libqos: move useful qos-test funcs to qos_external
[qemu/ar7.git] / hw / arm / musca.c
blobba99dd19413dacab2b37c0b07d007c55a0a1ae6d
1 /*
2 * Arm Musca-B1 test chip board emulation
4 * Copyright (c) 2019 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
13 * The Musca boards are a reference implementation of a system using
14 * the SSE-200 subsystem for embedded:
15 * https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-a-test-chip-board
16 * https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-b-test-chip-board
17 * We model the A and B1 variants of this board, as described in the TRMs:
18 * http://infocenter.arm.com/help/topic/com.arm.doc.101107_0000_00_en/index.html
19 * http://infocenter.arm.com/help/topic/com.arm.doc.101312_0000_00_en/index.html
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "exec/address-spaces.h"
26 #include "sysemu/sysemu.h"
27 #include "hw/arm/boot.h"
28 #include "hw/arm/armsse.h"
29 #include "hw/boards.h"
30 #include "hw/char/pl011.h"
31 #include "hw/core/split-irq.h"
32 #include "hw/misc/tz-mpc.h"
33 #include "hw/misc/tz-ppc.h"
34 #include "hw/misc/unimp.h"
35 #include "hw/rtc/pl031.h"
37 #define MUSCA_NUMIRQ_MAX 96
38 #define MUSCA_PPC_MAX 3
39 #define MUSCA_MPC_MAX 5
41 typedef struct MPCInfo MPCInfo;
43 typedef enum MuscaType {
44 MUSCA_A,
45 MUSCA_B1,
46 } MuscaType;
48 typedef struct {
49 MachineClass parent;
50 MuscaType type;
51 uint32_t init_svtor;
52 int sram_addr_width;
53 int num_irqs;
54 const MPCInfo *mpc_info;
55 int num_mpcs;
56 } MuscaMachineClass;
58 typedef struct {
59 MachineState parent;
61 ARMSSE sse;
62 /* RAM and flash */
63 MemoryRegion ram[MUSCA_MPC_MAX];
64 SplitIRQ cpu_irq_splitter[MUSCA_NUMIRQ_MAX];
65 SplitIRQ sec_resp_splitter;
66 TZPPC ppc[MUSCA_PPC_MAX];
67 MemoryRegion container;
68 UnimplementedDeviceState eflash[2];
69 UnimplementedDeviceState qspi;
70 TZMPC mpc[MUSCA_MPC_MAX];
71 UnimplementedDeviceState mhu[2];
72 UnimplementedDeviceState pwm[3];
73 UnimplementedDeviceState i2s;
74 PL011State uart[2];
75 UnimplementedDeviceState i2c[2];
76 UnimplementedDeviceState spi;
77 UnimplementedDeviceState scc;
78 UnimplementedDeviceState timer;
79 PL031State rtc;
80 UnimplementedDeviceState pvt;
81 UnimplementedDeviceState sdio;
82 UnimplementedDeviceState gpio;
83 UnimplementedDeviceState cryptoisland;
84 } MuscaMachineState;
86 #define TYPE_MUSCA_MACHINE "musca"
87 #define TYPE_MUSCA_A_MACHINE MACHINE_TYPE_NAME("musca-a")
88 #define TYPE_MUSCA_B1_MACHINE MACHINE_TYPE_NAME("musca-b1")
90 #define MUSCA_MACHINE(obj) \
91 OBJECT_CHECK(MuscaMachineState, obj, TYPE_MUSCA_MACHINE)
92 #define MUSCA_MACHINE_GET_CLASS(obj) \
93 OBJECT_GET_CLASS(MuscaMachineClass, obj, TYPE_MUSCA_MACHINE)
94 #define MUSCA_MACHINE_CLASS(klass) \
95 OBJECT_CLASS_CHECK(MuscaMachineClass, klass, TYPE_MUSCA_MACHINE)
98 * Main SYSCLK frequency in Hz
99 * TODO this should really be different for the two cores, but we
100 * don't model that in our SSE-200 model yet.
102 #define SYSCLK_FRQ 40000000
104 static qemu_irq get_sse_irq_in(MuscaMachineState *mms, int irqno)
106 /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
107 assert(irqno < MUSCA_NUMIRQ_MAX);
109 return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
113 * Most of the devices in the Musca board sit behind Peripheral Protection
114 * Controllers. These data structures define the layout of which devices
115 * sit behind which PPCs.
116 * The devfn for each port is a function which creates, configures
117 * and initializes the device, returning the MemoryRegion which
118 * needs to be plugged into the downstream end of the PPC port.
120 typedef MemoryRegion *MakeDevFn(MuscaMachineState *mms, void *opaque,
121 const char *name, hwaddr size);
123 typedef struct PPCPortInfo {
124 const char *name;
125 MakeDevFn *devfn;
126 void *opaque;
127 hwaddr addr;
128 hwaddr size;
129 } PPCPortInfo;
131 typedef struct PPCInfo {
132 const char *name;
133 PPCPortInfo ports[TZ_NUM_PORTS];
134 } PPCInfo;
136 static MemoryRegion *make_unimp_dev(MuscaMachineState *mms,
137 void *opaque, const char *name, hwaddr size)
140 * Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
141 * and return a pointer to its MemoryRegion.
143 UnimplementedDeviceState *uds = opaque;
145 sysbus_init_child_obj(OBJECT(mms), name, uds,
146 sizeof(UnimplementedDeviceState),
147 TYPE_UNIMPLEMENTED_DEVICE);
148 qdev_prop_set_string(DEVICE(uds), "name", name);
149 qdev_prop_set_uint64(DEVICE(uds), "size", size);
150 object_property_set_bool(OBJECT(uds), true, "realized", &error_fatal);
151 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
154 typedef enum MPCInfoType {
155 MPC_RAM,
156 MPC_ROM,
157 MPC_CRYPTOISLAND,
158 } MPCInfoType;
160 struct MPCInfo {
161 const char *name;
162 hwaddr addr;
163 hwaddr size;
164 MPCInfoType type;
167 /* Order of the MPCs here must match the order of the bits in SECMPCINTSTATUS */
168 static const MPCInfo a_mpc_info[] = { {
169 .name = "qspi",
170 .type = MPC_ROM,
171 .addr = 0x00200000,
172 .size = 0x00800000,
173 }, {
174 .name = "sram",
175 .type = MPC_RAM,
176 .addr = 0x00000000,
177 .size = 0x00200000,
181 static const MPCInfo b1_mpc_info[] = { {
182 .name = "qspi",
183 .type = MPC_ROM,
184 .addr = 0x00000000,
185 .size = 0x02000000,
186 }, {
187 .name = "sram",
188 .type = MPC_RAM,
189 .addr = 0x0a400000,
190 .size = 0x00080000,
191 }, {
192 .name = "eflash0",
193 .type = MPC_ROM,
194 .addr = 0x0a000000,
195 .size = 0x00200000,
196 }, {
197 .name = "eflash1",
198 .type = MPC_ROM,
199 .addr = 0x0a200000,
200 .size = 0x00200000,
201 }, {
202 .name = "cryptoisland",
203 .type = MPC_CRYPTOISLAND,
204 .addr = 0x0a000000,
205 .size = 0x00200000,
209 static MemoryRegion *make_mpc(MuscaMachineState *mms, void *opaque,
210 const char *name, hwaddr size)
213 * Create an MPC and the RAM or flash behind it.
214 * MPC 0: eFlash 0
215 * MPC 1: eFlash 1
216 * MPC 2: SRAM
217 * MPC 3: QSPI flash
218 * MPC 4: CryptoIsland
219 * For now we implement the flash regions as ROM (ie not programmable)
220 * (with their control interface memory regions being unimplemented
221 * stubs behind the PPCs).
222 * The whole CryptoIsland region behind its MPC is an unimplemented stub.
224 MuscaMachineClass *mmc = MUSCA_MACHINE_GET_CLASS(mms);
225 TZMPC *mpc = opaque;
226 int i = mpc - &mms->mpc[0];
227 MemoryRegion *downstream;
228 MemoryRegion *upstream;
229 UnimplementedDeviceState *uds;
230 char *mpcname;
231 const MPCInfo *mpcinfo = mmc->mpc_info;
233 mpcname = g_strdup_printf("%s-mpc", mpcinfo[i].name);
235 switch (mpcinfo[i].type) {
236 case MPC_ROM:
237 downstream = &mms->ram[i];
238 memory_region_init_rom(downstream, NULL, mpcinfo[i].name,
239 mpcinfo[i].size, &error_fatal);
240 break;
241 case MPC_RAM:
242 downstream = &mms->ram[i];
243 memory_region_init_ram(downstream, NULL, mpcinfo[i].name,
244 mpcinfo[i].size, &error_fatal);
245 break;
246 case MPC_CRYPTOISLAND:
247 /* We don't implement the CryptoIsland yet */
248 uds = &mms->cryptoisland;
249 sysbus_init_child_obj(OBJECT(mms), name, uds,
250 sizeof(UnimplementedDeviceState),
251 TYPE_UNIMPLEMENTED_DEVICE);
252 qdev_prop_set_string(DEVICE(uds), "name", mpcinfo[i].name);
253 qdev_prop_set_uint64(DEVICE(uds), "size", mpcinfo[i].size);
254 object_property_set_bool(OBJECT(uds), true, "realized", &error_fatal);
255 downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
256 break;
257 default:
258 g_assert_not_reached();
261 sysbus_init_child_obj(OBJECT(mms), mpcname, mpc, sizeof(mms->mpc[0]),
262 TYPE_TZ_MPC);
263 object_property_set_link(OBJECT(mpc), OBJECT(downstream),
264 "downstream", &error_fatal);
265 object_property_set_bool(OBJECT(mpc), true, "realized", &error_fatal);
266 /* Map the upstream end of the MPC into system memory */
267 upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
268 memory_region_add_subregion(get_system_memory(), mpcinfo[i].addr, upstream);
269 /* and connect its interrupt to the SSE-200 */
270 qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
271 qdev_get_gpio_in_named(DEVICE(&mms->sse),
272 "mpcexp_status", i));
274 g_free(mpcname);
275 /* Return the register interface MR for our caller to map behind the PPC */
276 return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
279 static MemoryRegion *make_rtc(MuscaMachineState *mms, void *opaque,
280 const char *name, hwaddr size)
282 PL031State *rtc = opaque;
284 sysbus_init_child_obj(OBJECT(mms), name, rtc, sizeof(mms->rtc), TYPE_PL031);
285 object_property_set_bool(OBJECT(rtc), true, "realized", &error_fatal);
286 sysbus_connect_irq(SYS_BUS_DEVICE(rtc), 0, get_sse_irq_in(mms, 39));
287 return sysbus_mmio_get_region(SYS_BUS_DEVICE(rtc), 0);
290 static MemoryRegion *make_uart(MuscaMachineState *mms, void *opaque,
291 const char *name, hwaddr size)
293 PL011State *uart = opaque;
294 int i = uart - &mms->uart[0];
295 int irqbase = 7 + i * 6;
296 SysBusDevice *s;
298 sysbus_init_child_obj(OBJECT(mms), name, uart, sizeof(mms->uart[0]),
299 TYPE_PL011);
300 qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
301 object_property_set_bool(OBJECT(uart), true, "realized", &error_fatal);
302 s = SYS_BUS_DEVICE(uart);
303 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqbase + 5)); /* combined */
304 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqbase + 0)); /* RX */
305 sysbus_connect_irq(s, 2, get_sse_irq_in(mms, irqbase + 1)); /* TX */
306 sysbus_connect_irq(s, 3, get_sse_irq_in(mms, irqbase + 2)); /* RT */
307 sysbus_connect_irq(s, 4, get_sse_irq_in(mms, irqbase + 3)); /* MS */
308 sysbus_connect_irq(s, 5, get_sse_irq_in(mms, irqbase + 4)); /* E */
309 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
312 static MemoryRegion *make_musca_a_devs(MuscaMachineState *mms, void *opaque,
313 const char *name, hwaddr size)
316 * Create the container MemoryRegion for all the devices that live
317 * behind the Musca-A PPC's single port. These devices don't have a PPC
318 * port each, but we use the PPCPortInfo struct as a convenient way
319 * to describe them. Note that addresses here are relative to the base
320 * address of the PPC port region: 0x40100000, and devices appear both
321 * at the 0x4... NS region and the 0x5... S region.
323 int i;
324 MemoryRegion *container = &mms->container;
326 const PPCPortInfo devices[] = {
327 { "uart0", make_uart, &mms->uart[0], 0x1000, 0x1000 },
328 { "uart1", make_uart, &mms->uart[1], 0x2000, 0x1000 },
329 { "spi", make_unimp_dev, &mms->spi, 0x3000, 0x1000 },
330 { "i2c0", make_unimp_dev, &mms->i2c[0], 0x4000, 0x1000 },
331 { "i2c1", make_unimp_dev, &mms->i2c[1], 0x5000, 0x1000 },
332 { "i2s", make_unimp_dev, &mms->i2s, 0x6000, 0x1000 },
333 { "pwm0", make_unimp_dev, &mms->pwm[0], 0x7000, 0x1000 },
334 { "rtc", make_rtc, &mms->rtc, 0x8000, 0x1000 },
335 { "qspi", make_unimp_dev, &mms->qspi, 0xa000, 0x1000 },
336 { "timer", make_unimp_dev, &mms->timer, 0xb000, 0x1000 },
337 { "scc", make_unimp_dev, &mms->scc, 0xc000, 0x1000 },
338 { "pwm1", make_unimp_dev, &mms->pwm[1], 0xe000, 0x1000 },
339 { "pwm2", make_unimp_dev, &mms->pwm[2], 0xf000, 0x1000 },
340 { "gpio", make_unimp_dev, &mms->gpio, 0x10000, 0x1000 },
341 { "mpc0", make_mpc, &mms->mpc[0], 0x12000, 0x1000 },
342 { "mpc1", make_mpc, &mms->mpc[1], 0x13000, 0x1000 },
345 memory_region_init(container, OBJECT(mms), "musca-device-container", size);
347 for (i = 0; i < ARRAY_SIZE(devices); i++) {
348 const PPCPortInfo *pinfo = &devices[i];
349 MemoryRegion *mr;
351 mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
352 memory_region_add_subregion(container, pinfo->addr, mr);
355 return &mms->container;
358 static void musca_init(MachineState *machine)
360 MuscaMachineState *mms = MUSCA_MACHINE(machine);
361 MuscaMachineClass *mmc = MUSCA_MACHINE_GET_CLASS(mms);
362 MachineClass *mc = MACHINE_GET_CLASS(machine);
363 MemoryRegion *system_memory = get_system_memory();
364 DeviceState *ssedev;
365 DeviceState *dev_splitter;
366 const PPCInfo *ppcs;
367 int num_ppcs;
368 int i;
370 assert(mmc->num_irqs <= MUSCA_NUMIRQ_MAX);
371 assert(mmc->num_mpcs <= MUSCA_MPC_MAX);
373 if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
374 error_report("This board can only be used with CPU %s",
375 mc->default_cpu_type);
376 exit(1);
379 sysbus_init_child_obj(OBJECT(machine), "sse-200", &mms->sse,
380 sizeof(mms->sse), TYPE_SSE200);
381 ssedev = DEVICE(&mms->sse);
382 object_property_set_link(OBJECT(&mms->sse), OBJECT(system_memory),
383 "memory", &error_fatal);
384 qdev_prop_set_uint32(ssedev, "EXP_NUMIRQ", mmc->num_irqs);
385 qdev_prop_set_uint32(ssedev, "init-svtor", mmc->init_svtor);
386 qdev_prop_set_uint32(ssedev, "SRAM_ADDR_WIDTH", mmc->sram_addr_width);
387 qdev_prop_set_uint32(ssedev, "MAINCLK", SYSCLK_FRQ);
389 * Musca-A takes the default SSE-200 FPU/DSP settings (ie no for
390 * CPU0 and yes for CPU1); Musca-B1 explicitly enables them for CPU0.
392 if (mmc->type == MUSCA_B1) {
393 qdev_prop_set_bit(ssedev, "CPU0_FPU", true);
394 qdev_prop_set_bit(ssedev, "CPU0_DSP", true);
396 object_property_set_bool(OBJECT(&mms->sse), true, "realized",
397 &error_fatal);
400 * We need to create splitters to feed the IRQ inputs
401 * for each CPU in the SSE-200 from each device in the board.
403 for (i = 0; i < mmc->num_irqs; i++) {
404 char *name = g_strdup_printf("musca-irq-splitter%d", i);
405 SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
407 object_initialize_child(OBJECT(machine), name,
408 splitter, sizeof(*splitter),
409 TYPE_SPLIT_IRQ, &error_fatal, NULL);
410 g_free(name);
412 object_property_set_int(OBJECT(splitter), 2, "num-lines",
413 &error_fatal);
414 object_property_set_bool(OBJECT(splitter), true, "realized",
415 &error_fatal);
416 qdev_connect_gpio_out(DEVICE(splitter), 0,
417 qdev_get_gpio_in_named(ssedev, "EXP_IRQ", i));
418 qdev_connect_gpio_out(DEVICE(splitter), 1,
419 qdev_get_gpio_in_named(ssedev,
420 "EXP_CPU1_IRQ", i));
424 * The sec_resp_cfg output from the SSE-200 must be split into multiple
425 * lines, one for each of the PPCs we create here.
427 object_initialize_child(OBJECT(machine), "sec-resp-splitter",
428 &mms->sec_resp_splitter,
429 sizeof(mms->sec_resp_splitter),
430 TYPE_SPLIT_IRQ, &error_fatal, NULL);
432 object_property_set_int(OBJECT(&mms->sec_resp_splitter),
433 ARRAY_SIZE(mms->ppc), "num-lines", &error_fatal);
434 object_property_set_bool(OBJECT(&mms->sec_resp_splitter), true,
435 "realized", &error_fatal);
436 dev_splitter = DEVICE(&mms->sec_resp_splitter);
437 qdev_connect_gpio_out_named(ssedev, "sec_resp_cfg", 0,
438 qdev_get_gpio_in(dev_splitter, 0));
441 * Most of the devices in the board are behind Peripheral Protection
442 * Controllers. The required order for initializing things is:
443 * + initialize the PPC
444 * + initialize, configure and realize downstream devices
445 * + connect downstream device MemoryRegions to the PPC
446 * + realize the PPC
447 * + map the PPC's MemoryRegions to the places in the address map
448 * where the downstream devices should appear
449 * + wire up the PPC's control lines to the SSE object
451 * The PPC mapping differs for the -A and -B1 variants; the -A version
452 * is much simpler, using only a single port of a single PPC and putting
453 * all the devices behind that.
455 const PPCInfo a_ppcs[] = { {
456 .name = "ahb_ppcexp0",
457 .ports = {
458 { "musca-devices", make_musca_a_devs, 0, 0x40100000, 0x100000 },
464 * Devices listed with an 0x4.. address appear in both the NS 0x4.. region
465 * and the 0x5.. S region. Devices listed with an 0x5.. address appear
466 * only in the S region.
468 const PPCInfo b1_ppcs[] = { {
469 .name = "apb_ppcexp0",
470 .ports = {
471 { "eflash0", make_unimp_dev, &mms->eflash[0],
472 0x52400000, 0x1000 },
473 { "eflash1", make_unimp_dev, &mms->eflash[1],
474 0x52500000, 0x1000 },
475 { "qspi", make_unimp_dev, &mms->qspi, 0x42800000, 0x100000 },
476 { "mpc0", make_mpc, &mms->mpc[0], 0x52000000, 0x1000 },
477 { "mpc1", make_mpc, &mms->mpc[1], 0x52100000, 0x1000 },
478 { "mpc2", make_mpc, &mms->mpc[2], 0x52200000, 0x1000 },
479 { "mpc3", make_mpc, &mms->mpc[3], 0x52300000, 0x1000 },
480 { "mhu0", make_unimp_dev, &mms->mhu[0], 0x42600000, 0x100000 },
481 { "mhu1", make_unimp_dev, &mms->mhu[1], 0x42700000, 0x100000 },
482 { }, /* port 9: unused */
483 { }, /* port 10: unused */
484 { }, /* port 11: unused */
485 { }, /* port 12: unused */
486 { }, /* port 13: unused */
487 { "mpc4", make_mpc, &mms->mpc[4], 0x52e00000, 0x1000 },
489 }, {
490 .name = "apb_ppcexp1",
491 .ports = {
492 { "pwm0", make_unimp_dev, &mms->pwm[0], 0x40101000, 0x1000 },
493 { "pwm1", make_unimp_dev, &mms->pwm[1], 0x40102000, 0x1000 },
494 { "pwm2", make_unimp_dev, &mms->pwm[2], 0x40103000, 0x1000 },
495 { "i2s", make_unimp_dev, &mms->i2s, 0x40104000, 0x1000 },
496 { "uart0", make_uart, &mms->uart[0], 0x40105000, 0x1000 },
497 { "uart1", make_uart, &mms->uart[1], 0x40106000, 0x1000 },
498 { "i2c0", make_unimp_dev, &mms->i2c[0], 0x40108000, 0x1000 },
499 { "i2c1", make_unimp_dev, &mms->i2c[1], 0x40109000, 0x1000 },
500 { "spi", make_unimp_dev, &mms->spi, 0x4010a000, 0x1000 },
501 { "scc", make_unimp_dev, &mms->scc, 0x5010b000, 0x1000 },
502 { "timer", make_unimp_dev, &mms->timer, 0x4010c000, 0x1000 },
503 { "rtc", make_rtc, &mms->rtc, 0x4010d000, 0x1000 },
504 { "pvt", make_unimp_dev, &mms->pvt, 0x4010e000, 0x1000 },
505 { "sdio", make_unimp_dev, &mms->sdio, 0x4010f000, 0x1000 },
507 }, {
508 .name = "ahb_ppcexp0",
509 .ports = {
510 { }, /* port 0: unused */
511 { "gpio", make_unimp_dev, &mms->gpio, 0x41000000, 0x1000 },
516 switch (mmc->type) {
517 case MUSCA_A:
518 ppcs = a_ppcs;
519 num_ppcs = ARRAY_SIZE(a_ppcs);
520 break;
521 case MUSCA_B1:
522 ppcs = b1_ppcs;
523 num_ppcs = ARRAY_SIZE(b1_ppcs);
524 break;
525 default:
526 g_assert_not_reached();
528 assert(num_ppcs <= MUSCA_PPC_MAX);
530 for (i = 0; i < num_ppcs; i++) {
531 const PPCInfo *ppcinfo = &ppcs[i];
532 TZPPC *ppc = &mms->ppc[i];
533 DeviceState *ppcdev;
534 int port;
535 char *gpioname;
537 sysbus_init_child_obj(OBJECT(machine), ppcinfo->name, ppc,
538 sizeof(TZPPC), TYPE_TZ_PPC);
539 ppcdev = DEVICE(ppc);
541 for (port = 0; port < TZ_NUM_PORTS; port++) {
542 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
543 MemoryRegion *mr;
544 char *portname;
546 if (!pinfo->devfn) {
547 continue;
550 mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
551 portname = g_strdup_printf("port[%d]", port);
552 object_property_set_link(OBJECT(ppc), OBJECT(mr),
553 portname, &error_fatal);
554 g_free(portname);
557 object_property_set_bool(OBJECT(ppc), true, "realized", &error_fatal);
559 for (port = 0; port < TZ_NUM_PORTS; port++) {
560 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
562 if (!pinfo->devfn) {
563 continue;
565 sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
567 gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
568 qdev_connect_gpio_out_named(ssedev, gpioname, port,
569 qdev_get_gpio_in_named(ppcdev,
570 "cfg_nonsec",
571 port));
572 g_free(gpioname);
573 gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
574 qdev_connect_gpio_out_named(ssedev, gpioname, port,
575 qdev_get_gpio_in_named(ppcdev,
576 "cfg_ap", port));
577 g_free(gpioname);
580 gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
581 qdev_connect_gpio_out_named(ssedev, gpioname, 0,
582 qdev_get_gpio_in_named(ppcdev,
583 "irq_enable", 0));
584 g_free(gpioname);
585 gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
586 qdev_connect_gpio_out_named(ssedev, gpioname, 0,
587 qdev_get_gpio_in_named(ppcdev,
588 "irq_clear", 0));
589 g_free(gpioname);
590 gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
591 qdev_connect_gpio_out_named(ppcdev, "irq", 0,
592 qdev_get_gpio_in_named(ssedev,
593 gpioname, 0));
594 g_free(gpioname);
596 qdev_connect_gpio_out(dev_splitter, i,
597 qdev_get_gpio_in_named(ppcdev,
598 "cfg_sec_resp", 0));
601 armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x2000000);
604 static void musca_class_init(ObjectClass *oc, void *data)
606 MachineClass *mc = MACHINE_CLASS(oc);
608 mc->default_cpus = 2;
609 mc->min_cpus = mc->default_cpus;
610 mc->max_cpus = mc->default_cpus;
611 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
612 mc->init = musca_init;
615 static void musca_a_class_init(ObjectClass *oc, void *data)
617 MachineClass *mc = MACHINE_CLASS(oc);
618 MuscaMachineClass *mmc = MUSCA_MACHINE_CLASS(oc);
620 mc->desc = "ARM Musca-A board (dual Cortex-M33)";
621 mmc->type = MUSCA_A;
622 mmc->init_svtor = 0x10200000;
623 mmc->sram_addr_width = 15;
624 mmc->num_irqs = 64;
625 mmc->mpc_info = a_mpc_info;
626 mmc->num_mpcs = ARRAY_SIZE(a_mpc_info);
629 static void musca_b1_class_init(ObjectClass *oc, void *data)
631 MachineClass *mc = MACHINE_CLASS(oc);
632 MuscaMachineClass *mmc = MUSCA_MACHINE_CLASS(oc);
634 mc->desc = "ARM Musca-B1 board (dual Cortex-M33)";
635 mmc->type = MUSCA_B1;
637 * This matches the DAPlink firmware which boots from QSPI. There
638 * is also a firmware blob which boots from the eFlash, which
639 * uses init_svtor = 0x1A000000. QEMU doesn't currently support that,
640 * though we could in theory expose a machine property on the command
641 * line to allow the user to request eFlash boot.
643 mmc->init_svtor = 0x10000000;
644 mmc->sram_addr_width = 17;
645 mmc->num_irqs = 96;
646 mmc->mpc_info = b1_mpc_info;
647 mmc->num_mpcs = ARRAY_SIZE(b1_mpc_info);
650 static const TypeInfo musca_info = {
651 .name = TYPE_MUSCA_MACHINE,
652 .parent = TYPE_MACHINE,
653 .abstract = true,
654 .instance_size = sizeof(MuscaMachineState),
655 .class_size = sizeof(MuscaMachineClass),
656 .class_init = musca_class_init,
659 static const TypeInfo musca_a_info = {
660 .name = TYPE_MUSCA_A_MACHINE,
661 .parent = TYPE_MUSCA_MACHINE,
662 .class_init = musca_a_class_init,
665 static const TypeInfo musca_b1_info = {
666 .name = TYPE_MUSCA_B1_MACHINE,
667 .parent = TYPE_MUSCA_MACHINE,
668 .class_init = musca_b1_class_init,
671 static void musca_machine_init(void)
673 type_register_static(&musca_info);
674 type_register_static(&musca_a_info);
675 type_register_static(&musca_b1_info);
678 type_init(musca_machine_init);