2 * Arm Musca-B1 test chip board emulation
4 * Copyright (c) 2019 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
13 * The Musca boards are a reference implementation of a system using
14 * the SSE-200 subsystem for embedded:
15 * https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-a-test-chip-board
16 * https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-b-test-chip-board
17 * We model the A and B1 variants of this board, as described in the TRMs:
18 * http://infocenter.arm.com/help/topic/com.arm.doc.101107_0000_00_en/index.html
19 * http://infocenter.arm.com/help/topic/com.arm.doc.101312_0000_00_en/index.html
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "exec/address-spaces.h"
26 #include "sysemu/sysemu.h"
27 #include "hw/arm/boot.h"
28 #include "hw/arm/armsse.h"
29 #include "hw/boards.h"
30 #include "hw/char/pl011.h"
31 #include "hw/core/split-irq.h"
32 #include "hw/misc/tz-mpc.h"
33 #include "hw/misc/tz-ppc.h"
34 #include "hw/misc/unimp.h"
35 #include "hw/rtc/pl031.h"
37 #define MUSCA_NUMIRQ_MAX 96
38 #define MUSCA_PPC_MAX 3
39 #define MUSCA_MPC_MAX 5
41 typedef struct MPCInfo MPCInfo
;
43 typedef enum MuscaType
{
54 const MPCInfo
*mpc_info
;
63 MemoryRegion ram
[MUSCA_MPC_MAX
];
64 SplitIRQ cpu_irq_splitter
[MUSCA_NUMIRQ_MAX
];
65 SplitIRQ sec_resp_splitter
;
66 TZPPC ppc
[MUSCA_PPC_MAX
];
67 MemoryRegion container
;
68 UnimplementedDeviceState eflash
[2];
69 UnimplementedDeviceState qspi
;
70 TZMPC mpc
[MUSCA_MPC_MAX
];
71 UnimplementedDeviceState mhu
[2];
72 UnimplementedDeviceState pwm
[3];
73 UnimplementedDeviceState i2s
;
75 UnimplementedDeviceState i2c
[2];
76 UnimplementedDeviceState spi
;
77 UnimplementedDeviceState scc
;
78 UnimplementedDeviceState timer
;
80 UnimplementedDeviceState pvt
;
81 UnimplementedDeviceState sdio
;
82 UnimplementedDeviceState gpio
;
83 UnimplementedDeviceState cryptoisland
;
86 #define TYPE_MUSCA_MACHINE "musca"
87 #define TYPE_MUSCA_A_MACHINE MACHINE_TYPE_NAME("musca-a")
88 #define TYPE_MUSCA_B1_MACHINE MACHINE_TYPE_NAME("musca-b1")
90 #define MUSCA_MACHINE(obj) \
91 OBJECT_CHECK(MuscaMachineState, obj, TYPE_MUSCA_MACHINE)
92 #define MUSCA_MACHINE_GET_CLASS(obj) \
93 OBJECT_GET_CLASS(MuscaMachineClass, obj, TYPE_MUSCA_MACHINE)
94 #define MUSCA_MACHINE_CLASS(klass) \
95 OBJECT_CLASS_CHECK(MuscaMachineClass, klass, TYPE_MUSCA_MACHINE)
98 * Main SYSCLK frequency in Hz
99 * TODO this should really be different for the two cores, but we
100 * don't model that in our SSE-200 model yet.
102 #define SYSCLK_FRQ 40000000
104 static qemu_irq
get_sse_irq_in(MuscaMachineState
*mms
, int irqno
)
106 /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
107 assert(irqno
< MUSCA_NUMIRQ_MAX
);
109 return qdev_get_gpio_in(DEVICE(&mms
->cpu_irq_splitter
[irqno
]), 0);
113 * Most of the devices in the Musca board sit behind Peripheral Protection
114 * Controllers. These data structures define the layout of which devices
115 * sit behind which PPCs.
116 * The devfn for each port is a function which creates, configures
117 * and initializes the device, returning the MemoryRegion which
118 * needs to be plugged into the downstream end of the PPC port.
120 typedef MemoryRegion
*MakeDevFn(MuscaMachineState
*mms
, void *opaque
,
121 const char *name
, hwaddr size
);
123 typedef struct PPCPortInfo
{
131 typedef struct PPCInfo
{
133 PPCPortInfo ports
[TZ_NUM_PORTS
];
136 static MemoryRegion
*make_unimp_dev(MuscaMachineState
*mms
,
137 void *opaque
, const char *name
, hwaddr size
)
140 * Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
141 * and return a pointer to its MemoryRegion.
143 UnimplementedDeviceState
*uds
= opaque
;
145 sysbus_init_child_obj(OBJECT(mms
), name
, uds
,
146 sizeof(UnimplementedDeviceState
),
147 TYPE_UNIMPLEMENTED_DEVICE
);
148 qdev_prop_set_string(DEVICE(uds
), "name", name
);
149 qdev_prop_set_uint64(DEVICE(uds
), "size", size
);
150 object_property_set_bool(OBJECT(uds
), true, "realized", &error_fatal
);
151 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds
), 0);
154 typedef enum MPCInfoType
{
167 /* Order of the MPCs here must match the order of the bits in SECMPCINTSTATUS */
168 static const MPCInfo a_mpc_info
[] = { {
181 static const MPCInfo b1_mpc_info
[] = { {
202 .name
= "cryptoisland",
203 .type
= MPC_CRYPTOISLAND
,
209 static MemoryRegion
*make_mpc(MuscaMachineState
*mms
, void *opaque
,
210 const char *name
, hwaddr size
)
213 * Create an MPC and the RAM or flash behind it.
218 * MPC 4: CryptoIsland
219 * For now we implement the flash regions as ROM (ie not programmable)
220 * (with their control interface memory regions being unimplemented
221 * stubs behind the PPCs).
222 * The whole CryptoIsland region behind its MPC is an unimplemented stub.
224 MuscaMachineClass
*mmc
= MUSCA_MACHINE_GET_CLASS(mms
);
226 int i
= mpc
- &mms
->mpc
[0];
227 MemoryRegion
*downstream
;
228 MemoryRegion
*upstream
;
229 UnimplementedDeviceState
*uds
;
231 const MPCInfo
*mpcinfo
= mmc
->mpc_info
;
233 mpcname
= g_strdup_printf("%s-mpc", mpcinfo
[i
].name
);
235 switch (mpcinfo
[i
].type
) {
237 downstream
= &mms
->ram
[i
];
238 memory_region_init_rom(downstream
, NULL
, mpcinfo
[i
].name
,
239 mpcinfo
[i
].size
, &error_fatal
);
242 downstream
= &mms
->ram
[i
];
243 memory_region_init_ram(downstream
, NULL
, mpcinfo
[i
].name
,
244 mpcinfo
[i
].size
, &error_fatal
);
246 case MPC_CRYPTOISLAND
:
247 /* We don't implement the CryptoIsland yet */
248 uds
= &mms
->cryptoisland
;
249 sysbus_init_child_obj(OBJECT(mms
), name
, uds
,
250 sizeof(UnimplementedDeviceState
),
251 TYPE_UNIMPLEMENTED_DEVICE
);
252 qdev_prop_set_string(DEVICE(uds
), "name", mpcinfo
[i
].name
);
253 qdev_prop_set_uint64(DEVICE(uds
), "size", mpcinfo
[i
].size
);
254 object_property_set_bool(OBJECT(uds
), true, "realized", &error_fatal
);
255 downstream
= sysbus_mmio_get_region(SYS_BUS_DEVICE(uds
), 0);
258 g_assert_not_reached();
261 sysbus_init_child_obj(OBJECT(mms
), mpcname
, mpc
, sizeof(mms
->mpc
[0]),
263 object_property_set_link(OBJECT(mpc
), OBJECT(downstream
),
264 "downstream", &error_fatal
);
265 object_property_set_bool(OBJECT(mpc
), true, "realized", &error_fatal
);
266 /* Map the upstream end of the MPC into system memory */
267 upstream
= sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc
), 1);
268 memory_region_add_subregion(get_system_memory(), mpcinfo
[i
].addr
, upstream
);
269 /* and connect its interrupt to the SSE-200 */
270 qdev_connect_gpio_out_named(DEVICE(mpc
), "irq", 0,
271 qdev_get_gpio_in_named(DEVICE(&mms
->sse
),
272 "mpcexp_status", i
));
275 /* Return the register interface MR for our caller to map behind the PPC */
276 return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc
), 0);
279 static MemoryRegion
*make_rtc(MuscaMachineState
*mms
, void *opaque
,
280 const char *name
, hwaddr size
)
282 PL031State
*rtc
= opaque
;
284 sysbus_init_child_obj(OBJECT(mms
), name
, rtc
, sizeof(mms
->rtc
), TYPE_PL031
);
285 object_property_set_bool(OBJECT(rtc
), true, "realized", &error_fatal
);
286 sysbus_connect_irq(SYS_BUS_DEVICE(rtc
), 0, get_sse_irq_in(mms
, 39));
287 return sysbus_mmio_get_region(SYS_BUS_DEVICE(rtc
), 0);
290 static MemoryRegion
*make_uart(MuscaMachineState
*mms
, void *opaque
,
291 const char *name
, hwaddr size
)
293 PL011State
*uart
= opaque
;
294 int i
= uart
- &mms
->uart
[0];
295 int irqbase
= 7 + i
* 6;
298 sysbus_init_child_obj(OBJECT(mms
), name
, uart
, sizeof(mms
->uart
[0]),
300 qdev_prop_set_chr(DEVICE(uart
), "chardev", serial_hd(i
));
301 object_property_set_bool(OBJECT(uart
), true, "realized", &error_fatal
);
302 s
= SYS_BUS_DEVICE(uart
);
303 sysbus_connect_irq(s
, 0, get_sse_irq_in(mms
, irqbase
+ 5)); /* combined */
304 sysbus_connect_irq(s
, 1, get_sse_irq_in(mms
, irqbase
+ 0)); /* RX */
305 sysbus_connect_irq(s
, 2, get_sse_irq_in(mms
, irqbase
+ 1)); /* TX */
306 sysbus_connect_irq(s
, 3, get_sse_irq_in(mms
, irqbase
+ 2)); /* RT */
307 sysbus_connect_irq(s
, 4, get_sse_irq_in(mms
, irqbase
+ 3)); /* MS */
308 sysbus_connect_irq(s
, 5, get_sse_irq_in(mms
, irqbase
+ 4)); /* E */
309 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart
), 0);
312 static MemoryRegion
*make_musca_a_devs(MuscaMachineState
*mms
, void *opaque
,
313 const char *name
, hwaddr size
)
316 * Create the container MemoryRegion for all the devices that live
317 * behind the Musca-A PPC's single port. These devices don't have a PPC
318 * port each, but we use the PPCPortInfo struct as a convenient way
319 * to describe them. Note that addresses here are relative to the base
320 * address of the PPC port region: 0x40100000, and devices appear both
321 * at the 0x4... NS region and the 0x5... S region.
324 MemoryRegion
*container
= &mms
->container
;
326 const PPCPortInfo devices
[] = {
327 { "uart0", make_uart
, &mms
->uart
[0], 0x1000, 0x1000 },
328 { "uart1", make_uart
, &mms
->uart
[1], 0x2000, 0x1000 },
329 { "spi", make_unimp_dev
, &mms
->spi
, 0x3000, 0x1000 },
330 { "i2c0", make_unimp_dev
, &mms
->i2c
[0], 0x4000, 0x1000 },
331 { "i2c1", make_unimp_dev
, &mms
->i2c
[1], 0x5000, 0x1000 },
332 { "i2s", make_unimp_dev
, &mms
->i2s
, 0x6000, 0x1000 },
333 { "pwm0", make_unimp_dev
, &mms
->pwm
[0], 0x7000, 0x1000 },
334 { "rtc", make_rtc
, &mms
->rtc
, 0x8000, 0x1000 },
335 { "qspi", make_unimp_dev
, &mms
->qspi
, 0xa000, 0x1000 },
336 { "timer", make_unimp_dev
, &mms
->timer
, 0xb000, 0x1000 },
337 { "scc", make_unimp_dev
, &mms
->scc
, 0xc000, 0x1000 },
338 { "pwm1", make_unimp_dev
, &mms
->pwm
[1], 0xe000, 0x1000 },
339 { "pwm2", make_unimp_dev
, &mms
->pwm
[2], 0xf000, 0x1000 },
340 { "gpio", make_unimp_dev
, &mms
->gpio
, 0x10000, 0x1000 },
341 { "mpc0", make_mpc
, &mms
->mpc
[0], 0x12000, 0x1000 },
342 { "mpc1", make_mpc
, &mms
->mpc
[1], 0x13000, 0x1000 },
345 memory_region_init(container
, OBJECT(mms
), "musca-device-container", size
);
347 for (i
= 0; i
< ARRAY_SIZE(devices
); i
++) {
348 const PPCPortInfo
*pinfo
= &devices
[i
];
351 mr
= pinfo
->devfn(mms
, pinfo
->opaque
, pinfo
->name
, pinfo
->size
);
352 memory_region_add_subregion(container
, pinfo
->addr
, mr
);
355 return &mms
->container
;
358 static void musca_init(MachineState
*machine
)
360 MuscaMachineState
*mms
= MUSCA_MACHINE(machine
);
361 MuscaMachineClass
*mmc
= MUSCA_MACHINE_GET_CLASS(mms
);
362 MachineClass
*mc
= MACHINE_GET_CLASS(machine
);
363 MemoryRegion
*system_memory
= get_system_memory();
365 DeviceState
*dev_splitter
;
370 assert(mmc
->num_irqs
<= MUSCA_NUMIRQ_MAX
);
371 assert(mmc
->num_mpcs
<= MUSCA_MPC_MAX
);
373 if (strcmp(machine
->cpu_type
, mc
->default_cpu_type
) != 0) {
374 error_report("This board can only be used with CPU %s",
375 mc
->default_cpu_type
);
379 sysbus_init_child_obj(OBJECT(machine
), "sse-200", &mms
->sse
,
380 sizeof(mms
->sse
), TYPE_SSE200
);
381 ssedev
= DEVICE(&mms
->sse
);
382 object_property_set_link(OBJECT(&mms
->sse
), OBJECT(system_memory
),
383 "memory", &error_fatal
);
384 qdev_prop_set_uint32(ssedev
, "EXP_NUMIRQ", mmc
->num_irqs
);
385 qdev_prop_set_uint32(ssedev
, "init-svtor", mmc
->init_svtor
);
386 qdev_prop_set_uint32(ssedev
, "SRAM_ADDR_WIDTH", mmc
->sram_addr_width
);
387 qdev_prop_set_uint32(ssedev
, "MAINCLK", SYSCLK_FRQ
);
389 * Musca-A takes the default SSE-200 FPU/DSP settings (ie no for
390 * CPU0 and yes for CPU1); Musca-B1 explicitly enables them for CPU0.
392 if (mmc
->type
== MUSCA_B1
) {
393 qdev_prop_set_bit(ssedev
, "CPU0_FPU", true);
394 qdev_prop_set_bit(ssedev
, "CPU0_DSP", true);
396 object_property_set_bool(OBJECT(&mms
->sse
), true, "realized",
400 * We need to create splitters to feed the IRQ inputs
401 * for each CPU in the SSE-200 from each device in the board.
403 for (i
= 0; i
< mmc
->num_irqs
; i
++) {
404 char *name
= g_strdup_printf("musca-irq-splitter%d", i
);
405 SplitIRQ
*splitter
= &mms
->cpu_irq_splitter
[i
];
407 object_initialize_child(OBJECT(machine
), name
,
408 splitter
, sizeof(*splitter
),
409 TYPE_SPLIT_IRQ
, &error_fatal
, NULL
);
412 object_property_set_int(OBJECT(splitter
), 2, "num-lines",
414 object_property_set_bool(OBJECT(splitter
), true, "realized",
416 qdev_connect_gpio_out(DEVICE(splitter
), 0,
417 qdev_get_gpio_in_named(ssedev
, "EXP_IRQ", i
));
418 qdev_connect_gpio_out(DEVICE(splitter
), 1,
419 qdev_get_gpio_in_named(ssedev
,
424 * The sec_resp_cfg output from the SSE-200 must be split into multiple
425 * lines, one for each of the PPCs we create here.
427 object_initialize_child(OBJECT(machine
), "sec-resp-splitter",
428 &mms
->sec_resp_splitter
,
429 sizeof(mms
->sec_resp_splitter
),
430 TYPE_SPLIT_IRQ
, &error_fatal
, NULL
);
432 object_property_set_int(OBJECT(&mms
->sec_resp_splitter
),
433 ARRAY_SIZE(mms
->ppc
), "num-lines", &error_fatal
);
434 object_property_set_bool(OBJECT(&mms
->sec_resp_splitter
), true,
435 "realized", &error_fatal
);
436 dev_splitter
= DEVICE(&mms
->sec_resp_splitter
);
437 qdev_connect_gpio_out_named(ssedev
, "sec_resp_cfg", 0,
438 qdev_get_gpio_in(dev_splitter
, 0));
441 * Most of the devices in the board are behind Peripheral Protection
442 * Controllers. The required order for initializing things is:
443 * + initialize the PPC
444 * + initialize, configure and realize downstream devices
445 * + connect downstream device MemoryRegions to the PPC
447 * + map the PPC's MemoryRegions to the places in the address map
448 * where the downstream devices should appear
449 * + wire up the PPC's control lines to the SSE object
451 * The PPC mapping differs for the -A and -B1 variants; the -A version
452 * is much simpler, using only a single port of a single PPC and putting
453 * all the devices behind that.
455 const PPCInfo a_ppcs
[] = { {
456 .name
= "ahb_ppcexp0",
458 { "musca-devices", make_musca_a_devs
, 0, 0x40100000, 0x100000 },
464 * Devices listed with an 0x4.. address appear in both the NS 0x4.. region
465 * and the 0x5.. S region. Devices listed with an 0x5.. address appear
466 * only in the S region.
468 const PPCInfo b1_ppcs
[] = { {
469 .name
= "apb_ppcexp0",
471 { "eflash0", make_unimp_dev
, &mms
->eflash
[0],
472 0x52400000, 0x1000 },
473 { "eflash1", make_unimp_dev
, &mms
->eflash
[1],
474 0x52500000, 0x1000 },
475 { "qspi", make_unimp_dev
, &mms
->qspi
, 0x42800000, 0x100000 },
476 { "mpc0", make_mpc
, &mms
->mpc
[0], 0x52000000, 0x1000 },
477 { "mpc1", make_mpc
, &mms
->mpc
[1], 0x52100000, 0x1000 },
478 { "mpc2", make_mpc
, &mms
->mpc
[2], 0x52200000, 0x1000 },
479 { "mpc3", make_mpc
, &mms
->mpc
[3], 0x52300000, 0x1000 },
480 { "mhu0", make_unimp_dev
, &mms
->mhu
[0], 0x42600000, 0x100000 },
481 { "mhu1", make_unimp_dev
, &mms
->mhu
[1], 0x42700000, 0x100000 },
482 { }, /* port 9: unused */
483 { }, /* port 10: unused */
484 { }, /* port 11: unused */
485 { }, /* port 12: unused */
486 { }, /* port 13: unused */
487 { "mpc4", make_mpc
, &mms
->mpc
[4], 0x52e00000, 0x1000 },
490 .name
= "apb_ppcexp1",
492 { "pwm0", make_unimp_dev
, &mms
->pwm
[0], 0x40101000, 0x1000 },
493 { "pwm1", make_unimp_dev
, &mms
->pwm
[1], 0x40102000, 0x1000 },
494 { "pwm2", make_unimp_dev
, &mms
->pwm
[2], 0x40103000, 0x1000 },
495 { "i2s", make_unimp_dev
, &mms
->i2s
, 0x40104000, 0x1000 },
496 { "uart0", make_uart
, &mms
->uart
[0], 0x40105000, 0x1000 },
497 { "uart1", make_uart
, &mms
->uart
[1], 0x40106000, 0x1000 },
498 { "i2c0", make_unimp_dev
, &mms
->i2c
[0], 0x40108000, 0x1000 },
499 { "i2c1", make_unimp_dev
, &mms
->i2c
[1], 0x40109000, 0x1000 },
500 { "spi", make_unimp_dev
, &mms
->spi
, 0x4010a000, 0x1000 },
501 { "scc", make_unimp_dev
, &mms
->scc
, 0x5010b000, 0x1000 },
502 { "timer", make_unimp_dev
, &mms
->timer
, 0x4010c000, 0x1000 },
503 { "rtc", make_rtc
, &mms
->rtc
, 0x4010d000, 0x1000 },
504 { "pvt", make_unimp_dev
, &mms
->pvt
, 0x4010e000, 0x1000 },
505 { "sdio", make_unimp_dev
, &mms
->sdio
, 0x4010f000, 0x1000 },
508 .name
= "ahb_ppcexp0",
510 { }, /* port 0: unused */
511 { "gpio", make_unimp_dev
, &mms
->gpio
, 0x41000000, 0x1000 },
519 num_ppcs
= ARRAY_SIZE(a_ppcs
);
523 num_ppcs
= ARRAY_SIZE(b1_ppcs
);
526 g_assert_not_reached();
528 assert(num_ppcs
<= MUSCA_PPC_MAX
);
530 for (i
= 0; i
< num_ppcs
; i
++) {
531 const PPCInfo
*ppcinfo
= &ppcs
[i
];
532 TZPPC
*ppc
= &mms
->ppc
[i
];
537 sysbus_init_child_obj(OBJECT(machine
), ppcinfo
->name
, ppc
,
538 sizeof(TZPPC
), TYPE_TZ_PPC
);
539 ppcdev
= DEVICE(ppc
);
541 for (port
= 0; port
< TZ_NUM_PORTS
; port
++) {
542 const PPCPortInfo
*pinfo
= &ppcinfo
->ports
[port
];
550 mr
= pinfo
->devfn(mms
, pinfo
->opaque
, pinfo
->name
, pinfo
->size
);
551 portname
= g_strdup_printf("port[%d]", port
);
552 object_property_set_link(OBJECT(ppc
), OBJECT(mr
),
553 portname
, &error_fatal
);
557 object_property_set_bool(OBJECT(ppc
), true, "realized", &error_fatal
);
559 for (port
= 0; port
< TZ_NUM_PORTS
; port
++) {
560 const PPCPortInfo
*pinfo
= &ppcinfo
->ports
[port
];
565 sysbus_mmio_map(SYS_BUS_DEVICE(ppc
), port
, pinfo
->addr
);
567 gpioname
= g_strdup_printf("%s_nonsec", ppcinfo
->name
);
568 qdev_connect_gpio_out_named(ssedev
, gpioname
, port
,
569 qdev_get_gpio_in_named(ppcdev
,
573 gpioname
= g_strdup_printf("%s_ap", ppcinfo
->name
);
574 qdev_connect_gpio_out_named(ssedev
, gpioname
, port
,
575 qdev_get_gpio_in_named(ppcdev
,
580 gpioname
= g_strdup_printf("%s_irq_enable", ppcinfo
->name
);
581 qdev_connect_gpio_out_named(ssedev
, gpioname
, 0,
582 qdev_get_gpio_in_named(ppcdev
,
585 gpioname
= g_strdup_printf("%s_irq_clear", ppcinfo
->name
);
586 qdev_connect_gpio_out_named(ssedev
, gpioname
, 0,
587 qdev_get_gpio_in_named(ppcdev
,
590 gpioname
= g_strdup_printf("%s_irq_status", ppcinfo
->name
);
591 qdev_connect_gpio_out_named(ppcdev
, "irq", 0,
592 qdev_get_gpio_in_named(ssedev
,
596 qdev_connect_gpio_out(dev_splitter
, i
,
597 qdev_get_gpio_in_named(ppcdev
,
601 armv7m_load_kernel(ARM_CPU(first_cpu
), machine
->kernel_filename
, 0x2000000);
604 static void musca_class_init(ObjectClass
*oc
, void *data
)
606 MachineClass
*mc
= MACHINE_CLASS(oc
);
608 mc
->default_cpus
= 2;
609 mc
->min_cpus
= mc
->default_cpus
;
610 mc
->max_cpus
= mc
->default_cpus
;
611 mc
->default_cpu_type
= ARM_CPU_TYPE_NAME("cortex-m33");
612 mc
->init
= musca_init
;
615 static void musca_a_class_init(ObjectClass
*oc
, void *data
)
617 MachineClass
*mc
= MACHINE_CLASS(oc
);
618 MuscaMachineClass
*mmc
= MUSCA_MACHINE_CLASS(oc
);
620 mc
->desc
= "ARM Musca-A board (dual Cortex-M33)";
622 mmc
->init_svtor
= 0x10200000;
623 mmc
->sram_addr_width
= 15;
625 mmc
->mpc_info
= a_mpc_info
;
626 mmc
->num_mpcs
= ARRAY_SIZE(a_mpc_info
);
629 static void musca_b1_class_init(ObjectClass
*oc
, void *data
)
631 MachineClass
*mc
= MACHINE_CLASS(oc
);
632 MuscaMachineClass
*mmc
= MUSCA_MACHINE_CLASS(oc
);
634 mc
->desc
= "ARM Musca-B1 board (dual Cortex-M33)";
635 mmc
->type
= MUSCA_B1
;
637 * This matches the DAPlink firmware which boots from QSPI. There
638 * is also a firmware blob which boots from the eFlash, which
639 * uses init_svtor = 0x1A000000. QEMU doesn't currently support that,
640 * though we could in theory expose a machine property on the command
641 * line to allow the user to request eFlash boot.
643 mmc
->init_svtor
= 0x10000000;
644 mmc
->sram_addr_width
= 17;
646 mmc
->mpc_info
= b1_mpc_info
;
647 mmc
->num_mpcs
= ARRAY_SIZE(b1_mpc_info
);
650 static const TypeInfo musca_info
= {
651 .name
= TYPE_MUSCA_MACHINE
,
652 .parent
= TYPE_MACHINE
,
654 .instance_size
= sizeof(MuscaMachineState
),
655 .class_size
= sizeof(MuscaMachineClass
),
656 .class_init
= musca_class_init
,
659 static const TypeInfo musca_a_info
= {
660 .name
= TYPE_MUSCA_A_MACHINE
,
661 .parent
= TYPE_MUSCA_MACHINE
,
662 .class_init
= musca_a_class_init
,
665 static const TypeInfo musca_b1_info
= {
666 .name
= TYPE_MUSCA_B1_MACHINE
,
667 .parent
= TYPE_MUSCA_MACHINE
,
668 .class_init
= musca_b1_class_init
,
671 static void musca_machine_init(void)
673 type_register_static(&musca_info
);
674 type_register_static(&musca_a_info
);
675 type_register_static(&musca_b1_info
);
678 type_init(musca_machine_init
);