target/riscv: deprecate the 'any' CPU type
[qemu/ar7.git] / target / arm / gdbstub64.c
blobd7b79a6589b0094a706776f143ff12593c161e67
1 /*
2 * ARM gdb server stub: AArch64 specific functions.
4 * Copyright (c) 2013 SUSE LINUX Products GmbH
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qemu/log.h"
21 #include "cpu.h"
22 #include "internals.h"
23 #include "gdbstub/helpers.h"
25 int aarch64_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n)
27 ARMCPU *cpu = ARM_CPU(cs);
28 CPUARMState *env = &cpu->env;
30 if (n < 31) {
31 /* Core integer register. */
32 return gdb_get_reg64(mem_buf, env->xregs[n]);
34 switch (n) {
35 case 31:
36 return gdb_get_reg64(mem_buf, env->xregs[31]);
37 case 32:
38 return gdb_get_reg64(mem_buf, env->pc);
39 case 33:
40 return gdb_get_reg32(mem_buf, pstate_read(env));
42 /* Unknown register. */
43 return 0;
46 int aarch64_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
48 ARMCPU *cpu = ARM_CPU(cs);
49 CPUARMState *env = &cpu->env;
50 uint64_t tmp;
52 tmp = ldq_p(mem_buf);
54 if (n < 31) {
55 /* Core integer register. */
56 env->xregs[n] = tmp;
57 return 8;
59 switch (n) {
60 case 31:
61 env->xregs[31] = tmp;
62 return 8;
63 case 32:
64 env->pc = tmp;
65 return 8;
66 case 33:
67 /* CPSR */
68 pstate_write(env, tmp);
69 return 4;
71 /* Unknown register. */
72 return 0;
75 int aarch64_gdb_get_fpu_reg(CPUARMState *env, GByteArray *buf, int reg)
77 switch (reg) {
78 case 0 ... 31:
80 /* 128 bit FP register - quads are in LE order */
81 uint64_t *q = aa64_vfp_qreg(env, reg);
82 return gdb_get_reg128(buf, q[1], q[0]);
84 case 32:
85 /* FPSR */
86 return gdb_get_reg32(buf, vfp_get_fpsr(env));
87 case 33:
88 /* FPCR */
89 return gdb_get_reg32(buf, vfp_get_fpcr(env));
90 default:
91 return 0;
95 int aarch64_gdb_set_fpu_reg(CPUARMState *env, uint8_t *buf, int reg)
97 switch (reg) {
98 case 0 ... 31:
99 /* 128 bit FP register */
101 uint64_t *q = aa64_vfp_qreg(env, reg);
102 q[0] = ldq_le_p(buf);
103 q[1] = ldq_le_p(buf + 8);
104 return 16;
106 case 32:
107 /* FPSR */
108 vfp_set_fpsr(env, ldl_p(buf));
109 return 4;
110 case 33:
111 /* FPCR */
112 vfp_set_fpcr(env, ldl_p(buf));
113 return 4;
114 default:
115 return 0;
119 int aarch64_gdb_get_sve_reg(CPUARMState *env, GByteArray *buf, int reg)
121 ARMCPU *cpu = env_archcpu(env);
123 switch (reg) {
124 /* The first 32 registers are the zregs */
125 case 0 ... 31:
127 int vq, len = 0;
128 for (vq = 0; vq < cpu->sve_max_vq; vq++) {
129 len += gdb_get_reg128(buf,
130 env->vfp.zregs[reg].d[vq * 2 + 1],
131 env->vfp.zregs[reg].d[vq * 2]);
133 return len;
135 case 32:
136 return gdb_get_reg32(buf, vfp_get_fpsr(env));
137 case 33:
138 return gdb_get_reg32(buf, vfp_get_fpcr(env));
139 /* then 16 predicates and the ffr */
140 case 34 ... 50:
142 int preg = reg - 34;
143 int vq, len = 0;
144 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
145 len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]);
147 return len;
149 case 51:
152 * We report in Vector Granules (VG) which is 64bit in a Z reg
153 * while the ZCR works in Vector Quads (VQ) which is 128bit chunks.
155 int vq = sve_vqm1_for_el(env, arm_current_el(env)) + 1;
156 return gdb_get_reg64(buf, vq * 2);
158 default:
159 /* gdbstub asked for something out our range */
160 qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg);
161 break;
164 return 0;
167 int aarch64_gdb_set_sve_reg(CPUARMState *env, uint8_t *buf, int reg)
169 ARMCPU *cpu = env_archcpu(env);
171 /* The first 32 registers are the zregs */
172 switch (reg) {
173 /* The first 32 registers are the zregs */
174 case 0 ... 31:
176 int vq, len = 0;
177 uint64_t *p = (uint64_t *) buf;
178 for (vq = 0; vq < cpu->sve_max_vq; vq++) {
179 env->vfp.zregs[reg].d[vq * 2 + 1] = *p++;
180 env->vfp.zregs[reg].d[vq * 2] = *p++;
181 len += 16;
183 return len;
185 case 32:
186 vfp_set_fpsr(env, *(uint32_t *)buf);
187 return 4;
188 case 33:
189 vfp_set_fpcr(env, *(uint32_t *)buf);
190 return 4;
191 case 34 ... 50:
193 int preg = reg - 34;
194 int vq, len = 0;
195 uint64_t *p = (uint64_t *) buf;
196 for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
197 env->vfp.pregs[preg].p[vq / 4] = *p++;
198 len += 8;
200 return len;
202 case 51:
203 /* cannot set vg via gdbstub */
204 return 0;
205 default:
206 /* gdbstub asked for something out our range */
207 break;
210 return 0;
213 int aarch64_gdb_get_pauth_reg(CPUARMState *env, GByteArray *buf, int reg)
215 switch (reg) {
216 case 0: /* pauth_dmask */
217 case 1: /* pauth_cmask */
218 case 2: /* pauth_dmask_high */
219 case 3: /* pauth_cmask_high */
221 * Note that older versions of this feature only contained
222 * pauth_{d,c}mask, for use with Linux user processes, and
223 * thus exclusively in the low half of the address space.
225 * To support system mode, and to debug kernels, two new regs
226 * were added to cover the high half of the address space.
227 * For the purpose of pauth_ptr_mask, we can use any well-formed
228 * address within the address space half -- here, 0 and -1.
231 bool is_data = !(reg & 1);
232 bool is_high = reg & 2;
233 ARMMMUIdx mmu_idx = arm_stage1_mmu_idx(env);
234 ARMVAParameters param;
236 param = aa64_va_parameters(env, -is_high, mmu_idx, is_data, false);
237 return gdb_get_reg64(buf, pauth_ptr_mask(param));
239 default:
240 return 0;
244 int aarch64_gdb_set_pauth_reg(CPUARMState *env, uint8_t *buf, int reg)
246 /* All pseudo registers are read-only. */
247 return 0;
250 static void output_vector_union_type(GString *s, int reg_width,
251 const char *name)
253 struct TypeSize {
254 const char *gdb_type;
255 short size;
256 char sz, suffix;
259 static const struct TypeSize vec_lanes[] = {
260 /* quads */
261 { "uint128", 128, 'q', 'u' },
262 { "int128", 128, 'q', 's' },
263 /* 64 bit */
264 { "ieee_double", 64, 'd', 'f' },
265 { "uint64", 64, 'd', 'u' },
266 { "int64", 64, 'd', 's' },
267 /* 32 bit */
268 { "ieee_single", 32, 's', 'f' },
269 { "uint32", 32, 's', 'u' },
270 { "int32", 32, 's', 's' },
271 /* 16 bit */
272 { "ieee_half", 16, 'h', 'f' },
273 { "uint16", 16, 'h', 'u' },
274 { "int16", 16, 'h', 's' },
275 /* bytes */
276 { "uint8", 8, 'b', 'u' },
277 { "int8", 8, 'b', 's' },
280 static const char suf[] = { 'b', 'h', 's', 'd', 'q' };
281 int i, j;
283 /* First define types and totals in a whole VL */
284 for (i = 0; i < ARRAY_SIZE(vec_lanes); i++) {
285 g_string_append_printf(s,
286 "<vector id=\"%s%c%c\" type=\"%s\" count=\"%d\"/>",
287 name, vec_lanes[i].sz, vec_lanes[i].suffix,
288 vec_lanes[i].gdb_type, reg_width / vec_lanes[i].size);
292 * Now define a union for each size group containing unsigned and
293 * signed and potentially float versions of each size from 128 to
294 * 8 bits.
296 for (i = 0; i < ARRAY_SIZE(suf); i++) {
297 int bits = 8 << i;
299 g_string_append_printf(s, "<union id=\"%sn%c\">", name, suf[i]);
300 for (j = 0; j < ARRAY_SIZE(vec_lanes); j++) {
301 if (vec_lanes[j].size == bits) {
302 g_string_append_printf(s, "<field name=\"%c\" type=\"%s%c%c\"/>",
303 vec_lanes[j].suffix, name,
304 vec_lanes[j].sz, vec_lanes[j].suffix);
307 g_string_append(s, "</union>");
310 /* And now the final union of unions */
311 g_string_append_printf(s, "<union id=\"%s\">", name);
312 for (i = ARRAY_SIZE(suf) - 1; i >= 0; i--) {
313 g_string_append_printf(s, "<field name=\"%c\" type=\"%sn%c\"/>",
314 suf[i], name, suf[i]);
316 g_string_append(s, "</union>");
319 int arm_gen_dynamic_svereg_xml(CPUState *cs, int orig_base_reg)
321 ARMCPU *cpu = ARM_CPU(cs);
322 GString *s = g_string_new(NULL);
323 DynamicGDBXMLInfo *info = &cpu->dyn_svereg_xml;
324 int reg_width = cpu->sve_max_vq * 128;
325 int pred_width = cpu->sve_max_vq * 16;
326 int base_reg = orig_base_reg;
327 int i;
329 g_string_printf(s, "<?xml version=\"1.0\"?>");
330 g_string_append_printf(s, "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">");
331 g_string_append_printf(s, "<feature name=\"org.gnu.gdb.aarch64.sve\">");
333 /* Create the vector union type. */
334 output_vector_union_type(s, reg_width, "svev");
336 /* Create the predicate vector type. */
337 g_string_append_printf(s,
338 "<vector id=\"svep\" type=\"uint8\" count=\"%d\"/>",
339 pred_width / 8);
341 /* Define the vector registers. */
342 for (i = 0; i < 32; i++) {
343 g_string_append_printf(s,
344 "<reg name=\"z%d\" bitsize=\"%d\""
345 " regnum=\"%d\" type=\"svev\"/>",
346 i, reg_width, base_reg++);
349 /* fpscr & status registers */
350 g_string_append_printf(s, "<reg name=\"fpsr\" bitsize=\"32\""
351 " regnum=\"%d\" group=\"float\""
352 " type=\"int\"/>", base_reg++);
353 g_string_append_printf(s, "<reg name=\"fpcr\" bitsize=\"32\""
354 " regnum=\"%d\" group=\"float\""
355 " type=\"int\"/>", base_reg++);
357 /* Define the predicate registers. */
358 for (i = 0; i < 16; i++) {
359 g_string_append_printf(s,
360 "<reg name=\"p%d\" bitsize=\"%d\""
361 " regnum=\"%d\" type=\"svep\"/>",
362 i, pred_width, base_reg++);
364 g_string_append_printf(s,
365 "<reg name=\"ffr\" bitsize=\"%d\""
366 " regnum=\"%d\" group=\"vector\""
367 " type=\"svep\"/>",
368 pred_width, base_reg++);
370 /* Define the vector length pseudo-register. */
371 g_string_append_printf(s,
372 "<reg name=\"vg\" bitsize=\"64\""
373 " regnum=\"%d\" type=\"int\"/>",
374 base_reg++);
376 g_string_append_printf(s, "</feature>");
378 info->desc = g_string_free(s, false);
379 info->num = base_reg - orig_base_reg;
380 return info->num;