g364fb: switch to using DirtyBitmapSnapshot
[qemu/ar7.git] / hw / arm / boot.c
blob05108bc42f73d33bd2196716132dfeb4e856b211
1 /*
2 * ARM kernel loader.
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu/error-report.h"
12 #include "qapi/error.h"
13 #include <libfdt.h>
14 #include "hw/hw.h"
15 #include "hw/arm/arm.h"
16 #include "hw/arm/linux-boot-if.h"
17 #include "sysemu/kvm.h"
18 #include "sysemu/sysemu.h"
19 #include "sysemu/numa.h"
20 #include "hw/boards.h"
21 #include "hw/loader.h"
22 #include "elf.h"
23 #include "sysemu/device_tree.h"
24 #include "qemu/config-file.h"
25 #include "qemu/option.h"
26 #include "exec/address-spaces.h"
28 /* Kernel boot protocol is specified in the kernel docs
29 * Documentation/arm/Booting and Documentation/arm64/booting.txt
30 * They have different preferred image load offsets from system RAM base.
32 #define KERNEL_ARGS_ADDR 0x100
33 #define KERNEL_LOAD_ADDR 0x00010000
34 #define KERNEL64_LOAD_ADDR 0x00080000
36 #define ARM64_TEXT_OFFSET_OFFSET 8
37 #define ARM64_MAGIC_OFFSET 56
39 typedef enum {
40 FIXUP_NONE = 0, /* do nothing */
41 FIXUP_TERMINATOR, /* end of insns */
42 FIXUP_BOARDID, /* overwrite with board ID number */
43 FIXUP_BOARD_SETUP, /* overwrite with board specific setup code address */
44 FIXUP_ARGPTR, /* overwrite with pointer to kernel args */
45 FIXUP_ENTRYPOINT, /* overwrite with kernel entry point */
46 FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */
47 FIXUP_BOOTREG, /* overwrite with boot register address */
48 FIXUP_DSB, /* overwrite with correct DSB insn for cpu */
49 FIXUP_MAX,
50 } FixupType;
52 typedef struct ARMInsnFixup {
53 uint32_t insn;
54 FixupType fixup;
55 } ARMInsnFixup;
57 static const ARMInsnFixup bootloader_aarch64[] = {
58 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
59 { 0xaa1f03e1 }, /* mov x1, xzr */
60 { 0xaa1f03e2 }, /* mov x2, xzr */
61 { 0xaa1f03e3 }, /* mov x3, xzr */
62 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
63 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
64 { 0, FIXUP_ARGPTR }, /* arg: .word @DTB Lower 32-bits */
65 { 0 }, /* .word @DTB Higher 32-bits */
66 { 0, FIXUP_ENTRYPOINT }, /* entry: .word @Kernel Entry Lower 32-bits */
67 { 0 }, /* .word @Kernel Entry Higher 32-bits */
68 { 0, FIXUP_TERMINATOR }
71 /* A very small bootloader: call the board-setup code (if needed),
72 * set r0-r2, then jump to the kernel.
73 * If we're not calling boot setup code then we don't copy across
74 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
77 static const ARMInsnFixup bootloader[] = {
78 { 0xe28fe004 }, /* add lr, pc, #4 */
79 { 0xe51ff004 }, /* ldr pc, [pc, #-4] */
80 { 0, FIXUP_BOARD_SETUP },
81 #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
82 { 0xe3a00000 }, /* mov r0, #0 */
83 { 0xe59f1004 }, /* ldr r1, [pc, #4] */
84 { 0xe59f2004 }, /* ldr r2, [pc, #4] */
85 { 0xe59ff004 }, /* ldr pc, [pc, #4] */
86 { 0, FIXUP_BOARDID },
87 { 0, FIXUP_ARGPTR },
88 { 0, FIXUP_ENTRYPOINT },
89 { 0, FIXUP_TERMINATOR }
92 /* Handling for secondary CPU boot in a multicore system.
93 * Unlike the uniprocessor/primary CPU boot, this is platform
94 * dependent. The default code here is based on the secondary
95 * CPU boot protocol used on realview/vexpress boards, with
96 * some parameterisation to increase its flexibility.
97 * QEMU platform models for which this code is not appropriate
98 * should override write_secondary_boot and secondary_cpu_reset_hook
99 * instead.
101 * This code enables the interrupt controllers for the secondary
102 * CPUs and then puts all the secondary CPUs into a loop waiting
103 * for an interprocessor interrupt and polling a configurable
104 * location for the kernel secondary CPU entry point.
106 #define DSB_INSN 0xf57ff04f
107 #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
109 static const ARMInsnFixup smpboot[] = {
110 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
111 { 0xe59f0028 }, /* ldr r0, bootreg_addr */
112 { 0xe3a01001 }, /* mov r1, #1 */
113 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
114 { 0xe3a010ff }, /* mov r1, #0xff */
115 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
116 { 0, FIXUP_DSB }, /* dsb */
117 { 0xe320f003 }, /* wfi */
118 { 0xe5901000 }, /* ldr r1, [r0] */
119 { 0xe1110001 }, /* tst r1, r1 */
120 { 0x0afffffb }, /* beq <wfi> */
121 { 0xe12fff11 }, /* bx r1 */
122 { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
123 { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
124 { 0, FIXUP_TERMINATOR }
127 static void write_bootloader(const char *name, hwaddr addr,
128 const ARMInsnFixup *insns, uint32_t *fixupcontext)
130 /* Fix up the specified bootloader fragment and write it into
131 * guest memory using rom_add_blob_fixed(). fixupcontext is
132 * an array giving the values to write in for the fixup types
133 * which write a value into the code array.
135 int i, len;
136 uint32_t *code;
138 len = 0;
139 while (insns[len].fixup != FIXUP_TERMINATOR) {
140 len++;
143 code = g_new0(uint32_t, len);
145 for (i = 0; i < len; i++) {
146 uint32_t insn = insns[i].insn;
147 FixupType fixup = insns[i].fixup;
149 switch (fixup) {
150 case FIXUP_NONE:
151 break;
152 case FIXUP_BOARDID:
153 case FIXUP_BOARD_SETUP:
154 case FIXUP_ARGPTR:
155 case FIXUP_ENTRYPOINT:
156 case FIXUP_GIC_CPU_IF:
157 case FIXUP_BOOTREG:
158 case FIXUP_DSB:
159 insn = fixupcontext[fixup];
160 break;
161 default:
162 abort();
164 code[i] = tswap32(insn);
167 rom_add_blob_fixed(name, code, len * sizeof(uint32_t), addr);
169 g_free(code);
172 static void default_write_secondary(ARMCPU *cpu,
173 const struct arm_boot_info *info)
175 uint32_t fixupcontext[FIXUP_MAX];
177 fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
178 fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
179 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
180 fixupcontext[FIXUP_DSB] = DSB_INSN;
181 } else {
182 fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
185 write_bootloader("smpboot", info->smp_loader_start,
186 smpboot, fixupcontext);
189 void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
190 const struct arm_boot_info *info,
191 hwaddr mvbar_addr)
193 int n;
194 uint32_t mvbar_blob[] = {
195 /* mvbar_addr: secure monitor vectors
196 * Default unimplemented and unused vectors to spin. Makes it
197 * easier to debug (as opposed to the CPU running away).
199 0xeafffffe, /* (spin) */
200 0xeafffffe, /* (spin) */
201 0xe1b0f00e, /* movs pc, lr ;SMC exception return */
202 0xeafffffe, /* (spin) */
203 0xeafffffe, /* (spin) */
204 0xeafffffe, /* (spin) */
205 0xeafffffe, /* (spin) */
206 0xeafffffe, /* (spin) */
208 uint32_t board_setup_blob[] = {
209 /* board setup addr */
210 0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
211 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */
212 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */
213 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */
214 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */
215 0xe1a0100e, /* mov r1, lr ;save LR across SMC */
216 0xe1600070, /* smc #0 ;call monitor to flush SCR */
217 0xe1a0f001, /* mov pc, r1 ;return */
220 /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
221 assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
223 /* check that these blobs don't overlap */
224 assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
225 || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
227 for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
228 mvbar_blob[n] = tswap32(mvbar_blob[n]);
230 rom_add_blob_fixed("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
231 mvbar_addr);
233 for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
234 board_setup_blob[n] = tswap32(board_setup_blob[n]);
236 rom_add_blob_fixed("board-setup", board_setup_blob,
237 sizeof(board_setup_blob), info->board_setup_addr);
240 static void default_reset_secondary(ARMCPU *cpu,
241 const struct arm_boot_info *info)
243 CPUState *cs = CPU(cpu);
245 address_space_stl_notdirty(&address_space_memory, info->smp_bootreg_addr,
246 0, MEMTXATTRS_UNSPECIFIED, NULL);
247 cpu_set_pc(cs, info->smp_loader_start);
250 static inline bool have_dtb(const struct arm_boot_info *info)
252 return info->dtb_filename || info->get_dtb;
255 #define WRITE_WORD(p, value) do { \
256 address_space_stl_notdirty(&address_space_memory, p, value, \
257 MEMTXATTRS_UNSPECIFIED, NULL); \
258 p += 4; \
259 } while (0)
261 static void set_kernel_args(const struct arm_boot_info *info)
263 int initrd_size = info->initrd_size;
264 hwaddr base = info->loader_start;
265 hwaddr p;
267 p = base + KERNEL_ARGS_ADDR;
268 /* ATAG_CORE */
269 WRITE_WORD(p, 5);
270 WRITE_WORD(p, 0x54410001);
271 WRITE_WORD(p, 1);
272 WRITE_WORD(p, 0x1000);
273 WRITE_WORD(p, 0);
274 /* ATAG_MEM */
275 /* TODO: handle multiple chips on one ATAG list */
276 WRITE_WORD(p, 4);
277 WRITE_WORD(p, 0x54410002);
278 WRITE_WORD(p, info->ram_size);
279 WRITE_WORD(p, info->loader_start);
280 if (initrd_size) {
281 /* ATAG_INITRD2 */
282 WRITE_WORD(p, 4);
283 WRITE_WORD(p, 0x54420005);
284 WRITE_WORD(p, info->initrd_start);
285 WRITE_WORD(p, initrd_size);
287 if (info->kernel_cmdline && *info->kernel_cmdline) {
288 /* ATAG_CMDLINE */
289 int cmdline_size;
291 cmdline_size = strlen(info->kernel_cmdline);
292 cpu_physical_memory_write(p + 8, info->kernel_cmdline,
293 cmdline_size + 1);
294 cmdline_size = (cmdline_size >> 2) + 1;
295 WRITE_WORD(p, cmdline_size + 2);
296 WRITE_WORD(p, 0x54410009);
297 p += cmdline_size * 4;
299 if (info->atag_board) {
300 /* ATAG_BOARD */
301 int atag_board_len;
302 uint8_t atag_board_buf[0x1000];
304 atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
305 WRITE_WORD(p, (atag_board_len + 8) >> 2);
306 WRITE_WORD(p, 0x414f4d50);
307 cpu_physical_memory_write(p, atag_board_buf, atag_board_len);
308 p += atag_board_len;
310 /* ATAG_END */
311 WRITE_WORD(p, 0);
312 WRITE_WORD(p, 0);
315 static void set_kernel_args_old(const struct arm_boot_info *info)
317 hwaddr p;
318 const char *s;
319 int initrd_size = info->initrd_size;
320 hwaddr base = info->loader_start;
322 /* see linux/include/asm-arm/setup.h */
323 p = base + KERNEL_ARGS_ADDR;
324 /* page_size */
325 WRITE_WORD(p, 4096);
326 /* nr_pages */
327 WRITE_WORD(p, info->ram_size / 4096);
328 /* ramdisk_size */
329 WRITE_WORD(p, 0);
330 #define FLAG_READONLY 1
331 #define FLAG_RDLOAD 4
332 #define FLAG_RDPROMPT 8
333 /* flags */
334 WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
335 /* rootdev */
336 WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */
337 /* video_num_cols */
338 WRITE_WORD(p, 0);
339 /* video_num_rows */
340 WRITE_WORD(p, 0);
341 /* video_x */
342 WRITE_WORD(p, 0);
343 /* video_y */
344 WRITE_WORD(p, 0);
345 /* memc_control_reg */
346 WRITE_WORD(p, 0);
347 /* unsigned char sounddefault */
348 /* unsigned char adfsdrives */
349 /* unsigned char bytes_per_char_h */
350 /* unsigned char bytes_per_char_v */
351 WRITE_WORD(p, 0);
352 /* pages_in_bank[4] */
353 WRITE_WORD(p, 0);
354 WRITE_WORD(p, 0);
355 WRITE_WORD(p, 0);
356 WRITE_WORD(p, 0);
357 /* pages_in_vram */
358 WRITE_WORD(p, 0);
359 /* initrd_start */
360 if (initrd_size) {
361 WRITE_WORD(p, info->initrd_start);
362 } else {
363 WRITE_WORD(p, 0);
365 /* initrd_size */
366 WRITE_WORD(p, initrd_size);
367 /* rd_start */
368 WRITE_WORD(p, 0);
369 /* system_rev */
370 WRITE_WORD(p, 0);
371 /* system_serial_low */
372 WRITE_WORD(p, 0);
373 /* system_serial_high */
374 WRITE_WORD(p, 0);
375 /* mem_fclk_21285 */
376 WRITE_WORD(p, 0);
377 /* zero unused fields */
378 while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
379 WRITE_WORD(p, 0);
381 s = info->kernel_cmdline;
382 if (s) {
383 cpu_physical_memory_write(p, s, strlen(s) + 1);
384 } else {
385 WRITE_WORD(p, 0);
389 static void fdt_add_psci_node(void *fdt)
391 uint32_t cpu_suspend_fn;
392 uint32_t cpu_off_fn;
393 uint32_t cpu_on_fn;
394 uint32_t migrate_fn;
395 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
396 const char *psci_method;
397 int64_t psci_conduit;
399 psci_conduit = object_property_get_int(OBJECT(armcpu),
400 "psci-conduit",
401 &error_abort);
402 switch (psci_conduit) {
403 case QEMU_PSCI_CONDUIT_DISABLED:
404 return;
405 case QEMU_PSCI_CONDUIT_HVC:
406 psci_method = "hvc";
407 break;
408 case QEMU_PSCI_CONDUIT_SMC:
409 psci_method = "smc";
410 break;
411 default:
412 g_assert_not_reached();
415 qemu_fdt_add_subnode(fdt, "/psci");
416 if (armcpu->psci_version == 2) {
417 const char comp[] = "arm,psci-0.2\0arm,psci";
418 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
420 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
421 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
422 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
423 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
424 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
425 } else {
426 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
427 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
428 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
430 } else {
431 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
433 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
434 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
435 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
436 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
439 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
440 * to the instruction that should be used to invoke PSCI functions.
441 * However, the device tree binding uses 'method' instead, so that is
442 * what we should use here.
444 qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
446 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
447 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
448 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
449 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
453 * load_dtb() - load a device tree binary image into memory
454 * @addr: the address to load the image at
455 * @binfo: struct describing the boot environment
456 * @addr_limit: upper limit of the available memory area at @addr
458 * Load a device tree supplied by the machine or by the user with the
459 * '-dtb' command line option, and put it at offset @addr in target
460 * memory.
462 * If @addr_limit contains a meaningful value (i.e., it is strictly greater
463 * than @addr), the device tree is only loaded if its size does not exceed
464 * the limit.
466 * Returns: the size of the device tree image on success,
467 * 0 if the image size exceeds the limit,
468 * -1 on errors.
470 * Note: Must not be called unless have_dtb(binfo) is true.
472 static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
473 hwaddr addr_limit)
475 void *fdt = NULL;
476 int size, rc;
477 uint32_t acells, scells;
478 char *nodename;
479 unsigned int i;
480 hwaddr mem_base, mem_len;
482 if (binfo->dtb_filename) {
483 char *filename;
484 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
485 if (!filename) {
486 fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
487 goto fail;
490 fdt = load_device_tree(filename, &size);
491 if (!fdt) {
492 fprintf(stderr, "Couldn't open dtb file %s\n", filename);
493 g_free(filename);
494 goto fail;
496 g_free(filename);
497 } else {
498 fdt = binfo->get_dtb(binfo, &size);
499 if (!fdt) {
500 fprintf(stderr, "Board was unable to create a dtb blob\n");
501 goto fail;
505 if (addr_limit > addr && size > (addr_limit - addr)) {
506 /* Installing the device tree blob at addr would exceed addr_limit.
507 * Whether this constitutes failure is up to the caller to decide,
508 * so just return 0 as size, i.e., no error.
510 g_free(fdt);
511 return 0;
514 acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
515 NULL, &error_fatal);
516 scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
517 NULL, &error_fatal);
518 if (acells == 0 || scells == 0) {
519 fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
520 goto fail;
523 if (scells < 2 && binfo->ram_size >= (1ULL << 32)) {
524 /* This is user error so deserves a friendlier error message
525 * than the failure of setprop_sized_cells would provide
527 fprintf(stderr, "qemu: dtb file not compatible with "
528 "RAM size > 4GB\n");
529 goto fail;
532 if (nb_numa_nodes > 0) {
534 * Turn the /memory node created before into a NOP node, then create
535 * /memory@addr nodes for all numa nodes respectively.
537 qemu_fdt_nop_node(fdt, "/memory");
538 mem_base = binfo->loader_start;
539 for (i = 0; i < nb_numa_nodes; i++) {
540 mem_len = numa_info[i].node_mem;
541 nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
542 qemu_fdt_add_subnode(fdt, nodename);
543 qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
544 rc = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg",
545 acells, mem_base,
546 scells, mem_len);
547 if (rc < 0) {
548 fprintf(stderr, "couldn't set %s/reg for node %d\n", nodename,
550 goto fail;
553 qemu_fdt_setprop_cell(fdt, nodename, "numa-node-id", i);
554 mem_base += mem_len;
555 g_free(nodename);
557 } else {
558 Error *err = NULL;
560 rc = fdt_path_offset(fdt, "/memory");
561 if (rc < 0) {
562 qemu_fdt_add_subnode(fdt, "/memory");
565 if (!qemu_fdt_getprop(fdt, "/memory", "device_type", NULL, &err)) {
566 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
569 rc = qemu_fdt_setprop_sized_cells(fdt, "/memory", "reg",
570 acells, binfo->loader_start,
571 scells, binfo->ram_size);
572 if (rc < 0) {
573 fprintf(stderr, "couldn't set /memory/reg\n");
574 goto fail;
578 rc = fdt_path_offset(fdt, "/chosen");
579 if (rc < 0) {
580 qemu_fdt_add_subnode(fdt, "/chosen");
583 if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
584 rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
585 binfo->kernel_cmdline);
586 if (rc < 0) {
587 fprintf(stderr, "couldn't set /chosen/bootargs\n");
588 goto fail;
592 if (binfo->initrd_size) {
593 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
594 binfo->initrd_start);
595 if (rc < 0) {
596 fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
597 goto fail;
600 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
601 binfo->initrd_start + binfo->initrd_size);
602 if (rc < 0) {
603 fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
604 goto fail;
608 fdt_add_psci_node(fdt);
610 if (binfo->modify_dtb) {
611 binfo->modify_dtb(binfo, fdt);
614 qemu_fdt_dumpdtb(fdt, size);
616 /* Put the DTB into the memory map as a ROM image: this will ensure
617 * the DTB is copied again upon reset, even if addr points into RAM.
619 rom_add_blob_fixed("dtb", fdt, size, addr);
621 g_free(fdt);
623 return size;
625 fail:
626 g_free(fdt);
627 return -1;
630 static void do_cpu_reset(void *opaque)
632 ARMCPU *cpu = opaque;
633 CPUState *cs = CPU(cpu);
634 CPUARMState *env = &cpu->env;
635 const struct arm_boot_info *info = env->boot_info;
637 cpu_reset(cs);
638 if (info) {
639 if (!info->is_linux) {
640 int i;
641 /* Jump to the entry point. */
642 uint64_t entry = info->entry;
644 switch (info->endianness) {
645 case ARM_ENDIANNESS_LE:
646 env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
647 for (i = 1; i < 4; ++i) {
648 env->cp15.sctlr_el[i] &= ~SCTLR_EE;
650 env->uncached_cpsr &= ~CPSR_E;
651 break;
652 case ARM_ENDIANNESS_BE8:
653 env->cp15.sctlr_el[1] |= SCTLR_E0E;
654 for (i = 1; i < 4; ++i) {
655 env->cp15.sctlr_el[i] |= SCTLR_EE;
657 env->uncached_cpsr |= CPSR_E;
658 break;
659 case ARM_ENDIANNESS_BE32:
660 env->cp15.sctlr_el[1] |= SCTLR_B;
661 break;
662 case ARM_ENDIANNESS_UNKNOWN:
663 break; /* Board's decision */
664 default:
665 g_assert_not_reached();
668 if (!env->aarch64) {
669 env->thumb = info->entry & 1;
670 entry &= 0xfffffffe;
672 cpu_set_pc(cs, entry);
673 } else {
674 /* If we are booting Linux then we need to check whether we are
675 * booting into secure or non-secure state and adjust the state
676 * accordingly. Out of reset, ARM is defined to be in secure state
677 * (SCR.NS = 0), we change that here if non-secure boot has been
678 * requested.
680 if (arm_feature(env, ARM_FEATURE_EL3)) {
681 /* AArch64 is defined to come out of reset into EL3 if enabled.
682 * If we are booting Linux then we need to adjust our EL as
683 * Linux expects us to be in EL2 or EL1. AArch32 resets into
684 * SVC, which Linux expects, so no privilege/exception level to
685 * adjust.
687 if (env->aarch64) {
688 env->cp15.scr_el3 |= SCR_RW;
689 if (arm_feature(env, ARM_FEATURE_EL2)) {
690 env->cp15.hcr_el2 |= HCR_RW;
691 env->pstate = PSTATE_MODE_EL2h;
692 } else {
693 env->pstate = PSTATE_MODE_EL1h;
697 /* Set to non-secure if not a secure boot */
698 if (!info->secure_boot &&
699 (cs != first_cpu || !info->secure_board_setup)) {
700 /* Linux expects non-secure state */
701 env->cp15.scr_el3 |= SCR_NS;
705 if (cs == first_cpu) {
706 cpu_set_pc(cs, info->loader_start);
708 if (!have_dtb(info)) {
709 if (old_param) {
710 set_kernel_args_old(info);
711 } else {
712 set_kernel_args(info);
715 } else {
716 info->secondary_cpu_reset_hook(cpu, info);
723 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
724 * by key.
725 * @fw_cfg: The firmware config instance to store the data in.
726 * @size_key: The firmware config key to store the size of the loaded
727 * data under, with fw_cfg_add_i32().
728 * @data_key: The firmware config key to store the loaded data under,
729 * with fw_cfg_add_bytes().
730 * @image_name: The name of the image file to load. If it is NULL, the
731 * function returns without doing anything.
732 * @try_decompress: Whether the image should be decompressed (gunzipped) before
733 * adding it to fw_cfg. If decompression fails, the image is
734 * loaded as-is.
736 * In case of failure, the function prints an error message to stderr and the
737 * process exits with status 1.
739 static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
740 uint16_t data_key, const char *image_name,
741 bool try_decompress)
743 size_t size = -1;
744 uint8_t *data;
746 if (image_name == NULL) {
747 return;
750 if (try_decompress) {
751 size = load_image_gzipped_buffer(image_name,
752 LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
755 if (size == (size_t)-1) {
756 gchar *contents;
757 gsize length;
759 if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
760 error_report("failed to load \"%s\"", image_name);
761 exit(1);
763 size = length;
764 data = (uint8_t *)contents;
767 fw_cfg_add_i32(fw_cfg, size_key, size);
768 fw_cfg_add_bytes(fw_cfg, data_key, data, size);
771 static int do_arm_linux_init(Object *obj, void *opaque)
773 if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
774 ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
775 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
776 struct arm_boot_info *info = opaque;
778 if (albifc->arm_linux_init) {
779 albifc->arm_linux_init(albif, info->secure_boot);
782 return 0;
785 static uint64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
786 uint64_t *lowaddr, uint64_t *highaddr,
787 int elf_machine)
789 bool elf_is64;
790 union {
791 Elf32_Ehdr h32;
792 Elf64_Ehdr h64;
793 } elf_header;
794 int data_swab = 0;
795 bool big_endian;
796 uint64_t ret = -1;
797 Error *err = NULL;
800 load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
801 if (err) {
802 return ret;
805 if (elf_is64) {
806 big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
807 info->endianness = big_endian ? ARM_ENDIANNESS_BE8
808 : ARM_ENDIANNESS_LE;
809 } else {
810 big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
811 if (big_endian) {
812 if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
813 info->endianness = ARM_ENDIANNESS_BE8;
814 } else {
815 info->endianness = ARM_ENDIANNESS_BE32;
816 /* In BE32, the CPU has a different view of the per-byte
817 * address map than the rest of the system. BE32 ELF files
818 * are organised such that they can be programmed through
819 * the CPU's per-word byte-reversed view of the world. QEMU
820 * however loads ELF files independently of the CPU. So
821 * tell the ELF loader to byte reverse the data for us.
823 data_swab = 2;
825 } else {
826 info->endianness = ARM_ENDIANNESS_LE;
830 ret = load_elf(info->kernel_filename, NULL, NULL,
831 pentry, lowaddr, highaddr, big_endian, elf_machine,
832 1, data_swab);
833 if (ret <= 0) {
834 /* The header loaded but the image didn't */
835 exit(1);
838 return ret;
841 static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
842 hwaddr *entry)
844 hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
845 uint8_t *buffer;
846 int size;
848 /* On aarch64, it's the bootloader's job to uncompress the kernel. */
849 size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
850 &buffer);
852 if (size < 0) {
853 gsize len;
855 /* Load as raw file otherwise */
856 if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
857 return -1;
859 size = len;
862 /* check the arm64 magic header value -- very old kernels may not have it */
863 if (memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
864 uint64_t hdrvals[2];
866 /* The arm64 Image header has text_offset and image_size fields at 8 and
867 * 16 bytes into the Image header, respectively. The text_offset field
868 * is only valid if the image_size is non-zero.
870 memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
871 if (hdrvals[1] != 0) {
872 kernel_load_offset = le64_to_cpu(hdrvals[0]);
876 *entry = mem_base + kernel_load_offset;
877 rom_add_blob_fixed(filename, buffer, size, *entry);
879 g_free(buffer);
881 return size;
884 static void arm_load_kernel_notify(Notifier *notifier, void *data)
886 CPUState *cs;
887 int kernel_size;
888 int initrd_size;
889 int is_linux = 0;
890 uint64_t elf_entry, elf_low_addr, elf_high_addr;
891 int elf_machine;
892 hwaddr entry;
893 static const ARMInsnFixup *primary_loader;
894 ArmLoadKernelNotifier *n = DO_UPCAST(ArmLoadKernelNotifier,
895 notifier, notifier);
896 ARMCPU *cpu = n->cpu;
897 struct arm_boot_info *info =
898 container_of(n, struct arm_boot_info, load_kernel_notifier);
900 /* The board code is not supposed to set secure_board_setup unless
901 * running its code in secure mode is actually possible, and KVM
902 * doesn't support secure.
904 assert(!(info->secure_board_setup && kvm_enabled()));
906 info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
908 /* Load the kernel. */
909 if (!info->kernel_filename || info->firmware_loaded) {
911 if (have_dtb(info)) {
912 /* If we have a device tree blob, but no kernel to supply it to (or
913 * the kernel is supposed to be loaded by the bootloader), copy the
914 * DTB to the base of RAM for the bootloader to pick up.
916 if (load_dtb(info->loader_start, info, 0) < 0) {
917 exit(1);
921 if (info->kernel_filename) {
922 FWCfgState *fw_cfg;
923 bool try_decompressing_kernel;
925 fw_cfg = fw_cfg_find();
926 try_decompressing_kernel = arm_feature(&cpu->env,
927 ARM_FEATURE_AARCH64);
929 /* Expose the kernel, the command line, and the initrd in fw_cfg.
930 * We don't process them here at all, it's all left to the
931 * firmware.
933 load_image_to_fw_cfg(fw_cfg,
934 FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
935 info->kernel_filename,
936 try_decompressing_kernel);
937 load_image_to_fw_cfg(fw_cfg,
938 FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
939 info->initrd_filename, false);
941 if (info->kernel_cmdline) {
942 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
943 strlen(info->kernel_cmdline) + 1);
944 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
945 info->kernel_cmdline);
949 /* We will start from address 0 (typically a boot ROM image) in the
950 * same way as hardware.
952 return;
955 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
956 primary_loader = bootloader_aarch64;
957 elf_machine = EM_AARCH64;
958 } else {
959 primary_loader = bootloader;
960 if (!info->write_board_setup) {
961 primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
963 elf_machine = EM_ARM;
966 if (!info->secondary_cpu_reset_hook) {
967 info->secondary_cpu_reset_hook = default_reset_secondary;
969 if (!info->write_secondary_boot) {
970 info->write_secondary_boot = default_write_secondary;
973 if (info->nb_cpus == 0)
974 info->nb_cpus = 1;
976 /* We want to put the initrd far enough into RAM that when the
977 * kernel is uncompressed it will not clobber the initrd. However
978 * on boards without much RAM we must ensure that we still leave
979 * enough room for a decent sized initrd, and on boards with large
980 * amounts of RAM we must avoid the initrd being so far up in RAM
981 * that it is outside lowmem and inaccessible to the kernel.
982 * So for boards with less than 256MB of RAM we put the initrd
983 * halfway into RAM, and for boards with 256MB of RAM or more we put
984 * the initrd at 128MB.
986 info->initrd_start = info->loader_start +
987 MIN(info->ram_size / 2, 128 * 1024 * 1024);
989 /* Assume that raw images are linux kernels, and ELF images are not. */
990 kernel_size = arm_load_elf(info, &elf_entry, &elf_low_addr,
991 &elf_high_addr, elf_machine);
992 if (kernel_size > 0 && have_dtb(info)) {
993 /* If there is still some room left at the base of RAM, try and put
994 * the DTB there like we do for images loaded with -bios or -pflash.
996 if (elf_low_addr > info->loader_start
997 || elf_high_addr < info->loader_start) {
998 /* Pass elf_low_addr as address limit to load_dtb if it may be
999 * pointing into RAM, otherwise pass '0' (no limit)
1001 if (elf_low_addr < info->loader_start) {
1002 elf_low_addr = 0;
1004 if (load_dtb(info->loader_start, info, elf_low_addr) < 0) {
1005 exit(1);
1009 entry = elf_entry;
1010 if (kernel_size < 0) {
1011 kernel_size = load_uimage(info->kernel_filename, &entry, NULL,
1012 &is_linux, NULL, NULL);
1014 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
1015 kernel_size = load_aarch64_image(info->kernel_filename,
1016 info->loader_start, &entry);
1017 is_linux = 1;
1018 } else if (kernel_size < 0) {
1019 /* 32-bit ARM */
1020 entry = info->loader_start + KERNEL_LOAD_ADDR;
1021 kernel_size = load_image_targphys(info->kernel_filename, entry,
1022 info->ram_size - KERNEL_LOAD_ADDR);
1023 is_linux = 1;
1025 if (kernel_size < 0) {
1026 error_report("could not load kernel '%s'", info->kernel_filename);
1027 exit(1);
1029 info->entry = entry;
1030 if (is_linux) {
1031 uint32_t fixupcontext[FIXUP_MAX];
1033 if (info->initrd_filename) {
1034 initrd_size = load_ramdisk(info->initrd_filename,
1035 info->initrd_start,
1036 info->ram_size -
1037 info->initrd_start);
1038 if (initrd_size < 0) {
1039 initrd_size = load_image_targphys(info->initrd_filename,
1040 info->initrd_start,
1041 info->ram_size -
1042 info->initrd_start);
1044 if (initrd_size < 0) {
1045 error_report("could not load initrd '%s'",
1046 info->initrd_filename);
1047 exit(1);
1049 } else {
1050 initrd_size = 0;
1052 info->initrd_size = initrd_size;
1054 fixupcontext[FIXUP_BOARDID] = info->board_id;
1055 fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
1057 /* for device tree boot, we pass the DTB directly in r2. Otherwise
1058 * we point to the kernel args.
1060 if (have_dtb(info)) {
1061 hwaddr align;
1062 hwaddr dtb_start;
1064 if (elf_machine == EM_AARCH64) {
1066 * Some AArch64 kernels on early bootup map the fdt region as
1068 * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1070 * Let's play safe and prealign it to 2MB to give us some space.
1072 align = 2 * 1024 * 1024;
1073 } else {
1075 * Some 32bit kernels will trash anything in the 4K page the
1076 * initrd ends in, so make sure the DTB isn't caught up in that.
1078 align = 4096;
1081 /* Place the DTB after the initrd in memory with alignment. */
1082 dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size, align);
1083 if (load_dtb(dtb_start, info, 0) < 0) {
1084 exit(1);
1086 fixupcontext[FIXUP_ARGPTR] = dtb_start;
1087 } else {
1088 fixupcontext[FIXUP_ARGPTR] = info->loader_start + KERNEL_ARGS_ADDR;
1089 if (info->ram_size >= (1ULL << 32)) {
1090 error_report("RAM size must be less than 4GB to boot"
1091 " Linux kernel using ATAGS (try passing a device tree"
1092 " using -dtb)");
1093 exit(1);
1096 fixupcontext[FIXUP_ENTRYPOINT] = entry;
1098 write_bootloader("bootloader", info->loader_start,
1099 primary_loader, fixupcontext);
1101 if (info->nb_cpus > 1) {
1102 info->write_secondary_boot(cpu, info);
1104 if (info->write_board_setup) {
1105 info->write_board_setup(cpu, info);
1108 /* Notify devices which need to fake up firmware initialization
1109 * that we're doing a direct kernel boot.
1111 object_child_foreach_recursive(object_get_root(),
1112 do_arm_linux_init, info);
1114 info->is_linux = is_linux;
1116 for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
1117 ARM_CPU(cs)->env.boot_info = info;
1121 void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
1123 CPUState *cs;
1125 info->load_kernel_notifier.cpu = cpu;
1126 info->load_kernel_notifier.notifier.notify = arm_load_kernel_notify;
1127 qemu_add_machine_init_done_notifier(&info->load_kernel_notifier.notifier);
1129 /* CPU objects (unlike devices) are not automatically reset on system
1130 * reset, so we must always register a handler to do so. If we're
1131 * actually loading a kernel, the handler is also responsible for
1132 * arranging that we start it correctly.
1134 for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
1135 qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1139 static const TypeInfo arm_linux_boot_if_info = {
1140 .name = TYPE_ARM_LINUX_BOOT_IF,
1141 .parent = TYPE_INTERFACE,
1142 .class_size = sizeof(ARMLinuxBootIfClass),
1145 static void arm_linux_boot_register_types(void)
1147 type_register_static(&arm_linux_boot_if_info);
1150 type_init(arm_linux_boot_register_types)