2 * sigaltstack coroutine initialization code
4 * Copyright (C) 2006 Anthony Liguori <anthony@codemonkey.ws>
5 * Copyright (C) 2011 Kevin Wolf <kwolf@redhat.com>
6 * Copyright (C) 2012 Alex Barcelo <abarcelo@ac.upc.edu>
7 ** This file is partly based on pth_mctx.c, from the GNU Portable Threads
8 ** Copyright (c) 1999-2006 Ralf S. Engelschall <rse@engelschall.com>
10 * This library is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2.1 of the License, or (at your option) any later version.
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
24 /* XXX Is there a nicer way to disable glibc's stack check for longjmp? */
25 #ifdef _FORTIFY_SOURCE
26 #undef _FORTIFY_SOURCE
28 #include "qemu/osdep.h"
30 #include "qemu-common.h"
31 #include "qemu/coroutine_int.h"
38 } CoroutineSigAltStack
;
41 * Per-thread coroutine bookkeeping
44 /** Currently executing coroutine */
47 /** The default coroutine */
48 CoroutineSigAltStack leader
;
50 /** Information for the signal handler (trampoline) */
51 sigjmp_buf tr_reenter
;
52 volatile sig_atomic_t tr_called
;
54 } CoroutineThreadState
;
56 static pthread_key_t thread_state_key
;
58 static CoroutineThreadState
*coroutine_get_thread_state(void)
60 CoroutineThreadState
*s
= pthread_getspecific(thread_state_key
);
63 s
= g_malloc0(sizeof(*s
));
64 s
->current
= &s
->leader
.base
;
65 pthread_setspecific(thread_state_key
, s
);
70 static void qemu_coroutine_thread_cleanup(void *opaque
)
72 CoroutineThreadState
*s
= opaque
;
77 static void __attribute__((constructor
)) coroutine_init(void)
81 ret
= pthread_key_create(&thread_state_key
, qemu_coroutine_thread_cleanup
);
83 fprintf(stderr
, "unable to create leader key: %s\n", strerror(errno
));
89 * This is what starts the coroutine, is called from the trampoline
90 * (from the signal handler when it is not signal handling, read ahead
91 * for more information).
93 static void coroutine_bootstrap(CoroutineSigAltStack
*self
, Coroutine
*co
)
95 /* Initialize longjmp environment and switch back the caller */
96 if (!sigsetjmp(self
->env
, 0)) {
97 siglongjmp(*(sigjmp_buf
*)co
->entry_arg
, 1);
101 co
->entry(co
->entry_arg
);
102 qemu_coroutine_switch(co
, co
->caller
, COROUTINE_TERMINATE
);
107 * This is used as the signal handler. This is called with the brand new stack
108 * (thanks to sigaltstack). We have to return, given that this is a signal
109 * handler and the sigmask and some other things are changed.
111 static void coroutine_trampoline(int signal
)
113 CoroutineSigAltStack
*self
;
115 CoroutineThreadState
*coTS
;
117 /* Get the thread specific information */
118 coTS
= coroutine_get_thread_state();
119 self
= coTS
->tr_handler
;
124 * Here we have to do a bit of a ping pong between the caller, given that
125 * this is a signal handler and we have to do a return "soon". Then the
126 * caller can reestablish everything and do a siglongjmp here again.
128 if (!sigsetjmp(coTS
->tr_reenter
, 0)) {
133 * Ok, the caller has siglongjmp'ed back to us, so now prepare
134 * us for the real machine state switching. We have to jump
135 * into another function here to get a new stack context for
136 * the auto variables (which have to be auto-variables
137 * because the start of the thread happens later). Else with
138 * PIC (i.e. Position Independent Code which is used when PTH
139 * is built as a shared library) most platforms would
140 * horrible core dump as experience showed.
142 coroutine_bootstrap(self
, co
);
145 Coroutine
*qemu_coroutine_new(void)
147 CoroutineSigAltStack
*co
;
148 CoroutineThreadState
*coTS
;
150 struct sigaction osa
;
157 /* The way to manipulate stack is with the sigaltstack function. We
158 * prepare a stack, with it delivering a signal to ourselves and then
159 * put sigsetjmp/siglongjmp where needed.
160 * This has been done keeping coroutine-ucontext as a model and with the
161 * pth ideas (GNU Portable Threads). See coroutine-ucontext for the basics
162 * of the coroutines and see pth_mctx.c (from the pth project) for the
163 * sigaltstack way of manipulating stacks.
166 co
= g_malloc0(sizeof(*co
));
167 co
->stack_size
= COROUTINE_STACK_SIZE
;
168 co
->stack
= qemu_alloc_stack(&co
->stack_size
);
169 co
->base
.entry_arg
= &old_env
; /* stash away our jmp_buf */
171 coTS
= coroutine_get_thread_state();
172 coTS
->tr_handler
= co
;
175 * Preserve the SIGUSR2 signal state, block SIGUSR2,
176 * and establish our signal handler. The signal will
177 * later transfer control onto the signal stack.
180 sigaddset(&sigs
, SIGUSR2
);
181 pthread_sigmask(SIG_BLOCK
, &sigs
, &osigs
);
182 sa
.sa_handler
= coroutine_trampoline
;
183 sigfillset(&sa
.sa_mask
);
184 sa
.sa_flags
= SA_ONSTACK
;
185 if (sigaction(SIGUSR2
, &sa
, &osa
) != 0) {
192 ss
.ss_sp
= co
->stack
;
193 ss
.ss_size
= co
->stack_size
;
195 if (sigaltstack(&ss
, &oss
) < 0) {
200 * Now transfer control onto the signal stack and set it up.
201 * It will return immediately via "return" after the sigsetjmp()
202 * was performed. Be careful here with race conditions. The
203 * signal can be delivered the first time sigsuspend() is
207 pthread_kill(pthread_self(), SIGUSR2
);
209 sigdelset(&sigs
, SIGUSR2
);
210 while (!coTS
->tr_called
) {
215 * Inform the system that we are back off the signal stack by
216 * removing the alternative signal stack. Be careful here: It
217 * first has to be disabled, before it can be removed.
219 sigaltstack(NULL
, &ss
);
220 ss
.ss_flags
= SS_DISABLE
;
221 if (sigaltstack(&ss
, NULL
) < 0) {
224 sigaltstack(NULL
, &ss
);
225 if (!(oss
.ss_flags
& SS_DISABLE
)) {
226 sigaltstack(&oss
, NULL
);
230 * Restore the old SIGUSR2 signal handler and mask
232 sigaction(SIGUSR2
, &osa
, NULL
);
233 pthread_sigmask(SIG_SETMASK
, &osigs
, NULL
);
236 * Now enter the trampoline again, but this time not as a signal
237 * handler. Instead we jump into it directly. The functionally
238 * redundant ping-pong pointer arithmetic is necessary to avoid
239 * type-conversion warnings related to the `volatile' qualifier and
240 * the fact that `jmp_buf' usually is an array type.
242 if (!sigsetjmp(old_env
, 0)) {
243 siglongjmp(coTS
->tr_reenter
, 1);
247 * Ok, we returned again, so now we're finished
253 void qemu_coroutine_delete(Coroutine
*co_
)
255 CoroutineSigAltStack
*co
= DO_UPCAST(CoroutineSigAltStack
, base
, co_
);
257 qemu_free_stack(co
->stack
, co
->stack_size
);
261 CoroutineAction
qemu_coroutine_switch(Coroutine
*from_
, Coroutine
*to_
,
262 CoroutineAction action
)
264 CoroutineSigAltStack
*from
= DO_UPCAST(CoroutineSigAltStack
, base
, from_
);
265 CoroutineSigAltStack
*to
= DO_UPCAST(CoroutineSigAltStack
, base
, to_
);
266 CoroutineThreadState
*s
= coroutine_get_thread_state();
271 ret
= sigsetjmp(from
->env
, 0);
273 siglongjmp(to
->env
, action
);
278 Coroutine
*qemu_coroutine_self(void)
280 CoroutineThreadState
*s
= coroutine_get_thread_state();
285 bool qemu_in_coroutine(void)
287 CoroutineThreadState
*s
= pthread_getspecific(thread_state_key
);
289 return s
&& s
->current
->caller
;