libqos: move useful qos-test funcs to qos_external
[qemu/ar7.git] / hw / arm / stellaris.c
blob221a78674e3af45762422c7ace5e8ef16c202570
1 /*
2 * Luminary Micro Stellaris peripherals
4 * Copyright (c) 2006 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 #include "qemu/osdep.h"
11 #include "qapi/error.h"
12 #include "hw/sysbus.h"
13 #include "hw/ssi/ssi.h"
14 #include "hw/arm/boot.h"
15 #include "qemu/timer.h"
16 #include "hw/i2c/i2c.h"
17 #include "net/net.h"
18 #include "hw/boards.h"
19 #include "qemu/log.h"
20 #include "exec/address-spaces.h"
21 #include "sysemu/runstate.h"
22 #include "sysemu/sysemu.h"
23 #include "hw/arm/armv7m.h"
24 #include "hw/char/pl011.h"
25 #include "hw/input/gamepad.h"
26 #include "hw/irq.h"
27 #include "hw/watchdog/cmsdk-apb-watchdog.h"
28 #include "migration/vmstate.h"
29 #include "hw/misc/unimp.h"
30 #include "cpu.h"
32 #define GPIO_A 0
33 #define GPIO_B 1
34 #define GPIO_C 2
35 #define GPIO_D 3
36 #define GPIO_E 4
37 #define GPIO_F 5
38 #define GPIO_G 6
40 #define BP_OLED_I2C 0x01
41 #define BP_OLED_SSI 0x02
42 #define BP_GAMEPAD 0x04
44 #define NUM_IRQ_LINES 64
46 typedef const struct {
47 const char *name;
48 uint32_t did0;
49 uint32_t did1;
50 uint32_t dc0;
51 uint32_t dc1;
52 uint32_t dc2;
53 uint32_t dc3;
54 uint32_t dc4;
55 uint32_t peripherals;
56 } stellaris_board_info;
58 /* General purpose timer module. */
60 #define TYPE_STELLARIS_GPTM "stellaris-gptm"
61 #define STELLARIS_GPTM(obj) \
62 OBJECT_CHECK(gptm_state, (obj), TYPE_STELLARIS_GPTM)
64 typedef struct gptm_state {
65 SysBusDevice parent_obj;
67 MemoryRegion iomem;
68 uint32_t config;
69 uint32_t mode[2];
70 uint32_t control;
71 uint32_t state;
72 uint32_t mask;
73 uint32_t load[2];
74 uint32_t match[2];
75 uint32_t prescale[2];
76 uint32_t match_prescale[2];
77 uint32_t rtc;
78 int64_t tick[2];
79 struct gptm_state *opaque[2];
80 QEMUTimer *timer[2];
81 /* The timers have an alternate output used to trigger the ADC. */
82 qemu_irq trigger;
83 qemu_irq irq;
84 } gptm_state;
86 static void gptm_update_irq(gptm_state *s)
88 int level;
89 level = (s->state & s->mask) != 0;
90 qemu_set_irq(s->irq, level);
93 static void gptm_stop(gptm_state *s, int n)
95 timer_del(s->timer[n]);
98 static void gptm_reload(gptm_state *s, int n, int reset)
100 int64_t tick;
101 if (reset)
102 tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
103 else
104 tick = s->tick[n];
106 if (s->config == 0) {
107 /* 32-bit CountDown. */
108 uint32_t count;
109 count = s->load[0] | (s->load[1] << 16);
110 tick += (int64_t)count * system_clock_scale;
111 } else if (s->config == 1) {
112 /* 32-bit RTC. 1Hz tick. */
113 tick += NANOSECONDS_PER_SECOND;
114 } else if (s->mode[n] == 0xa) {
115 /* PWM mode. Not implemented. */
116 } else {
117 qemu_log_mask(LOG_UNIMP,
118 "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
119 s->mode[n]);
120 return;
122 s->tick[n] = tick;
123 timer_mod(s->timer[n], tick);
126 static void gptm_tick(void *opaque)
128 gptm_state **p = (gptm_state **)opaque;
129 gptm_state *s;
130 int n;
132 s = *p;
133 n = p - s->opaque;
134 if (s->config == 0) {
135 s->state |= 1;
136 if ((s->control & 0x20)) {
137 /* Output trigger. */
138 qemu_irq_pulse(s->trigger);
140 if (s->mode[0] & 1) {
141 /* One-shot. */
142 s->control &= ~1;
143 } else {
144 /* Periodic. */
145 gptm_reload(s, 0, 0);
147 } else if (s->config == 1) {
148 /* RTC. */
149 uint32_t match;
150 s->rtc++;
151 match = s->match[0] | (s->match[1] << 16);
152 if (s->rtc > match)
153 s->rtc = 0;
154 if (s->rtc == 0) {
155 s->state |= 8;
157 gptm_reload(s, 0, 0);
158 } else if (s->mode[n] == 0xa) {
159 /* PWM mode. Not implemented. */
160 } else {
161 qemu_log_mask(LOG_UNIMP,
162 "GPTM: 16-bit timer mode unimplemented: 0x%x\n",
163 s->mode[n]);
165 gptm_update_irq(s);
168 static uint64_t gptm_read(void *opaque, hwaddr offset,
169 unsigned size)
171 gptm_state *s = (gptm_state *)opaque;
173 switch (offset) {
174 case 0x00: /* CFG */
175 return s->config;
176 case 0x04: /* TAMR */
177 return s->mode[0];
178 case 0x08: /* TBMR */
179 return s->mode[1];
180 case 0x0c: /* CTL */
181 return s->control;
182 case 0x18: /* IMR */
183 return s->mask;
184 case 0x1c: /* RIS */
185 return s->state;
186 case 0x20: /* MIS */
187 return s->state & s->mask;
188 case 0x24: /* CR */
189 return 0;
190 case 0x28: /* TAILR */
191 return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0);
192 case 0x2c: /* TBILR */
193 return s->load[1];
194 case 0x30: /* TAMARCHR */
195 return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0);
196 case 0x34: /* TBMATCHR */
197 return s->match[1];
198 case 0x38: /* TAPR */
199 return s->prescale[0];
200 case 0x3c: /* TBPR */
201 return s->prescale[1];
202 case 0x40: /* TAPMR */
203 return s->match_prescale[0];
204 case 0x44: /* TBPMR */
205 return s->match_prescale[1];
206 case 0x48: /* TAR */
207 if (s->config == 1) {
208 return s->rtc;
210 qemu_log_mask(LOG_UNIMP,
211 "GPTM: read of TAR but timer read not supported\n");
212 return 0;
213 case 0x4c: /* TBR */
214 qemu_log_mask(LOG_UNIMP,
215 "GPTM: read of TBR but timer read not supported\n");
216 return 0;
217 default:
218 qemu_log_mask(LOG_GUEST_ERROR,
219 "GPTM: read at bad offset 0x02%" HWADDR_PRIx "\n",
220 offset);
221 return 0;
225 static void gptm_write(void *opaque, hwaddr offset,
226 uint64_t value, unsigned size)
228 gptm_state *s = (gptm_state *)opaque;
229 uint32_t oldval;
231 /* The timers should be disabled before changing the configuration.
232 We take advantage of this and defer everything until the timer
233 is enabled. */
234 switch (offset) {
235 case 0x00: /* CFG */
236 s->config = value;
237 break;
238 case 0x04: /* TAMR */
239 s->mode[0] = value;
240 break;
241 case 0x08: /* TBMR */
242 s->mode[1] = value;
243 break;
244 case 0x0c: /* CTL */
245 oldval = s->control;
246 s->control = value;
247 /* TODO: Implement pause. */
248 if ((oldval ^ value) & 1) {
249 if (value & 1) {
250 gptm_reload(s, 0, 1);
251 } else {
252 gptm_stop(s, 0);
255 if (((oldval ^ value) & 0x100) && s->config >= 4) {
256 if (value & 0x100) {
257 gptm_reload(s, 1, 1);
258 } else {
259 gptm_stop(s, 1);
262 break;
263 case 0x18: /* IMR */
264 s->mask = value & 0x77;
265 gptm_update_irq(s);
266 break;
267 case 0x24: /* CR */
268 s->state &= ~value;
269 break;
270 case 0x28: /* TAILR */
271 s->load[0] = value & 0xffff;
272 if (s->config < 4) {
273 s->load[1] = value >> 16;
275 break;
276 case 0x2c: /* TBILR */
277 s->load[1] = value & 0xffff;
278 break;
279 case 0x30: /* TAMARCHR */
280 s->match[0] = value & 0xffff;
281 if (s->config < 4) {
282 s->match[1] = value >> 16;
284 break;
285 case 0x34: /* TBMATCHR */
286 s->match[1] = value >> 16;
287 break;
288 case 0x38: /* TAPR */
289 s->prescale[0] = value;
290 break;
291 case 0x3c: /* TBPR */
292 s->prescale[1] = value;
293 break;
294 case 0x40: /* TAPMR */
295 s->match_prescale[0] = value;
296 break;
297 case 0x44: /* TBPMR */
298 s->match_prescale[0] = value;
299 break;
300 default:
301 qemu_log_mask(LOG_GUEST_ERROR,
302 "GPTM: write at bad offset 0x02%" HWADDR_PRIx "\n",
303 offset);
305 gptm_update_irq(s);
308 static const MemoryRegionOps gptm_ops = {
309 .read = gptm_read,
310 .write = gptm_write,
311 .endianness = DEVICE_NATIVE_ENDIAN,
314 static const VMStateDescription vmstate_stellaris_gptm = {
315 .name = "stellaris_gptm",
316 .version_id = 1,
317 .minimum_version_id = 1,
318 .fields = (VMStateField[]) {
319 VMSTATE_UINT32(config, gptm_state),
320 VMSTATE_UINT32_ARRAY(mode, gptm_state, 2),
321 VMSTATE_UINT32(control, gptm_state),
322 VMSTATE_UINT32(state, gptm_state),
323 VMSTATE_UINT32(mask, gptm_state),
324 VMSTATE_UNUSED(8),
325 VMSTATE_UINT32_ARRAY(load, gptm_state, 2),
326 VMSTATE_UINT32_ARRAY(match, gptm_state, 2),
327 VMSTATE_UINT32_ARRAY(prescale, gptm_state, 2),
328 VMSTATE_UINT32_ARRAY(match_prescale, gptm_state, 2),
329 VMSTATE_UINT32(rtc, gptm_state),
330 VMSTATE_INT64_ARRAY(tick, gptm_state, 2),
331 VMSTATE_TIMER_PTR_ARRAY(timer, gptm_state, 2),
332 VMSTATE_END_OF_LIST()
336 static void stellaris_gptm_init(Object *obj)
338 DeviceState *dev = DEVICE(obj);
339 gptm_state *s = STELLARIS_GPTM(obj);
340 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
342 sysbus_init_irq(sbd, &s->irq);
343 qdev_init_gpio_out(dev, &s->trigger, 1);
345 memory_region_init_io(&s->iomem, obj, &gptm_ops, s,
346 "gptm", 0x1000);
347 sysbus_init_mmio(sbd, &s->iomem);
349 s->opaque[0] = s->opaque[1] = s;
352 static void stellaris_gptm_realize(DeviceState *dev, Error **errp)
354 gptm_state *s = STELLARIS_GPTM(dev);
355 s->timer[0] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[0]);
356 s->timer[1] = timer_new_ns(QEMU_CLOCK_VIRTUAL, gptm_tick, &s->opaque[1]);
359 /* System controller. */
361 typedef struct {
362 MemoryRegion iomem;
363 uint32_t pborctl;
364 uint32_t ldopctl;
365 uint32_t int_status;
366 uint32_t int_mask;
367 uint32_t resc;
368 uint32_t rcc;
369 uint32_t rcc2;
370 uint32_t rcgc[3];
371 uint32_t scgc[3];
372 uint32_t dcgc[3];
373 uint32_t clkvclr;
374 uint32_t ldoarst;
375 uint32_t user0;
376 uint32_t user1;
377 qemu_irq irq;
378 stellaris_board_info *board;
379 } ssys_state;
381 static void ssys_update(ssys_state *s)
383 qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
386 static uint32_t pllcfg_sandstorm[16] = {
387 0x31c0, /* 1 Mhz */
388 0x1ae0, /* 1.8432 Mhz */
389 0x18c0, /* 2 Mhz */
390 0xd573, /* 2.4576 Mhz */
391 0x37a6, /* 3.57954 Mhz */
392 0x1ae2, /* 3.6864 Mhz */
393 0x0c40, /* 4 Mhz */
394 0x98bc, /* 4.906 Mhz */
395 0x935b, /* 4.9152 Mhz */
396 0x09c0, /* 5 Mhz */
397 0x4dee, /* 5.12 Mhz */
398 0x0c41, /* 6 Mhz */
399 0x75db, /* 6.144 Mhz */
400 0x1ae6, /* 7.3728 Mhz */
401 0x0600, /* 8 Mhz */
402 0x585b /* 8.192 Mhz */
405 static uint32_t pllcfg_fury[16] = {
406 0x3200, /* 1 Mhz */
407 0x1b20, /* 1.8432 Mhz */
408 0x1900, /* 2 Mhz */
409 0xf42b, /* 2.4576 Mhz */
410 0x37e3, /* 3.57954 Mhz */
411 0x1b21, /* 3.6864 Mhz */
412 0x0c80, /* 4 Mhz */
413 0x98ee, /* 4.906 Mhz */
414 0xd5b4, /* 4.9152 Mhz */
415 0x0a00, /* 5 Mhz */
416 0x4e27, /* 5.12 Mhz */
417 0x1902, /* 6 Mhz */
418 0xec1c, /* 6.144 Mhz */
419 0x1b23, /* 7.3728 Mhz */
420 0x0640, /* 8 Mhz */
421 0xb11c /* 8.192 Mhz */
424 #define DID0_VER_MASK 0x70000000
425 #define DID0_VER_0 0x00000000
426 #define DID0_VER_1 0x10000000
428 #define DID0_CLASS_MASK 0x00FF0000
429 #define DID0_CLASS_SANDSTORM 0x00000000
430 #define DID0_CLASS_FURY 0x00010000
432 static int ssys_board_class(const ssys_state *s)
434 uint32_t did0 = s->board->did0;
435 switch (did0 & DID0_VER_MASK) {
436 case DID0_VER_0:
437 return DID0_CLASS_SANDSTORM;
438 case DID0_VER_1:
439 switch (did0 & DID0_CLASS_MASK) {
440 case DID0_CLASS_SANDSTORM:
441 case DID0_CLASS_FURY:
442 return did0 & DID0_CLASS_MASK;
444 /* for unknown classes, fall through */
445 default:
446 /* This can only happen if the hardwired constant did0 value
447 * in this board's stellaris_board_info struct is wrong.
449 g_assert_not_reached();
453 static uint64_t ssys_read(void *opaque, hwaddr offset,
454 unsigned size)
456 ssys_state *s = (ssys_state *)opaque;
458 switch (offset) {
459 case 0x000: /* DID0 */
460 return s->board->did0;
461 case 0x004: /* DID1 */
462 return s->board->did1;
463 case 0x008: /* DC0 */
464 return s->board->dc0;
465 case 0x010: /* DC1 */
466 return s->board->dc1;
467 case 0x014: /* DC2 */
468 return s->board->dc2;
469 case 0x018: /* DC3 */
470 return s->board->dc3;
471 case 0x01c: /* DC4 */
472 return s->board->dc4;
473 case 0x030: /* PBORCTL */
474 return s->pborctl;
475 case 0x034: /* LDOPCTL */
476 return s->ldopctl;
477 case 0x040: /* SRCR0 */
478 return 0;
479 case 0x044: /* SRCR1 */
480 return 0;
481 case 0x048: /* SRCR2 */
482 return 0;
483 case 0x050: /* RIS */
484 return s->int_status;
485 case 0x054: /* IMC */
486 return s->int_mask;
487 case 0x058: /* MISC */
488 return s->int_status & s->int_mask;
489 case 0x05c: /* RESC */
490 return s->resc;
491 case 0x060: /* RCC */
492 return s->rcc;
493 case 0x064: /* PLLCFG */
495 int xtal;
496 xtal = (s->rcc >> 6) & 0xf;
497 switch (ssys_board_class(s)) {
498 case DID0_CLASS_FURY:
499 return pllcfg_fury[xtal];
500 case DID0_CLASS_SANDSTORM:
501 return pllcfg_sandstorm[xtal];
502 default:
503 g_assert_not_reached();
506 case 0x070: /* RCC2 */
507 return s->rcc2;
508 case 0x100: /* RCGC0 */
509 return s->rcgc[0];
510 case 0x104: /* RCGC1 */
511 return s->rcgc[1];
512 case 0x108: /* RCGC2 */
513 return s->rcgc[2];
514 case 0x110: /* SCGC0 */
515 return s->scgc[0];
516 case 0x114: /* SCGC1 */
517 return s->scgc[1];
518 case 0x118: /* SCGC2 */
519 return s->scgc[2];
520 case 0x120: /* DCGC0 */
521 return s->dcgc[0];
522 case 0x124: /* DCGC1 */
523 return s->dcgc[1];
524 case 0x128: /* DCGC2 */
525 return s->dcgc[2];
526 case 0x150: /* CLKVCLR */
527 return s->clkvclr;
528 case 0x160: /* LDOARST */
529 return s->ldoarst;
530 case 0x1e0: /* USER0 */
531 return s->user0;
532 case 0x1e4: /* USER1 */
533 return s->user1;
534 default:
535 qemu_log_mask(LOG_GUEST_ERROR,
536 "SSYS: read at bad offset 0x%x\n", (int)offset);
537 return 0;
541 static bool ssys_use_rcc2(ssys_state *s)
543 return (s->rcc2 >> 31) & 0x1;
547 * Caculate the sys. clock period in ms.
549 static void ssys_calculate_system_clock(ssys_state *s)
551 if (ssys_use_rcc2(s)) {
552 system_clock_scale = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
553 } else {
554 system_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1);
558 static void ssys_write(void *opaque, hwaddr offset,
559 uint64_t value, unsigned size)
561 ssys_state *s = (ssys_state *)opaque;
563 switch (offset) {
564 case 0x030: /* PBORCTL */
565 s->pborctl = value & 0xffff;
566 break;
567 case 0x034: /* LDOPCTL */
568 s->ldopctl = value & 0x1f;
569 break;
570 case 0x040: /* SRCR0 */
571 case 0x044: /* SRCR1 */
572 case 0x048: /* SRCR2 */
573 qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n");
574 break;
575 case 0x054: /* IMC */
576 s->int_mask = value & 0x7f;
577 break;
578 case 0x058: /* MISC */
579 s->int_status &= ~value;
580 break;
581 case 0x05c: /* RESC */
582 s->resc = value & 0x3f;
583 break;
584 case 0x060: /* RCC */
585 if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
586 /* PLL enable. */
587 s->int_status |= (1 << 6);
589 s->rcc = value;
590 ssys_calculate_system_clock(s);
591 break;
592 case 0x070: /* RCC2 */
593 if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
594 break;
597 if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
598 /* PLL enable. */
599 s->int_status |= (1 << 6);
601 s->rcc2 = value;
602 ssys_calculate_system_clock(s);
603 break;
604 case 0x100: /* RCGC0 */
605 s->rcgc[0] = value;
606 break;
607 case 0x104: /* RCGC1 */
608 s->rcgc[1] = value;
609 break;
610 case 0x108: /* RCGC2 */
611 s->rcgc[2] = value;
612 break;
613 case 0x110: /* SCGC0 */
614 s->scgc[0] = value;
615 break;
616 case 0x114: /* SCGC1 */
617 s->scgc[1] = value;
618 break;
619 case 0x118: /* SCGC2 */
620 s->scgc[2] = value;
621 break;
622 case 0x120: /* DCGC0 */
623 s->dcgc[0] = value;
624 break;
625 case 0x124: /* DCGC1 */
626 s->dcgc[1] = value;
627 break;
628 case 0x128: /* DCGC2 */
629 s->dcgc[2] = value;
630 break;
631 case 0x150: /* CLKVCLR */
632 s->clkvclr = value;
633 break;
634 case 0x160: /* LDOARST */
635 s->ldoarst = value;
636 break;
637 default:
638 qemu_log_mask(LOG_GUEST_ERROR,
639 "SSYS: write at bad offset 0x%x\n", (int)offset);
641 ssys_update(s);
644 static const MemoryRegionOps ssys_ops = {
645 .read = ssys_read,
646 .write = ssys_write,
647 .endianness = DEVICE_NATIVE_ENDIAN,
650 static void ssys_reset(void *opaque)
652 ssys_state *s = (ssys_state *)opaque;
654 s->pborctl = 0x7ffd;
655 s->rcc = 0x078e3ac0;
657 if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
658 s->rcc2 = 0;
659 } else {
660 s->rcc2 = 0x07802810;
662 s->rcgc[0] = 1;
663 s->scgc[0] = 1;
664 s->dcgc[0] = 1;
665 ssys_calculate_system_clock(s);
668 static int stellaris_sys_post_load(void *opaque, int version_id)
670 ssys_state *s = opaque;
672 ssys_calculate_system_clock(s);
674 return 0;
677 static const VMStateDescription vmstate_stellaris_sys = {
678 .name = "stellaris_sys",
679 .version_id = 2,
680 .minimum_version_id = 1,
681 .post_load = stellaris_sys_post_load,
682 .fields = (VMStateField[]) {
683 VMSTATE_UINT32(pborctl, ssys_state),
684 VMSTATE_UINT32(ldopctl, ssys_state),
685 VMSTATE_UINT32(int_mask, ssys_state),
686 VMSTATE_UINT32(int_status, ssys_state),
687 VMSTATE_UINT32(resc, ssys_state),
688 VMSTATE_UINT32(rcc, ssys_state),
689 VMSTATE_UINT32_V(rcc2, ssys_state, 2),
690 VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
691 VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
692 VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
693 VMSTATE_UINT32(clkvclr, ssys_state),
694 VMSTATE_UINT32(ldoarst, ssys_state),
695 VMSTATE_END_OF_LIST()
699 static int stellaris_sys_init(uint32_t base, qemu_irq irq,
700 stellaris_board_info * board,
701 uint8_t *macaddr)
703 ssys_state *s;
705 s = g_new0(ssys_state, 1);
706 s->irq = irq;
707 s->board = board;
708 /* Most devices come preprogrammed with a MAC address in the user data. */
709 s->user0 = macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16);
710 s->user1 = macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16);
712 memory_region_init_io(&s->iomem, NULL, &ssys_ops, s, "ssys", 0x00001000);
713 memory_region_add_subregion(get_system_memory(), base, &s->iomem);
714 ssys_reset(s);
715 vmstate_register(NULL, VMSTATE_INSTANCE_ID_ANY, &vmstate_stellaris_sys, s);
716 return 0;
720 /* I2C controller. */
722 #define TYPE_STELLARIS_I2C "stellaris-i2c"
723 #define STELLARIS_I2C(obj) \
724 OBJECT_CHECK(stellaris_i2c_state, (obj), TYPE_STELLARIS_I2C)
726 typedef struct {
727 SysBusDevice parent_obj;
729 I2CBus *bus;
730 qemu_irq irq;
731 MemoryRegion iomem;
732 uint32_t msa;
733 uint32_t mcs;
734 uint32_t mdr;
735 uint32_t mtpr;
736 uint32_t mimr;
737 uint32_t mris;
738 uint32_t mcr;
739 } stellaris_i2c_state;
741 #define STELLARIS_I2C_MCS_BUSY 0x01
742 #define STELLARIS_I2C_MCS_ERROR 0x02
743 #define STELLARIS_I2C_MCS_ADRACK 0x04
744 #define STELLARIS_I2C_MCS_DATACK 0x08
745 #define STELLARIS_I2C_MCS_ARBLST 0x10
746 #define STELLARIS_I2C_MCS_IDLE 0x20
747 #define STELLARIS_I2C_MCS_BUSBSY 0x40
749 static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
750 unsigned size)
752 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
754 switch (offset) {
755 case 0x00: /* MSA */
756 return s->msa;
757 case 0x04: /* MCS */
758 /* We don't emulate timing, so the controller is never busy. */
759 return s->mcs | STELLARIS_I2C_MCS_IDLE;
760 case 0x08: /* MDR */
761 return s->mdr;
762 case 0x0c: /* MTPR */
763 return s->mtpr;
764 case 0x10: /* MIMR */
765 return s->mimr;
766 case 0x14: /* MRIS */
767 return s->mris;
768 case 0x18: /* MMIS */
769 return s->mris & s->mimr;
770 case 0x20: /* MCR */
771 return s->mcr;
772 default:
773 qemu_log_mask(LOG_GUEST_ERROR,
774 "stellaris_i2c: read at bad offset 0x%x\n", (int)offset);
775 return 0;
779 static void stellaris_i2c_update(stellaris_i2c_state *s)
781 int level;
783 level = (s->mris & s->mimr) != 0;
784 qemu_set_irq(s->irq, level);
787 static void stellaris_i2c_write(void *opaque, hwaddr offset,
788 uint64_t value, unsigned size)
790 stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
792 switch (offset) {
793 case 0x00: /* MSA */
794 s->msa = value & 0xff;
795 break;
796 case 0x04: /* MCS */
797 if ((s->mcr & 0x10) == 0) {
798 /* Disabled. Do nothing. */
799 break;
801 /* Grab the bus if this is starting a transfer. */
802 if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
803 if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
804 s->mcs |= STELLARIS_I2C_MCS_ARBLST;
805 } else {
806 s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
807 s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
810 /* If we don't have the bus then indicate an error. */
811 if (!i2c_bus_busy(s->bus)
812 || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
813 s->mcs |= STELLARIS_I2C_MCS_ERROR;
814 break;
816 s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
817 if (value & 1) {
818 /* Transfer a byte. */
819 /* TODO: Handle errors. */
820 if (s->msa & 1) {
821 /* Recv */
822 s->mdr = i2c_recv(s->bus);
823 } else {
824 /* Send */
825 i2c_send(s->bus, s->mdr);
827 /* Raise an interrupt. */
828 s->mris |= 1;
830 if (value & 4) {
831 /* Finish transfer. */
832 i2c_end_transfer(s->bus);
833 s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
835 break;
836 case 0x08: /* MDR */
837 s->mdr = value & 0xff;
838 break;
839 case 0x0c: /* MTPR */
840 s->mtpr = value & 0xff;
841 break;
842 case 0x10: /* MIMR */
843 s->mimr = 1;
844 break;
845 case 0x1c: /* MICR */
846 s->mris &= ~value;
847 break;
848 case 0x20: /* MCR */
849 if (value & 1) {
850 qemu_log_mask(LOG_UNIMP,
851 "stellaris_i2c: Loopback not implemented\n");
853 if (value & 0x20) {
854 qemu_log_mask(LOG_UNIMP,
855 "stellaris_i2c: Slave mode not implemented\n");
857 s->mcr = value & 0x31;
858 break;
859 default:
860 qemu_log_mask(LOG_GUEST_ERROR,
861 "stellaris_i2c: write at bad offset 0x%x\n", (int)offset);
863 stellaris_i2c_update(s);
866 static void stellaris_i2c_reset(stellaris_i2c_state *s)
868 if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
869 i2c_end_transfer(s->bus);
871 s->msa = 0;
872 s->mcs = 0;
873 s->mdr = 0;
874 s->mtpr = 1;
875 s->mimr = 0;
876 s->mris = 0;
877 s->mcr = 0;
878 stellaris_i2c_update(s);
881 static const MemoryRegionOps stellaris_i2c_ops = {
882 .read = stellaris_i2c_read,
883 .write = stellaris_i2c_write,
884 .endianness = DEVICE_NATIVE_ENDIAN,
887 static const VMStateDescription vmstate_stellaris_i2c = {
888 .name = "stellaris_i2c",
889 .version_id = 1,
890 .minimum_version_id = 1,
891 .fields = (VMStateField[]) {
892 VMSTATE_UINT32(msa, stellaris_i2c_state),
893 VMSTATE_UINT32(mcs, stellaris_i2c_state),
894 VMSTATE_UINT32(mdr, stellaris_i2c_state),
895 VMSTATE_UINT32(mtpr, stellaris_i2c_state),
896 VMSTATE_UINT32(mimr, stellaris_i2c_state),
897 VMSTATE_UINT32(mris, stellaris_i2c_state),
898 VMSTATE_UINT32(mcr, stellaris_i2c_state),
899 VMSTATE_END_OF_LIST()
903 static void stellaris_i2c_init(Object *obj)
905 DeviceState *dev = DEVICE(obj);
906 stellaris_i2c_state *s = STELLARIS_I2C(obj);
907 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
908 I2CBus *bus;
910 sysbus_init_irq(sbd, &s->irq);
911 bus = i2c_init_bus(dev, "i2c");
912 s->bus = bus;
914 memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s,
915 "i2c", 0x1000);
916 sysbus_init_mmio(sbd, &s->iomem);
917 /* ??? For now we only implement the master interface. */
918 stellaris_i2c_reset(s);
921 /* Analogue to Digital Converter. This is only partially implemented,
922 enough for applications that use a combined ADC and timer tick. */
924 #define STELLARIS_ADC_EM_CONTROLLER 0
925 #define STELLARIS_ADC_EM_COMP 1
926 #define STELLARIS_ADC_EM_EXTERNAL 4
927 #define STELLARIS_ADC_EM_TIMER 5
928 #define STELLARIS_ADC_EM_PWM0 6
929 #define STELLARIS_ADC_EM_PWM1 7
930 #define STELLARIS_ADC_EM_PWM2 8
932 #define STELLARIS_ADC_FIFO_EMPTY 0x0100
933 #define STELLARIS_ADC_FIFO_FULL 0x1000
935 #define TYPE_STELLARIS_ADC "stellaris-adc"
936 #define STELLARIS_ADC(obj) \
937 OBJECT_CHECK(stellaris_adc_state, (obj), TYPE_STELLARIS_ADC)
939 typedef struct StellarisADCState {
940 SysBusDevice parent_obj;
942 MemoryRegion iomem;
943 uint32_t actss;
944 uint32_t ris;
945 uint32_t im;
946 uint32_t emux;
947 uint32_t ostat;
948 uint32_t ustat;
949 uint32_t sspri;
950 uint32_t sac;
951 struct {
952 uint32_t state;
953 uint32_t data[16];
954 } fifo[4];
955 uint32_t ssmux[4];
956 uint32_t ssctl[4];
957 uint32_t noise;
958 qemu_irq irq[4];
959 } stellaris_adc_state;
961 static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
963 int tail;
965 tail = s->fifo[n].state & 0xf;
966 if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
967 s->ustat |= 1 << n;
968 } else {
969 s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
970 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
971 if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
972 s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
974 return s->fifo[n].data[tail];
977 static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
978 uint32_t value)
980 int head;
982 /* TODO: Real hardware has limited size FIFOs. We have a full 16 entry
983 FIFO fir each sequencer. */
984 head = (s->fifo[n].state >> 4) & 0xf;
985 if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
986 s->ostat |= 1 << n;
987 return;
989 s->fifo[n].data[head] = value;
990 head = (head + 1) & 0xf;
991 s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
992 s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
993 if ((s->fifo[n].state & 0xf) == head)
994 s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
997 static void stellaris_adc_update(stellaris_adc_state *s)
999 int level;
1000 int n;
1002 for (n = 0; n < 4; n++) {
1003 level = (s->ris & s->im & (1 << n)) != 0;
1004 qemu_set_irq(s->irq[n], level);
1008 static void stellaris_adc_trigger(void *opaque, int irq, int level)
1010 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1011 int n;
1013 for (n = 0; n < 4; n++) {
1014 if ((s->actss & (1 << n)) == 0) {
1015 continue;
1018 if (((s->emux >> (n * 4)) & 0xff) != 5) {
1019 continue;
1022 /* Some applications use the ADC as a random number source, so introduce
1023 some variation into the signal. */
1024 s->noise = s->noise * 314159 + 1;
1025 /* ??? actual inputs not implemented. Return an arbitrary value. */
1026 stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
1027 s->ris |= (1 << n);
1028 stellaris_adc_update(s);
1032 static void stellaris_adc_reset(stellaris_adc_state *s)
1034 int n;
1036 for (n = 0; n < 4; n++) {
1037 s->ssmux[n] = 0;
1038 s->ssctl[n] = 0;
1039 s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
1043 static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
1044 unsigned size)
1046 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1048 /* TODO: Implement this. */
1049 if (offset >= 0x40 && offset < 0xc0) {
1050 int n;
1051 n = (offset - 0x40) >> 5;
1052 switch (offset & 0x1f) {
1053 case 0x00: /* SSMUX */
1054 return s->ssmux[n];
1055 case 0x04: /* SSCTL */
1056 return s->ssctl[n];
1057 case 0x08: /* SSFIFO */
1058 return stellaris_adc_fifo_read(s, n);
1059 case 0x0c: /* SSFSTAT */
1060 return s->fifo[n].state;
1061 default:
1062 break;
1065 switch (offset) {
1066 case 0x00: /* ACTSS */
1067 return s->actss;
1068 case 0x04: /* RIS */
1069 return s->ris;
1070 case 0x08: /* IM */
1071 return s->im;
1072 case 0x0c: /* ISC */
1073 return s->ris & s->im;
1074 case 0x10: /* OSTAT */
1075 return s->ostat;
1076 case 0x14: /* EMUX */
1077 return s->emux;
1078 case 0x18: /* USTAT */
1079 return s->ustat;
1080 case 0x20: /* SSPRI */
1081 return s->sspri;
1082 case 0x30: /* SAC */
1083 return s->sac;
1084 default:
1085 qemu_log_mask(LOG_GUEST_ERROR,
1086 "stellaris_adc: read at bad offset 0x%x\n", (int)offset);
1087 return 0;
1091 static void stellaris_adc_write(void *opaque, hwaddr offset,
1092 uint64_t value, unsigned size)
1094 stellaris_adc_state *s = (stellaris_adc_state *)opaque;
1096 /* TODO: Implement this. */
1097 if (offset >= 0x40 && offset < 0xc0) {
1098 int n;
1099 n = (offset - 0x40) >> 5;
1100 switch (offset & 0x1f) {
1101 case 0x00: /* SSMUX */
1102 s->ssmux[n] = value & 0x33333333;
1103 return;
1104 case 0x04: /* SSCTL */
1105 if (value != 6) {
1106 qemu_log_mask(LOG_UNIMP,
1107 "ADC: Unimplemented sequence %" PRIx64 "\n",
1108 value);
1110 s->ssctl[n] = value;
1111 return;
1112 default:
1113 break;
1116 switch (offset) {
1117 case 0x00: /* ACTSS */
1118 s->actss = value & 0xf;
1119 break;
1120 case 0x08: /* IM */
1121 s->im = value;
1122 break;
1123 case 0x0c: /* ISC */
1124 s->ris &= ~value;
1125 break;
1126 case 0x10: /* OSTAT */
1127 s->ostat &= ~value;
1128 break;
1129 case 0x14: /* EMUX */
1130 s->emux = value;
1131 break;
1132 case 0x18: /* USTAT */
1133 s->ustat &= ~value;
1134 break;
1135 case 0x20: /* SSPRI */
1136 s->sspri = value;
1137 break;
1138 case 0x28: /* PSSI */
1139 qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n");
1140 break;
1141 case 0x30: /* SAC */
1142 s->sac = value;
1143 break;
1144 default:
1145 qemu_log_mask(LOG_GUEST_ERROR,
1146 "stellaris_adc: write at bad offset 0x%x\n", (int)offset);
1148 stellaris_adc_update(s);
1151 static const MemoryRegionOps stellaris_adc_ops = {
1152 .read = stellaris_adc_read,
1153 .write = stellaris_adc_write,
1154 .endianness = DEVICE_NATIVE_ENDIAN,
1157 static const VMStateDescription vmstate_stellaris_adc = {
1158 .name = "stellaris_adc",
1159 .version_id = 1,
1160 .minimum_version_id = 1,
1161 .fields = (VMStateField[]) {
1162 VMSTATE_UINT32(actss, stellaris_adc_state),
1163 VMSTATE_UINT32(ris, stellaris_adc_state),
1164 VMSTATE_UINT32(im, stellaris_adc_state),
1165 VMSTATE_UINT32(emux, stellaris_adc_state),
1166 VMSTATE_UINT32(ostat, stellaris_adc_state),
1167 VMSTATE_UINT32(ustat, stellaris_adc_state),
1168 VMSTATE_UINT32(sspri, stellaris_adc_state),
1169 VMSTATE_UINT32(sac, stellaris_adc_state),
1170 VMSTATE_UINT32(fifo[0].state, stellaris_adc_state),
1171 VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16),
1172 VMSTATE_UINT32(ssmux[0], stellaris_adc_state),
1173 VMSTATE_UINT32(ssctl[0], stellaris_adc_state),
1174 VMSTATE_UINT32(fifo[1].state, stellaris_adc_state),
1175 VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16),
1176 VMSTATE_UINT32(ssmux[1], stellaris_adc_state),
1177 VMSTATE_UINT32(ssctl[1], stellaris_adc_state),
1178 VMSTATE_UINT32(fifo[2].state, stellaris_adc_state),
1179 VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16),
1180 VMSTATE_UINT32(ssmux[2], stellaris_adc_state),
1181 VMSTATE_UINT32(ssctl[2], stellaris_adc_state),
1182 VMSTATE_UINT32(fifo[3].state, stellaris_adc_state),
1183 VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16),
1184 VMSTATE_UINT32(ssmux[3], stellaris_adc_state),
1185 VMSTATE_UINT32(ssctl[3], stellaris_adc_state),
1186 VMSTATE_UINT32(noise, stellaris_adc_state),
1187 VMSTATE_END_OF_LIST()
1191 static void stellaris_adc_init(Object *obj)
1193 DeviceState *dev = DEVICE(obj);
1194 stellaris_adc_state *s = STELLARIS_ADC(obj);
1195 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
1196 int n;
1198 for (n = 0; n < 4; n++) {
1199 sysbus_init_irq(sbd, &s->irq[n]);
1202 memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s,
1203 "adc", 0x1000);
1204 sysbus_init_mmio(sbd, &s->iomem);
1205 stellaris_adc_reset(s);
1206 qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
1209 static
1210 void do_sys_reset(void *opaque, int n, int level)
1212 if (level) {
1213 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1217 /* Board init. */
1218 static stellaris_board_info stellaris_boards[] = {
1219 { "LM3S811EVB",
1221 0x0032000e,
1222 0x001f001f, /* dc0 */
1223 0x001132bf,
1224 0x01071013,
1225 0x3f0f01ff,
1226 0x0000001f,
1227 BP_OLED_I2C
1229 { "LM3S6965EVB",
1230 0x10010002,
1231 0x1073402e,
1232 0x00ff007f, /* dc0 */
1233 0x001133ff,
1234 0x030f5317,
1235 0x0f0f87ff,
1236 0x5000007f,
1237 BP_OLED_SSI | BP_GAMEPAD
1241 static void stellaris_init(MachineState *ms, stellaris_board_info *board)
1243 static const int uart_irq[] = {5, 6, 33, 34};
1244 static const int timer_irq[] = {19, 21, 23, 35};
1245 static const uint32_t gpio_addr[7] =
1246 { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
1247 0x40024000, 0x40025000, 0x40026000};
1248 static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
1250 /* Memory map of SoC devices, from
1251 * Stellaris LM3S6965 Microcontroller Data Sheet (rev I)
1252 * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf
1254 * 40000000 wdtimer
1255 * 40002000 i2c (unimplemented)
1256 * 40004000 GPIO
1257 * 40005000 GPIO
1258 * 40006000 GPIO
1259 * 40007000 GPIO
1260 * 40008000 SSI
1261 * 4000c000 UART
1262 * 4000d000 UART
1263 * 4000e000 UART
1264 * 40020000 i2c
1265 * 40021000 i2c (unimplemented)
1266 * 40024000 GPIO
1267 * 40025000 GPIO
1268 * 40026000 GPIO
1269 * 40028000 PWM (unimplemented)
1270 * 4002c000 QEI (unimplemented)
1271 * 4002d000 QEI (unimplemented)
1272 * 40030000 gptimer
1273 * 40031000 gptimer
1274 * 40032000 gptimer
1275 * 40033000 gptimer
1276 * 40038000 ADC
1277 * 4003c000 analogue comparator (unimplemented)
1278 * 40048000 ethernet
1279 * 400fc000 hibernation module (unimplemented)
1280 * 400fd000 flash memory control (unimplemented)
1281 * 400fe000 system control
1284 DeviceState *gpio_dev[7], *nvic;
1285 qemu_irq gpio_in[7][8];
1286 qemu_irq gpio_out[7][8];
1287 qemu_irq adc;
1288 int sram_size;
1289 int flash_size;
1290 I2CBus *i2c;
1291 DeviceState *dev;
1292 int i;
1293 int j;
1295 MemoryRegion *sram = g_new(MemoryRegion, 1);
1296 MemoryRegion *flash = g_new(MemoryRegion, 1);
1297 MemoryRegion *system_memory = get_system_memory();
1299 flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
1300 sram_size = ((board->dc0 >> 18) + 1) * 1024;
1302 /* Flash programming is done via the SCU, so pretend it is ROM. */
1303 memory_region_init_ram(flash, NULL, "stellaris.flash", flash_size,
1304 &error_fatal);
1305 memory_region_set_readonly(flash, true);
1306 memory_region_add_subregion(system_memory, 0, flash);
1308 memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
1309 &error_fatal);
1310 memory_region_add_subregion(system_memory, 0x20000000, sram);
1312 nvic = qdev_create(NULL, TYPE_ARMV7M);
1313 qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES);
1314 qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type);
1315 qdev_prop_set_bit(nvic, "enable-bitband", true);
1316 object_property_set_link(OBJECT(nvic), OBJECT(get_system_memory()),
1317 "memory", &error_abort);
1318 /* This will exit with an error if the user passed us a bad cpu_type */
1319 qdev_init_nofail(nvic);
1321 qdev_connect_gpio_out_named(nvic, "SYSRESETREQ", 0,
1322 qemu_allocate_irq(&do_sys_reset, NULL, 0));
1324 if (board->dc1 & (1 << 16)) {
1325 dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
1326 qdev_get_gpio_in(nvic, 14),
1327 qdev_get_gpio_in(nvic, 15),
1328 qdev_get_gpio_in(nvic, 16),
1329 qdev_get_gpio_in(nvic, 17),
1330 NULL);
1331 adc = qdev_get_gpio_in(dev, 0);
1332 } else {
1333 adc = NULL;
1335 for (i = 0; i < 4; i++) {
1336 if (board->dc2 & (0x10000 << i)) {
1337 dev = sysbus_create_simple(TYPE_STELLARIS_GPTM,
1338 0x40030000 + i * 0x1000,
1339 qdev_get_gpio_in(nvic, timer_irq[i]));
1340 /* TODO: This is incorrect, but we get away with it because
1341 the ADC output is only ever pulsed. */
1342 qdev_connect_gpio_out(dev, 0, adc);
1346 stellaris_sys_init(0x400fe000, qdev_get_gpio_in(nvic, 28),
1347 board, nd_table[0].macaddr.a);
1350 if (board->dc1 & (1 << 3)) { /* watchdog present */
1351 dev = qdev_create(NULL, TYPE_LUMINARY_WATCHDOG);
1353 /* system_clock_scale is valid now */
1354 uint32_t mainclk = NANOSECONDS_PER_SECOND / system_clock_scale;
1355 qdev_prop_set_uint32(dev, "wdogclk-frq", mainclk);
1357 qdev_init_nofail(dev);
1358 sysbus_mmio_map(SYS_BUS_DEVICE(dev),
1360 0x40000000u);
1361 sysbus_connect_irq(SYS_BUS_DEVICE(dev),
1363 qdev_get_gpio_in(nvic, 18));
1367 for (i = 0; i < 7; i++) {
1368 if (board->dc4 & (1 << i)) {
1369 gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
1370 qdev_get_gpio_in(nvic,
1371 gpio_irq[i]));
1372 for (j = 0; j < 8; j++) {
1373 gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
1374 gpio_out[i][j] = NULL;
1379 if (board->dc2 & (1 << 12)) {
1380 dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000,
1381 qdev_get_gpio_in(nvic, 8));
1382 i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
1383 if (board->peripherals & BP_OLED_I2C) {
1384 i2c_create_slave(i2c, "ssd0303", 0x3d);
1388 for (i = 0; i < 4; i++) {
1389 if (board->dc2 & (1 << i)) {
1390 pl011_luminary_create(0x4000c000 + i * 0x1000,
1391 qdev_get_gpio_in(nvic, uart_irq[i]),
1392 serial_hd(i));
1395 if (board->dc2 & (1 << 4)) {
1396 dev = sysbus_create_simple("pl022", 0x40008000,
1397 qdev_get_gpio_in(nvic, 7));
1398 if (board->peripherals & BP_OLED_SSI) {
1399 void *bus;
1400 DeviceState *sddev;
1401 DeviceState *ssddev;
1403 /* Some boards have both an OLED controller and SD card connected to
1404 * the same SSI port, with the SD card chip select connected to a
1405 * GPIO pin. Technically the OLED chip select is connected to the
1406 * SSI Fss pin. We do not bother emulating that as both devices
1407 * should never be selected simultaneously, and our OLED controller
1408 * ignores stray 0xff commands that occur when deselecting the SD
1409 * card.
1411 bus = qdev_get_child_bus(dev, "ssi");
1413 sddev = ssi_create_slave(bus, "ssi-sd");
1414 ssddev = ssi_create_slave(bus, "ssd0323");
1415 gpio_out[GPIO_D][0] = qemu_irq_split(
1416 qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0),
1417 qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
1418 gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
1420 /* Make sure the select pin is high. */
1421 qemu_irq_raise(gpio_out[GPIO_D][0]);
1424 if (board->dc4 & (1 << 28)) {
1425 DeviceState *enet;
1427 qemu_check_nic_model(&nd_table[0], "stellaris");
1429 enet = qdev_create(NULL, "stellaris_enet");
1430 qdev_set_nic_properties(enet, &nd_table[0]);
1431 qdev_init_nofail(enet);
1432 sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
1433 sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
1435 if (board->peripherals & BP_GAMEPAD) {
1436 qemu_irq gpad_irq[5];
1437 static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };
1439 gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
1440 gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
1441 gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
1442 gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
1443 gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */
1445 stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
1447 for (i = 0; i < 7; i++) {
1448 if (board->dc4 & (1 << i)) {
1449 for (j = 0; j < 8; j++) {
1450 if (gpio_out[i][j]) {
1451 qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
1457 /* Add dummy regions for the devices we don't implement yet,
1458 * so guest accesses don't cause unlogged crashes.
1460 create_unimplemented_device("i2c-0", 0x40002000, 0x1000);
1461 create_unimplemented_device("i2c-2", 0x40021000, 0x1000);
1462 create_unimplemented_device("PWM", 0x40028000, 0x1000);
1463 create_unimplemented_device("QEI-0", 0x4002c000, 0x1000);
1464 create_unimplemented_device("QEI-1", 0x4002d000, 0x1000);
1465 create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000);
1466 create_unimplemented_device("hibernation", 0x400fc000, 0x1000);
1467 create_unimplemented_device("flash-control", 0x400fd000, 0x1000);
1469 armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, flash_size);
1472 /* FIXME: Figure out how to generate these from stellaris_boards. */
1473 static void lm3s811evb_init(MachineState *machine)
1475 stellaris_init(machine, &stellaris_boards[0]);
1478 static void lm3s6965evb_init(MachineState *machine)
1480 stellaris_init(machine, &stellaris_boards[1]);
1483 static void lm3s811evb_class_init(ObjectClass *oc, void *data)
1485 MachineClass *mc = MACHINE_CLASS(oc);
1487 mc->desc = "Stellaris LM3S811EVB";
1488 mc->init = lm3s811evb_init;
1489 mc->ignore_memory_transaction_failures = true;
1490 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1493 static const TypeInfo lm3s811evb_type = {
1494 .name = MACHINE_TYPE_NAME("lm3s811evb"),
1495 .parent = TYPE_MACHINE,
1496 .class_init = lm3s811evb_class_init,
1499 static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
1501 MachineClass *mc = MACHINE_CLASS(oc);
1503 mc->desc = "Stellaris LM3S6965EVB";
1504 mc->init = lm3s6965evb_init;
1505 mc->ignore_memory_transaction_failures = true;
1506 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
1509 static const TypeInfo lm3s6965evb_type = {
1510 .name = MACHINE_TYPE_NAME("lm3s6965evb"),
1511 .parent = TYPE_MACHINE,
1512 .class_init = lm3s6965evb_class_init,
1515 static void stellaris_machine_init(void)
1517 type_register_static(&lm3s811evb_type);
1518 type_register_static(&lm3s6965evb_type);
1521 type_init(stellaris_machine_init)
1523 static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
1525 DeviceClass *dc = DEVICE_CLASS(klass);
1527 dc->vmsd = &vmstate_stellaris_i2c;
1530 static const TypeInfo stellaris_i2c_info = {
1531 .name = TYPE_STELLARIS_I2C,
1532 .parent = TYPE_SYS_BUS_DEVICE,
1533 .instance_size = sizeof(stellaris_i2c_state),
1534 .instance_init = stellaris_i2c_init,
1535 .class_init = stellaris_i2c_class_init,
1538 static void stellaris_gptm_class_init(ObjectClass *klass, void *data)
1540 DeviceClass *dc = DEVICE_CLASS(klass);
1542 dc->vmsd = &vmstate_stellaris_gptm;
1543 dc->realize = stellaris_gptm_realize;
1546 static const TypeInfo stellaris_gptm_info = {
1547 .name = TYPE_STELLARIS_GPTM,
1548 .parent = TYPE_SYS_BUS_DEVICE,
1549 .instance_size = sizeof(gptm_state),
1550 .instance_init = stellaris_gptm_init,
1551 .class_init = stellaris_gptm_class_init,
1554 static void stellaris_adc_class_init(ObjectClass *klass, void *data)
1556 DeviceClass *dc = DEVICE_CLASS(klass);
1558 dc->vmsd = &vmstate_stellaris_adc;
1561 static const TypeInfo stellaris_adc_info = {
1562 .name = TYPE_STELLARIS_ADC,
1563 .parent = TYPE_SYS_BUS_DEVICE,
1564 .instance_size = sizeof(stellaris_adc_state),
1565 .instance_init = stellaris_adc_init,
1566 .class_init = stellaris_adc_class_init,
1569 static void stellaris_register_types(void)
1571 type_register_static(&stellaris_i2c_info);
1572 type_register_static(&stellaris_gptm_info);
1573 type_register_static(&stellaris_adc_info);
1576 type_init(stellaris_register_types)