4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "exec/helper-proto.h"
21 #include "internals.h"
22 #include "exec/cpu_ldst.h"
24 #define SIGNBIT (uint32_t)0x80000000
25 #define SIGNBIT64 ((uint64_t)1 << 63)
27 static void raise_exception(CPUARMState
*env
, uint32_t excp
,
28 uint32_t syndrome
, uint32_t target_el
)
30 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
32 assert(!excp_is_internal(excp
));
33 cs
->exception_index
= excp
;
34 env
->exception
.syndrome
= syndrome
;
35 env
->exception
.target_el
= target_el
;
39 static int exception_target_el(CPUARMState
*env
)
41 int target_el
= MAX(1, arm_current_el(env
));
43 /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
44 * to EL3 in this case.
46 if (arm_is_secure(env
) && !arm_el_is_aa64(env
, 3) && target_el
== 1) {
53 uint32_t HELPER(neon_tbl
)(CPUARMState
*env
, uint32_t ireg
, uint32_t def
,
54 uint32_t rn
, uint32_t maxindex
)
61 table
= (uint64_t *)&env
->vfp
.regs
[rn
];
63 for (shift
= 0; shift
< 32; shift
+= 8) {
64 index
= (ireg
>> shift
) & 0xff;
65 if (index
< maxindex
) {
66 tmp
= (table
[index
>> 3] >> ((index
& 7) << 3)) & 0xff;
69 val
|= def
& (0xff << shift
);
75 #if !defined(CONFIG_USER_ONLY)
77 /* try to fill the TLB and return an exception if error. If retaddr is
78 * NULL, it means that the function was called in C code (i.e. not
79 * from generated code or from helper.c)
81 void tlb_fill(CPUState
*cs
, target_ulong addr
, int is_write
, int mmu_idx
,
87 ret
= arm_tlb_fill(cs
, addr
, is_write
, mmu_idx
, &fsr
);
89 ARMCPU
*cpu
= ARM_CPU(cs
);
90 CPUARMState
*env
= &cpu
->env
;
92 bool same_el
= (arm_current_el(env
) != 0);
95 /* now we have a real cpu fault */
96 cpu_restore_state(cs
, retaddr
);
99 /* AArch64 syndrome does not have an LPAE bit */
100 syn
= fsr
& ~(1 << 9);
102 /* For insn and data aborts we assume there is no instruction syndrome
103 * information; this is always true for exceptions reported to EL1.
106 syn
= syn_insn_abort(same_el
, 0, 0, syn
);
107 exc
= EXCP_PREFETCH_ABORT
;
109 syn
= syn_data_abort(same_el
, 0, 0, 0, is_write
== 1, syn
);
110 if (is_write
== 1 && arm_feature(env
, ARM_FEATURE_V6
)) {
113 exc
= EXCP_DATA_ABORT
;
116 env
->exception
.vaddress
= addr
;
117 env
->exception
.fsr
= fsr
;
118 raise_exception(env
, exc
, syn
, exception_target_el(env
));
123 uint32_t HELPER(add_setq
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
125 uint32_t res
= a
+ b
;
126 if (((res
^ a
) & SIGNBIT
) && !((a
^ b
) & SIGNBIT
))
131 uint32_t HELPER(add_saturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
133 uint32_t res
= a
+ b
;
134 if (((res
^ a
) & SIGNBIT
) && !((a
^ b
) & SIGNBIT
)) {
136 res
= ~(((int32_t)a
>> 31) ^ SIGNBIT
);
141 uint32_t HELPER(sub_saturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
143 uint32_t res
= a
- b
;
144 if (((res
^ a
) & SIGNBIT
) && ((a
^ b
) & SIGNBIT
)) {
146 res
= ~(((int32_t)a
>> 31) ^ SIGNBIT
);
151 uint32_t HELPER(double_saturate
)(CPUARMState
*env
, int32_t val
)
154 if (val
>= 0x40000000) {
157 } else if (val
<= (int32_t)0xc0000000) {
166 uint32_t HELPER(add_usaturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
168 uint32_t res
= a
+ b
;
176 uint32_t HELPER(sub_usaturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
178 uint32_t res
= a
- b
;
186 /* Signed saturation. */
187 static inline uint32_t do_ssat(CPUARMState
*env
, int32_t val
, int shift
)
193 mask
= (1u << shift
) - 1;
197 } else if (top
< -1) {
204 /* Unsigned saturation. */
205 static inline uint32_t do_usat(CPUARMState
*env
, int32_t val
, int shift
)
209 max
= (1u << shift
) - 1;
213 } else if (val
> max
) {
220 /* Signed saturate. */
221 uint32_t HELPER(ssat
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
223 return do_ssat(env
, x
, shift
);
226 /* Dual halfword signed saturate. */
227 uint32_t HELPER(ssat16
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
231 res
= (uint16_t)do_ssat(env
, (int16_t)x
, shift
);
232 res
|= do_ssat(env
, ((int32_t)x
) >> 16, shift
) << 16;
236 /* Unsigned saturate. */
237 uint32_t HELPER(usat
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
239 return do_usat(env
, x
, shift
);
242 /* Dual halfword unsigned saturate. */
243 uint32_t HELPER(usat16
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
247 res
= (uint16_t)do_usat(env
, (int16_t)x
, shift
);
248 res
|= do_usat(env
, ((int32_t)x
) >> 16, shift
) << 16;
252 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
253 * The function returns the target EL (1-3) if the instruction is to be trapped;
254 * otherwise it returns 0 indicating it is not trapped.
256 static inline int check_wfx_trap(CPUARMState
*env
, bool is_wfe
)
258 int cur_el
= arm_current_el(env
);
261 /* If we are currently in EL0 then we need to check if SCTLR is set up for
262 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
264 if (cur_el
< 1 && arm_feature(env
, ARM_FEATURE_V8
)) {
267 mask
= is_wfe
? SCTLR_nTWE
: SCTLR_nTWI
;
268 if (arm_is_secure_below_el3(env
) && !arm_el_is_aa64(env
, 3)) {
269 /* Secure EL0 and Secure PL1 is at EL3 */
275 if (!(env
->cp15
.sctlr_el
[target_el
] & mask
)) {
280 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
281 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
282 * bits will be zero indicating no trap.
284 if (cur_el
< 2 && !arm_is_secure(env
)) {
285 mask
= (is_wfe
) ? HCR_TWE
: HCR_TWI
;
286 if (env
->cp15
.hcr_el2
& mask
) {
291 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
293 mask
= (is_wfe
) ? SCR_TWE
: SCR_TWI
;
294 if (env
->cp15
.scr_el3
& mask
) {
302 void HELPER(wfi
)(CPUARMState
*env
)
304 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
305 int target_el
= check_wfx_trap(env
, false);
307 if (cpu_has_work(cs
)) {
308 /* Don't bother to go into our "low power state" if
309 * we would just wake up immediately.
316 raise_exception(env
, EXCP_UDEF
, syn_wfx(1, 0xe, 0), target_el
);
319 cs
->exception_index
= EXCP_HLT
;
324 void HELPER(wfe
)(CPUARMState
*env
)
326 /* This is a hint instruction that is semantically different
327 * from YIELD even though we currently implement it identically.
328 * Don't actually halt the CPU, just yield back to top
329 * level loop. This is not going into a "low power state"
330 * (ie halting until some event occurs), so we never take
331 * a configurable trap to a different exception level.
336 void HELPER(yield
)(CPUARMState
*env
)
338 ARMCPU
*cpu
= arm_env_get_cpu(env
);
339 CPUState
*cs
= CPU(cpu
);
341 /* This is a non-trappable hint instruction that generally indicates
342 * that the guest is currently busy-looping. Yield control back to the
343 * top level loop so that a more deserving VCPU has a chance to run.
345 cs
->exception_index
= EXCP_YIELD
;
349 /* Raise an internal-to-QEMU exception. This is limited to only
350 * those EXCP values which are special cases for QEMU to interrupt
351 * execution and not to be used for exceptions which are passed to
352 * the guest (those must all have syndrome information and thus should
353 * use exception_with_syndrome).
355 void HELPER(exception_internal
)(CPUARMState
*env
, uint32_t excp
)
357 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
359 assert(excp_is_internal(excp
));
360 cs
->exception_index
= excp
;
364 /* Raise an exception with the specified syndrome register value */
365 void HELPER(exception_with_syndrome
)(CPUARMState
*env
, uint32_t excp
,
366 uint32_t syndrome
, uint32_t target_el
)
368 raise_exception(env
, excp
, syndrome
, target_el
);
371 uint32_t HELPER(cpsr_read
)(CPUARMState
*env
)
373 return cpsr_read(env
) & ~(CPSR_EXEC
| CPSR_RESERVED
);
376 void HELPER(cpsr_write
)(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
378 cpsr_write(env
, val
, mask
);
381 /* Access to user mode registers from privileged modes. */
382 uint32_t HELPER(get_user_reg
)(CPUARMState
*env
, uint32_t regno
)
387 val
= env
->banked_r13
[0];
388 } else if (regno
== 14) {
389 val
= env
->banked_r14
[0];
390 } else if (regno
>= 8
391 && (env
->uncached_cpsr
& 0x1f) == ARM_CPU_MODE_FIQ
) {
392 val
= env
->usr_regs
[regno
- 8];
394 val
= env
->regs
[regno
];
399 void HELPER(set_user_reg
)(CPUARMState
*env
, uint32_t regno
, uint32_t val
)
402 env
->banked_r13
[0] = val
;
403 } else if (regno
== 14) {
404 env
->banked_r14
[0] = val
;
405 } else if (regno
>= 8
406 && (env
->uncached_cpsr
& 0x1f) == ARM_CPU_MODE_FIQ
) {
407 env
->usr_regs
[regno
- 8] = val
;
409 env
->regs
[regno
] = val
;
413 void HELPER(access_check_cp_reg
)(CPUARMState
*env
, void *rip
, uint32_t syndrome
)
415 const ARMCPRegInfo
*ri
= rip
;
418 if (arm_feature(env
, ARM_FEATURE_XSCALE
) && ri
->cp
< 14
419 && extract32(env
->cp15
.c15_cpar
, ri
->cp
, 1) == 0) {
420 raise_exception(env
, EXCP_UDEF
, syndrome
, exception_target_el(env
));
427 switch (ri
->accessfn(env
, ri
)) {
431 target_el
= exception_target_el(env
);
433 case CP_ACCESS_TRAP_EL2
:
434 /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
435 * a bug in the access function.
437 assert(!arm_is_secure(env
) && arm_current_el(env
) != 3);
440 case CP_ACCESS_TRAP_EL3
:
443 case CP_ACCESS_TRAP_UNCATEGORIZED
:
444 target_el
= exception_target_el(env
);
445 syndrome
= syn_uncategorized();
447 case CP_ACCESS_TRAP_UNCATEGORIZED_EL2
:
449 syndrome
= syn_uncategorized();
451 case CP_ACCESS_TRAP_UNCATEGORIZED_EL3
:
453 syndrome
= syn_uncategorized();
456 g_assert_not_reached();
459 raise_exception(env
, EXCP_UDEF
, syndrome
, target_el
);
462 void HELPER(set_cp_reg
)(CPUARMState
*env
, void *rip
, uint32_t value
)
464 const ARMCPRegInfo
*ri
= rip
;
466 ri
->writefn(env
, ri
, value
);
469 uint32_t HELPER(get_cp_reg
)(CPUARMState
*env
, void *rip
)
471 const ARMCPRegInfo
*ri
= rip
;
473 return ri
->readfn(env
, ri
);
476 void HELPER(set_cp_reg64
)(CPUARMState
*env
, void *rip
, uint64_t value
)
478 const ARMCPRegInfo
*ri
= rip
;
480 ri
->writefn(env
, ri
, value
);
483 uint64_t HELPER(get_cp_reg64
)(CPUARMState
*env
, void *rip
)
485 const ARMCPRegInfo
*ri
= rip
;
487 return ri
->readfn(env
, ri
);
490 void HELPER(msr_i_pstate
)(CPUARMState
*env
, uint32_t op
, uint32_t imm
)
492 /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
493 * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
494 * to catch that case at translate time.
496 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UMA
)) {
497 uint32_t syndrome
= syn_aa64_sysregtrap(0, extract32(op
, 0, 3),
498 extract32(op
, 3, 3), 4,
500 raise_exception(env
, EXCP_UDEF
, syndrome
, exception_target_el(env
));
504 case 0x05: /* SPSel */
505 update_spsel(env
, imm
);
507 case 0x1e: /* DAIFSet */
508 env
->daif
|= (imm
<< 6) & PSTATE_DAIF
;
510 case 0x1f: /* DAIFClear */
511 env
->daif
&= ~((imm
<< 6) & PSTATE_DAIF
);
514 g_assert_not_reached();
518 void HELPER(clear_pstate_ss
)(CPUARMState
*env
)
520 env
->pstate
&= ~PSTATE_SS
;
523 void HELPER(pre_hvc
)(CPUARMState
*env
)
525 ARMCPU
*cpu
= arm_env_get_cpu(env
);
526 int cur_el
= arm_current_el(env
);
527 /* FIXME: Use actual secure state. */
531 if (arm_is_psci_call(cpu
, EXCP_HVC
)) {
532 /* If PSCI is enabled and this looks like a valid PSCI call then
533 * that overrides the architecturally mandated HVC behaviour.
538 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
539 /* If EL2 doesn't exist, HVC always UNDEFs */
541 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
542 /* EL3.HCE has priority over EL2.HCD. */
543 undef
= !(env
->cp15
.scr_el3
& SCR_HCE
);
545 undef
= env
->cp15
.hcr_el2
& HCR_HCD
;
548 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
549 * For ARMv8/AArch64, HVC is allowed in EL3.
550 * Note that we've already trapped HVC from EL0 at translation
553 if (secure
&& (!is_a64(env
) || cur_el
== 1)) {
558 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
559 exception_target_el(env
));
563 void HELPER(pre_smc
)(CPUARMState
*env
, uint32_t syndrome
)
565 ARMCPU
*cpu
= arm_env_get_cpu(env
);
566 int cur_el
= arm_current_el(env
);
567 bool secure
= arm_is_secure(env
);
568 bool smd
= env
->cp15
.scr_el3
& SCR_SMD
;
569 /* On ARMv8 AArch32, SMD only applies to NS state.
570 * On ARMv7 SMD only applies to NS state and only if EL2 is available.
571 * For ARMv7 non EL2, we force SMD to zero so we don't need to re-check
572 * the EL2 condition here.
574 bool undef
= is_a64(env
) ? smd
: (!secure
&& smd
);
576 if (arm_is_psci_call(cpu
, EXCP_SMC
)) {
577 /* If PSCI is enabled and this looks like a valid PSCI call then
578 * that overrides the architecturally mandated SMC behaviour.
583 if (!arm_feature(env
, ARM_FEATURE_EL3
)) {
584 /* If we have no EL3 then SMC always UNDEFs */
586 } else if (!secure
&& cur_el
== 1 && (env
->cp15
.hcr_el2
& HCR_TSC
)) {
587 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */
588 raise_exception(env
, EXCP_HYP_TRAP
, syndrome
, 2);
592 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
593 exception_target_el(env
));
597 void HELPER(exception_return
)(CPUARMState
*env
)
599 int cur_el
= arm_current_el(env
);
600 unsigned int spsr_idx
= aarch64_banked_spsr_index(cur_el
);
601 uint32_t spsr
= env
->banked_spsr
[spsr_idx
];
604 aarch64_save_sp(env
, cur_el
);
606 env
->exclusive_addr
= -1;
608 /* We must squash the PSTATE.SS bit to zero unless both of the
610 * 1. debug exceptions are currently disabled
611 * 2. singlestep will be active in the EL we return to
612 * We check 1 here and 2 after we've done the pstate/cpsr write() to
613 * transition to the EL we're going to.
615 if (arm_generate_debug_exceptions(env
)) {
619 if (spsr
& PSTATE_nRW
) {
620 /* TODO: We currently assume EL1/2/3 are running in AArch64. */
623 env
->uncached_cpsr
= 0x10;
624 cpsr_write(env
, spsr
, ~0);
625 if (!arm_singlestep_active(env
)) {
626 env
->uncached_cpsr
&= ~PSTATE_SS
;
628 aarch64_sync_64_to_32(env
);
630 env
->regs
[15] = env
->elr_el
[1] & ~0x1;
632 new_el
= extract32(spsr
, 2, 2);
634 || (new_el
== 2 && !arm_feature(env
, ARM_FEATURE_EL2
))) {
635 /* Disallow return to an EL which is unimplemented or higher
636 * than the current one.
640 if (extract32(spsr
, 1, 1)) {
641 /* Return with reserved M[1] bit set */
644 if (new_el
== 0 && (spsr
& PSTATE_SP
)) {
645 /* Return to EL0 with M[0] bit set */
649 pstate_write(env
, spsr
);
650 if (!arm_singlestep_active(env
)) {
651 env
->pstate
&= ~PSTATE_SS
;
653 aarch64_restore_sp(env
, new_el
);
654 env
->pc
= env
->elr_el
[cur_el
];
660 /* Illegal return events of various kinds have architecturally
661 * mandated behaviour:
662 * restore NZCV and DAIF from SPSR_ELx
664 * restore PC from ELR_ELx
665 * no change to exception level, execution state or stack pointer
667 env
->pstate
|= PSTATE_IL
;
668 env
->pc
= env
->elr_el
[cur_el
];
669 spsr
&= PSTATE_NZCV
| PSTATE_DAIF
;
670 spsr
|= pstate_read(env
) & ~(PSTATE_NZCV
| PSTATE_DAIF
);
671 pstate_write(env
, spsr
);
672 if (!arm_singlestep_active(env
)) {
673 env
->pstate
&= ~PSTATE_SS
;
677 /* Return true if the linked breakpoint entry lbn passes its checks */
678 static bool linked_bp_matches(ARMCPU
*cpu
, int lbn
)
680 CPUARMState
*env
= &cpu
->env
;
681 uint64_t bcr
= env
->cp15
.dbgbcr
[lbn
];
682 int brps
= extract32(cpu
->dbgdidr
, 24, 4);
683 int ctx_cmps
= extract32(cpu
->dbgdidr
, 20, 4);
687 /* Links to unimplemented or non-context aware breakpoints are
688 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
689 * as if linked to an UNKNOWN context-aware breakpoint (in which
690 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
691 * We choose the former.
693 if (lbn
> brps
|| lbn
< (brps
- ctx_cmps
)) {
697 bcr
= env
->cp15
.dbgbcr
[lbn
];
699 if (extract64(bcr
, 0, 1) == 0) {
700 /* Linked breakpoint disabled : generate no events */
704 bt
= extract64(bcr
, 20, 4);
706 /* We match the whole register even if this is AArch32 using the
707 * short descriptor format (in which case it holds both PROCID and ASID),
708 * since we don't implement the optional v7 context ID masking.
710 contextidr
= extract64(env
->cp15
.contextidr_el
[1], 0, 32);
713 case 3: /* linked context ID match */
714 if (arm_current_el(env
) > 1) {
715 /* Context matches never fire in EL2 or (AArch64) EL3 */
718 return (contextidr
== extract64(env
->cp15
.dbgbvr
[lbn
], 0, 32));
719 case 5: /* linked address mismatch (reserved in AArch64) */
720 case 9: /* linked VMID match (reserved if no EL2) */
721 case 11: /* linked context ID and VMID match (reserved if no EL2) */
723 /* Links to Unlinked context breakpoints must generate no
724 * events; we choose to do the same for reserved values too.
732 static bool bp_wp_matches(ARMCPU
*cpu
, int n
, bool is_wp
)
734 CPUARMState
*env
= &cpu
->env
;
736 int pac
, hmc
, ssc
, wt
, lbn
;
737 /* Note that for watchpoints the check is against the CPU security
738 * state, not the S/NS attribute on the offending data access.
740 bool is_secure
= arm_is_secure(env
);
741 int access_el
= arm_current_el(env
);
744 CPUWatchpoint
*wp
= env
->cpu_watchpoint
[n
];
746 if (!wp
|| !(wp
->flags
& BP_WATCHPOINT_HIT
)) {
749 cr
= env
->cp15
.dbgwcr
[n
];
750 if (wp
->hitattrs
.user
) {
751 /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
752 * match watchpoints as if they were accesses done at EL0, even if
753 * the CPU is at EL1 or higher.
758 uint64_t pc
= is_a64(env
) ? env
->pc
: env
->regs
[15];
760 if (!env
->cpu_breakpoint
[n
] || env
->cpu_breakpoint
[n
]->pc
!= pc
) {
763 cr
= env
->cp15
.dbgbcr
[n
];
765 /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
766 * enabled and that the address and access type match; for breakpoints
767 * we know the address matched; check the remaining fields, including
768 * linked breakpoints. We rely on WCR and BCR having the same layout
769 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
770 * Note that some combinations of {PAC, HMC, SSC} are reserved and
771 * must act either like some valid combination or as if the watchpoint
772 * were disabled. We choose the former, and use this together with
773 * the fact that EL3 must always be Secure and EL2 must always be
774 * Non-Secure to simplify the code slightly compared to the full
775 * table in the ARM ARM.
777 pac
= extract64(cr
, 1, 2);
778 hmc
= extract64(cr
, 13, 1);
779 ssc
= extract64(cr
, 14, 2);
805 if (extract32(pac
, 0, 1) == 0) {
810 if (extract32(pac
, 1, 1) == 0) {
815 g_assert_not_reached();
818 wt
= extract64(cr
, 20, 1);
819 lbn
= extract64(cr
, 16, 4);
821 if (wt
&& !linked_bp_matches(cpu
, lbn
)) {
828 static bool check_watchpoints(ARMCPU
*cpu
)
830 CPUARMState
*env
= &cpu
->env
;
833 /* If watchpoints are disabled globally or we can't take debug
834 * exceptions here then watchpoint firings are ignored.
836 if (extract32(env
->cp15
.mdscr_el1
, 15, 1) == 0
837 || !arm_generate_debug_exceptions(env
)) {
841 for (n
= 0; n
< ARRAY_SIZE(env
->cpu_watchpoint
); n
++) {
842 if (bp_wp_matches(cpu
, n
, true)) {
849 static bool check_breakpoints(ARMCPU
*cpu
)
851 CPUARMState
*env
= &cpu
->env
;
854 /* If breakpoints are disabled globally or we can't take debug
855 * exceptions here then breakpoint firings are ignored.
857 if (extract32(env
->cp15
.mdscr_el1
, 15, 1) == 0
858 || !arm_generate_debug_exceptions(env
)) {
862 for (n
= 0; n
< ARRAY_SIZE(env
->cpu_breakpoint
); n
++) {
863 if (bp_wp_matches(cpu
, n
, false)) {
870 void HELPER(check_breakpoints
)(CPUARMState
*env
)
872 ARMCPU
*cpu
= arm_env_get_cpu(env
);
874 if (check_breakpoints(cpu
)) {
875 HELPER(exception_internal(env
, EXCP_DEBUG
));
879 void arm_debug_excp_handler(CPUState
*cs
)
881 /* Called by core code when a watchpoint or breakpoint fires;
882 * need to check which one and raise the appropriate exception.
884 ARMCPU
*cpu
= ARM_CPU(cs
);
885 CPUARMState
*env
= &cpu
->env
;
886 CPUWatchpoint
*wp_hit
= cs
->watchpoint_hit
;
889 if (wp_hit
->flags
& BP_CPU
) {
890 cs
->watchpoint_hit
= NULL
;
891 if (check_watchpoints(cpu
)) {
892 bool wnr
= (wp_hit
->flags
& BP_WATCHPOINT_HIT_WRITE
) != 0;
893 bool same_el
= arm_debug_target_el(env
) == arm_current_el(env
);
895 if (extended_addresses_enabled(env
)) {
896 env
->exception
.fsr
= (1 << 9) | 0x22;
898 env
->exception
.fsr
= 0x2;
900 env
->exception
.vaddress
= wp_hit
->hitaddr
;
901 raise_exception(env
, EXCP_DATA_ABORT
,
902 syn_watchpoint(same_el
, 0, wnr
),
903 arm_debug_target_el(env
));
905 cpu_resume_from_signal(cs
, NULL
);
909 uint64_t pc
= is_a64(env
) ? env
->pc
: env
->regs
[15];
910 bool same_el
= (arm_debug_target_el(env
) == arm_current_el(env
));
912 if (cpu_breakpoint_test(cs
, pc
, BP_GDB
)) {
916 if (extended_addresses_enabled(env
)) {
917 env
->exception
.fsr
= (1 << 9) | 0x22;
919 env
->exception
.fsr
= 0x2;
921 /* FAR is UNKNOWN, so doesn't need setting */
922 raise_exception(env
, EXCP_PREFETCH_ABORT
,
923 syn_breakpoint(same_el
),
924 arm_debug_target_el(env
));
928 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
929 The only way to do that in TCG is a conditional branch, which clobbers
930 all our temporaries. For now implement these as helper functions. */
932 /* Similarly for variable shift instructions. */
934 uint32_t HELPER(shl_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
936 int shift
= i
& 0xff;
943 } else if (shift
!= 0) {
944 env
->CF
= (x
>> (32 - shift
)) & 1;
950 uint32_t HELPER(shr_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
952 int shift
= i
& 0xff;
955 env
->CF
= (x
>> 31) & 1;
959 } else if (shift
!= 0) {
960 env
->CF
= (x
>> (shift
- 1)) & 1;
966 uint32_t HELPER(sar_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
968 int shift
= i
& 0xff;
970 env
->CF
= (x
>> 31) & 1;
971 return (int32_t)x
>> 31;
972 } else if (shift
!= 0) {
973 env
->CF
= (x
>> (shift
- 1)) & 1;
974 return (int32_t)x
>> shift
;
979 uint32_t HELPER(ror_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
983 shift
= shift1
& 0x1f;
986 env
->CF
= (x
>> 31) & 1;
989 env
->CF
= (x
>> (shift
- 1)) & 1;
990 return ((uint32_t)x
>> shift
) | (x
<< (32 - shift
));