880 break;
1881 default:
1882 trace_gdbstub_hit_unknown(state);
1883 ret = GDB_SIGNAL_UNKNOWN;
1884 break;
1886 gdb_set_stop_cpu(cpu);
1887 snprintf(buf, sizeof(buf), "T%02xthread:%s;", ret, thread_id);
1889 send_packet:
1890 put_packet(s, buf);
1892 /* disable single step if it was enabled */
1893 cpu_single_step(cpu, 0);
1895 #endif
1897 /* Send a gdb syscall request.
1898 This accepts limited printf-style format specifiers, specifically:
1899 %x - target_ulong argument printed in hex.
1900 %lx - 64-bit argument printed in hex.
1901 %s - string pointer (target_ulong) and length (int) pair. */
1902 void gdb_do_syscallv(gdb_syscall_complete_cb cb, const char *fmt, va_list va)
1904 char *p;
1905 char *p_end;
1906 target_ulong addr;
1907 uint64_t i64;
1908 GDBState *s;
1910 s = gdbserver_state;
1911 if (!s)
1912 return;
1913 s->current_syscall_cb = cb;
1914 #ifndef CONFIG_USER_ONLY
1915 vm_stop(RUN_STATE_DEBUG);
1916 #endif
1917 p = s->syscall_buf;
1918 p_end = &s->syscall_buf[sizeof(s->syscall_buf)];
1919 *(p++) = 'F';
1920 while (*fmt) {
1921 if (*fmt == '%') {
1922 fmt++;
1923 switch (*fmt++) {
1924 case 'x':
1925 addr = va_arg(va, target_ulong);
1926 p += snprintf(p, p_end - p, TARGET_FMT_lx, addr);
1927 break;
1928 case 'l':
1929 if (*(fmt++) != 'x')
1930 goto bad_format;
1931 i64 = va_arg(va, uint64_t);
1932 p += snprintf(p, p_end - p, "%" PRIx64, i64);
1933 break;
1934 case 's':
1935 addr = va_arg(va, target_ulong);
1936 p += snprintf(p, p_end - p, TARGET_FMT_lx "/%x",
1937 addr, va_arg(va, int));
1938 break;
1939 default:
1940 bad_format:
1941 error_report("gdbstub: Bad syscall format string '%s'",
1942 fmt - 1);
1943 break;
1945 } else {
1946 *(p++) = *(fmt++);
1949 *p = 0;
1950 #ifdef CONFIG_USER_ONLY
1951 put_packet(s, s->syscall_buf);
1952 /* Return control to gdb for it to process the syscall request.
1953 * Since the protocol requires that gdb hands control back to us
1954 * using a "here are the results" F packet, we don't need to check
1955 * gdb_handlesig's return value (which is the signal to deliver if
1956 * execution was resumed via a continue packet).
1958 gdb_handlesig(s->c_cpu, 0);
1959 #else
1960 /* In this case wait to send the syscall packet until notification that
1961 the CPU has stopped. This must be done because if the packet is sent
1962 now the reply from the syscall request could be received while the CPU
1963 is still in the running state, which can cause packets to be dropped
1964 and state transition 'T' packets to be sent while the syscall is still
1965 being processed. */
1966 qemu_cpu_kick(s->c_cpu);
1967 #endif
1970 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
1972 va_list va;
1974 va_start(va, fmt);
1975 gdb_do_syscallv(cb, fmt, va);
1976 va_end(va);
1979 static void gdb_read_byte(GDBState *s, int ch)
1981 uint8_t reply;
1983 #ifndef CONFIG_USER_ONLY
1984 if (s->last_packet_len) {
1985 /* Waiting for a response to the last packet. If we see the start
1986 of a new command then abandon the previous response. */
1987 if (ch == '-') {
1988 trace_gdbstub_err_got_nack();
1989 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
1990 } else if (ch == '+') {
1991 trace_gdbstub_io_got_ack();
1992 } else {
1993 trace_gdbstub_io_got_unexpected((uint8_t)ch);
1996 if (ch == '+' || ch == '$')
1997 s->last_packet_len = 0;
1998 if (ch != '$')
1999 return;
2001 if (runstate_is_running()) {
2002 /* when the CPU is running, we cannot do anything except stop
2003 it when receiving a char */
2004 vm_stop(RUN_STATE_PAUSED);
2005 } else
2006 #endif
2008 switch(s->state) {
2009 case RS_IDLE:
2010 if (ch == '$') {
2011 /* start of command packet */
2012 s->line_buf_index = 0;
2013 s->line_sum = 0;
2014 s->state = RS_GETLINE;
2015 } else {
2016 trace_gdbstub_err_garbage((uint8_t)ch);
2018 break;
2019 case RS_GETLINE:
2020 if (ch == '}') {
2021 /* start escape sequence */
2022 s->state = RS_GETLINE_ESC;
2023 s->line_sum += ch;
2024 } else if (ch == '*') {
2025 /* start run length encoding sequence */
2026 s->state = RS_GETLINE_RLE;
2027 s->line_sum += ch;
2028 } else if (ch == '#') {
2029 /* end of command, start of checksum*/
2030 s->state = RS_CHKSUM1;
2031 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2032 trace_gdbstub_err_overrun();
2033 s->state = RS_IDLE;
2034 } else {
2035 /* unescaped command character */
2036 s->line_buf[s->line_buf_index++] = ch;
2037 s->line_sum += ch;
2039 break;
2040 case RS_GETLINE_ESC:
2041 if (ch == '#') {
2042 /* unexpected end of command in escape sequence */
2043 s->state = RS_CHKSUM1;
2044 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2045 /* command buffer overrun */
2046 trace_gdbstub_err_overrun();
2047 s->state = RS_IDLE;
2048 } else {
2049 /* parse escaped character and leave escape state */
2050 s->line_buf[s->line_buf_index++] = ch ^ 0x20;
2051 s->line_sum += ch;
2052 s->state = RS_GETLINE;
2054 break;
2055 case RS_GETLINE_RLE:
2056 if (ch < ' ') {
2057 /* invalid RLE count encoding */
2058 trace_gdbstub_err_invalid_repeat((uint8_t)ch);
2059 s->state = RS_GETLINE;
2060 } else {
2061 /* decode repeat length */
2062 int repeat = (unsigned char)ch - ' ' + 3;
2063 if (s->line_buf_index + repeat >= sizeof(s->line_buf) - 1) {
2064 /* that many repeats would overrun the command buffer */
2065 trace_gdbstub_err_overrun();
2066 s->state = RS_IDLE;
2067 } else if (s->line_buf_index < 1) {
2068 /* got a repeat but we have nothing to repeat */
2069 trace_gdbstub_err_invalid_rle();
2070 s->state = RS_GETLINE;
2071 } else {
2072 /* repeat the last character */
2073 memset(s->line_buf + s->line_buf_index,
2074 s->line_buf[s->line_buf_index - 1], repeat);
2075 s->line_buf_index += repeat;
2076 s->line_sum += ch;
2077 s->state = RS_GETLINE;
2080 break;
2081 case RS_CHKSUM1:
2082 /* get high hex digit of checksum */
2083 if (!isxdigit(ch)) {
2084 trace_gdbstub_err_checksum_invalid((uint8_t)ch);
2085 s->state = RS_GETLINE;
2086 break;
2088 s->line_buf[s->line_buf_index] = '\0';
2089 s->line_csum = fromhex(ch) << 4;
2090 s->state = RS_CHKSUM2;
2091 break;
2092 case RS_CHKSUM2:
2093 /* get low hex digit of checksum */
2094 if (!isxdigit(ch)) {
2095 trace_gdbstub_err_checksum_invalid((uint8_t)ch);
2096 s->state = RS_GETLINE;
2097 break;
2099 s->line_csum |= fromhex(ch);
2101 if (s->line_csum != (s->line_sum & 0xff)) {
2102 trace_gdbstub_err_checksum_incorrect(s->line_sum, s->line_csum);
2103 /* send NAK reply */
2104 reply = '-';
2105 put_buffer(s, &reply, 1);
2106 s->state = RS_IDLE;
2107 } else {
2108 /* send ACK reply */
2109 reply = '+';
2110 put_buffer(s, &reply, 1);
2111 s->state = gdb_handle_packet(s, s->line_buf);
2113 break;
2114 default:
2115 abort();
2120 /* Tell the remote gdb that the process has exited. */
2121 void gdb_exit(CPUArchState *env, int code)
2123 GDBState *s;
2124 char buf[4];
2126 s = gdbserver_state;
2127 if (!s) {
2128 return;
2130 #ifdef CONFIG_USER_ONLY
2131 if (gdbserver_fd < 0 || s->fd < 0) {
2132 return;
2134 #endif
2136 trace_gdbstub_op_exiting((uint8_t)code);
2138 snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
2139 put_packet(s, buf);
2141 #ifndef CONFIG_USER_ONLY
2142 qemu_chr_fe_deinit(&s->chr, true);
2143 #endif
2147 * Create the process that will contain all the "orphan" CPUs (that are not
2148 * part of a CPU cluster). Note that if this process contains no CPUs, it won't
2149 * be attachable and thus will be invisible to the user.
2151 static void create_default_process(GDBState *s)
2153 GDBProcess *process;
2154 int max_pid = 0;
2156 if (s->process_num) {
2157 max_pid = s->processes[s->process_num - 1].pid;
2160 s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
2161 process = &s->processes[s->process_num - 1];
2163 /* We need an available PID slot for this process */
2164 assert(max_pid < UINT32_MAX);
2166 process->pid = max_pid + 1;
2167 process->attached = false;
2168 process->target_xml[0] = '\0';
2171 #ifdef CONFIG_USER_ONLY
2173 gdb_handlesig(CPUState *cpu, int sig)
2175 GDBState *s;
2176 char buf[256];
2177 int n;
2179 s = gdbserver_state;
2180 if (gdbserver_fd < 0 || s->fd < 0) {
2181 return sig;
2184 /* disable single step if it was enabled */
2185 cpu_single_step(cpu, 0);
2186 tb_flush(cpu);
2188 if (sig != 0) {
2189 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb(sig));
2190 put_packet(s, buf);
2192 /* put_packet() might have detected that the peer terminated the
2193 connection. */
2194 if (s->fd < 0) {
2195 return sig;
2198 sig = 0;
2199 s->state = RS_IDLE;
2200 s->running_state = 0;
2201 while (s->running_state == 0) {
2202 n = read(s->fd, buf, 256);
2203 if (n > 0) {
2204 int i;
2206 for (i = 0; i < n; i++) {
2207 gdb_read_byte(s, buf[i]);
2209 } else {
2210 /* XXX: Connection closed. Should probably wait for another
2211 connection before continuing. */
2212 if (n == 0) {
2213 close(s->fd);
2215 s->fd = -1;
2216 return sig;
2219 sig = s->signal;
2220 s->signal = 0;
2221 return sig;
2224 /* Tell the remote gdb that the process has exited due to SIG. */
2225 void gdb_signalled(CPUArchState *env, int sig)
2227 GDBState *s;
2228 char buf[4];
2230 s = gdbserver_state;
2231 if (gdbserver_fd < 0 || s->fd < 0) {
2232 return;
2235 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb(sig));
2236 put_packet(s, buf);
2239 static bool gdb_accept(void)
2241 GDBState *s;
2242 struct sockaddr_in sockaddr;
2243 socklen_t len;
2244 int fd;
2246 for(;;) {
2247 len = sizeof(sockaddr);
2248 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2249 if (fd < 0 && errno != EINTR) {
2250 perror("accept");
2251 return false;
2252 } else if (fd >= 0) {
2253 qemu_set_cloexec(fd);
2254 break;
2258 /* set short latency */
2259 if (socket_set_nodelay(fd)) {
2260 perror("setsockopt");
2261 close(fd);
2262 return false;
2265 s = g_malloc0(sizeof(GDBState));
2266 create_default_process(s);
2267 s->processes[0].attached = true;
2268 s->c_cpu = gdb_first_attached_cpu(s);
2269 s->g_cpu = s->c_cpu;
2270 s->fd = fd;
2271 gdb_has_xml = false;
2273 gdbserver_state = s;
2274 return true;
2277 static int gdbserver_open(int port)
2279 struct sockaddr_in sockaddr;
2280 int fd, ret;
2282 fd = socket(PF_INET, SOCK_STREAM, 0);
2283 if (fd < 0) {
2284 perror("socket");
2285 return -1;
2287 qemu_set_cloexec(fd);
2289 socket_set_fast_reuse(fd);
2291 sockaddr.sin_family = AF_INET;
2292 sockaddr.sin_port = htons(port);
2293 sockaddr.sin_addr.s_addr = 0;
2294 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2295 if (ret < 0) {
2296 perror("bind");
2297 close(fd);
2298 return -1;
2300 ret = listen(fd, 1);
2301 if (ret < 0) {
2302 perror("listen");
2303 close(fd);
2304 return -1;
2306 return fd;
2309 int gdbserver_start(int port)
2311 gdbserver_fd = gdbserver_open(port);
2312 if (gdbserver_fd < 0)
2313 return -1;
2314 /* accept connections */
2315 if (!gdb_accept()) {
2316 close(gdbserver_fd);
2317 gdbserver_fd = -1;
2318 return -1;
2320 return 0;
2323 /* Disable gdb stub for child processes. */
2324 void gdbserver_fork(CPUState *cpu)
2326 GDBState *s = gdbserver_state;
2328 if (gdbserver_fd < 0 || s->fd < 0) {
2329 return;
2331 close(s->fd);
2332 s->fd = -1;
2333 cpu_breakpoint_remove_all(cpu, BP_GDB);
2334 cpu_watchpoint_remove_all(cpu, BP_GDB);
2336 #else
2337 static int gdb_chr_can_receive(void *opaque)
2339 /* We can handle an arbitrarily large amount of data.
2340 Pick the maximum packet size, which is as good as anything. */
2341 return MAX_PACKET_LENGTH;
2344 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2346 int i;
2348 for (i = 0; i < size; i++) {
2349 gdb_read_byte(gdbserver_state, buf[i]);
2353 static void gdb_chr_event(void *opaque, int event)
2355 int i;
2356 GDBState *s = (GDBState *) opaque;
2358 switch (event) {
2359 case CHR_EVENT_OPENED:
2360 /* Start with first process attached, others detached */
2361 for (i = 0; i < s->process_num; i++) {
2362 s->processes[i].attached = !i;
2365 s->c_cpu = gdb_first_attached_cpu(s);
2366 s->g_cpu = s->c_cpu;
2368 vm_stop(RUN_STATE_PAUSED);
2369 gdb_has_xml = false;
2370 break;
2371 default:
2372 break;
2376 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2378 char buf[MAX_PACKET_LENGTH];
2380 buf[0] = 'O';
2381 if (len > (MAX_PACKET_LENGTH/2) - 1)
2382 len = (MAX_PACKET_LENGTH/2) - 1;
2383 memtohex(buf + 1, (uint8_t *)msg, len);
2384 put_packet(s, buf);
2387 static int gdb_monitor_write(Chardev *chr, const uint8_t *buf, int len)
2389 const char *p = (const char *)buf;
2390 int max_sz;
2392 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2393 for (;;) {
2394 if (len <= max_sz) {
2395 gdb_monitor_output(gdbserver_state, p, len);
2396 break;
2398 gdb_monitor_output(gdbserver_state, p, max_sz);
2399 p += max_sz;
2400 len -= max_sz;
2402 return len;
2405 #ifndef _WIN32
2406 static void gdb_sigterm_handler(int signal)
2408 if (runstate_is_running()) {
2409 vm_stop(RUN_STATE_PAUSED);
2412 #endif
2414 static void gdb_monitor_open(Chardev *chr, ChardevBackend *backend,
2415 bool *be_opened, Error **errp)
2417 *be_opened = false;
2420 static void char_gdb_class_init(ObjectClass *oc, void *data)
2422 ChardevClass *cc = CHARDEV_CLASS(oc);
2424 cc->internal = true;
2425 cc->open = gdb_monitor_open;
2426 cc->chr_write = gdb_monitor_write;
2429 #define TYPE_CHARDEV_GDB "chardev-gdb"
2431 static const TypeInfo char_gdb_type_info = {
2432 .name = TYPE_CHARDEV_GDB,
2433 .parent = TYPE_CHARDEV,
2434 .class_init = char_gdb_class_init,
2437 static int find_cpu_clusters(Object *child, void *opaque)
2439 if (object_dynamic_cast(child, TYPE_CPU_CLUSTER)) {
2440 GDBState *s = (GDBState *) opaque;
2441 CPUClusterState *cluster = CPU_CLUSTER(child);
2442 GDBProcess *process;
2444 s->processes = g_renew(GDBProcess, s->processes, ++s->process_num);
2446 process = &s->processes[s->process_num - 1];
2449 * GDB process IDs -1 and 0 are reserved. To avoid subtle errors at
2450 * runtime, we enforce here that the machine does not use a cluster ID
2451 * that would lead to PID 0.
2453 assert(cluster->cluster_id != UINT32_MAX);
2454 process->pid = cluster->cluster_id + 1;
2455 process->attached = false;
2456 process->target_xml[0] = '\0';
2458 return 0;
2461 return object_child_foreach(child, find_cpu_clusters, opaque);
2464 static int pid_order(const void *a, const void *b)
2466 GDBProcess *pa = (GDBProcess *) a;
2467 GDBProcess *pb = (GDBProcess *) b;
2469 if (pa->pid < pb->pid) {
2470 return -1;
2471 } else if (pa->pid > pb->pid) {
2472 return 1;
2473 } else {
2474 return 0;
2478 static void create_processes(GDBState *s)
2480 object_child_foreach(object_get_root(), find_cpu_clusters, s);
2482 if (s->processes) {
2483 /* Sort by PID */
2484 qsort(s->processes, s->process_num, sizeof(s->processes[0]), pid_order);
2487 create_default_process(s);
2490 static void cleanup_processes(GDBState *s)
2492 g_free(s->processes);
2493 s->process_num = 0;
2494 s->processes = NULL;
2497 int gdbserver_start(const char *device)
2499 trace_gdbstub_op_start(device);
2501 GDBState *s;
2502 char gdbstub_device_name[128];
2503 Chardev *chr = NULL;
2504 Chardev *mon_chr;
2506 if (!first_cpu) {
2507 error_report("gdbstub: meaningless to attach gdb to a "
2508 "machine without any CPU.");
2509 return -1;
2512 if (!device)
2513 return -1;
2514 if (strcmp(device, "none") != 0) {
2515 if (strstart(device, "tcp:", NULL)) {
2516 /* enforce required TCP attributes */
2517 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
2518 "%s,nowait,nodelay,server", device);
2519 device = gdbstub_device_name;
2521 #ifndef _WIN32
2522 else if (strcmp(device, "stdio") == 0) {
2523 struct sigaction act;
2525 memset(&act, 0, sizeof(act));
2526 act.sa_handler = gdb_sigterm_handler;
2527 sigaction(SIGINT, &act, NULL);
2529 #endif
2531 * FIXME: it's a bit weird to allow using a mux chardev here
2532 * and implicitly setup a monitor. We may want to break this.
2534 chr = qemu_chr_new_noreplay("gdb", device, true, NULL);
2535 if (!chr)
2536 return -1;
2539 s = gdbserver_state;
2540 if (!s) {
2541 s = g_malloc0(sizeof(GDBState));
2542 gdbserver_state = s;
2544 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
2546 /* Initialize a monitor terminal for gdb */
2547 mon_chr = qemu_chardev_new(NULL, TYPE_CHARDEV_GDB,
2548 NULL, NULL, &error_abort);
2549 monitor_init(mon_chr, 0);
2550 } else {
2551 qemu_chr_fe_deinit(&s->chr, true);
2552 mon_chr = s->mon_chr;
2553 cleanup_processes(s);
2554 memset(s, 0, sizeof(GDBState));
2555 s->mon_chr = mon_chr;
2558 create_processes(s);
2560 if (chr) {
2561 qemu_chr_fe_init(&s->chr, chr, &error_abort);
2562 qemu_chr_fe_set_handlers(&s->chr, gdb_chr_can_receive, gdb_chr_receive,
2563 gdb_chr_event, NULL, s, NULL, true);
2565 s->state = chr ? RS_IDLE : RS_INACTIVE;
2566 s->mon_chr = mon_chr;
2567 s->current_syscall_cb = NULL;
2569 return 0;
2572 void gdbserver_cleanup(void)
2574 if (gdbserver_state) {
2575 put_packet(gdbserver_state, "W00");
2579 static void register_types(void)
2581 type_register_static(&char_gdb_type_info);
2584 type_init(register_types);
2585 #endif