block: drop empty .bdrv_close handlers
[qemu/ar7.git] / target / i386 / kvm.c
blob9313602d3deb74bca2044f06fc4085c35fa7ea2b
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include "standard-headers/asm-x86/kvm_para.h"
23 #include "qemu-common.h"
24 #include "cpu.h"
25 #include "sysemu/sysemu.h"
26 #include "sysemu/hw_accel.h"
27 #include "sysemu/kvm_int.h"
28 #include "kvm_i386.h"
29 #include "hyperv.h"
30 #include "hyperv-proto.h"
32 #include "exec/gdbstub.h"
33 #include "qemu/host-utils.h"
34 #include "qemu/config-file.h"
35 #include "qemu/error-report.h"
36 #include "hw/i386/pc.h"
37 #include "hw/i386/apic.h"
38 #include "hw/i386/apic_internal.h"
39 #include "hw/i386/apic-msidef.h"
40 #include "hw/i386/intel_iommu.h"
41 #include "hw/i386/x86-iommu.h"
43 #include "hw/pci/pci.h"
44 #include "hw/pci/msi.h"
45 #include "hw/pci/msix.h"
46 #include "migration/blocker.h"
47 #include "exec/memattrs.h"
48 #include "trace.h"
50 //#define DEBUG_KVM
52 #ifdef DEBUG_KVM
53 #define DPRINTF(fmt, ...) \
54 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
55 #else
56 #define DPRINTF(fmt, ...) \
57 do { } while (0)
58 #endif
60 #define MSR_KVM_WALL_CLOCK 0x11
61 #define MSR_KVM_SYSTEM_TIME 0x12
63 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
64 * 255 kvm_msr_entry structs */
65 #define MSR_BUF_SIZE 4096
67 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
68 KVM_CAP_INFO(SET_TSS_ADDR),
69 KVM_CAP_INFO(EXT_CPUID),
70 KVM_CAP_INFO(MP_STATE),
71 KVM_CAP_LAST_INFO
74 static bool has_msr_star;
75 static bool has_msr_hsave_pa;
76 static bool has_msr_tsc_aux;
77 static bool has_msr_tsc_adjust;
78 static bool has_msr_tsc_deadline;
79 static bool has_msr_feature_control;
80 static bool has_msr_misc_enable;
81 static bool has_msr_smbase;
82 static bool has_msr_bndcfgs;
83 static int lm_capable_kernel;
84 static bool has_msr_hv_hypercall;
85 static bool has_msr_hv_crash;
86 static bool has_msr_hv_reset;
87 static bool has_msr_hv_vpindex;
88 static bool hv_vpindex_settable;
89 static bool has_msr_hv_runtime;
90 static bool has_msr_hv_synic;
91 static bool has_msr_hv_stimer;
92 static bool has_msr_hv_frequencies;
93 static bool has_msr_hv_reenlightenment;
94 static bool has_msr_xss;
95 static bool has_msr_spec_ctrl;
96 static bool has_msr_virt_ssbd;
97 static bool has_msr_smi_count;
99 static uint32_t has_architectural_pmu_version;
100 static uint32_t num_architectural_pmu_gp_counters;
101 static uint32_t num_architectural_pmu_fixed_counters;
103 static int has_xsave;
104 static int has_xcrs;
105 static int has_pit_state2;
107 static bool has_msr_mcg_ext_ctl;
109 static struct kvm_cpuid2 *cpuid_cache;
111 int kvm_has_pit_state2(void)
113 return has_pit_state2;
116 bool kvm_has_smm(void)
118 return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
121 bool kvm_has_adjust_clock_stable(void)
123 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
125 return (ret == KVM_CLOCK_TSC_STABLE);
128 bool kvm_allows_irq0_override(void)
130 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
133 static bool kvm_x2apic_api_set_flags(uint64_t flags)
135 KVMState *s = KVM_STATE(current_machine->accelerator);
137 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
140 #define MEMORIZE(fn, _result) \
141 ({ \
142 static bool _memorized; \
144 if (_memorized) { \
145 return _result; \
147 _memorized = true; \
148 _result = fn; \
151 static bool has_x2apic_api;
153 bool kvm_has_x2apic_api(void)
155 return has_x2apic_api;
158 bool kvm_enable_x2apic(void)
160 return MEMORIZE(
161 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
162 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
163 has_x2apic_api);
166 bool kvm_hv_vpindex_settable(void)
168 return hv_vpindex_settable;
171 static int kvm_get_tsc(CPUState *cs)
173 X86CPU *cpu = X86_CPU(cs);
174 CPUX86State *env = &cpu->env;
175 struct {
176 struct kvm_msrs info;
177 struct kvm_msr_entry entries[1];
178 } msr_data;
179 int ret;
181 if (env->tsc_valid) {
182 return 0;
185 msr_data.info.nmsrs = 1;
186 msr_data.entries[0].index = MSR_IA32_TSC;
187 env->tsc_valid = !runstate_is_running();
189 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
190 if (ret < 0) {
191 return ret;
194 assert(ret == 1);
195 env->tsc = msr_data.entries[0].data;
196 return 0;
199 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
201 kvm_get_tsc(cpu);
204 void kvm_synchronize_all_tsc(void)
206 CPUState *cpu;
208 if (kvm_enabled()) {
209 CPU_FOREACH(cpu) {
210 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
215 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
217 struct kvm_cpuid2 *cpuid;
218 int r, size;
220 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
221 cpuid = g_malloc0(size);
222 cpuid->nent = max;
223 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
224 if (r == 0 && cpuid->nent >= max) {
225 r = -E2BIG;
227 if (r < 0) {
228 if (r == -E2BIG) {
229 g_free(cpuid);
230 return NULL;
231 } else {
232 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
233 strerror(-r));
234 exit(1);
237 return cpuid;
240 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
241 * for all entries.
243 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
245 struct kvm_cpuid2 *cpuid;
246 int max = 1;
248 if (cpuid_cache != NULL) {
249 return cpuid_cache;
251 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
252 max *= 2;
254 cpuid_cache = cpuid;
255 return cpuid;
258 static const struct kvm_para_features {
259 int cap;
260 int feature;
261 } para_features[] = {
262 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
263 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
264 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
265 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
268 static int get_para_features(KVMState *s)
270 int i, features = 0;
272 for (i = 0; i < ARRAY_SIZE(para_features); i++) {
273 if (kvm_check_extension(s, para_features[i].cap)) {
274 features |= (1 << para_features[i].feature);
278 return features;
281 static bool host_tsx_blacklisted(void)
283 int family, model, stepping;\
284 char vendor[CPUID_VENDOR_SZ + 1];
286 host_vendor_fms(vendor, &family, &model, &stepping);
288 /* Check if we are running on a Haswell host known to have broken TSX */
289 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
290 (family == 6) &&
291 ((model == 63 && stepping < 4) ||
292 model == 60 || model == 69 || model == 70);
295 /* Returns the value for a specific register on the cpuid entry
297 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
299 uint32_t ret = 0;
300 switch (reg) {
301 case R_EAX:
302 ret = entry->eax;
303 break;
304 case R_EBX:
305 ret = entry->ebx;
306 break;
307 case R_ECX:
308 ret = entry->ecx;
309 break;
310 case R_EDX:
311 ret = entry->edx;
312 break;
314 return ret;
317 /* Find matching entry for function/index on kvm_cpuid2 struct
319 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
320 uint32_t function,
321 uint32_t index)
323 int i;
324 for (i = 0; i < cpuid->nent; ++i) {
325 if (cpuid->entries[i].function == function &&
326 cpuid->entries[i].index == index) {
327 return &cpuid->entries[i];
330 /* not found: */
331 return NULL;
334 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
335 uint32_t index, int reg)
337 struct kvm_cpuid2 *cpuid;
338 uint32_t ret = 0;
339 uint32_t cpuid_1_edx;
340 bool found = false;
342 cpuid = get_supported_cpuid(s);
344 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
345 if (entry) {
346 found = true;
347 ret = cpuid_entry_get_reg(entry, reg);
350 /* Fixups for the data returned by KVM, below */
352 if (function == 1 && reg == R_EDX) {
353 /* KVM before 2.6.30 misreports the following features */
354 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
355 } else if (function == 1 && reg == R_ECX) {
356 /* We can set the hypervisor flag, even if KVM does not return it on
357 * GET_SUPPORTED_CPUID
359 ret |= CPUID_EXT_HYPERVISOR;
360 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
361 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
362 * and the irqchip is in the kernel.
364 if (kvm_irqchip_in_kernel() &&
365 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
366 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
369 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
370 * without the in-kernel irqchip
372 if (!kvm_irqchip_in_kernel()) {
373 ret &= ~CPUID_EXT_X2APIC;
376 if (enable_cpu_pm) {
377 int disable_exits = kvm_check_extension(s,
378 KVM_CAP_X86_DISABLE_EXITS);
380 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
381 ret |= CPUID_EXT_MONITOR;
384 } else if (function == 6 && reg == R_EAX) {
385 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
386 } else if (function == 7 && index == 0 && reg == R_EBX) {
387 if (host_tsx_blacklisted()) {
388 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
390 } else if (function == 0x80000001 && reg == R_ECX) {
392 * It's safe to enable TOPOEXT even if it's not returned by
393 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
394 * us to keep CPU models including TOPOEXT runnable on older kernels.
396 ret |= CPUID_EXT3_TOPOEXT;
397 } else if (function == 0x80000001 && reg == R_EDX) {
398 /* On Intel, kvm returns cpuid according to the Intel spec,
399 * so add missing bits according to the AMD spec:
401 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
402 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
403 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
404 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
405 * be enabled without the in-kernel irqchip
407 if (!kvm_irqchip_in_kernel()) {
408 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
410 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
411 ret |= 1U << KVM_HINTS_REALTIME;
412 found = 1;
415 /* fallback for older kernels */
416 if ((function == KVM_CPUID_FEATURES) && !found) {
417 ret = get_para_features(s);
420 return ret;
423 typedef struct HWPoisonPage {
424 ram_addr_t ram_addr;
425 QLIST_ENTRY(HWPoisonPage) list;
426 } HWPoisonPage;
428 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
429 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
431 static void kvm_unpoison_all(void *param)
433 HWPoisonPage *page, *next_page;
435 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
436 QLIST_REMOVE(page, list);
437 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
438 g_free(page);
442 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
444 HWPoisonPage *page;
446 QLIST_FOREACH(page, &hwpoison_page_list, list) {
447 if (page->ram_addr == ram_addr) {
448 return;
451 page = g_new(HWPoisonPage, 1);
452 page->ram_addr = ram_addr;
453 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
456 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
457 int *max_banks)
459 int r;
461 r = kvm_check_extension(s, KVM_CAP_MCE);
462 if (r > 0) {
463 *max_banks = r;
464 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
466 return -ENOSYS;
469 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
471 CPUState *cs = CPU(cpu);
472 CPUX86State *env = &cpu->env;
473 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
474 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
475 uint64_t mcg_status = MCG_STATUS_MCIP;
476 int flags = 0;
478 if (code == BUS_MCEERR_AR) {
479 status |= MCI_STATUS_AR | 0x134;
480 mcg_status |= MCG_STATUS_EIPV;
481 } else {
482 status |= 0xc0;
483 mcg_status |= MCG_STATUS_RIPV;
486 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
487 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
488 * guest kernel back into env->mcg_ext_ctl.
490 cpu_synchronize_state(cs);
491 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
492 mcg_status |= MCG_STATUS_LMCE;
493 flags = 0;
496 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
497 (MCM_ADDR_PHYS << 6) | 0xc, flags);
500 static void hardware_memory_error(void)
502 fprintf(stderr, "Hardware memory error!\n");
503 exit(1);
506 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
508 X86CPU *cpu = X86_CPU(c);
509 CPUX86State *env = &cpu->env;
510 ram_addr_t ram_addr;
511 hwaddr paddr;
513 /* If we get an action required MCE, it has been injected by KVM
514 * while the VM was running. An action optional MCE instead should
515 * be coming from the main thread, which qemu_init_sigbus identifies
516 * as the "early kill" thread.
518 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
520 if ((env->mcg_cap & MCG_SER_P) && addr) {
521 ram_addr = qemu_ram_addr_from_host(addr);
522 if (ram_addr != RAM_ADDR_INVALID &&
523 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
524 kvm_hwpoison_page_add(ram_addr);
525 kvm_mce_inject(cpu, paddr, code);
526 return;
529 fprintf(stderr, "Hardware memory error for memory used by "
530 "QEMU itself instead of guest system!\n");
533 if (code == BUS_MCEERR_AR) {
534 hardware_memory_error();
537 /* Hope we are lucky for AO MCE */
540 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
542 CPUX86State *env = &cpu->env;
544 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
545 unsigned int bank, bank_num = env->mcg_cap & 0xff;
546 struct kvm_x86_mce mce;
548 env->exception_injected = -1;
551 * There must be at least one bank in use if an MCE is pending.
552 * Find it and use its values for the event injection.
554 for (bank = 0; bank < bank_num; bank++) {
555 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
556 break;
559 assert(bank < bank_num);
561 mce.bank = bank;
562 mce.status = env->mce_banks[bank * 4 + 1];
563 mce.mcg_status = env->mcg_status;
564 mce.addr = env->mce_banks[bank * 4 + 2];
565 mce.misc = env->mce_banks[bank * 4 + 3];
567 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
569 return 0;
572 static void cpu_update_state(void *opaque, int running, RunState state)
574 CPUX86State *env = opaque;
576 if (running) {
577 env->tsc_valid = false;
581 unsigned long kvm_arch_vcpu_id(CPUState *cs)
583 X86CPU *cpu = X86_CPU(cs);
584 return cpu->apic_id;
587 #ifndef KVM_CPUID_SIGNATURE_NEXT
588 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
589 #endif
591 static bool hyperv_hypercall_available(X86CPU *cpu)
593 return cpu->hyperv_vapic ||
594 (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY);
597 static bool hyperv_enabled(X86CPU *cpu)
599 CPUState *cs = CPU(cpu);
600 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
601 (hyperv_hypercall_available(cpu) ||
602 cpu->hyperv_time ||
603 cpu->hyperv_relaxed_timing ||
604 cpu->hyperv_crash ||
605 cpu->hyperv_reset ||
606 cpu->hyperv_vpindex ||
607 cpu->hyperv_runtime ||
608 cpu->hyperv_synic ||
609 cpu->hyperv_stimer ||
610 cpu->hyperv_reenlightenment ||
611 cpu->hyperv_tlbflush);
614 static int kvm_arch_set_tsc_khz(CPUState *cs)
616 X86CPU *cpu = X86_CPU(cs);
617 CPUX86State *env = &cpu->env;
618 int r;
620 if (!env->tsc_khz) {
621 return 0;
624 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL) ?
625 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
626 -ENOTSUP;
627 if (r < 0) {
628 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
629 * TSC frequency doesn't match the one we want.
631 int cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
632 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
633 -ENOTSUP;
634 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
635 warn_report("TSC frequency mismatch between "
636 "VM (%" PRId64 " kHz) and host (%d kHz), "
637 "and TSC scaling unavailable",
638 env->tsc_khz, cur_freq);
639 return r;
643 return 0;
646 static bool tsc_is_stable_and_known(CPUX86State *env)
648 if (!env->tsc_khz) {
649 return false;
651 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
652 || env->user_tsc_khz;
655 static int hyperv_handle_properties(CPUState *cs)
657 X86CPU *cpu = X86_CPU(cs);
658 CPUX86State *env = &cpu->env;
660 if (cpu->hyperv_relaxed_timing) {
661 env->features[FEAT_HYPERV_EAX] |= HV_HYPERCALL_AVAILABLE;
663 if (cpu->hyperv_vapic) {
664 env->features[FEAT_HYPERV_EAX] |= HV_HYPERCALL_AVAILABLE;
665 env->features[FEAT_HYPERV_EAX] |= HV_APIC_ACCESS_AVAILABLE;
667 if (cpu->hyperv_time) {
668 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) <= 0) {
669 fprintf(stderr, "Hyper-V clocksources "
670 "(requested by 'hv-time' cpu flag) "
671 "are not supported by kernel\n");
672 return -ENOSYS;
674 env->features[FEAT_HYPERV_EAX] |= HV_HYPERCALL_AVAILABLE;
675 env->features[FEAT_HYPERV_EAX] |= HV_TIME_REF_COUNT_AVAILABLE;
676 env->features[FEAT_HYPERV_EAX] |= HV_REFERENCE_TSC_AVAILABLE;
678 if (cpu->hyperv_frequencies) {
679 if (!has_msr_hv_frequencies) {
680 fprintf(stderr, "Hyper-V frequency MSRs "
681 "(requested by 'hv-frequencies' cpu flag) "
682 "are not supported by kernel\n");
683 return -ENOSYS;
685 env->features[FEAT_HYPERV_EAX] |= HV_ACCESS_FREQUENCY_MSRS;
686 env->features[FEAT_HYPERV_EDX] |= HV_FREQUENCY_MSRS_AVAILABLE;
688 if (cpu->hyperv_crash) {
689 if (!has_msr_hv_crash) {
690 fprintf(stderr, "Hyper-V crash MSRs "
691 "(requested by 'hv-crash' cpu flag) "
692 "are not supported by kernel\n");
693 return -ENOSYS;
695 env->features[FEAT_HYPERV_EDX] |= HV_GUEST_CRASH_MSR_AVAILABLE;
697 if (cpu->hyperv_reenlightenment) {
698 if (!has_msr_hv_reenlightenment) {
699 fprintf(stderr,
700 "Hyper-V Reenlightenment MSRs "
701 "(requested by 'hv-reenlightenment' cpu flag) "
702 "are not supported by kernel\n");
703 return -ENOSYS;
705 env->features[FEAT_HYPERV_EAX] |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
707 env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
708 if (cpu->hyperv_reset) {
709 if (!has_msr_hv_reset) {
710 fprintf(stderr, "Hyper-V reset MSR "
711 "(requested by 'hv-reset' cpu flag) "
712 "is not supported by kernel\n");
713 return -ENOSYS;
715 env->features[FEAT_HYPERV_EAX] |= HV_RESET_AVAILABLE;
717 if (cpu->hyperv_vpindex) {
718 if (!has_msr_hv_vpindex) {
719 fprintf(stderr, "Hyper-V VP_INDEX MSR "
720 "(requested by 'hv-vpindex' cpu flag) "
721 "is not supported by kernel\n");
722 return -ENOSYS;
724 env->features[FEAT_HYPERV_EAX] |= HV_VP_INDEX_AVAILABLE;
726 if (cpu->hyperv_runtime) {
727 if (!has_msr_hv_runtime) {
728 fprintf(stderr, "Hyper-V VP_RUNTIME MSR "
729 "(requested by 'hv-runtime' cpu flag) "
730 "is not supported by kernel\n");
731 return -ENOSYS;
733 env->features[FEAT_HYPERV_EAX] |= HV_VP_RUNTIME_AVAILABLE;
735 if (cpu->hyperv_synic) {
736 if (!has_msr_hv_synic ||
737 kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_SYNIC, 0)) {
738 fprintf(stderr, "Hyper-V SynIC is not supported by kernel\n");
739 return -ENOSYS;
742 env->features[FEAT_HYPERV_EAX] |= HV_SYNIC_AVAILABLE;
744 if (cpu->hyperv_stimer) {
745 if (!has_msr_hv_stimer) {
746 fprintf(stderr, "Hyper-V timers aren't supported by kernel\n");
747 return -ENOSYS;
749 env->features[FEAT_HYPERV_EAX] |= HV_SYNTIMERS_AVAILABLE;
751 return 0;
754 static int hyperv_init_vcpu(X86CPU *cpu)
756 if (cpu->hyperv_vpindex && !hv_vpindex_settable) {
758 * the kernel doesn't support setting vp_index; assert that its value
759 * is in sync
761 int ret;
762 struct {
763 struct kvm_msrs info;
764 struct kvm_msr_entry entries[1];
765 } msr_data = {
766 .info.nmsrs = 1,
767 .entries[0].index = HV_X64_MSR_VP_INDEX,
770 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
771 if (ret < 0) {
772 return ret;
774 assert(ret == 1);
776 if (msr_data.entries[0].data != hyperv_vp_index(cpu)) {
777 error_report("kernel's vp_index != QEMU's vp_index");
778 return -ENXIO;
782 return 0;
785 static Error *invtsc_mig_blocker;
787 #define KVM_MAX_CPUID_ENTRIES 100
789 int kvm_arch_init_vcpu(CPUState *cs)
791 struct {
792 struct kvm_cpuid2 cpuid;
793 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
794 } QEMU_PACKED cpuid_data;
795 X86CPU *cpu = X86_CPU(cs);
796 CPUX86State *env = &cpu->env;
797 uint32_t limit, i, j, cpuid_i;
798 uint32_t unused;
799 struct kvm_cpuid_entry2 *c;
800 uint32_t signature[3];
801 int kvm_base = KVM_CPUID_SIGNATURE;
802 int r;
803 Error *local_err = NULL;
805 memset(&cpuid_data, 0, sizeof(cpuid_data));
807 cpuid_i = 0;
809 r = kvm_arch_set_tsc_khz(cs);
810 if (r < 0) {
811 goto fail;
814 /* vcpu's TSC frequency is either specified by user, or following
815 * the value used by KVM if the former is not present. In the
816 * latter case, we query it from KVM and record in env->tsc_khz,
817 * so that vcpu's TSC frequency can be migrated later via this field.
819 if (!env->tsc_khz) {
820 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
821 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
822 -ENOTSUP;
823 if (r > 0) {
824 env->tsc_khz = r;
828 /* Paravirtualization CPUIDs */
829 if (hyperv_enabled(cpu)) {
830 c = &cpuid_data.entries[cpuid_i++];
831 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
832 if (!cpu->hyperv_vendor_id) {
833 memcpy(signature, "Microsoft Hv", 12);
834 } else {
835 size_t len = strlen(cpu->hyperv_vendor_id);
837 if (len > 12) {
838 error_report("hv-vendor-id truncated to 12 characters");
839 len = 12;
841 memset(signature, 0, 12);
842 memcpy(signature, cpu->hyperv_vendor_id, len);
844 c->eax = HV_CPUID_MIN;
845 c->ebx = signature[0];
846 c->ecx = signature[1];
847 c->edx = signature[2];
849 c = &cpuid_data.entries[cpuid_i++];
850 c->function = HV_CPUID_INTERFACE;
851 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
852 c->eax = signature[0];
853 c->ebx = 0;
854 c->ecx = 0;
855 c->edx = 0;
857 c = &cpuid_data.entries[cpuid_i++];
858 c->function = HV_CPUID_VERSION;
859 c->eax = 0x00001bbc;
860 c->ebx = 0x00060001;
862 c = &cpuid_data.entries[cpuid_i++];
863 c->function = HV_CPUID_FEATURES;
864 r = hyperv_handle_properties(cs);
865 if (r) {
866 return r;
868 c->eax = env->features[FEAT_HYPERV_EAX];
869 c->ebx = env->features[FEAT_HYPERV_EBX];
870 c->edx = env->features[FEAT_HYPERV_EDX];
872 c = &cpuid_data.entries[cpuid_i++];
873 c->function = HV_CPUID_ENLIGHTMENT_INFO;
874 if (cpu->hyperv_relaxed_timing) {
875 c->eax |= HV_RELAXED_TIMING_RECOMMENDED;
877 if (cpu->hyperv_vapic) {
878 c->eax |= HV_APIC_ACCESS_RECOMMENDED;
880 if (cpu->hyperv_tlbflush) {
881 if (kvm_check_extension(cs->kvm_state,
882 KVM_CAP_HYPERV_TLBFLUSH) <= 0) {
883 fprintf(stderr, "Hyper-V TLB flush support "
884 "(requested by 'hv-tlbflush' cpu flag) "
885 " is not supported by kernel\n");
886 return -ENOSYS;
888 c->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
889 c->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
892 c->ebx = cpu->hyperv_spinlock_attempts;
894 c = &cpuid_data.entries[cpuid_i++];
895 c->function = HV_CPUID_IMPLEMENT_LIMITS;
897 c->eax = cpu->hv_max_vps;
898 c->ebx = 0x40;
900 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
901 has_msr_hv_hypercall = true;
904 if (cpu->expose_kvm) {
905 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
906 c = &cpuid_data.entries[cpuid_i++];
907 c->function = KVM_CPUID_SIGNATURE | kvm_base;
908 c->eax = KVM_CPUID_FEATURES | kvm_base;
909 c->ebx = signature[0];
910 c->ecx = signature[1];
911 c->edx = signature[2];
913 c = &cpuid_data.entries[cpuid_i++];
914 c->function = KVM_CPUID_FEATURES | kvm_base;
915 c->eax = env->features[FEAT_KVM];
916 c->edx = env->features[FEAT_KVM_HINTS];
919 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
921 for (i = 0; i <= limit; i++) {
922 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
923 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
924 abort();
926 c = &cpuid_data.entries[cpuid_i++];
928 switch (i) {
929 case 2: {
930 /* Keep reading function 2 till all the input is received */
931 int times;
933 c->function = i;
934 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
935 KVM_CPUID_FLAG_STATE_READ_NEXT;
936 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
937 times = c->eax & 0xff;
939 for (j = 1; j < times; ++j) {
940 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
941 fprintf(stderr, "cpuid_data is full, no space for "
942 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
943 abort();
945 c = &cpuid_data.entries[cpuid_i++];
946 c->function = i;
947 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
948 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
950 break;
952 case 4:
953 case 0xb:
954 case 0xd:
955 for (j = 0; ; j++) {
956 if (i == 0xd && j == 64) {
957 break;
959 c->function = i;
960 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
961 c->index = j;
962 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
964 if (i == 4 && c->eax == 0) {
965 break;
967 if (i == 0xb && !(c->ecx & 0xff00)) {
968 break;
970 if (i == 0xd && c->eax == 0) {
971 continue;
973 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
974 fprintf(stderr, "cpuid_data is full, no space for "
975 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
976 abort();
978 c = &cpuid_data.entries[cpuid_i++];
980 break;
981 case 0x14: {
982 uint32_t times;
984 c->function = i;
985 c->index = 0;
986 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
987 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
988 times = c->eax;
990 for (j = 1; j <= times; ++j) {
991 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
992 fprintf(stderr, "cpuid_data is full, no space for "
993 "cpuid(eax:0x14,ecx:0x%x)\n", j);
994 abort();
996 c = &cpuid_data.entries[cpuid_i++];
997 c->function = i;
998 c->index = j;
999 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1000 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1002 break;
1004 default:
1005 c->function = i;
1006 c->flags = 0;
1007 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1008 break;
1012 if (limit >= 0x0a) {
1013 uint32_t eax, edx;
1015 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1017 has_architectural_pmu_version = eax & 0xff;
1018 if (has_architectural_pmu_version > 0) {
1019 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1021 /* Shouldn't be more than 32, since that's the number of bits
1022 * available in EBX to tell us _which_ counters are available.
1023 * Play it safe.
1025 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1026 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1029 if (has_architectural_pmu_version > 1) {
1030 num_architectural_pmu_fixed_counters = edx & 0x1f;
1032 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1033 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1039 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1041 for (i = 0x80000000; i <= limit; i++) {
1042 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1043 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1044 abort();
1046 c = &cpuid_data.entries[cpuid_i++];
1048 switch (i) {
1049 case 0x8000001d:
1050 /* Query for all AMD cache information leaves */
1051 for (j = 0; ; j++) {
1052 c->function = i;
1053 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1054 c->index = j;
1055 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1057 if (c->eax == 0) {
1058 break;
1060 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1061 fprintf(stderr, "cpuid_data is full, no space for "
1062 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1063 abort();
1065 c = &cpuid_data.entries[cpuid_i++];
1067 break;
1068 default:
1069 c->function = i;
1070 c->flags = 0;
1071 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1072 break;
1076 /* Call Centaur's CPUID instructions they are supported. */
1077 if (env->cpuid_xlevel2 > 0) {
1078 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1080 for (i = 0xC0000000; i <= limit; i++) {
1081 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1082 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1083 abort();
1085 c = &cpuid_data.entries[cpuid_i++];
1087 c->function = i;
1088 c->flags = 0;
1089 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1093 cpuid_data.cpuid.nent = cpuid_i;
1095 if (((env->cpuid_version >> 8)&0xF) >= 6
1096 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
1097 (CPUID_MCE | CPUID_MCA)
1098 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
1099 uint64_t mcg_cap, unsupported_caps;
1100 int banks;
1101 int ret;
1103 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
1104 if (ret < 0) {
1105 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1106 return ret;
1109 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
1110 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
1111 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
1112 return -ENOTSUP;
1115 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1116 if (unsupported_caps) {
1117 if (unsupported_caps & MCG_LMCE_P) {
1118 error_report("kvm: LMCE not supported");
1119 return -ENOTSUP;
1121 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1122 unsupported_caps);
1125 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1126 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
1127 if (ret < 0) {
1128 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1129 return ret;
1133 qemu_add_vm_change_state_handler(cpu_update_state, env);
1135 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1136 if (c) {
1137 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1138 !!(c->ecx & CPUID_EXT_SMX);
1141 if (env->mcg_cap & MCG_LMCE_P) {
1142 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1145 if (!env->user_tsc_khz) {
1146 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1147 invtsc_mig_blocker == NULL) {
1148 /* for migration */
1149 error_setg(&invtsc_mig_blocker,
1150 "State blocked by non-migratable CPU device"
1151 " (invtsc flag)");
1152 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
1153 if (local_err) {
1154 error_report_err(local_err);
1155 error_free(invtsc_mig_blocker);
1156 goto fail;
1158 /* for savevm */
1159 vmstate_x86_cpu.unmigratable = 1;
1163 if (cpu->vmware_cpuid_freq
1164 /* Guests depend on 0x40000000 to detect this feature, so only expose
1165 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1166 && cpu->expose_kvm
1167 && kvm_base == KVM_CPUID_SIGNATURE
1168 /* TSC clock must be stable and known for this feature. */
1169 && tsc_is_stable_and_known(env)) {
1171 c = &cpuid_data.entries[cpuid_i++];
1172 c->function = KVM_CPUID_SIGNATURE | 0x10;
1173 c->eax = env->tsc_khz;
1174 /* LAPIC resolution of 1ns (freq: 1GHz) is hardcoded in KVM's
1175 * APIC_BUS_CYCLE_NS */
1176 c->ebx = 1000000;
1177 c->ecx = c->edx = 0;
1179 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1180 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1183 cpuid_data.cpuid.nent = cpuid_i;
1185 cpuid_data.cpuid.padding = 0;
1186 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1187 if (r) {
1188 goto fail;
1191 if (has_xsave) {
1192 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
1194 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
1196 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
1197 has_msr_tsc_aux = false;
1200 r = hyperv_init_vcpu(cpu);
1201 if (r) {
1202 goto fail;
1205 return 0;
1207 fail:
1208 migrate_del_blocker(invtsc_mig_blocker);
1209 return r;
1212 void kvm_arch_reset_vcpu(X86CPU *cpu)
1214 CPUX86State *env = &cpu->env;
1216 env->xcr0 = 1;
1217 if (kvm_irqchip_in_kernel()) {
1218 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
1219 KVM_MP_STATE_UNINITIALIZED;
1220 } else {
1221 env->mp_state = KVM_MP_STATE_RUNNABLE;
1224 if (cpu->hyperv_synic) {
1225 int i;
1226 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
1227 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
1232 void kvm_arch_do_init_vcpu(X86CPU *cpu)
1234 CPUX86State *env = &cpu->env;
1236 /* APs get directly into wait-for-SIPI state. */
1237 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
1238 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
1242 static int kvm_get_supported_msrs(KVMState *s)
1244 static int kvm_supported_msrs;
1245 int ret = 0;
1247 /* first time */
1248 if (kvm_supported_msrs == 0) {
1249 struct kvm_msr_list msr_list, *kvm_msr_list;
1251 kvm_supported_msrs = -1;
1253 /* Obtain MSR list from KVM. These are the MSRs that we must
1254 * save/restore */
1255 msr_list.nmsrs = 0;
1256 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
1257 if (ret < 0 && ret != -E2BIG) {
1258 return ret;
1260 /* Old kernel modules had a bug and could write beyond the provided
1261 memory. Allocate at least a safe amount of 1K. */
1262 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
1263 msr_list.nmsrs *
1264 sizeof(msr_list.indices[0])));
1266 kvm_msr_list->nmsrs = msr_list.nmsrs;
1267 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
1268 if (ret >= 0) {
1269 int i;
1271 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
1272 switch (kvm_msr_list->indices[i]) {
1273 case MSR_STAR:
1274 has_msr_star = true;
1275 break;
1276 case MSR_VM_HSAVE_PA:
1277 has_msr_hsave_pa = true;
1278 break;
1279 case MSR_TSC_AUX:
1280 has_msr_tsc_aux = true;
1281 break;
1282 case MSR_TSC_ADJUST:
1283 has_msr_tsc_adjust = true;
1284 break;
1285 case MSR_IA32_TSCDEADLINE:
1286 has_msr_tsc_deadline = true;
1287 break;
1288 case MSR_IA32_SMBASE:
1289 has_msr_smbase = true;
1290 break;
1291 case MSR_SMI_COUNT:
1292 has_msr_smi_count = true;
1293 break;
1294 case MSR_IA32_MISC_ENABLE:
1295 has_msr_misc_enable = true;
1296 break;
1297 case MSR_IA32_BNDCFGS:
1298 has_msr_bndcfgs = true;
1299 break;
1300 case MSR_IA32_XSS:
1301 has_msr_xss = true;
1302 break;
1303 case HV_X64_MSR_CRASH_CTL:
1304 has_msr_hv_crash = true;
1305 break;
1306 case HV_X64_MSR_RESET:
1307 has_msr_hv_reset = true;
1308 break;
1309 case HV_X64_MSR_VP_INDEX:
1310 has_msr_hv_vpindex = true;
1311 break;
1312 case HV_X64_MSR_VP_RUNTIME:
1313 has_msr_hv_runtime = true;
1314 break;
1315 case HV_X64_MSR_SCONTROL:
1316 has_msr_hv_synic = true;
1317 break;
1318 case HV_X64_MSR_STIMER0_CONFIG:
1319 has_msr_hv_stimer = true;
1320 break;
1321 case HV_X64_MSR_TSC_FREQUENCY:
1322 has_msr_hv_frequencies = true;
1323 break;
1324 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
1325 has_msr_hv_reenlightenment = true;
1326 break;
1327 case MSR_IA32_SPEC_CTRL:
1328 has_msr_spec_ctrl = true;
1329 break;
1330 case MSR_VIRT_SSBD:
1331 has_msr_virt_ssbd = true;
1332 break;
1337 g_free(kvm_msr_list);
1340 return ret;
1343 static Notifier smram_machine_done;
1344 static KVMMemoryListener smram_listener;
1345 static AddressSpace smram_address_space;
1346 static MemoryRegion smram_as_root;
1347 static MemoryRegion smram_as_mem;
1349 static void register_smram_listener(Notifier *n, void *unused)
1351 MemoryRegion *smram =
1352 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
1354 /* Outer container... */
1355 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
1356 memory_region_set_enabled(&smram_as_root, true);
1358 /* ... with two regions inside: normal system memory with low
1359 * priority, and...
1361 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
1362 get_system_memory(), 0, ~0ull);
1363 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
1364 memory_region_set_enabled(&smram_as_mem, true);
1366 if (smram) {
1367 /* ... SMRAM with higher priority */
1368 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
1369 memory_region_set_enabled(smram, true);
1372 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
1373 kvm_memory_listener_register(kvm_state, &smram_listener,
1374 &smram_address_space, 1);
1377 int kvm_arch_init(MachineState *ms, KVMState *s)
1379 uint64_t identity_base = 0xfffbc000;
1380 uint64_t shadow_mem;
1381 int ret;
1382 struct utsname utsname;
1384 #ifdef KVM_CAP_XSAVE
1385 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1386 #endif
1388 #ifdef KVM_CAP_XCRS
1389 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1390 #endif
1392 #ifdef KVM_CAP_PIT_STATE2
1393 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1394 #endif
1396 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
1398 ret = kvm_get_supported_msrs(s);
1399 if (ret < 0) {
1400 return ret;
1403 uname(&utsname);
1404 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
1407 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
1408 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
1409 * Since these must be part of guest physical memory, we need to allocate
1410 * them, both by setting their start addresses in the kernel and by
1411 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
1413 * Older KVM versions may not support setting the identity map base. In
1414 * that case we need to stick with the default, i.e. a 256K maximum BIOS
1415 * size.
1417 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
1418 /* Allows up to 16M BIOSes. */
1419 identity_base = 0xfeffc000;
1421 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
1422 if (ret < 0) {
1423 return ret;
1427 /* Set TSS base one page after EPT identity map. */
1428 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
1429 if (ret < 0) {
1430 return ret;
1433 /* Tell fw_cfg to notify the BIOS to reserve the range. */
1434 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
1435 if (ret < 0) {
1436 fprintf(stderr, "e820_add_entry() table is full\n");
1437 return ret;
1439 qemu_register_reset(kvm_unpoison_all, NULL);
1441 shadow_mem = machine_kvm_shadow_mem(ms);
1442 if (shadow_mem != -1) {
1443 shadow_mem /= 4096;
1444 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
1445 if (ret < 0) {
1446 return ret;
1450 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
1451 object_dynamic_cast(OBJECT(ms), TYPE_PC_MACHINE) &&
1452 pc_machine_is_smm_enabled(PC_MACHINE(ms))) {
1453 smram_machine_done.notify = register_smram_listener;
1454 qemu_add_machine_init_done_notifier(&smram_machine_done);
1457 if (enable_cpu_pm) {
1458 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
1459 int ret;
1461 /* Work around for kernel header with a typo. TODO: fix header and drop. */
1462 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
1463 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
1464 #endif
1465 if (disable_exits) {
1466 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
1467 KVM_X86_DISABLE_EXITS_HLT |
1468 KVM_X86_DISABLE_EXITS_PAUSE);
1471 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
1472 disable_exits);
1473 if (ret < 0) {
1474 error_report("kvm: guest stopping CPU not supported: %s",
1475 strerror(-ret));
1479 return 0;
1482 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
1484 lhs->selector = rhs->selector;
1485 lhs->base = rhs->base;
1486 lhs->limit = rhs->limit;
1487 lhs->type = 3;
1488 lhs->present = 1;
1489 lhs->dpl = 3;
1490 lhs->db = 0;
1491 lhs->s = 1;
1492 lhs->l = 0;
1493 lhs->g = 0;
1494 lhs->avl = 0;
1495 lhs->unusable = 0;
1498 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
1500 unsigned flags = rhs->flags;
1501 lhs->selector = rhs->selector;
1502 lhs->base = rhs->base;
1503 lhs->limit = rhs->limit;
1504 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
1505 lhs->present = (flags & DESC_P_MASK) != 0;
1506 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
1507 lhs->db = (flags >> DESC_B_SHIFT) & 1;
1508 lhs->s = (flags & DESC_S_MASK) != 0;
1509 lhs->l = (flags >> DESC_L_SHIFT) & 1;
1510 lhs->g = (flags & DESC_G_MASK) != 0;
1511 lhs->avl = (flags & DESC_AVL_MASK) != 0;
1512 lhs->unusable = !lhs->present;
1513 lhs->padding = 0;
1516 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
1518 lhs->selector = rhs->selector;
1519 lhs->base = rhs->base;
1520 lhs->limit = rhs->limit;
1521 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
1522 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
1523 (rhs->dpl << DESC_DPL_SHIFT) |
1524 (rhs->db << DESC_B_SHIFT) |
1525 (rhs->s * DESC_S_MASK) |
1526 (rhs->l << DESC_L_SHIFT) |
1527 (rhs->g * DESC_G_MASK) |
1528 (rhs->avl * DESC_AVL_MASK);
1531 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
1533 if (set) {
1534 *kvm_reg = *qemu_reg;
1535 } else {
1536 *qemu_reg = *kvm_reg;
1540 static int kvm_getput_regs(X86CPU *cpu, int set)
1542 CPUX86State *env = &cpu->env;
1543 struct kvm_regs regs;
1544 int ret = 0;
1546 if (!set) {
1547 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
1548 if (ret < 0) {
1549 return ret;
1553 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
1554 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
1555 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
1556 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
1557 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
1558 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
1559 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
1560 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
1561 #ifdef TARGET_X86_64
1562 kvm_getput_reg(&regs.r8, &env->regs[8], set);
1563 kvm_getput_reg(&regs.r9, &env->regs[9], set);
1564 kvm_getput_reg(&regs.r10, &env->regs[10], set);
1565 kvm_getput_reg(&regs.r11, &env->regs[11], set);
1566 kvm_getput_reg(&regs.r12, &env->regs[12], set);
1567 kvm_getput_reg(&regs.r13, &env->regs[13], set);
1568 kvm_getput_reg(&regs.r14, &env->regs[14], set);
1569 kvm_getput_reg(&regs.r15, &env->regs[15], set);
1570 #endif
1572 kvm_getput_reg(&regs.rflags, &env->eflags, set);
1573 kvm_getput_reg(&regs.rip, &env->eip, set);
1575 if (set) {
1576 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
1579 return ret;
1582 static int kvm_put_fpu(X86CPU *cpu)
1584 CPUX86State *env = &cpu->env;
1585 struct kvm_fpu fpu;
1586 int i;
1588 memset(&fpu, 0, sizeof fpu);
1589 fpu.fsw = env->fpus & ~(7 << 11);
1590 fpu.fsw |= (env->fpstt & 7) << 11;
1591 fpu.fcw = env->fpuc;
1592 fpu.last_opcode = env->fpop;
1593 fpu.last_ip = env->fpip;
1594 fpu.last_dp = env->fpdp;
1595 for (i = 0; i < 8; ++i) {
1596 fpu.ftwx |= (!env->fptags[i]) << i;
1598 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
1599 for (i = 0; i < CPU_NB_REGS; i++) {
1600 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
1601 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
1603 fpu.mxcsr = env->mxcsr;
1605 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
1608 #define XSAVE_FCW_FSW 0
1609 #define XSAVE_FTW_FOP 1
1610 #define XSAVE_CWD_RIP 2
1611 #define XSAVE_CWD_RDP 4
1612 #define XSAVE_MXCSR 6
1613 #define XSAVE_ST_SPACE 8
1614 #define XSAVE_XMM_SPACE 40
1615 #define XSAVE_XSTATE_BV 128
1616 #define XSAVE_YMMH_SPACE 144
1617 #define XSAVE_BNDREGS 240
1618 #define XSAVE_BNDCSR 256
1619 #define XSAVE_OPMASK 272
1620 #define XSAVE_ZMM_Hi256 288
1621 #define XSAVE_Hi16_ZMM 416
1622 #define XSAVE_PKRU 672
1624 #define XSAVE_BYTE_OFFSET(word_offset) \
1625 ((word_offset) * sizeof_field(struct kvm_xsave, region[0]))
1627 #define ASSERT_OFFSET(word_offset, field) \
1628 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
1629 offsetof(X86XSaveArea, field))
1631 ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw);
1632 ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw);
1633 ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip);
1634 ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp);
1635 ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr);
1636 ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs);
1637 ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs);
1638 ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv);
1639 ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state);
1640 ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state);
1641 ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state);
1642 ASSERT_OFFSET(XSAVE_OPMASK, opmask_state);
1643 ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state);
1644 ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state);
1645 ASSERT_OFFSET(XSAVE_PKRU, pkru_state);
1647 static int kvm_put_xsave(X86CPU *cpu)
1649 CPUX86State *env = &cpu->env;
1650 X86XSaveArea *xsave = env->kvm_xsave_buf;
1652 if (!has_xsave) {
1653 return kvm_put_fpu(cpu);
1655 x86_cpu_xsave_all_areas(cpu, xsave);
1657 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
1660 static int kvm_put_xcrs(X86CPU *cpu)
1662 CPUX86State *env = &cpu->env;
1663 struct kvm_xcrs xcrs = {};
1665 if (!has_xcrs) {
1666 return 0;
1669 xcrs.nr_xcrs = 1;
1670 xcrs.flags = 0;
1671 xcrs.xcrs[0].xcr = 0;
1672 xcrs.xcrs[0].value = env->xcr0;
1673 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
1676 static int kvm_put_sregs(X86CPU *cpu)
1678 CPUX86State *env = &cpu->env;
1679 struct kvm_sregs sregs;
1681 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
1682 if (env->interrupt_injected >= 0) {
1683 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
1684 (uint64_t)1 << (env->interrupt_injected % 64);
1687 if ((env->eflags & VM_MASK)) {
1688 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
1689 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
1690 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
1691 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
1692 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
1693 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
1694 } else {
1695 set_seg(&sregs.cs, &env->segs[R_CS]);
1696 set_seg(&sregs.ds, &env->segs[R_DS]);
1697 set_seg(&sregs.es, &env->segs[R_ES]);
1698 set_seg(&sregs.fs, &env->segs[R_FS]);
1699 set_seg(&sregs.gs, &env->segs[R_GS]);
1700 set_seg(&sregs.ss, &env->segs[R_SS]);
1703 set_seg(&sregs.tr, &env->tr);
1704 set_seg(&sregs.ldt, &env->ldt);
1706 sregs.idt.limit = env->idt.limit;
1707 sregs.idt.base = env->idt.base;
1708 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
1709 sregs.gdt.limit = env->gdt.limit;
1710 sregs.gdt.base = env->gdt.base;
1711 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
1713 sregs.cr0 = env->cr[0];
1714 sregs.cr2 = env->cr[2];
1715 sregs.cr3 = env->cr[3];
1716 sregs.cr4 = env->cr[4];
1718 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
1719 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
1721 sregs.efer = env->efer;
1723 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
1726 static void kvm_msr_buf_reset(X86CPU *cpu)
1728 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
1731 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
1733 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
1734 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
1735 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
1737 assert((void *)(entry + 1) <= limit);
1739 entry->index = index;
1740 entry->reserved = 0;
1741 entry->data = value;
1742 msrs->nmsrs++;
1745 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
1747 kvm_msr_buf_reset(cpu);
1748 kvm_msr_entry_add(cpu, index, value);
1750 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
1753 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
1755 int ret;
1757 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
1758 assert(ret == 1);
1761 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
1763 CPUX86State *env = &cpu->env;
1764 int ret;
1766 if (!has_msr_tsc_deadline) {
1767 return 0;
1770 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1771 if (ret < 0) {
1772 return ret;
1775 assert(ret == 1);
1776 return 0;
1780 * Provide a separate write service for the feature control MSR in order to
1781 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1782 * before writing any other state because forcibly leaving nested mode
1783 * invalidates the VCPU state.
1785 static int kvm_put_msr_feature_control(X86CPU *cpu)
1787 int ret;
1789 if (!has_msr_feature_control) {
1790 return 0;
1793 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
1794 cpu->env.msr_ia32_feature_control);
1795 if (ret < 0) {
1796 return ret;
1799 assert(ret == 1);
1800 return 0;
1803 static int kvm_put_msrs(X86CPU *cpu, int level)
1805 CPUX86State *env = &cpu->env;
1806 int i;
1807 int ret;
1809 kvm_msr_buf_reset(cpu);
1811 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1812 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1813 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1814 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
1815 if (has_msr_star) {
1816 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
1818 if (has_msr_hsave_pa) {
1819 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
1821 if (has_msr_tsc_aux) {
1822 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
1824 if (has_msr_tsc_adjust) {
1825 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
1827 if (has_msr_misc_enable) {
1828 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
1829 env->msr_ia32_misc_enable);
1831 if (has_msr_smbase) {
1832 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
1834 if (has_msr_smi_count) {
1835 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
1837 if (has_msr_bndcfgs) {
1838 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
1840 if (has_msr_xss) {
1841 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
1843 if (has_msr_spec_ctrl) {
1844 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
1846 if (has_msr_virt_ssbd) {
1847 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
1850 #ifdef TARGET_X86_64
1851 if (lm_capable_kernel) {
1852 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
1853 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
1854 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
1855 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
1857 #endif
1860 * The following MSRs have side effects on the guest or are too heavy
1861 * for normal writeback. Limit them to reset or full state updates.
1863 if (level >= KVM_PUT_RESET_STATE) {
1864 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
1865 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
1866 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1867 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
1868 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
1870 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
1871 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
1873 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
1874 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
1876 if (has_architectural_pmu_version > 0) {
1877 if (has_architectural_pmu_version > 1) {
1878 /* Stop the counter. */
1879 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
1880 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
1883 /* Set the counter values. */
1884 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
1885 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
1886 env->msr_fixed_counters[i]);
1888 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
1889 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
1890 env->msr_gp_counters[i]);
1891 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
1892 env->msr_gp_evtsel[i]);
1894 if (has_architectural_pmu_version > 1) {
1895 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
1896 env->msr_global_status);
1897 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1898 env->msr_global_ovf_ctrl);
1900 /* Now start the PMU. */
1901 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
1902 env->msr_fixed_ctr_ctrl);
1903 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
1904 env->msr_global_ctrl);
1908 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
1909 * only sync them to KVM on the first cpu
1911 if (current_cpu == first_cpu) {
1912 if (has_msr_hv_hypercall) {
1913 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
1914 env->msr_hv_guest_os_id);
1915 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
1916 env->msr_hv_hypercall);
1918 if (cpu->hyperv_time) {
1919 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
1920 env->msr_hv_tsc);
1922 if (cpu->hyperv_reenlightenment) {
1923 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
1924 env->msr_hv_reenlightenment_control);
1925 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
1926 env->msr_hv_tsc_emulation_control);
1927 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
1928 env->msr_hv_tsc_emulation_status);
1931 if (cpu->hyperv_vapic) {
1932 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
1933 env->msr_hv_vapic);
1935 if (has_msr_hv_crash) {
1936 int j;
1938 for (j = 0; j < HV_CRASH_PARAMS; j++)
1939 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
1940 env->msr_hv_crash_params[j]);
1942 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
1944 if (has_msr_hv_runtime) {
1945 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
1947 if (cpu->hyperv_vpindex && hv_vpindex_settable) {
1948 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX, hyperv_vp_index(cpu));
1950 if (cpu->hyperv_synic) {
1951 int j;
1953 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
1955 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
1956 env->msr_hv_synic_control);
1957 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
1958 env->msr_hv_synic_evt_page);
1959 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
1960 env->msr_hv_synic_msg_page);
1962 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
1963 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
1964 env->msr_hv_synic_sint[j]);
1967 if (has_msr_hv_stimer) {
1968 int j;
1970 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
1971 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
1972 env->msr_hv_stimer_config[j]);
1975 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
1976 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
1977 env->msr_hv_stimer_count[j]);
1980 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
1981 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
1983 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
1984 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
1985 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
1986 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
1987 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
1988 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
1989 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
1990 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
1991 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
1992 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
1993 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
1994 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
1995 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
1996 /* The CPU GPs if we write to a bit above the physical limit of
1997 * the host CPU (and KVM emulates that)
1999 uint64_t mask = env->mtrr_var[i].mask;
2000 mask &= phys_mask;
2002 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
2003 env->mtrr_var[i].base);
2004 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
2007 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2008 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
2009 0x14, 1, R_EAX) & 0x7;
2011 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
2012 env->msr_rtit_ctrl);
2013 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
2014 env->msr_rtit_status);
2015 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
2016 env->msr_rtit_output_base);
2017 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
2018 env->msr_rtit_output_mask);
2019 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
2020 env->msr_rtit_cr3_match);
2021 for (i = 0; i < addr_num; i++) {
2022 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
2023 env->msr_rtit_addrs[i]);
2027 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
2028 * kvm_put_msr_feature_control. */
2030 if (env->mcg_cap) {
2031 int i;
2033 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
2034 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
2035 if (has_msr_mcg_ext_ctl) {
2036 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
2038 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
2039 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
2043 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2044 if (ret < 0) {
2045 return ret;
2048 if (ret < cpu->kvm_msr_buf->nmsrs) {
2049 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2050 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2051 (uint32_t)e->index, (uint64_t)e->data);
2054 assert(ret == cpu->kvm_msr_buf->nmsrs);
2055 return 0;
2059 static int kvm_get_fpu(X86CPU *cpu)
2061 CPUX86State *env = &cpu->env;
2062 struct kvm_fpu fpu;
2063 int i, ret;
2065 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
2066 if (ret < 0) {
2067 return ret;
2070 env->fpstt = (fpu.fsw >> 11) & 7;
2071 env->fpus = fpu.fsw;
2072 env->fpuc = fpu.fcw;
2073 env->fpop = fpu.last_opcode;
2074 env->fpip = fpu.last_ip;
2075 env->fpdp = fpu.last_dp;
2076 for (i = 0; i < 8; ++i) {
2077 env->fptags[i] = !((fpu.ftwx >> i) & 1);
2079 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
2080 for (i = 0; i < CPU_NB_REGS; i++) {
2081 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
2082 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
2084 env->mxcsr = fpu.mxcsr;
2086 return 0;
2089 static int kvm_get_xsave(X86CPU *cpu)
2091 CPUX86State *env = &cpu->env;
2092 X86XSaveArea *xsave = env->kvm_xsave_buf;
2093 int ret;
2095 if (!has_xsave) {
2096 return kvm_get_fpu(cpu);
2099 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
2100 if (ret < 0) {
2101 return ret;
2103 x86_cpu_xrstor_all_areas(cpu, xsave);
2105 return 0;
2108 static int kvm_get_xcrs(X86CPU *cpu)
2110 CPUX86State *env = &cpu->env;
2111 int i, ret;
2112 struct kvm_xcrs xcrs;
2114 if (!has_xcrs) {
2115 return 0;
2118 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
2119 if (ret < 0) {
2120 return ret;
2123 for (i = 0; i < xcrs.nr_xcrs; i++) {
2124 /* Only support xcr0 now */
2125 if (xcrs.xcrs[i].xcr == 0) {
2126 env->xcr0 = xcrs.xcrs[i].value;
2127 break;
2130 return 0;
2133 static int kvm_get_sregs(X86CPU *cpu)
2135 CPUX86State *env = &cpu->env;
2136 struct kvm_sregs sregs;
2137 int bit, i, ret;
2139 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
2140 if (ret < 0) {
2141 return ret;
2144 /* There can only be one pending IRQ set in the bitmap at a time, so try
2145 to find it and save its number instead (-1 for none). */
2146 env->interrupt_injected = -1;
2147 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
2148 if (sregs.interrupt_bitmap[i]) {
2149 bit = ctz64(sregs.interrupt_bitmap[i]);
2150 env->interrupt_injected = i * 64 + bit;
2151 break;
2155 get_seg(&env->segs[R_CS], &sregs.cs);
2156 get_seg(&env->segs[R_DS], &sregs.ds);
2157 get_seg(&env->segs[R_ES], &sregs.es);
2158 get_seg(&env->segs[R_FS], &sregs.fs);
2159 get_seg(&env->segs[R_GS], &sregs.gs);
2160 get_seg(&env->segs[R_SS], &sregs.ss);
2162 get_seg(&env->tr, &sregs.tr);
2163 get_seg(&env->ldt, &sregs.ldt);
2165 env->idt.limit = sregs.idt.limit;
2166 env->idt.base = sregs.idt.base;
2167 env->gdt.limit = sregs.gdt.limit;
2168 env->gdt.base = sregs.gdt.base;
2170 env->cr[0] = sregs.cr0;
2171 env->cr[2] = sregs.cr2;
2172 env->cr[3] = sregs.cr3;
2173 env->cr[4] = sregs.cr4;
2175 env->efer = sregs.efer;
2177 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
2178 x86_update_hflags(env);
2180 return 0;
2183 static int kvm_get_msrs(X86CPU *cpu)
2185 CPUX86State *env = &cpu->env;
2186 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
2187 int ret, i;
2188 uint64_t mtrr_top_bits;
2190 kvm_msr_buf_reset(cpu);
2192 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
2193 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
2194 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
2195 kvm_msr_entry_add(cpu, MSR_PAT, 0);
2196 if (has_msr_star) {
2197 kvm_msr_entry_add(cpu, MSR_STAR, 0);
2199 if (has_msr_hsave_pa) {
2200 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
2202 if (has_msr_tsc_aux) {
2203 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
2205 if (has_msr_tsc_adjust) {
2206 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
2208 if (has_msr_tsc_deadline) {
2209 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
2211 if (has_msr_misc_enable) {
2212 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
2214 if (has_msr_smbase) {
2215 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
2217 if (has_msr_smi_count) {
2218 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
2220 if (has_msr_feature_control) {
2221 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
2223 if (has_msr_bndcfgs) {
2224 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
2226 if (has_msr_xss) {
2227 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
2229 if (has_msr_spec_ctrl) {
2230 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
2232 if (has_msr_virt_ssbd) {
2233 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
2235 if (!env->tsc_valid) {
2236 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
2237 env->tsc_valid = !runstate_is_running();
2240 #ifdef TARGET_X86_64
2241 if (lm_capable_kernel) {
2242 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
2243 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
2244 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
2245 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
2247 #endif
2248 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
2249 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
2250 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
2251 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
2253 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
2254 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
2256 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
2257 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
2259 if (has_architectural_pmu_version > 0) {
2260 if (has_architectural_pmu_version > 1) {
2261 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2262 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2263 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
2264 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
2266 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
2267 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
2269 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
2270 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
2271 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
2275 if (env->mcg_cap) {
2276 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
2277 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
2278 if (has_msr_mcg_ext_ctl) {
2279 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
2281 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
2282 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
2286 if (has_msr_hv_hypercall) {
2287 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
2288 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
2290 if (cpu->hyperv_vapic) {
2291 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
2293 if (cpu->hyperv_time) {
2294 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
2296 if (cpu->hyperv_reenlightenment) {
2297 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
2298 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
2299 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
2301 if (has_msr_hv_crash) {
2302 int j;
2304 for (j = 0; j < HV_CRASH_PARAMS; j++) {
2305 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
2308 if (has_msr_hv_runtime) {
2309 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
2311 if (cpu->hyperv_synic) {
2312 uint32_t msr;
2314 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
2315 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
2316 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
2317 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
2318 kvm_msr_entry_add(cpu, msr, 0);
2321 if (has_msr_hv_stimer) {
2322 uint32_t msr;
2324 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
2325 msr++) {
2326 kvm_msr_entry_add(cpu, msr, 0);
2329 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
2330 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
2331 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
2332 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
2333 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
2334 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
2335 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
2336 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
2337 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
2338 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
2339 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
2340 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
2341 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
2342 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
2343 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
2344 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
2348 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
2349 int addr_num =
2350 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
2352 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
2353 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
2354 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
2355 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
2356 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
2357 for (i = 0; i < addr_num; i++) {
2358 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
2362 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
2363 if (ret < 0) {
2364 return ret;
2367 if (ret < cpu->kvm_msr_buf->nmsrs) {
2368 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2369 error_report("error: failed to get MSR 0x%" PRIx32,
2370 (uint32_t)e->index);
2373 assert(ret == cpu->kvm_msr_buf->nmsrs);
2375 * MTRR masks: Each mask consists of 5 parts
2376 * a 10..0: must be zero
2377 * b 11 : valid bit
2378 * c n-1.12: actual mask bits
2379 * d 51..n: reserved must be zero
2380 * e 63.52: reserved must be zero
2382 * 'n' is the number of physical bits supported by the CPU and is
2383 * apparently always <= 52. We know our 'n' but don't know what
2384 * the destinations 'n' is; it might be smaller, in which case
2385 * it masks (c) on loading. It might be larger, in which case
2386 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
2387 * we're migrating to.
2390 if (cpu->fill_mtrr_mask) {
2391 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
2392 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
2393 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
2394 } else {
2395 mtrr_top_bits = 0;
2398 for (i = 0; i < ret; i++) {
2399 uint32_t index = msrs[i].index;
2400 switch (index) {
2401 case MSR_IA32_SYSENTER_CS:
2402 env->sysenter_cs = msrs[i].data;
2403 break;
2404 case MSR_IA32_SYSENTER_ESP:
2405 env->sysenter_esp = msrs[i].data;
2406 break;
2407 case MSR_IA32_SYSENTER_EIP:
2408 env->sysenter_eip = msrs[i].data;
2409 break;
2410 case MSR_PAT:
2411 env->pat = msrs[i].data;
2412 break;
2413 case MSR_STAR:
2414 env->star = msrs[i].data;
2415 break;
2416 #ifdef TARGET_X86_64
2417 case MSR_CSTAR:
2418 env->cstar = msrs[i].data;
2419 break;
2420 case MSR_KERNELGSBASE:
2421 env->kernelgsbase = msrs[i].data;
2422 break;
2423 case MSR_FMASK:
2424 env->fmask = msrs[i].data;
2425 break;
2426 case MSR_LSTAR:
2427 env->lstar = msrs[i].data;
2428 break;
2429 #endif
2430 case MSR_IA32_TSC:
2431 env->tsc = msrs[i].data;
2432 break;
2433 case MSR_TSC_AUX:
2434 env->tsc_aux = msrs[i].data;
2435 break;
2436 case MSR_TSC_ADJUST:
2437 env->tsc_adjust = msrs[i].data;
2438 break;
2439 case MSR_IA32_TSCDEADLINE:
2440 env->tsc_deadline = msrs[i].data;
2441 break;
2442 case MSR_VM_HSAVE_PA:
2443 env->vm_hsave = msrs[i].data;
2444 break;
2445 case MSR_KVM_SYSTEM_TIME:
2446 env->system_time_msr = msrs[i].data;
2447 break;
2448 case MSR_KVM_WALL_CLOCK:
2449 env->wall_clock_msr = msrs[i].data;
2450 break;
2451 case MSR_MCG_STATUS:
2452 env->mcg_status = msrs[i].data;
2453 break;
2454 case MSR_MCG_CTL:
2455 env->mcg_ctl = msrs[i].data;
2456 break;
2457 case MSR_MCG_EXT_CTL:
2458 env->mcg_ext_ctl = msrs[i].data;
2459 break;
2460 case MSR_IA32_MISC_ENABLE:
2461 env->msr_ia32_misc_enable = msrs[i].data;
2462 break;
2463 case MSR_IA32_SMBASE:
2464 env->smbase = msrs[i].data;
2465 break;
2466 case MSR_SMI_COUNT:
2467 env->msr_smi_count = msrs[i].data;
2468 break;
2469 case MSR_IA32_FEATURE_CONTROL:
2470 env->msr_ia32_feature_control = msrs[i].data;
2471 break;
2472 case MSR_IA32_BNDCFGS:
2473 env->msr_bndcfgs = msrs[i].data;
2474 break;
2475 case MSR_IA32_XSS:
2476 env->xss = msrs[i].data;
2477 break;
2478 default:
2479 if (msrs[i].index >= MSR_MC0_CTL &&
2480 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
2481 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
2483 break;
2484 case MSR_KVM_ASYNC_PF_EN:
2485 env->async_pf_en_msr = msrs[i].data;
2486 break;
2487 case MSR_KVM_PV_EOI_EN:
2488 env->pv_eoi_en_msr = msrs[i].data;
2489 break;
2490 case MSR_KVM_STEAL_TIME:
2491 env->steal_time_msr = msrs[i].data;
2492 break;
2493 case MSR_CORE_PERF_FIXED_CTR_CTRL:
2494 env->msr_fixed_ctr_ctrl = msrs[i].data;
2495 break;
2496 case MSR_CORE_PERF_GLOBAL_CTRL:
2497 env->msr_global_ctrl = msrs[i].data;
2498 break;
2499 case MSR_CORE_PERF_GLOBAL_STATUS:
2500 env->msr_global_status = msrs[i].data;
2501 break;
2502 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
2503 env->msr_global_ovf_ctrl = msrs[i].data;
2504 break;
2505 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
2506 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
2507 break;
2508 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
2509 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
2510 break;
2511 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
2512 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
2513 break;
2514 case HV_X64_MSR_HYPERCALL:
2515 env->msr_hv_hypercall = msrs[i].data;
2516 break;
2517 case HV_X64_MSR_GUEST_OS_ID:
2518 env->msr_hv_guest_os_id = msrs[i].data;
2519 break;
2520 case HV_X64_MSR_APIC_ASSIST_PAGE:
2521 env->msr_hv_vapic = msrs[i].data;
2522 break;
2523 case HV_X64_MSR_REFERENCE_TSC:
2524 env->msr_hv_tsc = msrs[i].data;
2525 break;
2526 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2527 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
2528 break;
2529 case HV_X64_MSR_VP_RUNTIME:
2530 env->msr_hv_runtime = msrs[i].data;
2531 break;
2532 case HV_X64_MSR_SCONTROL:
2533 env->msr_hv_synic_control = msrs[i].data;
2534 break;
2535 case HV_X64_MSR_SIEFP:
2536 env->msr_hv_synic_evt_page = msrs[i].data;
2537 break;
2538 case HV_X64_MSR_SIMP:
2539 env->msr_hv_synic_msg_page = msrs[i].data;
2540 break;
2541 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
2542 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
2543 break;
2544 case HV_X64_MSR_STIMER0_CONFIG:
2545 case HV_X64_MSR_STIMER1_CONFIG:
2546 case HV_X64_MSR_STIMER2_CONFIG:
2547 case HV_X64_MSR_STIMER3_CONFIG:
2548 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
2549 msrs[i].data;
2550 break;
2551 case HV_X64_MSR_STIMER0_COUNT:
2552 case HV_X64_MSR_STIMER1_COUNT:
2553 case HV_X64_MSR_STIMER2_COUNT:
2554 case HV_X64_MSR_STIMER3_COUNT:
2555 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
2556 msrs[i].data;
2557 break;
2558 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2559 env->msr_hv_reenlightenment_control = msrs[i].data;
2560 break;
2561 case HV_X64_MSR_TSC_EMULATION_CONTROL:
2562 env->msr_hv_tsc_emulation_control = msrs[i].data;
2563 break;
2564 case HV_X64_MSR_TSC_EMULATION_STATUS:
2565 env->msr_hv_tsc_emulation_status = msrs[i].data;
2566 break;
2567 case MSR_MTRRdefType:
2568 env->mtrr_deftype = msrs[i].data;
2569 break;
2570 case MSR_MTRRfix64K_00000:
2571 env->mtrr_fixed[0] = msrs[i].data;
2572 break;
2573 case MSR_MTRRfix16K_80000:
2574 env->mtrr_fixed[1] = msrs[i].data;
2575 break;
2576 case MSR_MTRRfix16K_A0000:
2577 env->mtrr_fixed[2] = msrs[i].data;
2578 break;
2579 case MSR_MTRRfix4K_C0000:
2580 env->mtrr_fixed[3] = msrs[i].data;
2581 break;
2582 case MSR_MTRRfix4K_C8000:
2583 env->mtrr_fixed[4] = msrs[i].data;
2584 break;
2585 case MSR_MTRRfix4K_D0000:
2586 env->mtrr_fixed[5] = msrs[i].data;
2587 break;
2588 case MSR_MTRRfix4K_D8000:
2589 env->mtrr_fixed[6] = msrs[i].data;
2590 break;
2591 case MSR_MTRRfix4K_E0000:
2592 env->mtrr_fixed[7] = msrs[i].data;
2593 break;
2594 case MSR_MTRRfix4K_E8000:
2595 env->mtrr_fixed[8] = msrs[i].data;
2596 break;
2597 case MSR_MTRRfix4K_F0000:
2598 env->mtrr_fixed[9] = msrs[i].data;
2599 break;
2600 case MSR_MTRRfix4K_F8000:
2601 env->mtrr_fixed[10] = msrs[i].data;
2602 break;
2603 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
2604 if (index & 1) {
2605 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
2606 mtrr_top_bits;
2607 } else {
2608 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
2610 break;
2611 case MSR_IA32_SPEC_CTRL:
2612 env->spec_ctrl = msrs[i].data;
2613 break;
2614 case MSR_VIRT_SSBD:
2615 env->virt_ssbd = msrs[i].data;
2616 break;
2617 case MSR_IA32_RTIT_CTL:
2618 env->msr_rtit_ctrl = msrs[i].data;
2619 break;
2620 case MSR_IA32_RTIT_STATUS:
2621 env->msr_rtit_status = msrs[i].data;
2622 break;
2623 case MSR_IA32_RTIT_OUTPUT_BASE:
2624 env->msr_rtit_output_base = msrs[i].data;
2625 break;
2626 case MSR_IA32_RTIT_OUTPUT_MASK:
2627 env->msr_rtit_output_mask = msrs[i].data;
2628 break;
2629 case MSR_IA32_RTIT_CR3_MATCH:
2630 env->msr_rtit_cr3_match = msrs[i].data;
2631 break;
2632 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2633 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
2634 break;
2638 return 0;
2641 static int kvm_put_mp_state(X86CPU *cpu)
2643 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
2645 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
2648 static int kvm_get_mp_state(X86CPU *cpu)
2650 CPUState *cs = CPU(cpu);
2651 CPUX86State *env = &cpu->env;
2652 struct kvm_mp_state mp_state;
2653 int ret;
2655 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
2656 if (ret < 0) {
2657 return ret;
2659 env->mp_state = mp_state.mp_state;
2660 if (kvm_irqchip_in_kernel()) {
2661 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
2663 return 0;
2666 static int kvm_get_apic(X86CPU *cpu)
2668 DeviceState *apic = cpu->apic_state;
2669 struct kvm_lapic_state kapic;
2670 int ret;
2672 if (apic && kvm_irqchip_in_kernel()) {
2673 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
2674 if (ret < 0) {
2675 return ret;
2678 kvm_get_apic_state(apic, &kapic);
2680 return 0;
2683 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
2685 CPUState *cs = CPU(cpu);
2686 CPUX86State *env = &cpu->env;
2687 struct kvm_vcpu_events events = {};
2689 if (!kvm_has_vcpu_events()) {
2690 return 0;
2693 events.exception.injected = (env->exception_injected >= 0);
2694 events.exception.nr = env->exception_injected;
2695 events.exception.has_error_code = env->has_error_code;
2696 events.exception.error_code = env->error_code;
2697 events.exception.pad = 0;
2699 events.interrupt.injected = (env->interrupt_injected >= 0);
2700 events.interrupt.nr = env->interrupt_injected;
2701 events.interrupt.soft = env->soft_interrupt;
2703 events.nmi.injected = env->nmi_injected;
2704 events.nmi.pending = env->nmi_pending;
2705 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
2706 events.nmi.pad = 0;
2708 events.sipi_vector = env->sipi_vector;
2709 events.flags = 0;
2711 if (has_msr_smbase) {
2712 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
2713 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
2714 if (kvm_irqchip_in_kernel()) {
2715 /* As soon as these are moved to the kernel, remove them
2716 * from cs->interrupt_request.
2718 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
2719 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
2720 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
2721 } else {
2722 /* Keep these in cs->interrupt_request. */
2723 events.smi.pending = 0;
2724 events.smi.latched_init = 0;
2726 /* Stop SMI delivery on old machine types to avoid a reboot
2727 * on an inward migration of an old VM.
2729 if (!cpu->kvm_no_smi_migration) {
2730 events.flags |= KVM_VCPUEVENT_VALID_SMM;
2734 if (level >= KVM_PUT_RESET_STATE) {
2735 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
2736 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
2737 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
2741 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
2744 static int kvm_get_vcpu_events(X86CPU *cpu)
2746 CPUX86State *env = &cpu->env;
2747 struct kvm_vcpu_events events;
2748 int ret;
2750 if (!kvm_has_vcpu_events()) {
2751 return 0;
2754 memset(&events, 0, sizeof(events));
2755 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
2756 if (ret < 0) {
2757 return ret;
2759 env->exception_injected =
2760 events.exception.injected ? events.exception.nr : -1;
2761 env->has_error_code = events.exception.has_error_code;
2762 env->error_code = events.exception.error_code;
2764 env->interrupt_injected =
2765 events.interrupt.injected ? events.interrupt.nr : -1;
2766 env->soft_interrupt = events.interrupt.soft;
2768 env->nmi_injected = events.nmi.injected;
2769 env->nmi_pending = events.nmi.pending;
2770 if (events.nmi.masked) {
2771 env->hflags2 |= HF2_NMI_MASK;
2772 } else {
2773 env->hflags2 &= ~HF2_NMI_MASK;
2776 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
2777 if (events.smi.smm) {
2778 env->hflags |= HF_SMM_MASK;
2779 } else {
2780 env->hflags &= ~HF_SMM_MASK;
2782 if (events.smi.pending) {
2783 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
2784 } else {
2785 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
2787 if (events.smi.smm_inside_nmi) {
2788 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
2789 } else {
2790 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
2792 if (events.smi.latched_init) {
2793 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
2794 } else {
2795 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
2799 env->sipi_vector = events.sipi_vector;
2801 return 0;
2804 static int kvm_guest_debug_workarounds(X86CPU *cpu)
2806 CPUState *cs = CPU(cpu);
2807 CPUX86State *env = &cpu->env;
2808 int ret = 0;
2809 unsigned long reinject_trap = 0;
2811 if (!kvm_has_vcpu_events()) {
2812 if (env->exception_injected == 1) {
2813 reinject_trap = KVM_GUESTDBG_INJECT_DB;
2814 } else if (env->exception_injected == 3) {
2815 reinject_trap = KVM_GUESTDBG_INJECT_BP;
2817 env->exception_injected = -1;
2821 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
2822 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
2823 * by updating the debug state once again if single-stepping is on.
2824 * Another reason to call kvm_update_guest_debug here is a pending debug
2825 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
2826 * reinject them via SET_GUEST_DEBUG.
2828 if (reinject_trap ||
2829 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
2830 ret = kvm_update_guest_debug(cs, reinject_trap);
2832 return ret;
2835 static int kvm_put_debugregs(X86CPU *cpu)
2837 CPUX86State *env = &cpu->env;
2838 struct kvm_debugregs dbgregs;
2839 int i;
2841 if (!kvm_has_debugregs()) {
2842 return 0;
2845 for (i = 0; i < 4; i++) {
2846 dbgregs.db[i] = env->dr[i];
2848 dbgregs.dr6 = env->dr[6];
2849 dbgregs.dr7 = env->dr[7];
2850 dbgregs.flags = 0;
2852 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
2855 static int kvm_get_debugregs(X86CPU *cpu)
2857 CPUX86State *env = &cpu->env;
2858 struct kvm_debugregs dbgregs;
2859 int i, ret;
2861 if (!kvm_has_debugregs()) {
2862 return 0;
2865 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
2866 if (ret < 0) {
2867 return ret;
2869 for (i = 0; i < 4; i++) {
2870 env->dr[i] = dbgregs.db[i];
2872 env->dr[4] = env->dr[6] = dbgregs.dr6;
2873 env->dr[5] = env->dr[7] = dbgregs.dr7;
2875 return 0;
2878 int kvm_arch_put_registers(CPUState *cpu, int level)
2880 X86CPU *x86_cpu = X86_CPU(cpu);
2881 int ret;
2883 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
2885 if (level >= KVM_PUT_RESET_STATE) {
2886 ret = kvm_put_msr_feature_control(x86_cpu);
2887 if (ret < 0) {
2888 return ret;
2892 if (level == KVM_PUT_FULL_STATE) {
2893 /* We don't check for kvm_arch_set_tsc_khz() errors here,
2894 * because TSC frequency mismatch shouldn't abort migration,
2895 * unless the user explicitly asked for a more strict TSC
2896 * setting (e.g. using an explicit "tsc-freq" option).
2898 kvm_arch_set_tsc_khz(cpu);
2901 ret = kvm_getput_regs(x86_cpu, 1);
2902 if (ret < 0) {
2903 return ret;
2905 ret = kvm_put_xsave(x86_cpu);
2906 if (ret < 0) {
2907 return ret;
2909 ret = kvm_put_xcrs(x86_cpu);
2910 if (ret < 0) {
2911 return ret;
2913 ret = kvm_put_sregs(x86_cpu);
2914 if (ret < 0) {
2915 return ret;
2917 /* must be before kvm_put_msrs */
2918 ret = kvm_inject_mce_oldstyle(x86_cpu);
2919 if (ret < 0) {
2920 return ret;
2922 ret = kvm_put_msrs(x86_cpu, level);
2923 if (ret < 0) {
2924 return ret;
2926 ret = kvm_put_vcpu_events(x86_cpu, level);
2927 if (ret < 0) {
2928 return ret;
2930 if (level >= KVM_PUT_RESET_STATE) {
2931 ret = kvm_put_mp_state(x86_cpu);
2932 if (ret < 0) {
2933 return ret;
2937 ret = kvm_put_tscdeadline_msr(x86_cpu);
2938 if (ret < 0) {
2939 return ret;
2941 ret = kvm_put_debugregs(x86_cpu);
2942 if (ret < 0) {
2943 return ret;
2945 /* must be last */
2946 ret = kvm_guest_debug_workarounds(x86_cpu);
2947 if (ret < 0) {
2948 return ret;
2950 return 0;
2953 int kvm_arch_get_registers(CPUState *cs)
2955 X86CPU *cpu = X86_CPU(cs);
2956 int ret;
2958 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
2960 ret = kvm_get_vcpu_events(cpu);
2961 if (ret < 0) {
2962 goto out;
2965 * KVM_GET_MPSTATE can modify CS and RIP, call it before
2966 * KVM_GET_REGS and KVM_GET_SREGS.
2968 ret = kvm_get_mp_state(cpu);
2969 if (ret < 0) {
2970 goto out;
2972 ret = kvm_getput_regs(cpu, 0);
2973 if (ret < 0) {
2974 goto out;
2976 ret = kvm_get_xsave(cpu);
2977 if (ret < 0) {
2978 goto out;
2980 ret = kvm_get_xcrs(cpu);
2981 if (ret < 0) {
2982 goto out;
2984 ret = kvm_get_sregs(cpu);
2985 if (ret < 0) {
2986 goto out;
2988 ret = kvm_get_msrs(cpu);
2989 if (ret < 0) {
2990 goto out;
2992 ret = kvm_get_apic(cpu);
2993 if (ret < 0) {
2994 goto out;
2996 ret = kvm_get_debugregs(cpu);
2997 if (ret < 0) {
2998 goto out;
3000 ret = 0;
3001 out:
3002 cpu_sync_bndcs_hflags(&cpu->env);
3003 return ret;
3006 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
3008 X86CPU *x86_cpu = X86_CPU(cpu);
3009 CPUX86State *env = &x86_cpu->env;
3010 int ret;
3012 /* Inject NMI */
3013 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
3014 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
3015 qemu_mutex_lock_iothread();
3016 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
3017 qemu_mutex_unlock_iothread();
3018 DPRINTF("injected NMI\n");
3019 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
3020 if (ret < 0) {
3021 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
3022 strerror(-ret));
3025 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
3026 qemu_mutex_lock_iothread();
3027 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
3028 qemu_mutex_unlock_iothread();
3029 DPRINTF("injected SMI\n");
3030 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
3031 if (ret < 0) {
3032 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
3033 strerror(-ret));
3038 if (!kvm_pic_in_kernel()) {
3039 qemu_mutex_lock_iothread();
3042 /* Force the VCPU out of its inner loop to process any INIT requests
3043 * or (for userspace APIC, but it is cheap to combine the checks here)
3044 * pending TPR access reports.
3046 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
3047 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
3048 !(env->hflags & HF_SMM_MASK)) {
3049 cpu->exit_request = 1;
3051 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
3052 cpu->exit_request = 1;
3056 if (!kvm_pic_in_kernel()) {
3057 /* Try to inject an interrupt if the guest can accept it */
3058 if (run->ready_for_interrupt_injection &&
3059 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
3060 (env->eflags & IF_MASK)) {
3061 int irq;
3063 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
3064 irq = cpu_get_pic_interrupt(env);
3065 if (irq >= 0) {
3066 struct kvm_interrupt intr;
3068 intr.irq = irq;
3069 DPRINTF("injected interrupt %d\n", irq);
3070 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
3071 if (ret < 0) {
3072 fprintf(stderr,
3073 "KVM: injection failed, interrupt lost (%s)\n",
3074 strerror(-ret));
3079 /* If we have an interrupt but the guest is not ready to receive an
3080 * interrupt, request an interrupt window exit. This will
3081 * cause a return to userspace as soon as the guest is ready to
3082 * receive interrupts. */
3083 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
3084 run->request_interrupt_window = 1;
3085 } else {
3086 run->request_interrupt_window = 0;
3089 DPRINTF("setting tpr\n");
3090 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
3092 qemu_mutex_unlock_iothread();
3096 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
3098 X86CPU *x86_cpu = X86_CPU(cpu);
3099 CPUX86State *env = &x86_cpu->env;
3101 if (run->flags & KVM_RUN_X86_SMM) {
3102 env->hflags |= HF_SMM_MASK;
3103 } else {
3104 env->hflags &= ~HF_SMM_MASK;
3106 if (run->if_flag) {
3107 env->eflags |= IF_MASK;
3108 } else {
3109 env->eflags &= ~IF_MASK;
3112 /* We need to protect the apic state against concurrent accesses from
3113 * different threads in case the userspace irqchip is used. */
3114 if (!kvm_irqchip_in_kernel()) {
3115 qemu_mutex_lock_iothread();
3117 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
3118 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
3119 if (!kvm_irqchip_in_kernel()) {
3120 qemu_mutex_unlock_iothread();
3122 return cpu_get_mem_attrs(env);
3125 int kvm_arch_process_async_events(CPUState *cs)
3127 X86CPU *cpu = X86_CPU(cs);
3128 CPUX86State *env = &cpu->env;
3130 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
3131 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
3132 assert(env->mcg_cap);
3134 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
3136 kvm_cpu_synchronize_state(cs);
3138 if (env->exception_injected == EXCP08_DBLE) {
3139 /* this means triple fault */
3140 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
3141 cs->exit_request = 1;
3142 return 0;
3144 env->exception_injected = EXCP12_MCHK;
3145 env->has_error_code = 0;
3147 cs->halted = 0;
3148 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
3149 env->mp_state = KVM_MP_STATE_RUNNABLE;
3153 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
3154 !(env->hflags & HF_SMM_MASK)) {
3155 kvm_cpu_synchronize_state(cs);
3156 do_cpu_init(cpu);
3159 if (kvm_irqchip_in_kernel()) {
3160 return 0;
3163 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
3164 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
3165 apic_poll_irq(cpu->apic_state);
3167 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
3168 (env->eflags & IF_MASK)) ||
3169 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
3170 cs->halted = 0;
3172 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
3173 kvm_cpu_synchronize_state(cs);
3174 do_cpu_sipi(cpu);
3176 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
3177 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
3178 kvm_cpu_synchronize_state(cs);
3179 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
3180 env->tpr_access_type);
3183 return cs->halted;
3186 static int kvm_handle_halt(X86CPU *cpu)
3188 CPUState *cs = CPU(cpu);
3189 CPUX86State *env = &cpu->env;
3191 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
3192 (env->eflags & IF_MASK)) &&
3193 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
3194 cs->halted = 1;
3195 return EXCP_HLT;
3198 return 0;
3201 static int kvm_handle_tpr_access(X86CPU *cpu)
3203 CPUState *cs = CPU(cpu);
3204 struct kvm_run *run = cs->kvm_run;
3206 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
3207 run->tpr_access.is_write ? TPR_ACCESS_WRITE
3208 : TPR_ACCESS_READ);
3209 return 1;
3212 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
3214 static const uint8_t int3 = 0xcc;
3216 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
3217 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
3218 return -EINVAL;
3220 return 0;
3223 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
3225 uint8_t int3;
3227 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
3228 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
3229 return -EINVAL;
3231 return 0;
3234 static struct {
3235 target_ulong addr;
3236 int len;
3237 int type;
3238 } hw_breakpoint[4];
3240 static int nb_hw_breakpoint;
3242 static int find_hw_breakpoint(target_ulong addr, int len, int type)
3244 int n;
3246 for (n = 0; n < nb_hw_breakpoint; n++) {
3247 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
3248 (hw_breakpoint[n].len == len || len == -1)) {
3249 return n;
3252 return -1;
3255 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
3256 target_ulong len, int type)
3258 switch (type) {
3259 case GDB_BREAKPOINT_HW:
3260 len = 1;
3261 break;
3262 case GDB_WATCHPOINT_WRITE:
3263 case GDB_WATCHPOINT_ACCESS:
3264 switch (len) {
3265 case 1:
3266 break;
3267 case 2:
3268 case 4:
3269 case 8:
3270 if (addr & (len - 1)) {
3271 return -EINVAL;
3273 break;
3274 default:
3275 return -EINVAL;
3277 break;
3278 default:
3279 return -ENOSYS;
3282 if (nb_hw_breakpoint == 4) {
3283 return -ENOBUFS;
3285 if (find_hw_breakpoint(addr, len, type) >= 0) {
3286 return -EEXIST;
3288 hw_breakpoint[nb_hw_breakpoint].addr = addr;
3289 hw_breakpoint[nb_hw_breakpoint].len = len;
3290 hw_breakpoint[nb_hw_breakpoint].type = type;
3291 nb_hw_breakpoint++;
3293 return 0;
3296 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
3297 target_ulong len, int type)
3299 int n;
3301 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
3302 if (n < 0) {
3303 return -ENOENT;
3305 nb_hw_breakpoint--;
3306 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
3308 return 0;
3311 void kvm_arch_remove_all_hw_breakpoints(void)
3313 nb_hw_breakpoint = 0;
3316 static CPUWatchpoint hw_watchpoint;
3318 static int kvm_handle_debug(X86CPU *cpu,
3319 struct kvm_debug_exit_arch *arch_info)
3321 CPUState *cs = CPU(cpu);
3322 CPUX86State *env = &cpu->env;
3323 int ret = 0;
3324 int n;
3326 if (arch_info->exception == 1) {
3327 if (arch_info->dr6 & (1 << 14)) {
3328 if (cs->singlestep_enabled) {
3329 ret = EXCP_DEBUG;
3331 } else {
3332 for (n = 0; n < 4; n++) {
3333 if (arch_info->dr6 & (1 << n)) {
3334 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
3335 case 0x0:
3336 ret = EXCP_DEBUG;
3337 break;
3338 case 0x1:
3339 ret = EXCP_DEBUG;
3340 cs->watchpoint_hit = &hw_watchpoint;
3341 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
3342 hw_watchpoint.flags = BP_MEM_WRITE;
3343 break;
3344 case 0x3:
3345 ret = EXCP_DEBUG;
3346 cs->watchpoint_hit = &hw_watchpoint;
3347 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
3348 hw_watchpoint.flags = BP_MEM_ACCESS;
3349 break;
3354 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
3355 ret = EXCP_DEBUG;
3357 if (ret == 0) {
3358 cpu_synchronize_state(cs);
3359 assert(env->exception_injected == -1);
3361 /* pass to guest */
3362 env->exception_injected = arch_info->exception;
3363 env->has_error_code = 0;
3366 return ret;
3369 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
3371 const uint8_t type_code[] = {
3372 [GDB_BREAKPOINT_HW] = 0x0,
3373 [GDB_WATCHPOINT_WRITE] = 0x1,
3374 [GDB_WATCHPOINT_ACCESS] = 0x3
3376 const uint8_t len_code[] = {
3377 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
3379 int n;
3381 if (kvm_sw_breakpoints_active(cpu)) {
3382 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
3384 if (nb_hw_breakpoint > 0) {
3385 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
3386 dbg->arch.debugreg[7] = 0x0600;
3387 for (n = 0; n < nb_hw_breakpoint; n++) {
3388 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
3389 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
3390 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
3391 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
3396 static bool host_supports_vmx(void)
3398 uint32_t ecx, unused;
3400 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
3401 return ecx & CPUID_EXT_VMX;
3404 #define VMX_INVALID_GUEST_STATE 0x80000021
3406 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
3408 X86CPU *cpu = X86_CPU(cs);
3409 uint64_t code;
3410 int ret;
3412 switch (run->exit_reason) {
3413 case KVM_EXIT_HLT:
3414 DPRINTF("handle_hlt\n");
3415 qemu_mutex_lock_iothread();
3416 ret = kvm_handle_halt(cpu);
3417 qemu_mutex_unlock_iothread();
3418 break;
3419 case KVM_EXIT_SET_TPR:
3420 ret = 0;
3421 break;
3422 case KVM_EXIT_TPR_ACCESS:
3423 qemu_mutex_lock_iothread();
3424 ret = kvm_handle_tpr_access(cpu);
3425 qemu_mutex_unlock_iothread();
3426 break;
3427 case KVM_EXIT_FAIL_ENTRY:
3428 code = run->fail_entry.hardware_entry_failure_reason;
3429 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
3430 code);
3431 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
3432 fprintf(stderr,
3433 "\nIf you're running a guest on an Intel machine without "
3434 "unrestricted mode\n"
3435 "support, the failure can be most likely due to the guest "
3436 "entering an invalid\n"
3437 "state for Intel VT. For example, the guest maybe running "
3438 "in big real mode\n"
3439 "which is not supported on less recent Intel processors."
3440 "\n\n");
3442 ret = -1;
3443 break;
3444 case KVM_EXIT_EXCEPTION:
3445 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
3446 run->ex.exception, run->ex.error_code);
3447 ret = -1;
3448 break;
3449 case KVM_EXIT_DEBUG:
3450 DPRINTF("kvm_exit_debug\n");
3451 qemu_mutex_lock_iothread();
3452 ret = kvm_handle_debug(cpu, &run->debug.arch);
3453 qemu_mutex_unlock_iothread();
3454 break;
3455 case KVM_EXIT_HYPERV:
3456 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
3457 break;
3458 case KVM_EXIT_IOAPIC_EOI:
3459 ioapic_eoi_broadcast(run->eoi.vector);
3460 ret = 0;
3461 break;
3462 default:
3463 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
3464 ret = -1;
3465 break;
3468 return ret;
3471 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
3473 X86CPU *cpu = X86_CPU(cs);
3474 CPUX86State *env = &cpu->env;
3476 kvm_cpu_synchronize_state(cs);
3477 return !(env->cr[0] & CR0_PE_MASK) ||
3478 ((env->segs[R_CS].selector & 3) != 3);
3481 void kvm_arch_init_irq_routing(KVMState *s)
3483 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
3484 /* If kernel can't do irq routing, interrupt source
3485 * override 0->2 cannot be set up as required by HPET.
3486 * So we have to disable it.
3488 no_hpet = 1;
3490 /* We know at this point that we're using the in-kernel
3491 * irqchip, so we can use irqfds, and on x86 we know
3492 * we can use msi via irqfd and GSI routing.
3494 kvm_msi_via_irqfd_allowed = true;
3495 kvm_gsi_routing_allowed = true;
3497 if (kvm_irqchip_is_split()) {
3498 int i;
3500 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
3501 MSI routes for signaling interrupts to the local apics. */
3502 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
3503 if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
3504 error_report("Could not enable split IRQ mode.");
3505 exit(1);
3511 int kvm_arch_irqchip_create(MachineState *ms, KVMState *s)
3513 int ret;
3514 if (machine_kernel_irqchip_split(ms)) {
3515 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
3516 if (ret) {
3517 error_report("Could not enable split irqchip mode: %s",
3518 strerror(-ret));
3519 exit(1);
3520 } else {
3521 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
3522 kvm_split_irqchip = true;
3523 return 1;
3525 } else {
3526 return 0;
3530 /* Classic KVM device assignment interface. Will remain x86 only. */
3531 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
3532 uint32_t flags, uint32_t *dev_id)
3534 struct kvm_assigned_pci_dev dev_data = {
3535 .segnr = dev_addr->domain,
3536 .busnr = dev_addr->bus,
3537 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
3538 .flags = flags,
3540 int ret;
3542 dev_data.assigned_dev_id =
3543 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
3545 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
3546 if (ret < 0) {
3547 return ret;
3550 *dev_id = dev_data.assigned_dev_id;
3552 return 0;
3555 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
3557 struct kvm_assigned_pci_dev dev_data = {
3558 .assigned_dev_id = dev_id,
3561 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
3564 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
3565 uint32_t irq_type, uint32_t guest_irq)
3567 struct kvm_assigned_irq assigned_irq = {
3568 .assigned_dev_id = dev_id,
3569 .guest_irq = guest_irq,
3570 .flags = irq_type,
3573 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
3574 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
3575 } else {
3576 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
3580 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
3581 uint32_t guest_irq)
3583 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
3584 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
3586 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
3589 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
3591 struct kvm_assigned_pci_dev dev_data = {
3592 .assigned_dev_id = dev_id,
3593 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
3596 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
3599 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
3600 uint32_t type)
3602 struct kvm_assigned_irq assigned_irq = {
3603 .assigned_dev_id = dev_id,
3604 .flags = type,
3607 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
3610 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
3612 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
3613 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
3616 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
3618 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
3619 KVM_DEV_IRQ_GUEST_MSI, virq);
3622 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
3624 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
3625 KVM_DEV_IRQ_HOST_MSI);
3628 bool kvm_device_msix_supported(KVMState *s)
3630 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
3631 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
3632 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
3635 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
3636 uint32_t nr_vectors)
3638 struct kvm_assigned_msix_nr msix_nr = {
3639 .assigned_dev_id = dev_id,
3640 .entry_nr = nr_vectors,
3643 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
3646 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
3647 int virq)
3649 struct kvm_assigned_msix_entry msix_entry = {
3650 .assigned_dev_id = dev_id,
3651 .gsi = virq,
3652 .entry = vector,
3655 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
3658 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
3660 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
3661 KVM_DEV_IRQ_GUEST_MSIX, 0);
3664 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
3666 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
3667 KVM_DEV_IRQ_HOST_MSIX);
3670 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
3671 uint64_t address, uint32_t data, PCIDevice *dev)
3673 X86IOMMUState *iommu = x86_iommu_get_default();
3675 if (iommu) {
3676 int ret;
3677 MSIMessage src, dst;
3678 X86IOMMUClass *class = X86_IOMMU_GET_CLASS(iommu);
3680 src.address = route->u.msi.address_hi;
3681 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
3682 src.address |= route->u.msi.address_lo;
3683 src.data = route->u.msi.data;
3685 ret = class->int_remap(iommu, &src, &dst, dev ? \
3686 pci_requester_id(dev) : \
3687 X86_IOMMU_SID_INVALID);
3688 if (ret) {
3689 trace_kvm_x86_fixup_msi_error(route->gsi);
3690 return 1;
3693 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
3694 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
3695 route->u.msi.data = dst.data;
3698 return 0;
3701 typedef struct MSIRouteEntry MSIRouteEntry;
3703 struct MSIRouteEntry {
3704 PCIDevice *dev; /* Device pointer */
3705 int vector; /* MSI/MSIX vector index */
3706 int virq; /* Virtual IRQ index */
3707 QLIST_ENTRY(MSIRouteEntry) list;
3710 /* List of used GSI routes */
3711 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
3712 QLIST_HEAD_INITIALIZER(msi_route_list);
3714 static void kvm_update_msi_routes_all(void *private, bool global,
3715 uint32_t index, uint32_t mask)
3717 int cnt = 0;
3718 MSIRouteEntry *entry;
3719 MSIMessage msg;
3720 PCIDevice *dev;
3722 /* TODO: explicit route update */
3723 QLIST_FOREACH(entry, &msi_route_list, list) {
3724 cnt++;
3725 dev = entry->dev;
3726 if (!msix_enabled(dev) && !msi_enabled(dev)) {
3727 continue;
3729 msg = pci_get_msi_message(dev, entry->vector);
3730 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
3732 kvm_irqchip_commit_routes(kvm_state);
3733 trace_kvm_x86_update_msi_routes(cnt);
3736 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
3737 int vector, PCIDevice *dev)
3739 static bool notify_list_inited = false;
3740 MSIRouteEntry *entry;
3742 if (!dev) {
3743 /* These are (possibly) IOAPIC routes only used for split
3744 * kernel irqchip mode, while what we are housekeeping are
3745 * PCI devices only. */
3746 return 0;
3749 entry = g_new0(MSIRouteEntry, 1);
3750 entry->dev = dev;
3751 entry->vector = vector;
3752 entry->virq = route->gsi;
3753 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
3755 trace_kvm_x86_add_msi_route(route->gsi);
3757 if (!notify_list_inited) {
3758 /* For the first time we do add route, add ourselves into
3759 * IOMMU's IEC notify list if needed. */
3760 X86IOMMUState *iommu = x86_iommu_get_default();
3761 if (iommu) {
3762 x86_iommu_iec_register_notifier(iommu,
3763 kvm_update_msi_routes_all,
3764 NULL);
3766 notify_list_inited = true;
3768 return 0;
3771 int kvm_arch_release_virq_post(int virq)
3773 MSIRouteEntry *entry, *next;
3774 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
3775 if (entry->virq == virq) {
3776 trace_kvm_x86_remove_msi_route(virq);
3777 QLIST_REMOVE(entry, list);
3778 g_free(entry);
3779 break;
3782 return 0;
3785 int kvm_arch_msi_data_to_gsi(uint32_t data)
3787 abort();