2 * Physical memory management
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "qemu-common.h"
20 #include "exec/memory.h"
21 #include "exec/address-spaces.h"
22 #include "qapi/visitor.h"
23 #include "qemu/bitops.h"
24 #include "qemu/error-report.h"
25 #include "qom/object.h"
26 #include "trace-root.h"
28 #include "exec/memory-internal.h"
29 #include "exec/ram_addr.h"
30 #include "sysemu/kvm.h"
31 #include "sysemu/sysemu.h"
32 #include "hw/qdev-properties.h"
33 #include "migration/vmstate.h"
35 //#define DEBUG_UNASSIGNED
37 static unsigned memory_region_transaction_depth
;
38 static bool memory_region_update_pending
;
39 static bool ioeventfd_update_pending
;
40 static bool global_dirty_log
= false;
42 static QTAILQ_HEAD(memory_listeners
, MemoryListener
) memory_listeners
43 = QTAILQ_HEAD_INITIALIZER(memory_listeners
);
45 static QTAILQ_HEAD(, AddressSpace
) address_spaces
46 = QTAILQ_HEAD_INITIALIZER(address_spaces
);
48 static GHashTable
*flat_views
;
50 typedef struct AddrRange AddrRange
;
53 * Note that signed integers are needed for negative offsetting in aliases
54 * (large MemoryRegion::alias_offset).
61 static AddrRange
addrrange_make(Int128 start
, Int128 size
)
63 return (AddrRange
) { start
, size
};
66 static bool addrrange_equal(AddrRange r1
, AddrRange r2
)
68 return int128_eq(r1
.start
, r2
.start
) && int128_eq(r1
.size
, r2
.size
);
71 static Int128
addrrange_end(AddrRange r
)
73 return int128_add(r
.start
, r
.size
);
76 static AddrRange
addrrange_shift(AddrRange range
, Int128 delta
)
78 int128_addto(&range
.start
, delta
);
82 static bool addrrange_contains(AddrRange range
, Int128 addr
)
84 return int128_ge(addr
, range
.start
)
85 && int128_lt(addr
, addrrange_end(range
));
88 static bool addrrange_intersects(AddrRange r1
, AddrRange r2
)
90 return addrrange_contains(r1
, r2
.start
)
91 || addrrange_contains(r2
, r1
.start
);
94 static AddrRange
addrrange_intersection(AddrRange r1
, AddrRange r2
)
96 Int128 start
= int128_max(r1
.start
, r2
.start
);
97 Int128 end
= int128_min(addrrange_end(r1
), addrrange_end(r2
));
98 return addrrange_make(start
, int128_sub(end
, start
));
101 enum ListenerDirection
{ Forward
, Reverse
};
103 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
105 MemoryListener *_listener; \
107 switch (_direction) { \
109 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
110 if (_listener->_callback) { \
111 _listener->_callback(_listener, ##_args); \
116 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, \
117 memory_listeners, link) { \
118 if (_listener->_callback) { \
119 _listener->_callback(_listener, ##_args); \
128 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
130 MemoryListener *_listener; \
131 struct memory_listeners_as *list = &(_as)->listeners; \
133 switch (_direction) { \
135 QTAILQ_FOREACH(_listener, list, link_as) { \
136 if (_listener->_callback) { \
137 _listener->_callback(_listener, _section, ##_args); \
142 QTAILQ_FOREACH_REVERSE(_listener, list, memory_listeners_as, \
144 if (_listener->_callback) { \
145 _listener->_callback(_listener, _section, ##_args); \
154 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
155 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
157 MemoryRegionSection mrs = section_from_flat_range(fr, \
158 address_space_to_flatview(as)); \
159 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
162 struct CoalescedMemoryRange
{
164 QTAILQ_ENTRY(CoalescedMemoryRange
) link
;
167 struct MemoryRegionIoeventfd
{
174 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd
*a
,
175 MemoryRegionIoeventfd
*b
)
177 if (int128_lt(a
->addr
.start
, b
->addr
.start
)) {
179 } else if (int128_gt(a
->addr
.start
, b
->addr
.start
)) {
181 } else if (int128_lt(a
->addr
.size
, b
->addr
.size
)) {
183 } else if (int128_gt(a
->addr
.size
, b
->addr
.size
)) {
185 } else if (a
->match_data
< b
->match_data
) {
187 } else if (a
->match_data
> b
->match_data
) {
189 } else if (a
->match_data
) {
190 if (a
->data
< b
->data
) {
192 } else if (a
->data
> b
->data
) {
198 } else if (a
->e
> b
->e
) {
204 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd
*a
,
205 MemoryRegionIoeventfd
*b
)
207 return !memory_region_ioeventfd_before(a
, b
)
208 && !memory_region_ioeventfd_before(b
, a
);
211 /* Range of memory in the global map. Addresses are absolute. */
214 hwaddr offset_in_region
;
216 uint8_t dirty_log_mask
;
222 #define FOR_EACH_FLAT_RANGE(var, view) \
223 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
225 static inline MemoryRegionSection
226 section_from_flat_range(FlatRange
*fr
, FlatView
*fv
)
228 return (MemoryRegionSection
) {
231 .offset_within_region
= fr
->offset_in_region
,
232 .size
= fr
->addr
.size
,
233 .offset_within_address_space
= int128_get64(fr
->addr
.start
),
234 .readonly
= fr
->readonly
,
235 .nonvolatile
= fr
->nonvolatile
,
239 static bool flatrange_equal(FlatRange
*a
, FlatRange
*b
)
241 return a
->mr
== b
->mr
242 && addrrange_equal(a
->addr
, b
->addr
)
243 && a
->offset_in_region
== b
->offset_in_region
244 && a
->romd_mode
== b
->romd_mode
245 && a
->readonly
== b
->readonly
246 && a
->nonvolatile
== b
->nonvolatile
;
249 static FlatView
*flatview_new(MemoryRegion
*mr_root
)
253 view
= g_new0(FlatView
, 1);
255 view
->root
= mr_root
;
256 memory_region_ref(mr_root
);
257 trace_flatview_new(view
, mr_root
);
262 /* Insert a range into a given position. Caller is responsible for maintaining
265 static void flatview_insert(FlatView
*view
, unsigned pos
, FlatRange
*range
)
267 if (view
->nr
== view
->nr_allocated
) {
268 view
->nr_allocated
= MAX(2 * view
->nr
, 10);
269 view
->ranges
= g_realloc(view
->ranges
,
270 view
->nr_allocated
* sizeof(*view
->ranges
));
272 memmove(view
->ranges
+ pos
+ 1, view
->ranges
+ pos
,
273 (view
->nr
- pos
) * sizeof(FlatRange
));
274 view
->ranges
[pos
] = *range
;
275 memory_region_ref(range
->mr
);
279 static void flatview_destroy(FlatView
*view
)
283 trace_flatview_destroy(view
, view
->root
);
284 if (view
->dispatch
) {
285 address_space_dispatch_free(view
->dispatch
);
287 for (i
= 0; i
< view
->nr
; i
++) {
288 memory_region_unref(view
->ranges
[i
].mr
);
290 g_free(view
->ranges
);
291 memory_region_unref(view
->root
);
295 static bool flatview_ref(FlatView
*view
)
297 return atomic_fetch_inc_nonzero(&view
->ref
) > 0;
300 void flatview_unref(FlatView
*view
)
302 if (atomic_fetch_dec(&view
->ref
) == 1) {
303 trace_flatview_destroy_rcu(view
, view
->root
);
305 call_rcu(view
, flatview_destroy
, rcu
);
309 static bool can_merge(FlatRange
*r1
, FlatRange
*r2
)
311 return int128_eq(addrrange_end(r1
->addr
), r2
->addr
.start
)
313 && int128_eq(int128_add(int128_make64(r1
->offset_in_region
),
315 int128_make64(r2
->offset_in_region
))
316 && r1
->dirty_log_mask
== r2
->dirty_log_mask
317 && r1
->romd_mode
== r2
->romd_mode
318 && r1
->readonly
== r2
->readonly
319 && r1
->nonvolatile
== r2
->nonvolatile
;
322 /* Attempt to simplify a view by merging adjacent ranges */
323 static void flatview_simplify(FlatView
*view
)
328 while (i
< view
->nr
) {
331 && can_merge(&view
->ranges
[j
-1], &view
->ranges
[j
])) {
332 int128_addto(&view
->ranges
[i
].addr
.size
, view
->ranges
[j
].addr
.size
);
336 memmove(&view
->ranges
[i
], &view
->ranges
[j
],
337 (view
->nr
- j
) * sizeof(view
->ranges
[j
]));
342 static bool memory_region_big_endian(MemoryRegion
*mr
)
344 #ifdef TARGET_WORDS_BIGENDIAN
345 return mr
->ops
->endianness
!= DEVICE_LITTLE_ENDIAN
;
347 return mr
->ops
->endianness
== DEVICE_BIG_ENDIAN
;
351 static bool memory_region_wrong_endianness(MemoryRegion
*mr
)
353 #ifdef TARGET_WORDS_BIGENDIAN
354 return mr
->ops
->endianness
== DEVICE_LITTLE_ENDIAN
;
356 return mr
->ops
->endianness
== DEVICE_BIG_ENDIAN
;
360 static void adjust_endianness(MemoryRegion
*mr
, uint64_t *data
, unsigned size
)
362 if (memory_region_wrong_endianness(mr
)) {
367 *data
= bswap16(*data
);
370 *data
= bswap32(*data
);
373 *data
= bswap64(*data
);
381 static inline void memory_region_shift_read_access(uint64_t *value
,
387 *value
|= (tmp
& mask
) << shift
;
389 *value
|= (tmp
& mask
) >> -shift
;
393 static inline uint64_t memory_region_shift_write_access(uint64_t *value
,
400 tmp
= (*value
>> shift
) & mask
;
402 tmp
= (*value
<< -shift
) & mask
;
408 static hwaddr
memory_region_to_absolute_addr(MemoryRegion
*mr
, hwaddr offset
)
411 hwaddr abs_addr
= offset
;
413 abs_addr
+= mr
->addr
;
414 for (root
= mr
; root
->container
; ) {
415 root
= root
->container
;
416 abs_addr
+= root
->addr
;
422 static int get_cpu_index(void)
425 return current_cpu
->cpu_index
;
430 static MemTxResult
memory_region_read_accessor(MemoryRegion
*mr
,
440 tmp
= mr
->ops
->read(mr
->opaque
, addr
, size
);
442 trace_memory_region_subpage_read(get_cpu_index(), mr
, addr
, tmp
, size
);
443 } else if (mr
== &io_mem_notdirty
) {
444 /* Accesses to code which has previously been translated into a TB show
445 * up in the MMIO path, as accesses to the io_mem_notdirty
447 trace_memory_region_tb_read(get_cpu_index(), addr
, tmp
, size
);
448 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED
) {
449 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
450 trace_memory_region_ops_read(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
452 memory_region_shift_read_access(value
, shift
, mask
, tmp
);
456 static MemTxResult
memory_region_read_with_attrs_accessor(MemoryRegion
*mr
,
467 r
= mr
->ops
->read_with_attrs(mr
->opaque
, addr
, &tmp
, size
, attrs
);
469 trace_memory_region_subpage_read(get_cpu_index(), mr
, addr
, tmp
, size
);
470 } else if (mr
== &io_mem_notdirty
) {
471 /* Accesses to code which has previously been translated into a TB show
472 * up in the MMIO path, as accesses to the io_mem_notdirty
474 trace_memory_region_tb_read(get_cpu_index(), addr
, tmp
, size
);
475 } else if (TRACE_MEMORY_REGION_OPS_READ_ENABLED
) {
476 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
477 trace_memory_region_ops_read(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
479 memory_region_shift_read_access(value
, shift
, mask
, tmp
);
483 static MemTxResult
memory_region_write_accessor(MemoryRegion
*mr
,
491 uint64_t tmp
= memory_region_shift_write_access(value
, shift
, mask
);
494 trace_memory_region_subpage_write(get_cpu_index(), mr
, addr
, tmp
, size
);
495 } else if (mr
== &io_mem_notdirty
) {
496 /* Accesses to code which has previously been translated into a TB show
497 * up in the MMIO path, as accesses to the io_mem_notdirty
499 trace_memory_region_tb_write(get_cpu_index(), addr
, tmp
, size
);
500 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED
) {
501 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
502 trace_memory_region_ops_write(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
504 mr
->ops
->write(mr
->opaque
, addr
, tmp
, size
);
508 static MemTxResult
memory_region_write_with_attrs_accessor(MemoryRegion
*mr
,
516 uint64_t tmp
= memory_region_shift_write_access(value
, shift
, mask
);
519 trace_memory_region_subpage_write(get_cpu_index(), mr
, addr
, tmp
, size
);
520 } else if (mr
== &io_mem_notdirty
) {
521 /* Accesses to code which has previously been translated into a TB show
522 * up in the MMIO path, as accesses to the io_mem_notdirty
524 trace_memory_region_tb_write(get_cpu_index(), addr
, tmp
, size
);
525 } else if (TRACE_MEMORY_REGION_OPS_WRITE_ENABLED
) {
526 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
527 trace_memory_region_ops_write(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
529 return mr
->ops
->write_with_attrs(mr
->opaque
, addr
, tmp
, size
, attrs
);
532 static MemTxResult
access_with_adjusted_size(hwaddr addr
,
535 unsigned access_size_min
,
536 unsigned access_size_max
,
537 MemTxResult (*access_fn
)
548 uint64_t access_mask
;
549 unsigned access_size
;
551 MemTxResult r
= MEMTX_OK
;
553 if (!access_size_min
) {
556 if (!access_size_max
) {
560 /* FIXME: support unaligned access? */
561 access_size
= MAX(MIN(size
, access_size_max
), access_size_min
);
562 access_mask
= MAKE_64BIT_MASK(0, access_size
* 8);
563 if (memory_region_big_endian(mr
)) {
564 for (i
= 0; i
< size
; i
+= access_size
) {
565 r
|= access_fn(mr
, addr
+ i
, value
, access_size
,
566 (size
- access_size
- i
) * 8, access_mask
, attrs
);
569 for (i
= 0; i
< size
; i
+= access_size
) {
570 r
|= access_fn(mr
, addr
+ i
, value
, access_size
, i
* 8,
577 static AddressSpace
*memory_region_to_address_space(MemoryRegion
*mr
)
581 while (mr
->container
) {
584 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
585 if (mr
== as
->root
) {
592 /* Render a memory region into the global view. Ranges in @view obscure
595 static void render_memory_region(FlatView
*view
,
602 MemoryRegion
*subregion
;
604 hwaddr offset_in_region
;
614 int128_addto(&base
, int128_make64(mr
->addr
));
615 readonly
|= mr
->readonly
;
616 nonvolatile
|= mr
->nonvolatile
;
618 tmp
= addrrange_make(base
, mr
->size
);
620 if (!addrrange_intersects(tmp
, clip
)) {
624 clip
= addrrange_intersection(tmp
, clip
);
627 int128_subfrom(&base
, int128_make64(mr
->alias
->addr
));
628 int128_subfrom(&base
, int128_make64(mr
->alias_offset
));
629 render_memory_region(view
, mr
->alias
, base
, clip
,
630 readonly
, nonvolatile
);
634 /* Render subregions in priority order. */
635 QTAILQ_FOREACH(subregion
, &mr
->subregions
, subregions_link
) {
636 render_memory_region(view
, subregion
, base
, clip
,
637 readonly
, nonvolatile
);
640 if (!mr
->terminates
) {
644 offset_in_region
= int128_get64(int128_sub(clip
.start
, base
));
649 fr
.dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
650 fr
.romd_mode
= mr
->romd_mode
;
651 fr
.readonly
= readonly
;
652 fr
.nonvolatile
= nonvolatile
;
654 /* Render the region itself into any gaps left by the current view. */
655 for (i
= 0; i
< view
->nr
&& int128_nz(remain
); ++i
) {
656 if (int128_ge(base
, addrrange_end(view
->ranges
[i
].addr
))) {
659 if (int128_lt(base
, view
->ranges
[i
].addr
.start
)) {
660 now
= int128_min(remain
,
661 int128_sub(view
->ranges
[i
].addr
.start
, base
));
662 fr
.offset_in_region
= offset_in_region
;
663 fr
.addr
= addrrange_make(base
, now
);
664 flatview_insert(view
, i
, &fr
);
666 int128_addto(&base
, now
);
667 offset_in_region
+= int128_get64(now
);
668 int128_subfrom(&remain
, now
);
670 now
= int128_sub(int128_min(int128_add(base
, remain
),
671 addrrange_end(view
->ranges
[i
].addr
)),
673 int128_addto(&base
, now
);
674 offset_in_region
+= int128_get64(now
);
675 int128_subfrom(&remain
, now
);
677 if (int128_nz(remain
)) {
678 fr
.offset_in_region
= offset_in_region
;
679 fr
.addr
= addrrange_make(base
, remain
);
680 flatview_insert(view
, i
, &fr
);
684 static MemoryRegion
*memory_region_get_flatview_root(MemoryRegion
*mr
)
686 while (mr
->enabled
) {
688 if (!mr
->alias_offset
&& int128_ge(mr
->size
, mr
->alias
->size
)) {
689 /* The alias is included in its entirety. Use it as
690 * the "real" root, so that we can share more FlatViews.
695 } else if (!mr
->terminates
) {
696 unsigned int found
= 0;
697 MemoryRegion
*child
, *next
= NULL
;
698 QTAILQ_FOREACH(child
, &mr
->subregions
, subregions_link
) {
699 if (child
->enabled
) {
704 if (!child
->addr
&& int128_ge(mr
->size
, child
->size
)) {
705 /* A child is included in its entirety. If it's the only
706 * enabled one, use it in the hope of finding an alias down the
707 * way. This will also let us share FlatViews.
728 /* Render a memory topology into a list of disjoint absolute ranges. */
729 static FlatView
*generate_memory_topology(MemoryRegion
*mr
)
734 view
= flatview_new(mr
);
737 render_memory_region(view
, mr
, int128_zero(),
738 addrrange_make(int128_zero(), int128_2_64()),
741 flatview_simplify(view
);
743 view
->dispatch
= address_space_dispatch_new(view
);
744 for (i
= 0; i
< view
->nr
; i
++) {
745 MemoryRegionSection mrs
=
746 section_from_flat_range(&view
->ranges
[i
], view
);
747 flatview_add_to_dispatch(view
, &mrs
);
749 address_space_dispatch_compact(view
->dispatch
);
750 g_hash_table_replace(flat_views
, mr
, view
);
755 static void address_space_add_del_ioeventfds(AddressSpace
*as
,
756 MemoryRegionIoeventfd
*fds_new
,
758 MemoryRegionIoeventfd
*fds_old
,
762 MemoryRegionIoeventfd
*fd
;
763 MemoryRegionSection section
;
765 /* Generate a symmetric difference of the old and new fd sets, adding
766 * and deleting as necessary.
770 while (iold
< fds_old_nb
|| inew
< fds_new_nb
) {
771 if (iold
< fds_old_nb
772 && (inew
== fds_new_nb
773 || memory_region_ioeventfd_before(&fds_old
[iold
],
776 section
= (MemoryRegionSection
) {
777 .fv
= address_space_to_flatview(as
),
778 .offset_within_address_space
= int128_get64(fd
->addr
.start
),
779 .size
= fd
->addr
.size
,
781 MEMORY_LISTENER_CALL(as
, eventfd_del
, Forward
, §ion
,
782 fd
->match_data
, fd
->data
, fd
->e
);
784 } else if (inew
< fds_new_nb
785 && (iold
== fds_old_nb
786 || memory_region_ioeventfd_before(&fds_new
[inew
],
789 section
= (MemoryRegionSection
) {
790 .fv
= address_space_to_flatview(as
),
791 .offset_within_address_space
= int128_get64(fd
->addr
.start
),
792 .size
= fd
->addr
.size
,
794 MEMORY_LISTENER_CALL(as
, eventfd_add
, Reverse
, §ion
,
795 fd
->match_data
, fd
->data
, fd
->e
);
804 FlatView
*address_space_get_flatview(AddressSpace
*as
)
810 view
= address_space_to_flatview(as
);
811 /* If somebody has replaced as->current_map concurrently,
812 * flatview_ref returns false.
814 } while (!flatview_ref(view
));
819 static void address_space_update_ioeventfds(AddressSpace
*as
)
823 unsigned ioeventfd_nb
= 0;
824 MemoryRegionIoeventfd
*ioeventfds
= NULL
;
828 view
= address_space_get_flatview(as
);
829 FOR_EACH_FLAT_RANGE(fr
, view
) {
830 for (i
= 0; i
< fr
->mr
->ioeventfd_nb
; ++i
) {
831 tmp
= addrrange_shift(fr
->mr
->ioeventfds
[i
].addr
,
832 int128_sub(fr
->addr
.start
,
833 int128_make64(fr
->offset_in_region
)));
834 if (addrrange_intersects(fr
->addr
, tmp
)) {
836 ioeventfds
= g_realloc(ioeventfds
,
837 ioeventfd_nb
* sizeof(*ioeventfds
));
838 ioeventfds
[ioeventfd_nb
-1] = fr
->mr
->ioeventfds
[i
];
839 ioeventfds
[ioeventfd_nb
-1].addr
= tmp
;
844 address_space_add_del_ioeventfds(as
, ioeventfds
, ioeventfd_nb
,
845 as
->ioeventfds
, as
->ioeventfd_nb
);
847 g_free(as
->ioeventfds
);
848 as
->ioeventfds
= ioeventfds
;
849 as
->ioeventfd_nb
= ioeventfd_nb
;
850 flatview_unref(view
);
853 static void address_space_update_topology_pass(AddressSpace
*as
,
854 const FlatView
*old_view
,
855 const FlatView
*new_view
,
859 FlatRange
*frold
, *frnew
;
861 /* Generate a symmetric difference of the old and new memory maps.
862 * Kill ranges in the old map, and instantiate ranges in the new map.
865 while (iold
< old_view
->nr
|| inew
< new_view
->nr
) {
866 if (iold
< old_view
->nr
) {
867 frold
= &old_view
->ranges
[iold
];
871 if (inew
< new_view
->nr
) {
872 frnew
= &new_view
->ranges
[inew
];
879 || int128_lt(frold
->addr
.start
, frnew
->addr
.start
)
880 || (int128_eq(frold
->addr
.start
, frnew
->addr
.start
)
881 && !flatrange_equal(frold
, frnew
)))) {
882 /* In old but not in new, or in both but attributes changed. */
885 MEMORY_LISTENER_UPDATE_REGION(frold
, as
, Reverse
, region_del
);
889 } else if (frold
&& frnew
&& flatrange_equal(frold
, frnew
)) {
890 /* In both and unchanged (except logging may have changed) */
893 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, region_nop
);
894 if (frnew
->dirty_log_mask
& ~frold
->dirty_log_mask
) {
895 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, log_start
,
896 frold
->dirty_log_mask
,
897 frnew
->dirty_log_mask
);
899 if (frold
->dirty_log_mask
& ~frnew
->dirty_log_mask
) {
900 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Reverse
, log_stop
,
901 frold
->dirty_log_mask
,
902 frnew
->dirty_log_mask
);
912 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, region_add
);
920 static void flatviews_init(void)
922 static FlatView
*empty_view
;
928 flat_views
= g_hash_table_new_full(g_direct_hash
, g_direct_equal
, NULL
,
929 (GDestroyNotify
) flatview_unref
);
931 empty_view
= generate_memory_topology(NULL
);
932 /* We keep it alive forever in the global variable. */
933 flatview_ref(empty_view
);
935 g_hash_table_replace(flat_views
, NULL
, empty_view
);
936 flatview_ref(empty_view
);
940 static void flatviews_reset(void)
945 g_hash_table_unref(flat_views
);
950 /* Render unique FVs */
951 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
952 MemoryRegion
*physmr
= memory_region_get_flatview_root(as
->root
);
954 if (g_hash_table_lookup(flat_views
, physmr
)) {
958 generate_memory_topology(physmr
);
962 static void address_space_set_flatview(AddressSpace
*as
)
964 FlatView
*old_view
= address_space_to_flatview(as
);
965 MemoryRegion
*physmr
= memory_region_get_flatview_root(as
->root
);
966 FlatView
*new_view
= g_hash_table_lookup(flat_views
, physmr
);
970 if (old_view
== new_view
) {
975 flatview_ref(old_view
);
978 flatview_ref(new_view
);
980 if (!QTAILQ_EMPTY(&as
->listeners
)) {
981 FlatView tmpview
= { .nr
= 0 }, *old_view2
= old_view
;
984 old_view2
= &tmpview
;
986 address_space_update_topology_pass(as
, old_view2
, new_view
, false);
987 address_space_update_topology_pass(as
, old_view2
, new_view
, true);
990 /* Writes are protected by the BQL. */
991 atomic_rcu_set(&as
->current_map
, new_view
);
993 flatview_unref(old_view
);
996 /* Note that all the old MemoryRegions are still alive up to this
997 * point. This relieves most MemoryListeners from the need to
998 * ref/unref the MemoryRegions they get---unless they use them
999 * outside the iothread mutex, in which case precise reference
1000 * counting is necessary.
1003 flatview_unref(old_view
);
1007 static void address_space_update_topology(AddressSpace
*as
)
1009 MemoryRegion
*physmr
= memory_region_get_flatview_root(as
->root
);
1012 if (!g_hash_table_lookup(flat_views
, physmr
)) {
1013 generate_memory_topology(physmr
);
1015 address_space_set_flatview(as
);
1018 void memory_region_transaction_begin(void)
1020 qemu_flush_coalesced_mmio_buffer();
1021 ++memory_region_transaction_depth
;
1024 void memory_region_transaction_commit(void)
1028 assert(memory_region_transaction_depth
);
1029 assert(qemu_mutex_iothread_locked());
1031 --memory_region_transaction_depth
;
1032 if (!memory_region_transaction_depth
) {
1033 if (memory_region_update_pending
) {
1036 MEMORY_LISTENER_CALL_GLOBAL(begin
, Forward
);
1038 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
1039 address_space_set_flatview(as
);
1040 address_space_update_ioeventfds(as
);
1042 memory_region_update_pending
= false;
1043 ioeventfd_update_pending
= false;
1044 MEMORY_LISTENER_CALL_GLOBAL(commit
, Forward
);
1045 } else if (ioeventfd_update_pending
) {
1046 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
1047 address_space_update_ioeventfds(as
);
1049 ioeventfd_update_pending
= false;
1054 static void memory_region_destructor_none(MemoryRegion
*mr
)
1058 static void memory_region_destructor_ram(MemoryRegion
*mr
)
1060 qemu_ram_free(mr
->ram_block
);
1063 static bool memory_region_need_escape(char c
)
1065 return c
== '/' || c
== '[' || c
== '\\' || c
== ']';
1068 static char *memory_region_escape_name(const char *name
)
1075 for (p
= name
; *p
; p
++) {
1076 bytes
+= memory_region_need_escape(*p
) ? 4 : 1;
1078 if (bytes
== p
- name
) {
1079 return g_memdup(name
, bytes
+ 1);
1082 escaped
= g_malloc(bytes
+ 1);
1083 for (p
= name
, q
= escaped
; *p
; p
++) {
1085 if (unlikely(memory_region_need_escape(c
))) {
1088 *q
++ = "0123456789abcdef"[c
>> 4];
1089 c
= "0123456789abcdef"[c
& 15];
1097 static void memory_region_do_init(MemoryRegion
*mr
,
1102 mr
->size
= int128_make64(size
);
1103 if (size
== UINT64_MAX
) {
1104 mr
->size
= int128_2_64();
1106 mr
->name
= g_strdup(name
);
1108 mr
->ram_block
= NULL
;
1111 char *escaped_name
= memory_region_escape_name(name
);
1112 char *name_array
= g_strdup_printf("%s[*]", escaped_name
);
1115 owner
= container_get(qdev_get_machine(), "/unattached");
1118 object_property_add_child(owner
, name_array
, OBJECT(mr
), &error_abort
);
1119 object_unref(OBJECT(mr
));
1121 g_free(escaped_name
);
1125 void memory_region_init(MemoryRegion
*mr
,
1130 object_initialize(mr
, sizeof(*mr
), TYPE_MEMORY_REGION
);
1131 memory_region_do_init(mr
, owner
, name
, size
);
1134 static void memory_region_get_addr(Object
*obj
, Visitor
*v
, const char *name
,
1135 void *opaque
, Error
**errp
)
1137 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1138 uint64_t value
= mr
->addr
;
1140 visit_type_uint64(v
, name
, &value
, errp
);
1143 static void memory_region_get_container(Object
*obj
, Visitor
*v
,
1144 const char *name
, void *opaque
,
1147 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1148 gchar
*path
= (gchar
*)"";
1150 if (mr
->container
) {
1151 path
= object_get_canonical_path(OBJECT(mr
->container
));
1153 visit_type_str(v
, name
, &path
, errp
);
1154 if (mr
->container
) {
1159 static Object
*memory_region_resolve_container(Object
*obj
, void *opaque
,
1162 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1164 return OBJECT(mr
->container
);
1167 static void memory_region_get_priority(Object
*obj
, Visitor
*v
,
1168 const char *name
, void *opaque
,
1171 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1172 int32_t value
= mr
->priority
;
1174 visit_type_int32(v
, name
, &value
, errp
);
1177 static void memory_region_get_size(Object
*obj
, Visitor
*v
, const char *name
,
1178 void *opaque
, Error
**errp
)
1180 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1181 uint64_t value
= memory_region_size(mr
);
1183 visit_type_uint64(v
, name
, &value
, errp
);
1186 static void memory_region_initfn(Object
*obj
)
1188 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1191 mr
->ops
= &unassigned_mem_ops
;
1193 mr
->romd_mode
= true;
1194 mr
->global_locking
= true;
1195 mr
->destructor
= memory_region_destructor_none
;
1196 QTAILQ_INIT(&mr
->subregions
);
1197 QTAILQ_INIT(&mr
->coalesced
);
1199 op
= object_property_add(OBJECT(mr
), "container",
1200 "link<" TYPE_MEMORY_REGION
">",
1201 memory_region_get_container
,
1202 NULL
, /* memory_region_set_container */
1203 NULL
, NULL
, &error_abort
);
1204 op
->resolve
= memory_region_resolve_container
;
1206 object_property_add(OBJECT(mr
), "addr", "uint64",
1207 memory_region_get_addr
,
1208 NULL
, /* memory_region_set_addr */
1209 NULL
, NULL
, &error_abort
);
1210 object_property_add(OBJECT(mr
), "priority", "uint32",
1211 memory_region_get_priority
,
1212 NULL
, /* memory_region_set_priority */
1213 NULL
, NULL
, &error_abort
);
1214 object_property_add(OBJECT(mr
), "size", "uint64",
1215 memory_region_get_size
,
1216 NULL
, /* memory_region_set_size, */
1217 NULL
, NULL
, &error_abort
);
1220 static void iommu_memory_region_initfn(Object
*obj
)
1222 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1224 mr
->is_iommu
= true;
1227 static uint64_t unassigned_mem_read(void *opaque
, hwaddr addr
,
1230 #ifdef DEBUG_UNASSIGNED
1231 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
1233 if (current_cpu
!= NULL
) {
1234 bool is_exec
= current_cpu
->mem_io_access_type
== MMU_INST_FETCH
;
1235 cpu_unassigned_access(current_cpu
, addr
, false, is_exec
, 0, size
);
1240 static void unassigned_mem_write(void *opaque
, hwaddr addr
,
1241 uint64_t val
, unsigned size
)
1243 #ifdef DEBUG_UNASSIGNED
1244 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%"PRIx64
"\n", addr
, val
);
1246 if (current_cpu
!= NULL
) {
1247 cpu_unassigned_access(current_cpu
, addr
, true, false, 0, size
);
1251 static bool unassigned_mem_accepts(void *opaque
, hwaddr addr
,
1252 unsigned size
, bool is_write
,
1258 const MemoryRegionOps unassigned_mem_ops
= {
1259 .valid
.accepts
= unassigned_mem_accepts
,
1260 .endianness
= DEVICE_NATIVE_ENDIAN
,
1263 static uint64_t memory_region_ram_device_read(void *opaque
,
1264 hwaddr addr
, unsigned size
)
1266 MemoryRegion
*mr
= opaque
;
1267 uint64_t data
= (uint64_t)~0;
1271 data
= *(uint8_t *)(mr
->ram_block
->host
+ addr
);
1274 data
= *(uint16_t *)(mr
->ram_block
->host
+ addr
);
1277 data
= *(uint32_t *)(mr
->ram_block
->host
+ addr
);
1280 data
= *(uint64_t *)(mr
->ram_block
->host
+ addr
);
1284 trace_memory_region_ram_device_read(get_cpu_index(), mr
, addr
, data
, size
);
1289 static void memory_region_ram_device_write(void *opaque
, hwaddr addr
,
1290 uint64_t data
, unsigned size
)
1292 MemoryRegion
*mr
= opaque
;
1294 trace_memory_region_ram_device_write(get_cpu_index(), mr
, addr
, data
, size
);
1298 *(uint8_t *)(mr
->ram_block
->host
+ addr
) = (uint8_t)data
;
1301 *(uint16_t *)(mr
->ram_block
->host
+ addr
) = (uint16_t)data
;
1304 *(uint32_t *)(mr
->ram_block
->host
+ addr
) = (uint32_t)data
;
1307 *(uint64_t *)(mr
->ram_block
->host
+ addr
) = data
;
1312 static const MemoryRegionOps ram_device_mem_ops
= {
1313 .read
= memory_region_ram_device_read
,
1314 .write
= memory_region_ram_device_write
,
1315 .endianness
= DEVICE_HOST_ENDIAN
,
1317 .min_access_size
= 1,
1318 .max_access_size
= 8,
1322 .min_access_size
= 1,
1323 .max_access_size
= 8,
1328 bool memory_region_access_valid(MemoryRegion
*mr
,
1334 int access_size_min
, access_size_max
;
1337 if (!mr
->ops
->valid
.unaligned
&& (addr
& (size
- 1))) {
1341 if (!mr
->ops
->valid
.accepts
) {
1345 access_size_min
= mr
->ops
->valid
.min_access_size
;
1346 if (!mr
->ops
->valid
.min_access_size
) {
1347 access_size_min
= 1;
1350 access_size_max
= mr
->ops
->valid
.max_access_size
;
1351 if (!mr
->ops
->valid
.max_access_size
) {
1352 access_size_max
= 4;
1355 access_size
= MAX(MIN(size
, access_size_max
), access_size_min
);
1356 for (i
= 0; i
< size
; i
+= access_size
) {
1357 if (!mr
->ops
->valid
.accepts(mr
->opaque
, addr
+ i
, access_size
,
1366 static MemTxResult
memory_region_dispatch_read1(MemoryRegion
*mr
,
1374 if (mr
->ops
->read
) {
1375 return access_with_adjusted_size(addr
, pval
, size
,
1376 mr
->ops
->impl
.min_access_size
,
1377 mr
->ops
->impl
.max_access_size
,
1378 memory_region_read_accessor
,
1381 return access_with_adjusted_size(addr
, pval
, size
,
1382 mr
->ops
->impl
.min_access_size
,
1383 mr
->ops
->impl
.max_access_size
,
1384 memory_region_read_with_attrs_accessor
,
1389 MemTxResult
memory_region_dispatch_read(MemoryRegion
*mr
,
1397 if (!memory_region_access_valid(mr
, addr
, size
, false, attrs
)) {
1398 *pval
= unassigned_mem_read(mr
, addr
, size
);
1399 return MEMTX_DECODE_ERROR
;
1402 r
= memory_region_dispatch_read1(mr
, addr
, pval
, size
, attrs
);
1403 adjust_endianness(mr
, pval
, size
);
1407 /* Return true if an eventfd was signalled */
1408 static bool memory_region_dispatch_write_eventfds(MemoryRegion
*mr
,
1414 MemoryRegionIoeventfd ioeventfd
= {
1415 .addr
= addrrange_make(int128_make64(addr
), int128_make64(size
)),
1420 for (i
= 0; i
< mr
->ioeventfd_nb
; i
++) {
1421 ioeventfd
.match_data
= mr
->ioeventfds
[i
].match_data
;
1422 ioeventfd
.e
= mr
->ioeventfds
[i
].e
;
1424 if (memory_region_ioeventfd_equal(&ioeventfd
, &mr
->ioeventfds
[i
])) {
1425 event_notifier_set(ioeventfd
.e
);
1433 MemTxResult
memory_region_dispatch_write(MemoryRegion
*mr
,
1439 if (!memory_region_access_valid(mr
, addr
, size
, true, attrs
)) {
1440 unassigned_mem_write(mr
, addr
, data
, size
);
1441 return MEMTX_DECODE_ERROR
;
1444 adjust_endianness(mr
, &data
, size
);
1446 if ((!kvm_eventfds_enabled()) &&
1447 memory_region_dispatch_write_eventfds(mr
, addr
, data
, size
, attrs
)) {
1451 if (mr
->ops
->write
) {
1452 return access_with_adjusted_size(addr
, &data
, size
,
1453 mr
->ops
->impl
.min_access_size
,
1454 mr
->ops
->impl
.max_access_size
,
1455 memory_region_write_accessor
, mr
,
1459 access_with_adjusted_size(addr
, &data
, size
,
1460 mr
->ops
->impl
.min_access_size
,
1461 mr
->ops
->impl
.max_access_size
,
1462 memory_region_write_with_attrs_accessor
,
1467 void memory_region_init_io(MemoryRegion
*mr
,
1469 const MemoryRegionOps
*ops
,
1474 memory_region_init(mr
, owner
, name
, size
);
1475 mr
->ops
= ops
? ops
: &unassigned_mem_ops
;
1476 mr
->opaque
= opaque
;
1477 mr
->terminates
= true;
1480 void memory_region_init_ram_nomigrate(MemoryRegion
*mr
,
1486 memory_region_init_ram_shared_nomigrate(mr
, owner
, name
, size
, false, errp
);
1489 void memory_region_init_ram_shared_nomigrate(MemoryRegion
*mr
,
1497 memory_region_init(mr
, owner
, name
, size
);
1499 mr
->terminates
= true;
1500 mr
->destructor
= memory_region_destructor_ram
;
1501 mr
->ram_block
= qemu_ram_alloc(size
, share
, mr
, &err
);
1502 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1504 mr
->size
= int128_zero();
1505 object_unparent(OBJECT(mr
));
1506 error_propagate(errp
, err
);
1510 void memory_region_init_resizeable_ram(MemoryRegion
*mr
,
1515 void (*resized
)(const char*,
1521 memory_region_init(mr
, owner
, name
, size
);
1523 mr
->terminates
= true;
1524 mr
->destructor
= memory_region_destructor_ram
;
1525 mr
->ram_block
= qemu_ram_alloc_resizeable(size
, max_size
, resized
,
1527 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1529 mr
->size
= int128_zero();
1530 object_unparent(OBJECT(mr
));
1531 error_propagate(errp
, err
);
1536 void memory_region_init_ram_from_file(MemoryRegion
*mr
,
1537 struct Object
*owner
,
1546 memory_region_init(mr
, owner
, name
, size
);
1548 mr
->terminates
= true;
1549 mr
->destructor
= memory_region_destructor_ram
;
1551 mr
->ram_block
= qemu_ram_alloc_from_file(size
, mr
, ram_flags
, path
, &err
);
1552 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1554 mr
->size
= int128_zero();
1555 object_unparent(OBJECT(mr
));
1556 error_propagate(errp
, err
);
1560 void memory_region_init_ram_from_fd(MemoryRegion
*mr
,
1561 struct Object
*owner
,
1569 memory_region_init(mr
, owner
, name
, size
);
1571 mr
->terminates
= true;
1572 mr
->destructor
= memory_region_destructor_ram
;
1573 mr
->ram_block
= qemu_ram_alloc_from_fd(size
, mr
,
1574 share
? RAM_SHARED
: 0,
1576 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1578 mr
->size
= int128_zero();
1579 object_unparent(OBJECT(mr
));
1580 error_propagate(errp
, err
);
1585 void memory_region_init_ram_ptr(MemoryRegion
*mr
,
1591 memory_region_init(mr
, owner
, name
, size
);
1593 mr
->terminates
= true;
1594 mr
->destructor
= memory_region_destructor_ram
;
1595 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1597 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1598 assert(ptr
!= NULL
);
1599 mr
->ram_block
= qemu_ram_alloc_from_ptr(size
, ptr
, mr
, &error_fatal
);
1602 void memory_region_init_ram_device_ptr(MemoryRegion
*mr
,
1608 memory_region_init_ram_ptr(mr
, owner
, name
, size
, ptr
);
1609 mr
->ram_device
= true;
1610 mr
->ops
= &ram_device_mem_ops
;
1614 void memory_region_init_alias(MemoryRegion
*mr
,
1621 memory_region_init(mr
, owner
, name
, size
);
1623 mr
->alias_offset
= offset
;
1626 void memory_region_init_rom_nomigrate(MemoryRegion
*mr
,
1627 struct Object
*owner
,
1633 memory_region_init(mr
, owner
, name
, size
);
1635 mr
->readonly
= true;
1636 mr
->terminates
= true;
1637 mr
->destructor
= memory_region_destructor_ram
;
1638 mr
->ram_block
= qemu_ram_alloc(size
, false, mr
, &err
);
1639 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1641 mr
->size
= int128_zero();
1642 object_unparent(OBJECT(mr
));
1643 error_propagate(errp
, err
);
1647 void memory_region_init_rom_device_nomigrate(MemoryRegion
*mr
,
1649 const MemoryRegionOps
*ops
,
1657 memory_region_init(mr
, owner
, name
, size
);
1659 mr
->opaque
= opaque
;
1660 mr
->terminates
= true;
1661 mr
->rom_device
= true;
1662 mr
->destructor
= memory_region_destructor_ram
;
1663 mr
->ram_block
= qemu_ram_alloc(size
, false, mr
, &err
);
1665 mr
->size
= int128_zero();
1666 object_unparent(OBJECT(mr
));
1667 error_propagate(errp
, err
);
1671 void memory_region_init_iommu(void *_iommu_mr
,
1672 size_t instance_size
,
1673 const char *mrtypename
,
1678 struct IOMMUMemoryRegion
*iommu_mr
;
1679 struct MemoryRegion
*mr
;
1681 object_initialize(_iommu_mr
, instance_size
, mrtypename
);
1682 mr
= MEMORY_REGION(_iommu_mr
);
1683 memory_region_do_init(mr
, owner
, name
, size
);
1684 iommu_mr
= IOMMU_MEMORY_REGION(mr
);
1685 mr
->terminates
= true; /* then re-forwards */
1686 QLIST_INIT(&iommu_mr
->iommu_notify
);
1687 iommu_mr
->iommu_notify_flags
= IOMMU_NOTIFIER_NONE
;
1690 static void memory_region_finalize(Object
*obj
)
1692 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1694 assert(!mr
->container
);
1696 /* We know the region is not visible in any address space (it
1697 * does not have a container and cannot be a root either because
1698 * it has no references, so we can blindly clear mr->enabled.
1699 * memory_region_set_enabled instead could trigger a transaction
1700 * and cause an infinite loop.
1702 mr
->enabled
= false;
1703 memory_region_transaction_begin();
1704 while (!QTAILQ_EMPTY(&mr
->subregions
)) {
1705 MemoryRegion
*subregion
= QTAILQ_FIRST(&mr
->subregions
);
1706 memory_region_del_subregion(mr
, subregion
);
1708 memory_region_transaction_commit();
1711 memory_region_clear_coalescing(mr
);
1712 g_free((char *)mr
->name
);
1713 g_free(mr
->ioeventfds
);
1716 Object
*memory_region_owner(MemoryRegion
*mr
)
1718 Object
*obj
= OBJECT(mr
);
1722 void memory_region_ref(MemoryRegion
*mr
)
1724 /* MMIO callbacks most likely will access data that belongs
1725 * to the owner, hence the need to ref/unref the owner whenever
1726 * the memory region is in use.
1728 * The memory region is a child of its owner. As long as the
1729 * owner doesn't call unparent itself on the memory region,
1730 * ref-ing the owner will also keep the memory region alive.
1731 * Memory regions without an owner are supposed to never go away;
1732 * we do not ref/unref them because it slows down DMA sensibly.
1734 if (mr
&& mr
->owner
) {
1735 object_ref(mr
->owner
);
1739 void memory_region_unref(MemoryRegion
*mr
)
1741 if (mr
&& mr
->owner
) {
1742 object_unref(mr
->owner
);
1746 uint64_t memory_region_size(MemoryRegion
*mr
)
1748 if (int128_eq(mr
->size
, int128_2_64())) {
1751 return int128_get64(mr
->size
);
1754 const char *memory_region_name(const MemoryRegion
*mr
)
1757 ((MemoryRegion
*)mr
)->name
=
1758 object_get_canonical_path_component(OBJECT(mr
));
1763 bool memory_region_is_ram_device(MemoryRegion
*mr
)
1765 return mr
->ram_device
;
1768 uint8_t memory_region_get_dirty_log_mask(MemoryRegion
*mr
)
1770 uint8_t mask
= mr
->dirty_log_mask
;
1771 if (global_dirty_log
&& mr
->ram_block
) {
1772 mask
|= (1 << DIRTY_MEMORY_MIGRATION
);
1777 bool memory_region_is_logging(MemoryRegion
*mr
, uint8_t client
)
1779 return memory_region_get_dirty_log_mask(mr
) & (1 << client
);
1782 static void memory_region_update_iommu_notify_flags(IOMMUMemoryRegion
*iommu_mr
)
1784 IOMMUNotifierFlag flags
= IOMMU_NOTIFIER_NONE
;
1785 IOMMUNotifier
*iommu_notifier
;
1786 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1788 IOMMU_NOTIFIER_FOREACH(iommu_notifier
, iommu_mr
) {
1789 flags
|= iommu_notifier
->notifier_flags
;
1792 if (flags
!= iommu_mr
->iommu_notify_flags
&& imrc
->notify_flag_changed
) {
1793 imrc
->notify_flag_changed(iommu_mr
,
1794 iommu_mr
->iommu_notify_flags
,
1798 iommu_mr
->iommu_notify_flags
= flags
;
1801 void memory_region_register_iommu_notifier(MemoryRegion
*mr
,
1804 IOMMUMemoryRegion
*iommu_mr
;
1807 memory_region_register_iommu_notifier(mr
->alias
, n
);
1811 /* We need to register for at least one bitfield */
1812 iommu_mr
= IOMMU_MEMORY_REGION(mr
);
1813 assert(n
->notifier_flags
!= IOMMU_NOTIFIER_NONE
);
1814 assert(n
->start
<= n
->end
);
1815 assert(n
->iommu_idx
>= 0 &&
1816 n
->iommu_idx
< memory_region_iommu_num_indexes(iommu_mr
));
1818 QLIST_INSERT_HEAD(&iommu_mr
->iommu_notify
, n
, node
);
1819 memory_region_update_iommu_notify_flags(iommu_mr
);
1822 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion
*iommu_mr
)
1824 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1826 if (imrc
->get_min_page_size
) {
1827 return imrc
->get_min_page_size(iommu_mr
);
1829 return TARGET_PAGE_SIZE
;
1832 void memory_region_iommu_replay(IOMMUMemoryRegion
*iommu_mr
, IOMMUNotifier
*n
)
1834 MemoryRegion
*mr
= MEMORY_REGION(iommu_mr
);
1835 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1836 hwaddr addr
, granularity
;
1837 IOMMUTLBEntry iotlb
;
1839 /* If the IOMMU has its own replay callback, override */
1841 imrc
->replay(iommu_mr
, n
);
1845 granularity
= memory_region_iommu_get_min_page_size(iommu_mr
);
1847 for (addr
= 0; addr
< memory_region_size(mr
); addr
+= granularity
) {
1848 iotlb
= imrc
->translate(iommu_mr
, addr
, IOMMU_NONE
, n
->iommu_idx
);
1849 if (iotlb
.perm
!= IOMMU_NONE
) {
1850 n
->notify(n
, &iotlb
);
1853 /* if (2^64 - MR size) < granularity, it's possible to get an
1854 * infinite loop here. This should catch such a wraparound */
1855 if ((addr
+ granularity
) < addr
) {
1861 void memory_region_iommu_replay_all(IOMMUMemoryRegion
*iommu_mr
)
1863 IOMMUNotifier
*notifier
;
1865 IOMMU_NOTIFIER_FOREACH(notifier
, iommu_mr
) {
1866 memory_region_iommu_replay(iommu_mr
, notifier
);
1870 void memory_region_unregister_iommu_notifier(MemoryRegion
*mr
,
1873 IOMMUMemoryRegion
*iommu_mr
;
1876 memory_region_unregister_iommu_notifier(mr
->alias
, n
);
1879 QLIST_REMOVE(n
, node
);
1880 iommu_mr
= IOMMU_MEMORY_REGION(mr
);
1881 memory_region_update_iommu_notify_flags(iommu_mr
);
1884 void memory_region_notify_one(IOMMUNotifier
*notifier
,
1885 IOMMUTLBEntry
*entry
)
1887 IOMMUNotifierFlag request_flags
;
1890 * Skip the notification if the notification does not overlap
1891 * with registered range.
1893 if (notifier
->start
> entry
->iova
+ entry
->addr_mask
||
1894 notifier
->end
< entry
->iova
) {
1898 if (entry
->perm
& IOMMU_RW
) {
1899 request_flags
= IOMMU_NOTIFIER_MAP
;
1901 request_flags
= IOMMU_NOTIFIER_UNMAP
;
1904 if (notifier
->notifier_flags
& request_flags
) {
1905 notifier
->notify(notifier
, entry
);
1909 void memory_region_notify_iommu(IOMMUMemoryRegion
*iommu_mr
,
1911 IOMMUTLBEntry entry
)
1913 IOMMUNotifier
*iommu_notifier
;
1915 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr
)));
1917 IOMMU_NOTIFIER_FOREACH(iommu_notifier
, iommu_mr
) {
1918 if (iommu_notifier
->iommu_idx
== iommu_idx
) {
1919 memory_region_notify_one(iommu_notifier
, &entry
);
1924 int memory_region_iommu_get_attr(IOMMUMemoryRegion
*iommu_mr
,
1925 enum IOMMUMemoryRegionAttr attr
,
1928 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1930 if (!imrc
->get_attr
) {
1934 return imrc
->get_attr(iommu_mr
, attr
, data
);
1937 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion
*iommu_mr
,
1940 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1942 if (!imrc
->attrs_to_index
) {
1946 return imrc
->attrs_to_index(iommu_mr
, attrs
);
1949 int memory_region_iommu_num_indexes(IOMMUMemoryRegion
*iommu_mr
)
1951 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1953 if (!imrc
->num_indexes
) {
1957 return imrc
->num_indexes(iommu_mr
);
1960 void memory_region_set_log(MemoryRegion
*mr
, bool log
, unsigned client
)
1962 uint8_t mask
= 1 << client
;
1963 uint8_t old_logging
;
1965 assert(client
== DIRTY_MEMORY_VGA
);
1966 old_logging
= mr
->vga_logging_count
;
1967 mr
->vga_logging_count
+= log
? 1 : -1;
1968 if (!!old_logging
== !!mr
->vga_logging_count
) {
1972 memory_region_transaction_begin();
1973 mr
->dirty_log_mask
= (mr
->dirty_log_mask
& ~mask
) | (log
* mask
);
1974 memory_region_update_pending
|= mr
->enabled
;
1975 memory_region_transaction_commit();
1978 bool memory_region_get_dirty(MemoryRegion
*mr
, hwaddr addr
,
1979 hwaddr size
, unsigned client
)
1981 assert(mr
->ram_block
);
1982 return cpu_physical_memory_get_dirty(memory_region_get_ram_addr(mr
) + addr
,
1986 void memory_region_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
1989 assert(mr
->ram_block
);
1990 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr
) + addr
,
1992 memory_region_get_dirty_log_mask(mr
));
1995 static void memory_region_sync_dirty_bitmap(MemoryRegion
*mr
)
1997 MemoryListener
*listener
;
2002 /* If the same address space has multiple log_sync listeners, we
2003 * visit that address space's FlatView multiple times. But because
2004 * log_sync listeners are rare, it's still cheaper than walking each
2005 * address space once.
2007 QTAILQ_FOREACH(listener
, &memory_listeners
, link
) {
2008 if (!listener
->log_sync
) {
2011 as
= listener
->address_space
;
2012 view
= address_space_get_flatview(as
);
2013 FOR_EACH_FLAT_RANGE(fr
, view
) {
2014 if (fr
->dirty_log_mask
&& (!mr
|| fr
->mr
== mr
)) {
2015 MemoryRegionSection mrs
= section_from_flat_range(fr
, view
);
2016 listener
->log_sync(listener
, &mrs
);
2019 flatview_unref(view
);
2023 DirtyBitmapSnapshot
*memory_region_snapshot_and_clear_dirty(MemoryRegion
*mr
,
2028 assert(mr
->ram_block
);
2029 memory_region_sync_dirty_bitmap(mr
);
2030 return cpu_physical_memory_snapshot_and_clear_dirty(
2031 memory_region_get_ram_addr(mr
) + addr
, size
, client
);
2034 bool memory_region_snapshot_get_dirty(MemoryRegion
*mr
, DirtyBitmapSnapshot
*snap
,
2035 hwaddr addr
, hwaddr size
)
2037 assert(mr
->ram_block
);
2038 return cpu_physical_memory_snapshot_get_dirty(snap
,
2039 memory_region_get_ram_addr(mr
) + addr
, size
);
2042 void memory_region_set_readonly(MemoryRegion
*mr
, bool readonly
)
2044 if (mr
->readonly
!= readonly
) {
2045 memory_region_transaction_begin();
2046 mr
->readonly
= readonly
;
2047 memory_region_update_pending
|= mr
->enabled
;
2048 memory_region_transaction_commit();
2052 void memory_region_set_nonvolatile(MemoryRegion
*mr
, bool nonvolatile
)
2054 if (mr
->nonvolatile
!= nonvolatile
) {
2055 memory_region_transaction_begin();
2056 mr
->nonvolatile
= nonvolatile
;
2057 memory_region_update_pending
|= mr
->enabled
;
2058 memory_region_transaction_commit();
2062 void memory_region_rom_device_set_romd(MemoryRegion
*mr
, bool romd_mode
)
2064 if (mr
->romd_mode
!= romd_mode
) {
2065 memory_region_transaction_begin();
2066 mr
->romd_mode
= romd_mode
;
2067 memory_region_update_pending
|= mr
->enabled
;
2068 memory_region_transaction_commit();
2072 void memory_region_reset_dirty(MemoryRegion
*mr
, hwaddr addr
,
2073 hwaddr size
, unsigned client
)
2075 assert(mr
->ram_block
);
2076 cpu_physical_memory_test_and_clear_dirty(
2077 memory_region_get_ram_addr(mr
) + addr
, size
, client
);
2080 int memory_region_get_fd(MemoryRegion
*mr
)
2088 fd
= mr
->ram_block
->fd
;
2094 void *memory_region_get_ram_ptr(MemoryRegion
*mr
)
2097 uint64_t offset
= 0;
2101 offset
+= mr
->alias_offset
;
2104 assert(mr
->ram_block
);
2105 ptr
= qemu_map_ram_ptr(mr
->ram_block
, offset
);
2111 MemoryRegion
*memory_region_from_host(void *ptr
, ram_addr_t
*offset
)
2115 block
= qemu_ram_block_from_host(ptr
, false, offset
);
2123 ram_addr_t
memory_region_get_ram_addr(MemoryRegion
*mr
)
2125 return mr
->ram_block
? mr
->ram_block
->offset
: RAM_ADDR_INVALID
;
2128 void memory_region_ram_resize(MemoryRegion
*mr
, ram_addr_t newsize
, Error
**errp
)
2130 assert(mr
->ram_block
);
2132 qemu_ram_resize(mr
->ram_block
, newsize
, errp
);
2135 static void memory_region_update_coalesced_range_as(MemoryRegion
*mr
, AddressSpace
*as
)
2139 CoalescedMemoryRange
*cmr
;
2141 MemoryRegionSection section
;
2143 view
= address_space_get_flatview(as
);
2144 FOR_EACH_FLAT_RANGE(fr
, view
) {
2146 section
= (MemoryRegionSection
) {
2148 .offset_within_address_space
= int128_get64(fr
->addr
.start
),
2149 .size
= fr
->addr
.size
,
2152 MEMORY_LISTENER_CALL(as
, coalesced_io_del
, Reverse
, §ion
,
2153 int128_get64(fr
->addr
.start
),
2154 int128_get64(fr
->addr
.size
));
2155 QTAILQ_FOREACH(cmr
, &mr
->coalesced
, link
) {
2156 tmp
= addrrange_shift(cmr
->addr
,
2157 int128_sub(fr
->addr
.start
,
2158 int128_make64(fr
->offset_in_region
)));
2159 if (!addrrange_intersects(tmp
, fr
->addr
)) {
2162 tmp
= addrrange_intersection(tmp
, fr
->addr
);
2163 MEMORY_LISTENER_CALL(as
, coalesced_io_add
, Forward
, §ion
,
2164 int128_get64(tmp
.start
),
2165 int128_get64(tmp
.size
));
2169 flatview_unref(view
);
2172 static void memory_region_update_coalesced_range(MemoryRegion
*mr
)
2176 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
2177 memory_region_update_coalesced_range_as(mr
, as
);
2181 void memory_region_set_coalescing(MemoryRegion
*mr
)
2183 memory_region_clear_coalescing(mr
);
2184 memory_region_add_coalescing(mr
, 0, int128_get64(mr
->size
));
2187 void memory_region_add_coalescing(MemoryRegion
*mr
,
2191 CoalescedMemoryRange
*cmr
= g_malloc(sizeof(*cmr
));
2193 cmr
->addr
= addrrange_make(int128_make64(offset
), int128_make64(size
));
2194 QTAILQ_INSERT_TAIL(&mr
->coalesced
, cmr
, link
);
2195 memory_region_update_coalesced_range(mr
);
2196 memory_region_set_flush_coalesced(mr
);
2199 void memory_region_clear_coalescing(MemoryRegion
*mr
)
2201 CoalescedMemoryRange
*cmr
;
2202 bool updated
= false;
2204 qemu_flush_coalesced_mmio_buffer();
2205 mr
->flush_coalesced_mmio
= false;
2207 while (!QTAILQ_EMPTY(&mr
->coalesced
)) {
2208 cmr
= QTAILQ_FIRST(&mr
->coalesced
);
2209 QTAILQ_REMOVE(&mr
->coalesced
, cmr
, link
);
2215 memory_region_update_coalesced_range(mr
);
2219 void memory_region_set_flush_coalesced(MemoryRegion
*mr
)
2221 mr
->flush_coalesced_mmio
= true;
2224 void memory_region_clear_flush_coalesced(MemoryRegion
*mr
)
2226 qemu_flush_coalesced_mmio_buffer();
2227 if (QTAILQ_EMPTY(&mr
->coalesced
)) {
2228 mr
->flush_coalesced_mmio
= false;
2232 void memory_region_clear_global_locking(MemoryRegion
*mr
)
2234 mr
->global_locking
= false;
2237 static bool userspace_eventfd_warning
;
2239 void memory_region_add_eventfd(MemoryRegion
*mr
,
2246 MemoryRegionIoeventfd mrfd
= {
2247 .addr
.start
= int128_make64(addr
),
2248 .addr
.size
= int128_make64(size
),
2249 .match_data
= match_data
,
2255 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2256 userspace_eventfd_warning
))) {
2257 userspace_eventfd_warning
= true;
2258 error_report("Using eventfd without MMIO binding in KVM. "
2259 "Suboptimal performance expected");
2263 adjust_endianness(mr
, &mrfd
.data
, size
);
2265 memory_region_transaction_begin();
2266 for (i
= 0; i
< mr
->ioeventfd_nb
; ++i
) {
2267 if (memory_region_ioeventfd_before(&mrfd
, &mr
->ioeventfds
[i
])) {
2272 mr
->ioeventfds
= g_realloc(mr
->ioeventfds
,
2273 sizeof(*mr
->ioeventfds
) * mr
->ioeventfd_nb
);
2274 memmove(&mr
->ioeventfds
[i
+1], &mr
->ioeventfds
[i
],
2275 sizeof(*mr
->ioeventfds
) * (mr
->ioeventfd_nb
-1 - i
));
2276 mr
->ioeventfds
[i
] = mrfd
;
2277 ioeventfd_update_pending
|= mr
->enabled
;
2278 memory_region_transaction_commit();
2281 void memory_region_del_eventfd(MemoryRegion
*mr
,
2288 MemoryRegionIoeventfd mrfd
= {
2289 .addr
.start
= int128_make64(addr
),
2290 .addr
.size
= int128_make64(size
),
2291 .match_data
= match_data
,
2298 adjust_endianness(mr
, &mrfd
.data
, size
);
2300 memory_region_transaction_begin();
2301 for (i
= 0; i
< mr
->ioeventfd_nb
; ++i
) {
2302 if (memory_region_ioeventfd_equal(&mrfd
, &mr
->ioeventfds
[i
])) {
2306 assert(i
!= mr
->ioeventfd_nb
);
2307 memmove(&mr
->ioeventfds
[i
], &mr
->ioeventfds
[i
+1],
2308 sizeof(*mr
->ioeventfds
) * (mr
->ioeventfd_nb
- (i
+1)));
2310 mr
->ioeventfds
= g_realloc(mr
->ioeventfds
,
2311 sizeof(*mr
->ioeventfds
)*mr
->ioeventfd_nb
+ 1);
2312 ioeventfd_update_pending
|= mr
->enabled
;
2313 memory_region_transaction_commit();
2316 static void memory_region_update_container_subregions(MemoryRegion
*subregion
)
2318 MemoryRegion
*mr
= subregion
->container
;
2319 MemoryRegion
*other
;
2321 memory_region_transaction_begin();
2323 memory_region_ref(subregion
);
2324 QTAILQ_FOREACH(other
, &mr
->subregions
, subregions_link
) {
2325 if (subregion
->priority
>= other
->priority
) {
2326 QTAILQ_INSERT_BEFORE(other
, subregion
, subregions_link
);
2330 QTAILQ_INSERT_TAIL(&mr
->subregions
, subregion
, subregions_link
);
2332 memory_region_update_pending
|= mr
->enabled
&& subregion
->enabled
;
2333 memory_region_transaction_commit();
2336 static void memory_region_add_subregion_common(MemoryRegion
*mr
,
2338 MemoryRegion
*subregion
)
2340 assert(!subregion
->container
);
2341 subregion
->container
= mr
;
2342 subregion
->addr
= offset
;
2343 memory_region_update_container_subregions(subregion
);
2346 void memory_region_add_subregion(MemoryRegion
*mr
,
2348 MemoryRegion
*subregion
)
2350 subregion
->priority
= 0;
2351 memory_region_add_subregion_common(mr
, offset
, subregion
);
2354 void memory_region_add_subregion_overlap(MemoryRegion
*mr
,
2356 MemoryRegion
*subregion
,
2359 subregion
->priority
= priority
;
2360 memory_region_add_subregion_common(mr
, offset
, subregion
);
2363 void memory_region_del_subregion(MemoryRegion
*mr
,
2364 MemoryRegion
*subregion
)
2366 memory_region_transaction_begin();
2367 assert(subregion
->container
== mr
);
2368 subregion
->container
= NULL
;
2369 QTAILQ_REMOVE(&mr
->subregions
, subregion
, subregions_link
);
2370 memory_region_unref(subregion
);
2371 memory_region_update_pending
|= mr
->enabled
&& subregion
->enabled
;
2372 memory_region_transaction_commit();
2375 void memory_region_set_enabled(MemoryRegion
*mr
, bool enabled
)
2377 if (enabled
== mr
->enabled
) {
2380 memory_region_transaction_begin();
2381 mr
->enabled
= enabled
;
2382 memory_region_update_pending
= true;
2383 memory_region_transaction_commit();
2386 void memory_region_set_size(MemoryRegion
*mr
, uint64_t size
)
2388 Int128 s
= int128_make64(size
);
2390 if (size
== UINT64_MAX
) {
2393 if (int128_eq(s
, mr
->size
)) {
2396 memory_region_transaction_begin();
2398 memory_region_update_pending
= true;
2399 memory_region_transaction_commit();
2402 static void memory_region_readd_subregion(MemoryRegion
*mr
)
2404 MemoryRegion
*container
= mr
->container
;
2407 memory_region_transaction_begin();
2408 memory_region_ref(mr
);
2409 memory_region_del_subregion(container
, mr
);
2410 mr
->container
= container
;
2411 memory_region_update_container_subregions(mr
);
2412 memory_region_unref(mr
);
2413 memory_region_transaction_commit();
2417 void memory_region_set_address(MemoryRegion
*mr
, hwaddr addr
)
2419 if (addr
!= mr
->addr
) {
2421 memory_region_readd_subregion(mr
);
2425 void memory_region_set_alias_offset(MemoryRegion
*mr
, hwaddr offset
)
2429 if (offset
== mr
->alias_offset
) {
2433 memory_region_transaction_begin();
2434 mr
->alias_offset
= offset
;
2435 memory_region_update_pending
|= mr
->enabled
;
2436 memory_region_transaction_commit();
2439 uint64_t memory_region_get_alignment(const MemoryRegion
*mr
)
2444 static int cmp_flatrange_addr(const void *addr_
, const void *fr_
)
2446 const AddrRange
*addr
= addr_
;
2447 const FlatRange
*fr
= fr_
;
2449 if (int128_le(addrrange_end(*addr
), fr
->addr
.start
)) {
2451 } else if (int128_ge(addr
->start
, addrrange_end(fr
->addr
))) {
2457 static FlatRange
*flatview_lookup(FlatView
*view
, AddrRange addr
)
2459 return bsearch(&addr
, view
->ranges
, view
->nr
,
2460 sizeof(FlatRange
), cmp_flatrange_addr
);
2463 bool memory_region_is_mapped(MemoryRegion
*mr
)
2465 return mr
->container
? true : false;
2468 /* Same as memory_region_find, but it does not add a reference to the
2469 * returned region. It must be called from an RCU critical section.
2471 static MemoryRegionSection
memory_region_find_rcu(MemoryRegion
*mr
,
2472 hwaddr addr
, uint64_t size
)
2474 MemoryRegionSection ret
= { .mr
= NULL
};
2482 for (root
= mr
; root
->container
; ) {
2483 root
= root
->container
;
2487 as
= memory_region_to_address_space(root
);
2491 range
= addrrange_make(int128_make64(addr
), int128_make64(size
));
2493 view
= address_space_to_flatview(as
);
2494 fr
= flatview_lookup(view
, range
);
2499 while (fr
> view
->ranges
&& addrrange_intersects(fr
[-1].addr
, range
)) {
2505 range
= addrrange_intersection(range
, fr
->addr
);
2506 ret
.offset_within_region
= fr
->offset_in_region
;
2507 ret
.offset_within_region
+= int128_get64(int128_sub(range
.start
,
2509 ret
.size
= range
.size
;
2510 ret
.offset_within_address_space
= int128_get64(range
.start
);
2511 ret
.readonly
= fr
->readonly
;
2512 ret
.nonvolatile
= fr
->nonvolatile
;
2516 MemoryRegionSection
memory_region_find(MemoryRegion
*mr
,
2517 hwaddr addr
, uint64_t size
)
2519 MemoryRegionSection ret
;
2521 ret
= memory_region_find_rcu(mr
, addr
, size
);
2523 memory_region_ref(ret
.mr
);
2529 bool memory_region_present(MemoryRegion
*container
, hwaddr addr
)
2534 mr
= memory_region_find_rcu(container
, addr
, 1).mr
;
2536 return mr
&& mr
!= container
;
2539 void memory_global_dirty_log_sync(void)
2541 memory_region_sync_dirty_bitmap(NULL
);
2544 static VMChangeStateEntry
*vmstate_change
;
2546 void memory_global_dirty_log_start(void)
2548 if (vmstate_change
) {
2549 qemu_del_vm_change_state_handler(vmstate_change
);
2550 vmstate_change
= NULL
;
2553 global_dirty_log
= true;
2555 MEMORY_LISTENER_CALL_GLOBAL(log_global_start
, Forward
);
2557 /* Refresh DIRTY_LOG_MIGRATION bit. */
2558 memory_region_transaction_begin();
2559 memory_region_update_pending
= true;
2560 memory_region_transaction_commit();
2563 static void memory_global_dirty_log_do_stop(void)
2565 global_dirty_log
= false;
2567 /* Refresh DIRTY_LOG_MIGRATION bit. */
2568 memory_region_transaction_begin();
2569 memory_region_update_pending
= true;
2570 memory_region_transaction_commit();
2572 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop
, Reverse
);
2575 static void memory_vm_change_state_handler(void *opaque
, int running
,
2579 memory_global_dirty_log_do_stop();
2581 if (vmstate_change
) {
2582 qemu_del_vm_change_state_handler(vmstate_change
);
2583 vmstate_change
= NULL
;
2588 void memory_global_dirty_log_stop(void)
2590 if (!runstate_is_running()) {
2591 if (vmstate_change
) {
2594 vmstate_change
= qemu_add_vm_change_state_handler(
2595 memory_vm_change_state_handler
, NULL
);
2599 memory_global_dirty_log_do_stop();
2602 static void listener_add_address_space(MemoryListener
*listener
,
2608 if (listener
->begin
) {
2609 listener
->begin(listener
);
2611 if (global_dirty_log
) {
2612 if (listener
->log_global_start
) {
2613 listener
->log_global_start(listener
);
2617 view
= address_space_get_flatview(as
);
2618 FOR_EACH_FLAT_RANGE(fr
, view
) {
2619 MemoryRegionSection section
= section_from_flat_range(fr
, view
);
2621 if (listener
->region_add
) {
2622 listener
->region_add(listener
, §ion
);
2624 if (fr
->dirty_log_mask
&& listener
->log_start
) {
2625 listener
->log_start(listener
, §ion
, 0, fr
->dirty_log_mask
);
2628 if (listener
->commit
) {
2629 listener
->commit(listener
);
2631 flatview_unref(view
);
2634 static void listener_del_address_space(MemoryListener
*listener
,
2640 if (listener
->begin
) {
2641 listener
->begin(listener
);
2643 view
= address_space_get_flatview(as
);
2644 FOR_EACH_FLAT_RANGE(fr
, view
) {
2645 MemoryRegionSection section
= section_from_flat_range(fr
, view
);
2647 if (fr
->dirty_log_mask
&& listener
->log_stop
) {
2648 listener
->log_stop(listener
, §ion
, fr
->dirty_log_mask
, 0);
2650 if (listener
->region_del
) {
2651 listener
->region_del(listener
, §ion
);
2654 if (listener
->commit
) {
2655 listener
->commit(listener
);
2657 flatview_unref(view
);
2660 void memory_listener_register(MemoryListener
*listener
, AddressSpace
*as
)
2662 MemoryListener
*other
= NULL
;
2664 listener
->address_space
= as
;
2665 if (QTAILQ_EMPTY(&memory_listeners
)
2666 || listener
->priority
>= QTAILQ_LAST(&memory_listeners
,
2667 memory_listeners
)->priority
) {
2668 QTAILQ_INSERT_TAIL(&memory_listeners
, listener
, link
);
2670 QTAILQ_FOREACH(other
, &memory_listeners
, link
) {
2671 if (listener
->priority
< other
->priority
) {
2675 QTAILQ_INSERT_BEFORE(other
, listener
, link
);
2678 if (QTAILQ_EMPTY(&as
->listeners
)
2679 || listener
->priority
>= QTAILQ_LAST(&as
->listeners
,
2680 memory_listeners
)->priority
) {
2681 QTAILQ_INSERT_TAIL(&as
->listeners
, listener
, link_as
);
2683 QTAILQ_FOREACH(other
, &as
->listeners
, link_as
) {
2684 if (listener
->priority
< other
->priority
) {
2688 QTAILQ_INSERT_BEFORE(other
, listener
, link_as
);
2691 listener_add_address_space(listener
, as
);
2694 void memory_listener_unregister(MemoryListener
*listener
)
2696 if (!listener
->address_space
) {
2700 listener_del_address_space(listener
, listener
->address_space
);
2701 QTAILQ_REMOVE(&memory_listeners
, listener
, link
);
2702 QTAILQ_REMOVE(&listener
->address_space
->listeners
, listener
, link_as
);
2703 listener
->address_space
= NULL
;
2706 void address_space_init(AddressSpace
*as
, MemoryRegion
*root
, const char *name
)
2708 memory_region_ref(root
);
2710 as
->current_map
= NULL
;
2711 as
->ioeventfd_nb
= 0;
2712 as
->ioeventfds
= NULL
;
2713 QTAILQ_INIT(&as
->listeners
);
2714 QTAILQ_INSERT_TAIL(&address_spaces
, as
, address_spaces_link
);
2715 as
->name
= g_strdup(name
? name
: "anonymous");
2716 address_space_update_topology(as
);
2717 address_space_update_ioeventfds(as
);
2720 static void do_address_space_destroy(AddressSpace
*as
)
2722 assert(QTAILQ_EMPTY(&as
->listeners
));
2724 flatview_unref(as
->current_map
);
2726 g_free(as
->ioeventfds
);
2727 memory_region_unref(as
->root
);
2730 void address_space_destroy(AddressSpace
*as
)
2732 MemoryRegion
*root
= as
->root
;
2734 /* Flush out anything from MemoryListeners listening in on this */
2735 memory_region_transaction_begin();
2737 memory_region_transaction_commit();
2738 QTAILQ_REMOVE(&address_spaces
, as
, address_spaces_link
);
2740 /* At this point, as->dispatch and as->current_map are dummy
2741 * entries that the guest should never use. Wait for the old
2742 * values to expire before freeing the data.
2745 call_rcu(as
, do_address_space_destroy
, rcu
);
2748 static const char *memory_region_type(MemoryRegion
*mr
)
2750 if (memory_region_is_ram_device(mr
)) {
2752 } else if (memory_region_is_romd(mr
)) {
2754 } else if (memory_region_is_rom(mr
)) {
2756 } else if (memory_region_is_ram(mr
)) {
2763 typedef struct MemoryRegionList MemoryRegionList
;
2765 struct MemoryRegionList
{
2766 const MemoryRegion
*mr
;
2767 QTAILQ_ENTRY(MemoryRegionList
) mrqueue
;
2770 typedef QTAILQ_HEAD(mrqueue
, MemoryRegionList
) MemoryRegionListHead
;
2772 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2773 int128_sub((size), int128_one())) : 0)
2774 #define MTREE_INDENT " "
2776 static void mtree_expand_owner(fprintf_function mon_printf
, void *f
,
2777 const char *label
, Object
*obj
)
2779 DeviceState
*dev
= (DeviceState
*) object_dynamic_cast(obj
, TYPE_DEVICE
);
2781 mon_printf(f
, " %s:{%s", label
, dev
? "dev" : "obj");
2782 if (dev
&& dev
->id
) {
2783 mon_printf(f
, " id=%s", dev
->id
);
2785 gchar
*canonical_path
= object_get_canonical_path(obj
);
2786 if (canonical_path
) {
2787 mon_printf(f
, " path=%s", canonical_path
);
2788 g_free(canonical_path
);
2790 mon_printf(f
, " type=%s", object_get_typename(obj
));
2796 static void mtree_print_mr_owner(fprintf_function mon_printf
, void *f
,
2797 const MemoryRegion
*mr
)
2799 Object
*owner
= mr
->owner
;
2800 Object
*parent
= memory_region_owner((MemoryRegion
*)mr
);
2802 if (!owner
&& !parent
) {
2803 mon_printf(f
, " orphan");
2807 mtree_expand_owner(mon_printf
, f
, "owner", owner
);
2809 if (parent
&& parent
!= owner
) {
2810 mtree_expand_owner(mon_printf
, f
, "parent", parent
);
2814 static void mtree_print_mr(fprintf_function mon_printf
, void *f
,
2815 const MemoryRegion
*mr
, unsigned int level
,
2817 MemoryRegionListHead
*alias_print_queue
,
2820 MemoryRegionList
*new_ml
, *ml
, *next_ml
;
2821 MemoryRegionListHead submr_print_queue
;
2822 const MemoryRegion
*submr
;
2824 hwaddr cur_start
, cur_end
;
2830 for (i
= 0; i
< level
; i
++) {
2831 mon_printf(f
, MTREE_INDENT
);
2834 cur_start
= base
+ mr
->addr
;
2835 cur_end
= cur_start
+ MR_SIZE(mr
->size
);
2838 * Try to detect overflow of memory region. This should never
2839 * happen normally. When it happens, we dump something to warn the
2840 * user who is observing this.
2842 if (cur_start
< base
|| cur_end
< cur_start
) {
2843 mon_printf(f
, "[DETECTED OVERFLOW!] ");
2847 MemoryRegionList
*ml
;
2850 /* check if the alias is already in the queue */
2851 QTAILQ_FOREACH(ml
, alias_print_queue
, mrqueue
) {
2852 if (ml
->mr
== mr
->alias
) {
2858 ml
= g_new(MemoryRegionList
, 1);
2860 QTAILQ_INSERT_TAIL(alias_print_queue
, ml
, mrqueue
);
2862 mon_printf(f
, TARGET_FMT_plx
"-" TARGET_FMT_plx
2863 " (prio %d, %s%s): alias %s @%s " TARGET_FMT_plx
2864 "-" TARGET_FMT_plx
"%s",
2867 mr
->nonvolatile
? "nv-" : "",
2868 memory_region_type((MemoryRegion
*)mr
),
2869 memory_region_name(mr
),
2870 memory_region_name(mr
->alias
),
2872 mr
->alias_offset
+ MR_SIZE(mr
->size
),
2873 mr
->enabled
? "" : " [disabled]");
2875 mtree_print_mr_owner(mon_printf
, f
, mr
);
2879 TARGET_FMT_plx
"-" TARGET_FMT_plx
" (prio %d, %s%s): %s%s",
2882 mr
->nonvolatile
? "nv-" : "",
2883 memory_region_type((MemoryRegion
*)mr
),
2884 memory_region_name(mr
),
2885 mr
->enabled
? "" : " [disabled]");
2887 mtree_print_mr_owner(mon_printf
, f
, mr
);
2890 mon_printf(f
, "\n");
2892 QTAILQ_INIT(&submr_print_queue
);
2894 QTAILQ_FOREACH(submr
, &mr
->subregions
, subregions_link
) {
2895 new_ml
= g_new(MemoryRegionList
, 1);
2897 QTAILQ_FOREACH(ml
, &submr_print_queue
, mrqueue
) {
2898 if (new_ml
->mr
->addr
< ml
->mr
->addr
||
2899 (new_ml
->mr
->addr
== ml
->mr
->addr
&&
2900 new_ml
->mr
->priority
> ml
->mr
->priority
)) {
2901 QTAILQ_INSERT_BEFORE(ml
, new_ml
, mrqueue
);
2907 QTAILQ_INSERT_TAIL(&submr_print_queue
, new_ml
, mrqueue
);
2911 QTAILQ_FOREACH(ml
, &submr_print_queue
, mrqueue
) {
2912 mtree_print_mr(mon_printf
, f
, ml
->mr
, level
+ 1, cur_start
,
2913 alias_print_queue
, owner
);
2916 QTAILQ_FOREACH_SAFE(ml
, &submr_print_queue
, mrqueue
, next_ml
) {
2921 struct FlatViewInfo
{
2922 fprintf_function mon_printf
;
2929 static void mtree_print_flatview(gpointer key
, gpointer value
,
2932 FlatView
*view
= key
;
2933 GArray
*fv_address_spaces
= value
;
2934 struct FlatViewInfo
*fvi
= user_data
;
2935 fprintf_function p
= fvi
->mon_printf
;
2937 FlatRange
*range
= &view
->ranges
[0];
2943 p(f
, "FlatView #%d\n", fvi
->counter
);
2946 for (i
= 0; i
< fv_address_spaces
->len
; ++i
) {
2947 as
= g_array_index(fv_address_spaces
, AddressSpace
*, i
);
2948 p(f
, " AS \"%s\", root: %s", as
->name
, memory_region_name(as
->root
));
2949 if (as
->root
->alias
) {
2950 p(f
, ", alias %s", memory_region_name(as
->root
->alias
));
2955 p(f
, " Root memory region: %s\n",
2956 view
->root
? memory_region_name(view
->root
) : "(none)");
2959 p(f
, MTREE_INDENT
"No rendered FlatView\n\n");
2965 if (range
->offset_in_region
) {
2966 p(f
, MTREE_INDENT TARGET_FMT_plx
"-"
2967 TARGET_FMT_plx
" (prio %d, %s%s): %s @" TARGET_FMT_plx
,
2968 int128_get64(range
->addr
.start
),
2969 int128_get64(range
->addr
.start
) + MR_SIZE(range
->addr
.size
),
2971 range
->nonvolatile
? "nv-" : "",
2972 range
->readonly
? "rom" : memory_region_type(mr
),
2973 memory_region_name(mr
),
2974 range
->offset_in_region
);
2976 p(f
, MTREE_INDENT TARGET_FMT_plx
"-"
2977 TARGET_FMT_plx
" (prio %d, %s%s): %s",
2978 int128_get64(range
->addr
.start
),
2979 int128_get64(range
->addr
.start
) + MR_SIZE(range
->addr
.size
),
2981 range
->nonvolatile
? "nv-" : "",
2982 range
->readonly
? "rom" : memory_region_type(mr
),
2983 memory_region_name(mr
));
2986 mtree_print_mr_owner(p
, f
, mr
);
2992 #if !defined(CONFIG_USER_ONLY)
2993 if (fvi
->dispatch_tree
&& view
->root
) {
2994 mtree_print_dispatch(p
, f
, view
->dispatch
, view
->root
);
3001 static gboolean
mtree_info_flatview_free(gpointer key
, gpointer value
,
3004 FlatView
*view
= key
;
3005 GArray
*fv_address_spaces
= value
;
3007 g_array_unref(fv_address_spaces
);
3008 flatview_unref(view
);
3013 void mtree_info(fprintf_function mon_printf
, void *f
, bool flatview
,
3014 bool dispatch_tree
, bool owner
)
3016 MemoryRegionListHead ml_head
;
3017 MemoryRegionList
*ml
, *ml2
;
3022 struct FlatViewInfo fvi
= {
3023 .mon_printf
= mon_printf
,
3026 .dispatch_tree
= dispatch_tree
,
3029 GArray
*fv_address_spaces
;
3030 GHashTable
*views
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
3032 /* Gather all FVs in one table */
3033 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
3034 view
= address_space_get_flatview(as
);
3036 fv_address_spaces
= g_hash_table_lookup(views
, view
);
3037 if (!fv_address_spaces
) {
3038 fv_address_spaces
= g_array_new(false, false, sizeof(as
));
3039 g_hash_table_insert(views
, view
, fv_address_spaces
);
3042 g_array_append_val(fv_address_spaces
, as
);
3046 g_hash_table_foreach(views
, mtree_print_flatview
, &fvi
);
3049 g_hash_table_foreach_remove(views
, mtree_info_flatview_free
, 0);
3050 g_hash_table_unref(views
);
3055 QTAILQ_INIT(&ml_head
);
3057 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
3058 mon_printf(f
, "address-space: %s\n", as
->name
);
3059 mtree_print_mr(mon_printf
, f
, as
->root
, 1, 0, &ml_head
, owner
);
3060 mon_printf(f
, "\n");
3063 /* print aliased regions */
3064 QTAILQ_FOREACH(ml
, &ml_head
, mrqueue
) {
3065 mon_printf(f
, "memory-region: %s\n", memory_region_name(ml
->mr
));
3066 mtree_print_mr(mon_printf
, f
, ml
->mr
, 1, 0, &ml_head
, owner
);
3067 mon_printf(f
, "\n");
3070 QTAILQ_FOREACH_SAFE(ml
, &ml_head
, mrqueue
, ml2
) {
3075 void memory_region_init_ram(MemoryRegion
*mr
,
3076 struct Object
*owner
,
3081 DeviceState
*owner_dev
;
3084 memory_region_init_ram_nomigrate(mr
, owner
, name
, size
, &err
);
3086 error_propagate(errp
, err
);
3089 /* This will assert if owner is neither NULL nor a DeviceState.
3090 * We only want the owner here for the purposes of defining a
3091 * unique name for migration. TODO: Ideally we should implement
3092 * a naming scheme for Objects which are not DeviceStates, in
3093 * which case we can relax this restriction.
3095 owner_dev
= DEVICE(owner
);
3096 vmstate_register_ram(mr
, owner_dev
);
3099 void memory_region_init_rom(MemoryRegion
*mr
,
3100 struct Object
*owner
,
3105 DeviceState
*owner_dev
;
3108 memory_region_init_rom_nomigrate(mr
, owner
, name
, size
, &err
);
3110 error_propagate(errp
, err
);
3113 /* This will assert if owner is neither NULL nor a DeviceState.
3114 * We only want the owner here for the purposes of defining a
3115 * unique name for migration. TODO: Ideally we should implement
3116 * a naming scheme for Objects which are not DeviceStates, in
3117 * which case we can relax this restriction.
3119 owner_dev
= DEVICE(owner
);
3120 vmstate_register_ram(mr
, owner_dev
);
3123 void memory_region_init_rom_device(MemoryRegion
*mr
,
3124 struct Object
*owner
,
3125 const MemoryRegionOps
*ops
,
3131 DeviceState
*owner_dev
;
3134 memory_region_init_rom_device_nomigrate(mr
, owner
, ops
, opaque
,
3137 error_propagate(errp
, err
);
3140 /* This will assert if owner is neither NULL nor a DeviceState.
3141 * We only want the owner here for the purposes of defining a
3142 * unique name for migration. TODO: Ideally we should implement
3143 * a naming scheme for Objects which are not DeviceStates, in
3144 * which case we can relax this restriction.
3146 owner_dev
= DEVICE(owner
);
3147 vmstate_register_ram(mr
, owner_dev
);
3150 static const TypeInfo memory_region_info
= {
3151 .parent
= TYPE_OBJECT
,
3152 .name
= TYPE_MEMORY_REGION
,
3153 .instance_size
= sizeof(MemoryRegion
),
3154 .instance_init
= memory_region_initfn
,
3155 .instance_finalize
= memory_region_finalize
,
3158 static const TypeInfo iommu_memory_region_info
= {
3159 .parent
= TYPE_MEMORY_REGION
,
3160 .name
= TYPE_IOMMU_MEMORY_REGION
,
3161 .class_size
= sizeof(IOMMUMemoryRegionClass
),
3162 .instance_size
= sizeof(IOMMUMemoryRegion
),
3163 .instance_init
= iommu_memory_region_initfn
,
3167 static void memory_register_types(void)
3169 type_register_static(&memory_region_info
);
3170 type_register_static(&iommu_memory_region_info
);
3173 type_init(memory_register_types
)