sev: update sev-inject-launch-secret to make gpa optional
[qemu/ar7.git] / target / i386 / kvm / kvm.c
blobe97f841757074fd733a5b58037fad3976e527d12
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/qapi-events-run-state.h"
17 #include "qapi/error.h"
18 #include <sys/ioctl.h>
19 #include <sys/utsname.h>
21 #include <linux/kvm.h>
22 #include "standard-headers/asm-x86/kvm_para.h"
24 #include "cpu.h"
25 #include "sysemu/sysemu.h"
26 #include "sysemu/hw_accel.h"
27 #include "sysemu/kvm_int.h"
28 #include "sysemu/runstate.h"
29 #include "kvm_i386.h"
30 #include "hyperv.h"
31 #include "hyperv-proto.h"
33 #include "exec/gdbstub.h"
34 #include "qemu/host-utils.h"
35 #include "qemu/main-loop.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #include "hw/i386/x86.h"
39 #include "hw/i386/apic.h"
40 #include "hw/i386/apic_internal.h"
41 #include "hw/i386/apic-msidef.h"
42 #include "hw/i386/intel_iommu.h"
43 #include "hw/i386/x86-iommu.h"
44 #include "hw/i386/e820_memory_layout.h"
45 #include "sysemu/sev.h"
47 #include "hw/pci/pci.h"
48 #include "hw/pci/msi.h"
49 #include "hw/pci/msix.h"
50 #include "migration/blocker.h"
51 #include "exec/memattrs.h"
52 #include "trace.h"
54 //#define DEBUG_KVM
56 #ifdef DEBUG_KVM
57 #define DPRINTF(fmt, ...) \
58 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
59 #else
60 #define DPRINTF(fmt, ...) \
61 do { } while (0)
62 #endif
64 /* From arch/x86/kvm/lapic.h */
65 #define KVM_APIC_BUS_CYCLE_NS 1
66 #define KVM_APIC_BUS_FREQUENCY (1000000000ULL / KVM_APIC_BUS_CYCLE_NS)
68 #define MSR_KVM_WALL_CLOCK 0x11
69 #define MSR_KVM_SYSTEM_TIME 0x12
71 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
72 * 255 kvm_msr_entry structs */
73 #define MSR_BUF_SIZE 4096
75 static void kvm_init_msrs(X86CPU *cpu);
77 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
78 KVM_CAP_INFO(SET_TSS_ADDR),
79 KVM_CAP_INFO(EXT_CPUID),
80 KVM_CAP_INFO(MP_STATE),
81 KVM_CAP_LAST_INFO
84 static bool has_msr_star;
85 static bool has_msr_hsave_pa;
86 static bool has_msr_tsc_aux;
87 static bool has_msr_tsc_adjust;
88 static bool has_msr_tsc_deadline;
89 static bool has_msr_feature_control;
90 static bool has_msr_misc_enable;
91 static bool has_msr_smbase;
92 static bool has_msr_bndcfgs;
93 static int lm_capable_kernel;
94 static bool has_msr_hv_hypercall;
95 static bool has_msr_hv_crash;
96 static bool has_msr_hv_reset;
97 static bool has_msr_hv_vpindex;
98 static bool hv_vpindex_settable;
99 static bool has_msr_hv_runtime;
100 static bool has_msr_hv_synic;
101 static bool has_msr_hv_stimer;
102 static bool has_msr_hv_frequencies;
103 static bool has_msr_hv_reenlightenment;
104 static bool has_msr_xss;
105 static bool has_msr_umwait;
106 static bool has_msr_spec_ctrl;
107 static bool has_msr_tsx_ctrl;
108 static bool has_msr_virt_ssbd;
109 static bool has_msr_smi_count;
110 static bool has_msr_arch_capabs;
111 static bool has_msr_core_capabs;
112 static bool has_msr_vmx_vmfunc;
113 static bool has_msr_ucode_rev;
114 static bool has_msr_vmx_procbased_ctls2;
115 static bool has_msr_perf_capabs;
116 static bool has_msr_pkrs;
118 static uint32_t has_architectural_pmu_version;
119 static uint32_t num_architectural_pmu_gp_counters;
120 static uint32_t num_architectural_pmu_fixed_counters;
122 static int has_xsave;
123 static int has_xcrs;
124 static int has_pit_state2;
125 static int has_exception_payload;
127 static bool has_msr_mcg_ext_ctl;
129 static struct kvm_cpuid2 *cpuid_cache;
130 static struct kvm_msr_list *kvm_feature_msrs;
132 int kvm_has_pit_state2(void)
134 return has_pit_state2;
137 bool kvm_has_smm(void)
139 return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
142 bool kvm_has_adjust_clock_stable(void)
144 int ret = kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
146 return (ret == KVM_CLOCK_TSC_STABLE);
149 bool kvm_has_adjust_clock(void)
151 return kvm_check_extension(kvm_state, KVM_CAP_ADJUST_CLOCK);
154 bool kvm_has_exception_payload(void)
156 return has_exception_payload;
159 static bool kvm_x2apic_api_set_flags(uint64_t flags)
161 KVMState *s = KVM_STATE(current_accel());
163 return !kvm_vm_enable_cap(s, KVM_CAP_X2APIC_API, 0, flags);
166 #define MEMORIZE(fn, _result) \
167 ({ \
168 static bool _memorized; \
170 if (_memorized) { \
171 return _result; \
173 _memorized = true; \
174 _result = fn; \
177 static bool has_x2apic_api;
179 bool kvm_has_x2apic_api(void)
181 return has_x2apic_api;
184 bool kvm_enable_x2apic(void)
186 return MEMORIZE(
187 kvm_x2apic_api_set_flags(KVM_X2APIC_API_USE_32BIT_IDS |
188 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK),
189 has_x2apic_api);
192 bool kvm_hv_vpindex_settable(void)
194 return hv_vpindex_settable;
197 static int kvm_get_tsc(CPUState *cs)
199 X86CPU *cpu = X86_CPU(cs);
200 CPUX86State *env = &cpu->env;
201 struct {
202 struct kvm_msrs info;
203 struct kvm_msr_entry entries[1];
204 } msr_data = {};
205 int ret;
207 if (env->tsc_valid) {
208 return 0;
211 memset(&msr_data, 0, sizeof(msr_data));
212 msr_data.info.nmsrs = 1;
213 msr_data.entries[0].index = MSR_IA32_TSC;
214 env->tsc_valid = !runstate_is_running();
216 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
217 if (ret < 0) {
218 return ret;
221 assert(ret == 1);
222 env->tsc = msr_data.entries[0].data;
223 return 0;
226 static inline void do_kvm_synchronize_tsc(CPUState *cpu, run_on_cpu_data arg)
228 kvm_get_tsc(cpu);
231 void kvm_synchronize_all_tsc(void)
233 CPUState *cpu;
235 if (kvm_enabled()) {
236 CPU_FOREACH(cpu) {
237 run_on_cpu(cpu, do_kvm_synchronize_tsc, RUN_ON_CPU_NULL);
242 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
244 struct kvm_cpuid2 *cpuid;
245 int r, size;
247 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
248 cpuid = g_malloc0(size);
249 cpuid->nent = max;
250 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
251 if (r == 0 && cpuid->nent >= max) {
252 r = -E2BIG;
254 if (r < 0) {
255 if (r == -E2BIG) {
256 g_free(cpuid);
257 return NULL;
258 } else {
259 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
260 strerror(-r));
261 exit(1);
264 return cpuid;
267 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
268 * for all entries.
270 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
272 struct kvm_cpuid2 *cpuid;
273 int max = 1;
275 if (cpuid_cache != NULL) {
276 return cpuid_cache;
278 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
279 max *= 2;
281 cpuid_cache = cpuid;
282 return cpuid;
285 static bool host_tsx_broken(void)
287 int family, model, stepping;\
288 char vendor[CPUID_VENDOR_SZ + 1];
290 host_vendor_fms(vendor, &family, &model, &stepping);
292 /* Check if we are running on a Haswell host known to have broken TSX */
293 return !strcmp(vendor, CPUID_VENDOR_INTEL) &&
294 (family == 6) &&
295 ((model == 63 && stepping < 4) ||
296 model == 60 || model == 69 || model == 70);
299 /* Returns the value for a specific register on the cpuid entry
301 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
303 uint32_t ret = 0;
304 switch (reg) {
305 case R_EAX:
306 ret = entry->eax;
307 break;
308 case R_EBX:
309 ret = entry->ebx;
310 break;
311 case R_ECX:
312 ret = entry->ecx;
313 break;
314 case R_EDX:
315 ret = entry->edx;
316 break;
318 return ret;
321 /* Find matching entry for function/index on kvm_cpuid2 struct
323 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
324 uint32_t function,
325 uint32_t index)
327 int i;
328 for (i = 0; i < cpuid->nent; ++i) {
329 if (cpuid->entries[i].function == function &&
330 cpuid->entries[i].index == index) {
331 return &cpuid->entries[i];
334 /* not found: */
335 return NULL;
338 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
339 uint32_t index, int reg)
341 struct kvm_cpuid2 *cpuid;
342 uint32_t ret = 0;
343 uint32_t cpuid_1_edx;
345 cpuid = get_supported_cpuid(s);
347 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
348 if (entry) {
349 ret = cpuid_entry_get_reg(entry, reg);
352 /* Fixups for the data returned by KVM, below */
354 if (function == 1 && reg == R_EDX) {
355 /* KVM before 2.6.30 misreports the following features */
356 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
357 } else if (function == 1 && reg == R_ECX) {
358 /* We can set the hypervisor flag, even if KVM does not return it on
359 * GET_SUPPORTED_CPUID
361 ret |= CPUID_EXT_HYPERVISOR;
362 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
363 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
364 * and the irqchip is in the kernel.
366 if (kvm_irqchip_in_kernel() &&
367 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
368 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
371 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
372 * without the in-kernel irqchip
374 if (!kvm_irqchip_in_kernel()) {
375 ret &= ~CPUID_EXT_X2APIC;
378 if (enable_cpu_pm) {
379 int disable_exits = kvm_check_extension(s,
380 KVM_CAP_X86_DISABLE_EXITS);
382 if (disable_exits & KVM_X86_DISABLE_EXITS_MWAIT) {
383 ret |= CPUID_EXT_MONITOR;
386 } else if (function == 6 && reg == R_EAX) {
387 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
388 } else if (function == 7 && index == 0 && reg == R_EBX) {
389 if (host_tsx_broken()) {
390 ret &= ~(CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_HLE);
392 } else if (function == 7 && index == 0 && reg == R_EDX) {
394 * Linux v4.17-v4.20 incorrectly return ARCH_CAPABILITIES on SVM hosts.
395 * We can detect the bug by checking if MSR_IA32_ARCH_CAPABILITIES is
396 * returned by KVM_GET_MSR_INDEX_LIST.
398 if (!has_msr_arch_capabs) {
399 ret &= ~CPUID_7_0_EDX_ARCH_CAPABILITIES;
401 } else if (function == 0x80000001 && reg == R_ECX) {
403 * It's safe to enable TOPOEXT even if it's not returned by
404 * GET_SUPPORTED_CPUID. Unconditionally enabling TOPOEXT here allows
405 * us to keep CPU models including TOPOEXT runnable on older kernels.
407 ret |= CPUID_EXT3_TOPOEXT;
408 } else if (function == 0x80000001 && reg == R_EDX) {
409 /* On Intel, kvm returns cpuid according to the Intel spec,
410 * so add missing bits according to the AMD spec:
412 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
413 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
414 } else if (function == KVM_CPUID_FEATURES && reg == R_EAX) {
415 /* kvm_pv_unhalt is reported by GET_SUPPORTED_CPUID, but it can't
416 * be enabled without the in-kernel irqchip
418 if (!kvm_irqchip_in_kernel()) {
419 ret &= ~(1U << KVM_FEATURE_PV_UNHALT);
421 if (kvm_irqchip_is_split()) {
422 ret |= 1U << KVM_FEATURE_MSI_EXT_DEST_ID;
424 } else if (function == KVM_CPUID_FEATURES && reg == R_EDX) {
425 ret |= 1U << KVM_HINTS_REALTIME;
428 return ret;
431 uint64_t kvm_arch_get_supported_msr_feature(KVMState *s, uint32_t index)
433 struct {
434 struct kvm_msrs info;
435 struct kvm_msr_entry entries[1];
436 } msr_data = {};
437 uint64_t value;
438 uint32_t ret, can_be_one, must_be_one;
440 if (kvm_feature_msrs == NULL) { /* Host doesn't support feature MSRs */
441 return 0;
444 /* Check if requested MSR is supported feature MSR */
445 int i;
446 for (i = 0; i < kvm_feature_msrs->nmsrs; i++)
447 if (kvm_feature_msrs->indices[i] == index) {
448 break;
450 if (i == kvm_feature_msrs->nmsrs) {
451 return 0; /* if the feature MSR is not supported, simply return 0 */
454 msr_data.info.nmsrs = 1;
455 msr_data.entries[0].index = index;
457 ret = kvm_ioctl(s, KVM_GET_MSRS, &msr_data);
458 if (ret != 1) {
459 error_report("KVM get MSR (index=0x%x) feature failed, %s",
460 index, strerror(-ret));
461 exit(1);
464 value = msr_data.entries[0].data;
465 switch (index) {
466 case MSR_IA32_VMX_PROCBASED_CTLS2:
467 if (!has_msr_vmx_procbased_ctls2) {
468 /* KVM forgot to add these bits for some time, do this ourselves. */
469 if (kvm_arch_get_supported_cpuid(s, 0xD, 1, R_ECX) &
470 CPUID_XSAVE_XSAVES) {
471 value |= (uint64_t)VMX_SECONDARY_EXEC_XSAVES << 32;
473 if (kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX) &
474 CPUID_EXT_RDRAND) {
475 value |= (uint64_t)VMX_SECONDARY_EXEC_RDRAND_EXITING << 32;
477 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
478 CPUID_7_0_EBX_INVPCID) {
479 value |= (uint64_t)VMX_SECONDARY_EXEC_ENABLE_INVPCID << 32;
481 if (kvm_arch_get_supported_cpuid(s, 7, 0, R_EBX) &
482 CPUID_7_0_EBX_RDSEED) {
483 value |= (uint64_t)VMX_SECONDARY_EXEC_RDSEED_EXITING << 32;
485 if (kvm_arch_get_supported_cpuid(s, 0x80000001, 0, R_EDX) &
486 CPUID_EXT2_RDTSCP) {
487 value |= (uint64_t)VMX_SECONDARY_EXEC_RDTSCP << 32;
490 /* fall through */
491 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
492 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
493 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
494 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
496 * Return true for bits that can be one, but do not have to be one.
497 * The SDM tells us which bits could have a "must be one" setting,
498 * so we can do the opposite transformation in make_vmx_msr_value.
500 must_be_one = (uint32_t)value;
501 can_be_one = (uint32_t)(value >> 32);
502 return can_be_one & ~must_be_one;
504 default:
505 return value;
509 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
510 int *max_banks)
512 int r;
514 r = kvm_check_extension(s, KVM_CAP_MCE);
515 if (r > 0) {
516 *max_banks = r;
517 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
519 return -ENOSYS;
522 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
524 CPUState *cs = CPU(cpu);
525 CPUX86State *env = &cpu->env;
526 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
527 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
528 uint64_t mcg_status = MCG_STATUS_MCIP;
529 int flags = 0;
531 if (code == BUS_MCEERR_AR) {
532 status |= MCI_STATUS_AR | 0x134;
533 mcg_status |= MCG_STATUS_EIPV;
534 } else {
535 status |= 0xc0;
536 mcg_status |= MCG_STATUS_RIPV;
539 flags = cpu_x86_support_mca_broadcast(env) ? MCE_INJECT_BROADCAST : 0;
540 /* We need to read back the value of MSR_EXT_MCG_CTL that was set by the
541 * guest kernel back into env->mcg_ext_ctl.
543 cpu_synchronize_state(cs);
544 if (env->mcg_ext_ctl & MCG_EXT_CTL_LMCE_EN) {
545 mcg_status |= MCG_STATUS_LMCE;
546 flags = 0;
549 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
550 (MCM_ADDR_PHYS << 6) | 0xc, flags);
553 static void emit_hypervisor_memory_failure(MemoryFailureAction action, bool ar)
555 MemoryFailureFlags mff = {.action_required = ar, .recursive = false};
557 qapi_event_send_memory_failure(MEMORY_FAILURE_RECIPIENT_HYPERVISOR, action,
558 &mff);
561 static void hardware_memory_error(void *host_addr)
563 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_FATAL, true);
564 error_report("QEMU got Hardware memory error at addr %p", host_addr);
565 exit(1);
568 void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
570 X86CPU *cpu = X86_CPU(c);
571 CPUX86State *env = &cpu->env;
572 ram_addr_t ram_addr;
573 hwaddr paddr;
575 /* If we get an action required MCE, it has been injected by KVM
576 * while the VM was running. An action optional MCE instead should
577 * be coming from the main thread, which qemu_init_sigbus identifies
578 * as the "early kill" thread.
580 assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
582 if ((env->mcg_cap & MCG_SER_P) && addr) {
583 ram_addr = qemu_ram_addr_from_host(addr);
584 if (ram_addr != RAM_ADDR_INVALID &&
585 kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
586 kvm_hwpoison_page_add(ram_addr);
587 kvm_mce_inject(cpu, paddr, code);
590 * Use different logging severity based on error type.
591 * If there is additional MCE reporting on the hypervisor, QEMU VA
592 * could be another source to identify the PA and MCE details.
594 if (code == BUS_MCEERR_AR) {
595 error_report("Guest MCE Memory Error at QEMU addr %p and "
596 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
597 addr, paddr, "BUS_MCEERR_AR");
598 } else {
599 warn_report("Guest MCE Memory Error at QEMU addr %p and "
600 "GUEST addr 0x%" HWADDR_PRIx " of type %s injected",
601 addr, paddr, "BUS_MCEERR_AO");
604 return;
607 if (code == BUS_MCEERR_AO) {
608 warn_report("Hardware memory error at addr %p of type %s "
609 "for memory used by QEMU itself instead of guest system!",
610 addr, "BUS_MCEERR_AO");
614 if (code == BUS_MCEERR_AR) {
615 hardware_memory_error(addr);
618 /* Hope we are lucky for AO MCE, just notify a event */
619 emit_hypervisor_memory_failure(MEMORY_FAILURE_ACTION_IGNORE, false);
622 static void kvm_reset_exception(CPUX86State *env)
624 env->exception_nr = -1;
625 env->exception_pending = 0;
626 env->exception_injected = 0;
627 env->exception_has_payload = false;
628 env->exception_payload = 0;
631 static void kvm_queue_exception(CPUX86State *env,
632 int32_t exception_nr,
633 uint8_t exception_has_payload,
634 uint64_t exception_payload)
636 assert(env->exception_nr == -1);
637 assert(!env->exception_pending);
638 assert(!env->exception_injected);
639 assert(!env->exception_has_payload);
641 env->exception_nr = exception_nr;
643 if (has_exception_payload) {
644 env->exception_pending = 1;
646 env->exception_has_payload = exception_has_payload;
647 env->exception_payload = exception_payload;
648 } else {
649 env->exception_injected = 1;
651 if (exception_nr == EXCP01_DB) {
652 assert(exception_has_payload);
653 env->dr[6] = exception_payload;
654 } else if (exception_nr == EXCP0E_PAGE) {
655 assert(exception_has_payload);
656 env->cr[2] = exception_payload;
657 } else {
658 assert(!exception_has_payload);
663 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
665 CPUX86State *env = &cpu->env;
667 if (!kvm_has_vcpu_events() && env->exception_nr == EXCP12_MCHK) {
668 unsigned int bank, bank_num = env->mcg_cap & 0xff;
669 struct kvm_x86_mce mce;
671 kvm_reset_exception(env);
674 * There must be at least one bank in use if an MCE is pending.
675 * Find it and use its values for the event injection.
677 for (bank = 0; bank < bank_num; bank++) {
678 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
679 break;
682 assert(bank < bank_num);
684 mce.bank = bank;
685 mce.status = env->mce_banks[bank * 4 + 1];
686 mce.mcg_status = env->mcg_status;
687 mce.addr = env->mce_banks[bank * 4 + 2];
688 mce.misc = env->mce_banks[bank * 4 + 3];
690 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
692 return 0;
695 static void cpu_update_state(void *opaque, int running, RunState state)
697 CPUX86State *env = opaque;
699 if (running) {
700 env->tsc_valid = false;
704 unsigned long kvm_arch_vcpu_id(CPUState *cs)
706 X86CPU *cpu = X86_CPU(cs);
707 return cpu->apic_id;
710 #ifndef KVM_CPUID_SIGNATURE_NEXT
711 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
712 #endif
714 static bool hyperv_enabled(X86CPU *cpu)
716 CPUState *cs = CPU(cpu);
717 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
718 ((cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) ||
719 cpu->hyperv_features || cpu->hyperv_passthrough);
723 * Check whether target_freq is within conservative
724 * ntp correctable bounds (250ppm) of freq
726 static inline bool freq_within_bounds(int freq, int target_freq)
728 int max_freq = freq + (freq * 250 / 1000000);
729 int min_freq = freq - (freq * 250 / 1000000);
731 if (target_freq >= min_freq && target_freq <= max_freq) {
732 return true;
735 return false;
738 static int kvm_arch_set_tsc_khz(CPUState *cs)
740 X86CPU *cpu = X86_CPU(cs);
741 CPUX86State *env = &cpu->env;
742 int r, cur_freq;
743 bool set_ioctl = false;
745 if (!env->tsc_khz) {
746 return 0;
749 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
750 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) : -ENOTSUP;
753 * If TSC scaling is supported, attempt to set TSC frequency.
755 if (kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL)) {
756 set_ioctl = true;
760 * If desired TSC frequency is within bounds of NTP correction,
761 * attempt to set TSC frequency.
763 if (cur_freq != -ENOTSUP && freq_within_bounds(cur_freq, env->tsc_khz)) {
764 set_ioctl = true;
767 r = set_ioctl ?
768 kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz) :
769 -ENOTSUP;
771 if (r < 0) {
772 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
773 * TSC frequency doesn't match the one we want.
775 cur_freq = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
776 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
777 -ENOTSUP;
778 if (cur_freq <= 0 || cur_freq != env->tsc_khz) {
779 warn_report("TSC frequency mismatch between "
780 "VM (%" PRId64 " kHz) and host (%d kHz), "
781 "and TSC scaling unavailable",
782 env->tsc_khz, cur_freq);
783 return r;
787 return 0;
790 static bool tsc_is_stable_and_known(CPUX86State *env)
792 if (!env->tsc_khz) {
793 return false;
795 return (env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC)
796 || env->user_tsc_khz;
799 static struct {
800 const char *desc;
801 struct {
802 uint32_t fw;
803 uint32_t bits;
804 } flags[2];
805 uint64_t dependencies;
806 } kvm_hyperv_properties[] = {
807 [HYPERV_FEAT_RELAXED] = {
808 .desc = "relaxed timing (hv-relaxed)",
809 .flags = {
810 {.fw = FEAT_HYPERV_EAX,
811 .bits = HV_HYPERCALL_AVAILABLE},
812 {.fw = FEAT_HV_RECOMM_EAX,
813 .bits = HV_RELAXED_TIMING_RECOMMENDED}
816 [HYPERV_FEAT_VAPIC] = {
817 .desc = "virtual APIC (hv-vapic)",
818 .flags = {
819 {.fw = FEAT_HYPERV_EAX,
820 .bits = HV_HYPERCALL_AVAILABLE | HV_APIC_ACCESS_AVAILABLE},
821 {.fw = FEAT_HV_RECOMM_EAX,
822 .bits = HV_APIC_ACCESS_RECOMMENDED}
825 [HYPERV_FEAT_TIME] = {
826 .desc = "clocksources (hv-time)",
827 .flags = {
828 {.fw = FEAT_HYPERV_EAX,
829 .bits = HV_HYPERCALL_AVAILABLE | HV_TIME_REF_COUNT_AVAILABLE |
830 HV_REFERENCE_TSC_AVAILABLE}
833 [HYPERV_FEAT_CRASH] = {
834 .desc = "crash MSRs (hv-crash)",
835 .flags = {
836 {.fw = FEAT_HYPERV_EDX,
837 .bits = HV_GUEST_CRASH_MSR_AVAILABLE}
840 [HYPERV_FEAT_RESET] = {
841 .desc = "reset MSR (hv-reset)",
842 .flags = {
843 {.fw = FEAT_HYPERV_EAX,
844 .bits = HV_RESET_AVAILABLE}
847 [HYPERV_FEAT_VPINDEX] = {
848 .desc = "VP_INDEX MSR (hv-vpindex)",
849 .flags = {
850 {.fw = FEAT_HYPERV_EAX,
851 .bits = HV_VP_INDEX_AVAILABLE}
854 [HYPERV_FEAT_RUNTIME] = {
855 .desc = "VP_RUNTIME MSR (hv-runtime)",
856 .flags = {
857 {.fw = FEAT_HYPERV_EAX,
858 .bits = HV_VP_RUNTIME_AVAILABLE}
861 [HYPERV_FEAT_SYNIC] = {
862 .desc = "synthetic interrupt controller (hv-synic)",
863 .flags = {
864 {.fw = FEAT_HYPERV_EAX,
865 .bits = HV_SYNIC_AVAILABLE}
868 [HYPERV_FEAT_STIMER] = {
869 .desc = "synthetic timers (hv-stimer)",
870 .flags = {
871 {.fw = FEAT_HYPERV_EAX,
872 .bits = HV_SYNTIMERS_AVAILABLE}
874 .dependencies = BIT(HYPERV_FEAT_SYNIC) | BIT(HYPERV_FEAT_TIME)
876 [HYPERV_FEAT_FREQUENCIES] = {
877 .desc = "frequency MSRs (hv-frequencies)",
878 .flags = {
879 {.fw = FEAT_HYPERV_EAX,
880 .bits = HV_ACCESS_FREQUENCY_MSRS},
881 {.fw = FEAT_HYPERV_EDX,
882 .bits = HV_FREQUENCY_MSRS_AVAILABLE}
885 [HYPERV_FEAT_REENLIGHTENMENT] = {
886 .desc = "reenlightenment MSRs (hv-reenlightenment)",
887 .flags = {
888 {.fw = FEAT_HYPERV_EAX,
889 .bits = HV_ACCESS_REENLIGHTENMENTS_CONTROL}
892 [HYPERV_FEAT_TLBFLUSH] = {
893 .desc = "paravirtualized TLB flush (hv-tlbflush)",
894 .flags = {
895 {.fw = FEAT_HV_RECOMM_EAX,
896 .bits = HV_REMOTE_TLB_FLUSH_RECOMMENDED |
897 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
899 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
901 [HYPERV_FEAT_EVMCS] = {
902 .desc = "enlightened VMCS (hv-evmcs)",
903 .flags = {
904 {.fw = FEAT_HV_RECOMM_EAX,
905 .bits = HV_ENLIGHTENED_VMCS_RECOMMENDED}
907 .dependencies = BIT(HYPERV_FEAT_VAPIC)
909 [HYPERV_FEAT_IPI] = {
910 .desc = "paravirtualized IPI (hv-ipi)",
911 .flags = {
912 {.fw = FEAT_HV_RECOMM_EAX,
913 .bits = HV_CLUSTER_IPI_RECOMMENDED |
914 HV_EX_PROCESSOR_MASKS_RECOMMENDED}
916 .dependencies = BIT(HYPERV_FEAT_VPINDEX)
918 [HYPERV_FEAT_STIMER_DIRECT] = {
919 .desc = "direct mode synthetic timers (hv-stimer-direct)",
920 .flags = {
921 {.fw = FEAT_HYPERV_EDX,
922 .bits = HV_STIMER_DIRECT_MODE_AVAILABLE}
924 .dependencies = BIT(HYPERV_FEAT_STIMER)
928 static struct kvm_cpuid2 *try_get_hv_cpuid(CPUState *cs, int max)
930 struct kvm_cpuid2 *cpuid;
931 int r, size;
933 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
934 cpuid = g_malloc0(size);
935 cpuid->nent = max;
937 r = kvm_vcpu_ioctl(cs, KVM_GET_SUPPORTED_HV_CPUID, cpuid);
938 if (r == 0 && cpuid->nent >= max) {
939 r = -E2BIG;
941 if (r < 0) {
942 if (r == -E2BIG) {
943 g_free(cpuid);
944 return NULL;
945 } else {
946 fprintf(stderr, "KVM_GET_SUPPORTED_HV_CPUID failed: %s\n",
947 strerror(-r));
948 exit(1);
951 return cpuid;
955 * Run KVM_GET_SUPPORTED_HV_CPUID ioctl(), allocating a buffer large enough
956 * for all entries.
958 static struct kvm_cpuid2 *get_supported_hv_cpuid(CPUState *cs)
960 struct kvm_cpuid2 *cpuid;
961 int max = 7; /* 0x40000000..0x40000005, 0x4000000A */
964 * When the buffer is too small, KVM_GET_SUPPORTED_HV_CPUID fails with
965 * -E2BIG, however, it doesn't report back the right size. Keep increasing
966 * it and re-trying until we succeed.
968 while ((cpuid = try_get_hv_cpuid(cs, max)) == NULL) {
969 max++;
971 return cpuid;
975 * When KVM_GET_SUPPORTED_HV_CPUID is not supported we fill CPUID feature
976 * leaves from KVM_CAP_HYPERV* and present MSRs data.
978 static struct kvm_cpuid2 *get_supported_hv_cpuid_legacy(CPUState *cs)
980 X86CPU *cpu = X86_CPU(cs);
981 struct kvm_cpuid2 *cpuid;
982 struct kvm_cpuid_entry2 *entry_feat, *entry_recomm;
984 /* HV_CPUID_FEATURES, HV_CPUID_ENLIGHTMENT_INFO */
985 cpuid = g_malloc0(sizeof(*cpuid) + 2 * sizeof(*cpuid->entries));
986 cpuid->nent = 2;
988 /* HV_CPUID_VENDOR_AND_MAX_FUNCTIONS */
989 entry_feat = &cpuid->entries[0];
990 entry_feat->function = HV_CPUID_FEATURES;
992 entry_recomm = &cpuid->entries[1];
993 entry_recomm->function = HV_CPUID_ENLIGHTMENT_INFO;
994 entry_recomm->ebx = cpu->hyperv_spinlock_attempts;
996 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0) {
997 entry_feat->eax |= HV_HYPERCALL_AVAILABLE;
998 entry_feat->eax |= HV_APIC_ACCESS_AVAILABLE;
999 entry_feat->edx |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1000 entry_recomm->eax |= HV_RELAXED_TIMING_RECOMMENDED;
1001 entry_recomm->eax |= HV_APIC_ACCESS_RECOMMENDED;
1004 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
1005 entry_feat->eax |= HV_TIME_REF_COUNT_AVAILABLE;
1006 entry_feat->eax |= HV_REFERENCE_TSC_AVAILABLE;
1009 if (has_msr_hv_frequencies) {
1010 entry_feat->eax |= HV_ACCESS_FREQUENCY_MSRS;
1011 entry_feat->edx |= HV_FREQUENCY_MSRS_AVAILABLE;
1014 if (has_msr_hv_crash) {
1015 entry_feat->edx |= HV_GUEST_CRASH_MSR_AVAILABLE;
1018 if (has_msr_hv_reenlightenment) {
1019 entry_feat->eax |= HV_ACCESS_REENLIGHTENMENTS_CONTROL;
1022 if (has_msr_hv_reset) {
1023 entry_feat->eax |= HV_RESET_AVAILABLE;
1026 if (has_msr_hv_vpindex) {
1027 entry_feat->eax |= HV_VP_INDEX_AVAILABLE;
1030 if (has_msr_hv_runtime) {
1031 entry_feat->eax |= HV_VP_RUNTIME_AVAILABLE;
1034 if (has_msr_hv_synic) {
1035 unsigned int cap = cpu->hyperv_synic_kvm_only ?
1036 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1038 if (kvm_check_extension(cs->kvm_state, cap) > 0) {
1039 entry_feat->eax |= HV_SYNIC_AVAILABLE;
1043 if (has_msr_hv_stimer) {
1044 entry_feat->eax |= HV_SYNTIMERS_AVAILABLE;
1047 if (kvm_check_extension(cs->kvm_state,
1048 KVM_CAP_HYPERV_TLBFLUSH) > 0) {
1049 entry_recomm->eax |= HV_REMOTE_TLB_FLUSH_RECOMMENDED;
1050 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1053 if (kvm_check_extension(cs->kvm_state,
1054 KVM_CAP_HYPERV_ENLIGHTENED_VMCS) > 0) {
1055 entry_recomm->eax |= HV_ENLIGHTENED_VMCS_RECOMMENDED;
1058 if (kvm_check_extension(cs->kvm_state,
1059 KVM_CAP_HYPERV_SEND_IPI) > 0) {
1060 entry_recomm->eax |= HV_CLUSTER_IPI_RECOMMENDED;
1061 entry_recomm->eax |= HV_EX_PROCESSOR_MASKS_RECOMMENDED;
1064 return cpuid;
1067 static int hv_cpuid_get_fw(struct kvm_cpuid2 *cpuid, int fw, uint32_t *r)
1069 struct kvm_cpuid_entry2 *entry;
1070 uint32_t func;
1071 int reg;
1073 switch (fw) {
1074 case FEAT_HYPERV_EAX:
1075 reg = R_EAX;
1076 func = HV_CPUID_FEATURES;
1077 break;
1078 case FEAT_HYPERV_EDX:
1079 reg = R_EDX;
1080 func = HV_CPUID_FEATURES;
1081 break;
1082 case FEAT_HV_RECOMM_EAX:
1083 reg = R_EAX;
1084 func = HV_CPUID_ENLIGHTMENT_INFO;
1085 break;
1086 default:
1087 return -EINVAL;
1090 entry = cpuid_find_entry(cpuid, func, 0);
1091 if (!entry) {
1092 return -ENOENT;
1095 switch (reg) {
1096 case R_EAX:
1097 *r = entry->eax;
1098 break;
1099 case R_EDX:
1100 *r = entry->edx;
1101 break;
1102 default:
1103 return -EINVAL;
1106 return 0;
1109 static int hv_cpuid_check_and_set(CPUState *cs, struct kvm_cpuid2 *cpuid,
1110 int feature)
1112 X86CPU *cpu = X86_CPU(cs);
1113 CPUX86State *env = &cpu->env;
1114 uint32_t r, fw, bits;
1115 uint64_t deps;
1116 int i, dep_feat;
1118 if (!hyperv_feat_enabled(cpu, feature) && !cpu->hyperv_passthrough) {
1119 return 0;
1122 deps = kvm_hyperv_properties[feature].dependencies;
1123 while (deps) {
1124 dep_feat = ctz64(deps);
1125 if (!(hyperv_feat_enabled(cpu, dep_feat))) {
1126 fprintf(stderr,
1127 "Hyper-V %s requires Hyper-V %s\n",
1128 kvm_hyperv_properties[feature].desc,
1129 kvm_hyperv_properties[dep_feat].desc);
1130 return 1;
1132 deps &= ~(1ull << dep_feat);
1135 for (i = 0; i < ARRAY_SIZE(kvm_hyperv_properties[feature].flags); i++) {
1136 fw = kvm_hyperv_properties[feature].flags[i].fw;
1137 bits = kvm_hyperv_properties[feature].flags[i].bits;
1139 if (!fw) {
1140 continue;
1143 if (hv_cpuid_get_fw(cpuid, fw, &r) || (r & bits) != bits) {
1144 if (hyperv_feat_enabled(cpu, feature)) {
1145 fprintf(stderr,
1146 "Hyper-V %s is not supported by kernel\n",
1147 kvm_hyperv_properties[feature].desc);
1148 return 1;
1149 } else {
1150 return 0;
1154 env->features[fw] |= bits;
1157 if (cpu->hyperv_passthrough) {
1158 cpu->hyperv_features |= BIT(feature);
1161 return 0;
1165 * Fill in Hyper-V CPUIDs. Returns the number of entries filled in cpuid_ent in
1166 * case of success, errno < 0 in case of failure and 0 when no Hyper-V
1167 * extentions are enabled.
1169 static int hyperv_handle_properties(CPUState *cs,
1170 struct kvm_cpuid_entry2 *cpuid_ent)
1172 X86CPU *cpu = X86_CPU(cs);
1173 CPUX86State *env = &cpu->env;
1174 struct kvm_cpuid2 *cpuid;
1175 struct kvm_cpuid_entry2 *c;
1176 uint32_t cpuid_i = 0;
1177 int r;
1179 if (!hyperv_enabled(cpu))
1180 return 0;
1182 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ||
1183 cpu->hyperv_passthrough) {
1184 uint16_t evmcs_version;
1186 r = kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_ENLIGHTENED_VMCS, 0,
1187 (uintptr_t)&evmcs_version);
1189 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) && r) {
1190 fprintf(stderr, "Hyper-V %s is not supported by kernel\n",
1191 kvm_hyperv_properties[HYPERV_FEAT_EVMCS].desc);
1192 return -ENOSYS;
1195 if (!r) {
1196 env->features[FEAT_HV_RECOMM_EAX] |=
1197 HV_ENLIGHTENED_VMCS_RECOMMENDED;
1198 env->features[FEAT_HV_NESTED_EAX] = evmcs_version;
1202 if (kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_CPUID) > 0) {
1203 cpuid = get_supported_hv_cpuid(cs);
1204 } else {
1205 cpuid = get_supported_hv_cpuid_legacy(cs);
1208 if (cpu->hyperv_passthrough) {
1209 memcpy(cpuid_ent, &cpuid->entries[0],
1210 cpuid->nent * sizeof(cpuid->entries[0]));
1212 c = cpuid_find_entry(cpuid, HV_CPUID_VENDOR_AND_MAX_FUNCTIONS, 0);
1213 if (c) {
1214 cpu->hyperv_vendor_id[0] = c->ebx;
1215 cpu->hyperv_vendor_id[1] = c->ecx;
1216 cpu->hyperv_vendor_id[2] = c->edx;
1219 c = cpuid_find_entry(cpuid, HV_CPUID_INTERFACE, 0);
1220 if (c) {
1221 cpu->hyperv_interface_id[0] = c->eax;
1222 cpu->hyperv_interface_id[1] = c->ebx;
1223 cpu->hyperv_interface_id[2] = c->ecx;
1224 cpu->hyperv_interface_id[3] = c->edx;
1227 c = cpuid_find_entry(cpuid, HV_CPUID_VERSION, 0);
1228 if (c) {
1229 cpu->hyperv_version_id[0] = c->eax;
1230 cpu->hyperv_version_id[1] = c->ebx;
1231 cpu->hyperv_version_id[2] = c->ecx;
1232 cpu->hyperv_version_id[3] = c->edx;
1235 c = cpuid_find_entry(cpuid, HV_CPUID_FEATURES, 0);
1236 if (c) {
1237 env->features[FEAT_HYPERV_EAX] = c->eax;
1238 env->features[FEAT_HYPERV_EBX] = c->ebx;
1239 env->features[FEAT_HYPERV_EDX] = c->edx;
1242 c = cpuid_find_entry(cpuid, HV_CPUID_IMPLEMENT_LIMITS, 0);
1243 if (c) {
1244 cpu->hv_max_vps = c->eax;
1245 cpu->hyperv_limits[0] = c->ebx;
1246 cpu->hyperv_limits[1] = c->ecx;
1247 cpu->hyperv_limits[2] = c->edx;
1250 c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1251 if (c) {
1252 env->features[FEAT_HV_RECOMM_EAX] = c->eax;
1254 /* hv-spinlocks may have been overriden */
1255 if (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_NOTIFY) {
1256 c->ebx = cpu->hyperv_spinlock_attempts;
1259 c = cpuid_find_entry(cpuid, HV_CPUID_NESTED_FEATURES, 0);
1260 if (c) {
1261 env->features[FEAT_HV_NESTED_EAX] = c->eax;
1265 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_ON) {
1266 env->features[FEAT_HV_RECOMM_EAX] |= HV_NO_NONARCH_CORESHARING;
1267 } else if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO) {
1268 c = cpuid_find_entry(cpuid, HV_CPUID_ENLIGHTMENT_INFO, 0);
1269 if (c) {
1270 env->features[FEAT_HV_RECOMM_EAX] |=
1271 c->eax & HV_NO_NONARCH_CORESHARING;
1275 /* Features */
1276 r = hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RELAXED);
1277 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VAPIC);
1278 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TIME);
1279 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_CRASH);
1280 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RESET);
1281 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_VPINDEX);
1282 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_RUNTIME);
1283 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_SYNIC);
1284 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER);
1285 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_FREQUENCIES);
1286 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_REENLIGHTENMENT);
1287 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_TLBFLUSH);
1288 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_EVMCS);
1289 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_IPI);
1290 r |= hv_cpuid_check_and_set(cs, cpuid, HYPERV_FEAT_STIMER_DIRECT);
1292 /* Additional dependencies not covered by kvm_hyperv_properties[] */
1293 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC) &&
1294 !cpu->hyperv_synic_kvm_only &&
1295 !hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)) {
1296 fprintf(stderr, "Hyper-V %s requires Hyper-V %s\n",
1297 kvm_hyperv_properties[HYPERV_FEAT_SYNIC].desc,
1298 kvm_hyperv_properties[HYPERV_FEAT_VPINDEX].desc);
1299 r |= 1;
1302 /* Not exposed by KVM but needed to make CPU hotplug in Windows work */
1303 env->features[FEAT_HYPERV_EDX] |= HV_CPU_DYNAMIC_PARTITIONING_AVAILABLE;
1305 if (r) {
1306 r = -ENOSYS;
1307 goto free;
1310 if (cpu->hyperv_passthrough) {
1311 /* We already copied all feature words from KVM as is */
1312 r = cpuid->nent;
1313 goto free;
1316 c = &cpuid_ent[cpuid_i++];
1317 c->function = HV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
1318 c->eax = hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS) ?
1319 HV_CPUID_NESTED_FEATURES : HV_CPUID_IMPLEMENT_LIMITS;
1320 c->ebx = cpu->hyperv_vendor_id[0];
1321 c->ecx = cpu->hyperv_vendor_id[1];
1322 c->edx = cpu->hyperv_vendor_id[2];
1324 c = &cpuid_ent[cpuid_i++];
1325 c->function = HV_CPUID_INTERFACE;
1326 c->eax = cpu->hyperv_interface_id[0];
1327 c->ebx = cpu->hyperv_interface_id[1];
1328 c->ecx = cpu->hyperv_interface_id[2];
1329 c->edx = cpu->hyperv_interface_id[3];
1331 c = &cpuid_ent[cpuid_i++];
1332 c->function = HV_CPUID_VERSION;
1333 c->eax = cpu->hyperv_version_id[0];
1334 c->ebx = cpu->hyperv_version_id[1];
1335 c->ecx = cpu->hyperv_version_id[2];
1336 c->edx = cpu->hyperv_version_id[3];
1338 c = &cpuid_ent[cpuid_i++];
1339 c->function = HV_CPUID_FEATURES;
1340 c->eax = env->features[FEAT_HYPERV_EAX];
1341 c->ebx = env->features[FEAT_HYPERV_EBX];
1342 c->edx = env->features[FEAT_HYPERV_EDX];
1344 c = &cpuid_ent[cpuid_i++];
1345 c->function = HV_CPUID_ENLIGHTMENT_INFO;
1346 c->eax = env->features[FEAT_HV_RECOMM_EAX];
1347 c->ebx = cpu->hyperv_spinlock_attempts;
1349 c = &cpuid_ent[cpuid_i++];
1350 c->function = HV_CPUID_IMPLEMENT_LIMITS;
1351 c->eax = cpu->hv_max_vps;
1352 c->ebx = cpu->hyperv_limits[0];
1353 c->ecx = cpu->hyperv_limits[1];
1354 c->edx = cpu->hyperv_limits[2];
1356 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_EVMCS)) {
1357 __u32 function;
1359 /* Create zeroed 0x40000006..0x40000009 leaves */
1360 for (function = HV_CPUID_IMPLEMENT_LIMITS + 1;
1361 function < HV_CPUID_NESTED_FEATURES; function++) {
1362 c = &cpuid_ent[cpuid_i++];
1363 c->function = function;
1366 c = &cpuid_ent[cpuid_i++];
1367 c->function = HV_CPUID_NESTED_FEATURES;
1368 c->eax = env->features[FEAT_HV_NESTED_EAX];
1370 r = cpuid_i;
1372 free:
1373 g_free(cpuid);
1375 return r;
1378 static Error *hv_passthrough_mig_blocker;
1379 static Error *hv_no_nonarch_cs_mig_blocker;
1381 static int hyperv_init_vcpu(X86CPU *cpu)
1383 CPUState *cs = CPU(cpu);
1384 Error *local_err = NULL;
1385 int ret;
1387 if (cpu->hyperv_passthrough && hv_passthrough_mig_blocker == NULL) {
1388 error_setg(&hv_passthrough_mig_blocker,
1389 "'hv-passthrough' CPU flag prevents migration, use explicit"
1390 " set of hv-* flags instead");
1391 ret = migrate_add_blocker(hv_passthrough_mig_blocker, &local_err);
1392 if (local_err) {
1393 error_report_err(local_err);
1394 error_free(hv_passthrough_mig_blocker);
1395 return ret;
1399 if (cpu->hyperv_no_nonarch_cs == ON_OFF_AUTO_AUTO &&
1400 hv_no_nonarch_cs_mig_blocker == NULL) {
1401 error_setg(&hv_no_nonarch_cs_mig_blocker,
1402 "'hv-no-nonarch-coresharing=auto' CPU flag prevents migration"
1403 " use explicit 'hv-no-nonarch-coresharing=on' instead (but"
1404 " make sure SMT is disabled and/or that vCPUs are properly"
1405 " pinned)");
1406 ret = migrate_add_blocker(hv_no_nonarch_cs_mig_blocker, &local_err);
1407 if (local_err) {
1408 error_report_err(local_err);
1409 error_free(hv_no_nonarch_cs_mig_blocker);
1410 return ret;
1414 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && !hv_vpindex_settable) {
1416 * the kernel doesn't support setting vp_index; assert that its value
1417 * is in sync
1419 struct {
1420 struct kvm_msrs info;
1421 struct kvm_msr_entry entries[1];
1422 } msr_data = {
1423 .info.nmsrs = 1,
1424 .entries[0].index = HV_X64_MSR_VP_INDEX,
1427 ret = kvm_vcpu_ioctl(cs, KVM_GET_MSRS, &msr_data);
1428 if (ret < 0) {
1429 return ret;
1431 assert(ret == 1);
1433 if (msr_data.entries[0].data != hyperv_vp_index(CPU(cpu))) {
1434 error_report("kernel's vp_index != QEMU's vp_index");
1435 return -ENXIO;
1439 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1440 uint32_t synic_cap = cpu->hyperv_synic_kvm_only ?
1441 KVM_CAP_HYPERV_SYNIC : KVM_CAP_HYPERV_SYNIC2;
1442 ret = kvm_vcpu_enable_cap(cs, synic_cap, 0);
1443 if (ret < 0) {
1444 error_report("failed to turn on HyperV SynIC in KVM: %s",
1445 strerror(-ret));
1446 return ret;
1449 if (!cpu->hyperv_synic_kvm_only) {
1450 ret = hyperv_x86_synic_add(cpu);
1451 if (ret < 0) {
1452 error_report("failed to create HyperV SynIC: %s",
1453 strerror(-ret));
1454 return ret;
1459 return 0;
1462 static Error *invtsc_mig_blocker;
1464 #define KVM_MAX_CPUID_ENTRIES 100
1466 int kvm_arch_init_vcpu(CPUState *cs)
1468 struct {
1469 struct kvm_cpuid2 cpuid;
1470 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
1471 } cpuid_data;
1473 * The kernel defines these structs with padding fields so there
1474 * should be no extra padding in our cpuid_data struct.
1476 QEMU_BUILD_BUG_ON(sizeof(cpuid_data) !=
1477 sizeof(struct kvm_cpuid2) +
1478 sizeof(struct kvm_cpuid_entry2) * KVM_MAX_CPUID_ENTRIES);
1480 X86CPU *cpu = X86_CPU(cs);
1481 CPUX86State *env = &cpu->env;
1482 uint32_t limit, i, j, cpuid_i;
1483 uint32_t unused;
1484 struct kvm_cpuid_entry2 *c;
1485 uint32_t signature[3];
1486 int kvm_base = KVM_CPUID_SIGNATURE;
1487 int max_nested_state_len;
1488 int r;
1489 Error *local_err = NULL;
1491 memset(&cpuid_data, 0, sizeof(cpuid_data));
1493 cpuid_i = 0;
1495 r = kvm_arch_set_tsc_khz(cs);
1496 if (r < 0) {
1497 return r;
1500 /* vcpu's TSC frequency is either specified by user, or following
1501 * the value used by KVM if the former is not present. In the
1502 * latter case, we query it from KVM and record in env->tsc_khz,
1503 * so that vcpu's TSC frequency can be migrated later via this field.
1505 if (!env->tsc_khz) {
1506 r = kvm_check_extension(cs->kvm_state, KVM_CAP_GET_TSC_KHZ) ?
1507 kvm_vcpu_ioctl(cs, KVM_GET_TSC_KHZ) :
1508 -ENOTSUP;
1509 if (r > 0) {
1510 env->tsc_khz = r;
1514 env->apic_bus_freq = KVM_APIC_BUS_FREQUENCY;
1516 /* Paravirtualization CPUIDs */
1517 r = hyperv_handle_properties(cs, cpuid_data.entries);
1518 if (r < 0) {
1519 return r;
1520 } else if (r > 0) {
1521 cpuid_i = r;
1522 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
1523 has_msr_hv_hypercall = true;
1526 if (cpu->expose_kvm) {
1527 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
1528 c = &cpuid_data.entries[cpuid_i++];
1529 c->function = KVM_CPUID_SIGNATURE | kvm_base;
1530 c->eax = KVM_CPUID_FEATURES | kvm_base;
1531 c->ebx = signature[0];
1532 c->ecx = signature[1];
1533 c->edx = signature[2];
1535 c = &cpuid_data.entries[cpuid_i++];
1536 c->function = KVM_CPUID_FEATURES | kvm_base;
1537 c->eax = env->features[FEAT_KVM];
1538 c->edx = env->features[FEAT_KVM_HINTS];
1541 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
1543 for (i = 0; i <= limit; i++) {
1544 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1545 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
1546 abort();
1548 c = &cpuid_data.entries[cpuid_i++];
1550 switch (i) {
1551 case 2: {
1552 /* Keep reading function 2 till all the input is received */
1553 int times;
1555 c->function = i;
1556 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
1557 KVM_CPUID_FLAG_STATE_READ_NEXT;
1558 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1559 times = c->eax & 0xff;
1561 for (j = 1; j < times; ++j) {
1562 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1563 fprintf(stderr, "cpuid_data is full, no space for "
1564 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
1565 abort();
1567 c = &cpuid_data.entries[cpuid_i++];
1568 c->function = i;
1569 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
1570 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1572 break;
1574 case 0x1f:
1575 if (env->nr_dies < 2) {
1576 break;
1578 /* fallthrough */
1579 case 4:
1580 case 0xb:
1581 case 0xd:
1582 for (j = 0; ; j++) {
1583 if (i == 0xd && j == 64) {
1584 break;
1587 if (i == 0x1f && j == 64) {
1588 break;
1591 c->function = i;
1592 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1593 c->index = j;
1594 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1596 if (i == 4 && c->eax == 0) {
1597 break;
1599 if (i == 0xb && !(c->ecx & 0xff00)) {
1600 break;
1602 if (i == 0x1f && !(c->ecx & 0xff00)) {
1603 break;
1605 if (i == 0xd && c->eax == 0) {
1606 continue;
1608 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1609 fprintf(stderr, "cpuid_data is full, no space for "
1610 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1611 abort();
1613 c = &cpuid_data.entries[cpuid_i++];
1615 break;
1616 case 0x7:
1617 case 0x14: {
1618 uint32_t times;
1620 c->function = i;
1621 c->index = 0;
1622 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1623 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1624 times = c->eax;
1626 for (j = 1; j <= times; ++j) {
1627 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1628 fprintf(stderr, "cpuid_data is full, no space for "
1629 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1630 abort();
1632 c = &cpuid_data.entries[cpuid_i++];
1633 c->function = i;
1634 c->index = j;
1635 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1636 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1638 break;
1640 default:
1641 c->function = i;
1642 c->flags = 0;
1643 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1644 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1646 * KVM already returns all zeroes if a CPUID entry is missing,
1647 * so we can omit it and avoid hitting KVM's 80-entry limit.
1649 cpuid_i--;
1651 break;
1655 if (limit >= 0x0a) {
1656 uint32_t eax, edx;
1658 cpu_x86_cpuid(env, 0x0a, 0, &eax, &unused, &unused, &edx);
1660 has_architectural_pmu_version = eax & 0xff;
1661 if (has_architectural_pmu_version > 0) {
1662 num_architectural_pmu_gp_counters = (eax & 0xff00) >> 8;
1664 /* Shouldn't be more than 32, since that's the number of bits
1665 * available in EBX to tell us _which_ counters are available.
1666 * Play it safe.
1668 if (num_architectural_pmu_gp_counters > MAX_GP_COUNTERS) {
1669 num_architectural_pmu_gp_counters = MAX_GP_COUNTERS;
1672 if (has_architectural_pmu_version > 1) {
1673 num_architectural_pmu_fixed_counters = edx & 0x1f;
1675 if (num_architectural_pmu_fixed_counters > MAX_FIXED_COUNTERS) {
1676 num_architectural_pmu_fixed_counters = MAX_FIXED_COUNTERS;
1682 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
1684 for (i = 0x80000000; i <= limit; i++) {
1685 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1686 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
1687 abort();
1689 c = &cpuid_data.entries[cpuid_i++];
1691 switch (i) {
1692 case 0x8000001d:
1693 /* Query for all AMD cache information leaves */
1694 for (j = 0; ; j++) {
1695 c->function = i;
1696 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1697 c->index = j;
1698 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
1700 if (c->eax == 0) {
1701 break;
1703 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1704 fprintf(stderr, "cpuid_data is full, no space for "
1705 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
1706 abort();
1708 c = &cpuid_data.entries[cpuid_i++];
1710 break;
1711 default:
1712 c->function = i;
1713 c->flags = 0;
1714 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1715 if (!c->eax && !c->ebx && !c->ecx && !c->edx) {
1717 * KVM already returns all zeroes if a CPUID entry is missing,
1718 * so we can omit it and avoid hitting KVM's 80-entry limit.
1720 cpuid_i--;
1722 break;
1726 /* Call Centaur's CPUID instructions they are supported. */
1727 if (env->cpuid_xlevel2 > 0) {
1728 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
1730 for (i = 0xC0000000; i <= limit; i++) {
1731 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
1732 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
1733 abort();
1735 c = &cpuid_data.entries[cpuid_i++];
1737 c->function = i;
1738 c->flags = 0;
1739 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
1743 cpuid_data.cpuid.nent = cpuid_i;
1745 if (((env->cpuid_version >> 8)&0xF) >= 6
1746 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
1747 (CPUID_MCE | CPUID_MCA)
1748 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
1749 uint64_t mcg_cap, unsupported_caps;
1750 int banks;
1751 int ret;
1753 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
1754 if (ret < 0) {
1755 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
1756 return ret;
1759 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
1760 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
1761 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
1762 return -ENOTSUP;
1765 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
1766 if (unsupported_caps) {
1767 if (unsupported_caps & MCG_LMCE_P) {
1768 error_report("kvm: LMCE not supported");
1769 return -ENOTSUP;
1771 warn_report("Unsupported MCG_CAP bits: 0x%" PRIx64,
1772 unsupported_caps);
1775 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
1776 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
1777 if (ret < 0) {
1778 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
1779 return ret;
1783 cpu->vmsentry = qemu_add_vm_change_state_handler(cpu_update_state, env);
1785 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
1786 if (c) {
1787 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
1788 !!(c->ecx & CPUID_EXT_SMX);
1791 if (env->mcg_cap & MCG_LMCE_P) {
1792 has_msr_mcg_ext_ctl = has_msr_feature_control = true;
1795 if (!env->user_tsc_khz) {
1796 if ((env->features[FEAT_8000_0007_EDX] & CPUID_APM_INVTSC) &&
1797 invtsc_mig_blocker == NULL) {
1798 error_setg(&invtsc_mig_blocker,
1799 "State blocked by non-migratable CPU device"
1800 " (invtsc flag)");
1801 r = migrate_add_blocker(invtsc_mig_blocker, &local_err);
1802 if (local_err) {
1803 error_report_err(local_err);
1804 error_free(invtsc_mig_blocker);
1805 return r;
1810 if (cpu->vmware_cpuid_freq
1811 /* Guests depend on 0x40000000 to detect this feature, so only expose
1812 * it if KVM exposes leaf 0x40000000. (Conflicts with Hyper-V) */
1813 && cpu->expose_kvm
1814 && kvm_base == KVM_CPUID_SIGNATURE
1815 /* TSC clock must be stable and known for this feature. */
1816 && tsc_is_stable_and_known(env)) {
1818 c = &cpuid_data.entries[cpuid_i++];
1819 c->function = KVM_CPUID_SIGNATURE | 0x10;
1820 c->eax = env->tsc_khz;
1821 c->ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
1822 c->ecx = c->edx = 0;
1824 c = cpuid_find_entry(&cpuid_data.cpuid, kvm_base, 0);
1825 c->eax = MAX(c->eax, KVM_CPUID_SIGNATURE | 0x10);
1828 cpuid_data.cpuid.nent = cpuid_i;
1830 cpuid_data.cpuid.padding = 0;
1831 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
1832 if (r) {
1833 goto fail;
1836 if (has_xsave) {
1837 env->xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
1838 memset(env->xsave_buf, 0, sizeof(struct kvm_xsave));
1841 max_nested_state_len = kvm_max_nested_state_length();
1842 if (max_nested_state_len > 0) {
1843 assert(max_nested_state_len >= offsetof(struct kvm_nested_state, data));
1845 if (cpu_has_vmx(env) || cpu_has_svm(env)) {
1846 struct kvm_vmx_nested_state_hdr *vmx_hdr;
1848 env->nested_state = g_malloc0(max_nested_state_len);
1849 env->nested_state->size = max_nested_state_len;
1851 if (cpu_has_vmx(env)) {
1852 env->nested_state->format = KVM_STATE_NESTED_FORMAT_VMX;
1853 vmx_hdr = &env->nested_state->hdr.vmx;
1854 vmx_hdr->vmxon_pa = -1ull;
1855 vmx_hdr->vmcs12_pa = -1ull;
1856 } else {
1857 env->nested_state->format = KVM_STATE_NESTED_FORMAT_SVM;
1862 cpu->kvm_msr_buf = g_malloc0(MSR_BUF_SIZE);
1864 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_RDTSCP)) {
1865 has_msr_tsc_aux = false;
1868 kvm_init_msrs(cpu);
1870 r = hyperv_init_vcpu(cpu);
1871 if (r) {
1872 goto fail;
1875 return 0;
1877 fail:
1878 migrate_del_blocker(invtsc_mig_blocker);
1880 return r;
1883 int kvm_arch_destroy_vcpu(CPUState *cs)
1885 X86CPU *cpu = X86_CPU(cs);
1886 CPUX86State *env = &cpu->env;
1888 if (cpu->kvm_msr_buf) {
1889 g_free(cpu->kvm_msr_buf);
1890 cpu->kvm_msr_buf = NULL;
1893 if (env->nested_state) {
1894 g_free(env->nested_state);
1895 env->nested_state = NULL;
1898 qemu_del_vm_change_state_handler(cpu->vmsentry);
1900 return 0;
1903 void kvm_arch_reset_vcpu(X86CPU *cpu)
1905 CPUX86State *env = &cpu->env;
1907 env->xcr0 = 1;
1908 if (kvm_irqchip_in_kernel()) {
1909 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
1910 KVM_MP_STATE_UNINITIALIZED;
1911 } else {
1912 env->mp_state = KVM_MP_STATE_RUNNABLE;
1915 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
1916 int i;
1917 for (i = 0; i < ARRAY_SIZE(env->msr_hv_synic_sint); i++) {
1918 env->msr_hv_synic_sint[i] = HV_SINT_MASKED;
1921 hyperv_x86_synic_reset(cpu);
1923 /* enabled by default */
1924 env->poll_control_msr = 1;
1927 void kvm_arch_do_init_vcpu(X86CPU *cpu)
1929 CPUX86State *env = &cpu->env;
1931 /* APs get directly into wait-for-SIPI state. */
1932 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
1933 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
1937 static int kvm_get_supported_feature_msrs(KVMState *s)
1939 int ret = 0;
1941 if (kvm_feature_msrs != NULL) {
1942 return 0;
1945 if (!kvm_check_extension(s, KVM_CAP_GET_MSR_FEATURES)) {
1946 return 0;
1949 struct kvm_msr_list msr_list;
1951 msr_list.nmsrs = 0;
1952 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, &msr_list);
1953 if (ret < 0 && ret != -E2BIG) {
1954 error_report("Fetch KVM feature MSR list failed: %s",
1955 strerror(-ret));
1956 return ret;
1959 assert(msr_list.nmsrs > 0);
1960 kvm_feature_msrs = (struct kvm_msr_list *) \
1961 g_malloc0(sizeof(msr_list) +
1962 msr_list.nmsrs * sizeof(msr_list.indices[0]));
1964 kvm_feature_msrs->nmsrs = msr_list.nmsrs;
1965 ret = kvm_ioctl(s, KVM_GET_MSR_FEATURE_INDEX_LIST, kvm_feature_msrs);
1967 if (ret < 0) {
1968 error_report("Fetch KVM feature MSR list failed: %s",
1969 strerror(-ret));
1970 g_free(kvm_feature_msrs);
1971 kvm_feature_msrs = NULL;
1972 return ret;
1975 return 0;
1978 static int kvm_get_supported_msrs(KVMState *s)
1980 int ret = 0;
1981 struct kvm_msr_list msr_list, *kvm_msr_list;
1984 * Obtain MSR list from KVM. These are the MSRs that we must
1985 * save/restore.
1987 msr_list.nmsrs = 0;
1988 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
1989 if (ret < 0 && ret != -E2BIG) {
1990 return ret;
1993 * Old kernel modules had a bug and could write beyond the provided
1994 * memory. Allocate at least a safe amount of 1K.
1996 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
1997 msr_list.nmsrs *
1998 sizeof(msr_list.indices[0])));
2000 kvm_msr_list->nmsrs = msr_list.nmsrs;
2001 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
2002 if (ret >= 0) {
2003 int i;
2005 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
2006 switch (kvm_msr_list->indices[i]) {
2007 case MSR_STAR:
2008 has_msr_star = true;
2009 break;
2010 case MSR_VM_HSAVE_PA:
2011 has_msr_hsave_pa = true;
2012 break;
2013 case MSR_TSC_AUX:
2014 has_msr_tsc_aux = true;
2015 break;
2016 case MSR_TSC_ADJUST:
2017 has_msr_tsc_adjust = true;
2018 break;
2019 case MSR_IA32_TSCDEADLINE:
2020 has_msr_tsc_deadline = true;
2021 break;
2022 case MSR_IA32_SMBASE:
2023 has_msr_smbase = true;
2024 break;
2025 case MSR_SMI_COUNT:
2026 has_msr_smi_count = true;
2027 break;
2028 case MSR_IA32_MISC_ENABLE:
2029 has_msr_misc_enable = true;
2030 break;
2031 case MSR_IA32_BNDCFGS:
2032 has_msr_bndcfgs = true;
2033 break;
2034 case MSR_IA32_XSS:
2035 has_msr_xss = true;
2036 break;
2037 case MSR_IA32_UMWAIT_CONTROL:
2038 has_msr_umwait = true;
2039 break;
2040 case HV_X64_MSR_CRASH_CTL:
2041 has_msr_hv_crash = true;
2042 break;
2043 case HV_X64_MSR_RESET:
2044 has_msr_hv_reset = true;
2045 break;
2046 case HV_X64_MSR_VP_INDEX:
2047 has_msr_hv_vpindex = true;
2048 break;
2049 case HV_X64_MSR_VP_RUNTIME:
2050 has_msr_hv_runtime = true;
2051 break;
2052 case HV_X64_MSR_SCONTROL:
2053 has_msr_hv_synic = true;
2054 break;
2055 case HV_X64_MSR_STIMER0_CONFIG:
2056 has_msr_hv_stimer = true;
2057 break;
2058 case HV_X64_MSR_TSC_FREQUENCY:
2059 has_msr_hv_frequencies = true;
2060 break;
2061 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2062 has_msr_hv_reenlightenment = true;
2063 break;
2064 case MSR_IA32_SPEC_CTRL:
2065 has_msr_spec_ctrl = true;
2066 break;
2067 case MSR_IA32_TSX_CTRL:
2068 has_msr_tsx_ctrl = true;
2069 break;
2070 case MSR_VIRT_SSBD:
2071 has_msr_virt_ssbd = true;
2072 break;
2073 case MSR_IA32_ARCH_CAPABILITIES:
2074 has_msr_arch_capabs = true;
2075 break;
2076 case MSR_IA32_CORE_CAPABILITY:
2077 has_msr_core_capabs = true;
2078 break;
2079 case MSR_IA32_PERF_CAPABILITIES:
2080 has_msr_perf_capabs = true;
2081 break;
2082 case MSR_IA32_VMX_VMFUNC:
2083 has_msr_vmx_vmfunc = true;
2084 break;
2085 case MSR_IA32_UCODE_REV:
2086 has_msr_ucode_rev = true;
2087 break;
2088 case MSR_IA32_VMX_PROCBASED_CTLS2:
2089 has_msr_vmx_procbased_ctls2 = true;
2090 break;
2091 case MSR_IA32_PKRS:
2092 has_msr_pkrs = true;
2093 break;
2098 g_free(kvm_msr_list);
2100 return ret;
2103 static Notifier smram_machine_done;
2104 static KVMMemoryListener smram_listener;
2105 static AddressSpace smram_address_space;
2106 static MemoryRegion smram_as_root;
2107 static MemoryRegion smram_as_mem;
2109 static void register_smram_listener(Notifier *n, void *unused)
2111 MemoryRegion *smram =
2112 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
2114 /* Outer container... */
2115 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
2116 memory_region_set_enabled(&smram_as_root, true);
2118 /* ... with two regions inside: normal system memory with low
2119 * priority, and...
2121 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
2122 get_system_memory(), 0, ~0ull);
2123 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
2124 memory_region_set_enabled(&smram_as_mem, true);
2126 if (smram) {
2127 /* ... SMRAM with higher priority */
2128 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
2129 memory_region_set_enabled(smram, true);
2132 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
2133 kvm_memory_listener_register(kvm_state, &smram_listener,
2134 &smram_address_space, 1);
2137 int kvm_arch_init(MachineState *ms, KVMState *s)
2139 uint64_t identity_base = 0xfffbc000;
2140 uint64_t shadow_mem;
2141 int ret;
2142 struct utsname utsname;
2143 Error *local_err = NULL;
2146 * Initialize SEV context, if required
2148 * If no memory encryption is requested (ms->cgs == NULL) this is
2149 * a no-op.
2151 * It's also a no-op if a non-SEV confidential guest support
2152 * mechanism is selected. SEV is the only mechanism available to
2153 * select on x86 at present, so this doesn't arise, but if new
2154 * mechanisms are supported in future (e.g. TDX), they'll need
2155 * their own initialization either here or elsewhere.
2157 ret = sev_kvm_init(ms->cgs, &local_err);
2158 if (ret < 0) {
2159 error_report_err(local_err);
2160 return ret;
2163 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2164 error_report("kvm: KVM_CAP_IRQ_ROUTING not supported by KVM");
2165 return -ENOTSUP;
2168 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
2169 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
2170 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
2172 hv_vpindex_settable = kvm_check_extension(s, KVM_CAP_HYPERV_VP_INDEX);
2174 has_exception_payload = kvm_check_extension(s, KVM_CAP_EXCEPTION_PAYLOAD);
2175 if (has_exception_payload) {
2176 ret = kvm_vm_enable_cap(s, KVM_CAP_EXCEPTION_PAYLOAD, 0, true);
2177 if (ret < 0) {
2178 error_report("kvm: Failed to enable exception payload cap: %s",
2179 strerror(-ret));
2180 return ret;
2184 ret = kvm_get_supported_msrs(s);
2185 if (ret < 0) {
2186 return ret;
2189 kvm_get_supported_feature_msrs(s);
2191 uname(&utsname);
2192 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
2195 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
2196 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
2197 * Since these must be part of guest physical memory, we need to allocate
2198 * them, both by setting their start addresses in the kernel and by
2199 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
2201 * Older KVM versions may not support setting the identity map base. In
2202 * that case we need to stick with the default, i.e. a 256K maximum BIOS
2203 * size.
2205 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
2206 /* Allows up to 16M BIOSes. */
2207 identity_base = 0xfeffc000;
2209 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
2210 if (ret < 0) {
2211 return ret;
2215 /* Set TSS base one page after EPT identity map. */
2216 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
2217 if (ret < 0) {
2218 return ret;
2221 /* Tell fw_cfg to notify the BIOS to reserve the range. */
2222 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
2223 if (ret < 0) {
2224 fprintf(stderr, "e820_add_entry() table is full\n");
2225 return ret;
2228 shadow_mem = object_property_get_int(OBJECT(s), "kvm-shadow-mem", &error_abort);
2229 if (shadow_mem != -1) {
2230 shadow_mem /= 4096;
2231 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
2232 if (ret < 0) {
2233 return ret;
2237 if (kvm_check_extension(s, KVM_CAP_X86_SMM) &&
2238 object_dynamic_cast(OBJECT(ms), TYPE_X86_MACHINE) &&
2239 x86_machine_is_smm_enabled(X86_MACHINE(ms))) {
2240 smram_machine_done.notify = register_smram_listener;
2241 qemu_add_machine_init_done_notifier(&smram_machine_done);
2244 if (enable_cpu_pm) {
2245 int disable_exits = kvm_check_extension(s, KVM_CAP_X86_DISABLE_EXITS);
2246 int ret;
2248 /* Work around for kernel header with a typo. TODO: fix header and drop. */
2249 #if defined(KVM_X86_DISABLE_EXITS_HTL) && !defined(KVM_X86_DISABLE_EXITS_HLT)
2250 #define KVM_X86_DISABLE_EXITS_HLT KVM_X86_DISABLE_EXITS_HTL
2251 #endif
2252 if (disable_exits) {
2253 disable_exits &= (KVM_X86_DISABLE_EXITS_MWAIT |
2254 KVM_X86_DISABLE_EXITS_HLT |
2255 KVM_X86_DISABLE_EXITS_PAUSE |
2256 KVM_X86_DISABLE_EXITS_CSTATE);
2259 ret = kvm_vm_enable_cap(s, KVM_CAP_X86_DISABLE_EXITS, 0,
2260 disable_exits);
2261 if (ret < 0) {
2262 error_report("kvm: guest stopping CPU not supported: %s",
2263 strerror(-ret));
2267 return 0;
2270 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2272 lhs->selector = rhs->selector;
2273 lhs->base = rhs->base;
2274 lhs->limit = rhs->limit;
2275 lhs->type = 3;
2276 lhs->present = 1;
2277 lhs->dpl = 3;
2278 lhs->db = 0;
2279 lhs->s = 1;
2280 lhs->l = 0;
2281 lhs->g = 0;
2282 lhs->avl = 0;
2283 lhs->unusable = 0;
2286 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
2288 unsigned flags = rhs->flags;
2289 lhs->selector = rhs->selector;
2290 lhs->base = rhs->base;
2291 lhs->limit = rhs->limit;
2292 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
2293 lhs->present = (flags & DESC_P_MASK) != 0;
2294 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
2295 lhs->db = (flags >> DESC_B_SHIFT) & 1;
2296 lhs->s = (flags & DESC_S_MASK) != 0;
2297 lhs->l = (flags >> DESC_L_SHIFT) & 1;
2298 lhs->g = (flags & DESC_G_MASK) != 0;
2299 lhs->avl = (flags & DESC_AVL_MASK) != 0;
2300 lhs->unusable = !lhs->present;
2301 lhs->padding = 0;
2304 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
2306 lhs->selector = rhs->selector;
2307 lhs->base = rhs->base;
2308 lhs->limit = rhs->limit;
2309 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
2310 ((rhs->present && !rhs->unusable) * DESC_P_MASK) |
2311 (rhs->dpl << DESC_DPL_SHIFT) |
2312 (rhs->db << DESC_B_SHIFT) |
2313 (rhs->s * DESC_S_MASK) |
2314 (rhs->l << DESC_L_SHIFT) |
2315 (rhs->g * DESC_G_MASK) |
2316 (rhs->avl * DESC_AVL_MASK);
2319 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
2321 if (set) {
2322 *kvm_reg = *qemu_reg;
2323 } else {
2324 *qemu_reg = *kvm_reg;
2328 static int kvm_getput_regs(X86CPU *cpu, int set)
2330 CPUX86State *env = &cpu->env;
2331 struct kvm_regs regs;
2332 int ret = 0;
2334 if (!set) {
2335 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
2336 if (ret < 0) {
2337 return ret;
2341 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
2342 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
2343 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
2344 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
2345 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
2346 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
2347 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
2348 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
2349 #ifdef TARGET_X86_64
2350 kvm_getput_reg(&regs.r8, &env->regs[8], set);
2351 kvm_getput_reg(&regs.r9, &env->regs[9], set);
2352 kvm_getput_reg(&regs.r10, &env->regs[10], set);
2353 kvm_getput_reg(&regs.r11, &env->regs[11], set);
2354 kvm_getput_reg(&regs.r12, &env->regs[12], set);
2355 kvm_getput_reg(&regs.r13, &env->regs[13], set);
2356 kvm_getput_reg(&regs.r14, &env->regs[14], set);
2357 kvm_getput_reg(&regs.r15, &env->regs[15], set);
2358 #endif
2360 kvm_getput_reg(&regs.rflags, &env->eflags, set);
2361 kvm_getput_reg(&regs.rip, &env->eip, set);
2363 if (set) {
2364 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
2367 return ret;
2370 static int kvm_put_fpu(X86CPU *cpu)
2372 CPUX86State *env = &cpu->env;
2373 struct kvm_fpu fpu;
2374 int i;
2376 memset(&fpu, 0, sizeof fpu);
2377 fpu.fsw = env->fpus & ~(7 << 11);
2378 fpu.fsw |= (env->fpstt & 7) << 11;
2379 fpu.fcw = env->fpuc;
2380 fpu.last_opcode = env->fpop;
2381 fpu.last_ip = env->fpip;
2382 fpu.last_dp = env->fpdp;
2383 for (i = 0; i < 8; ++i) {
2384 fpu.ftwx |= (!env->fptags[i]) << i;
2386 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
2387 for (i = 0; i < CPU_NB_REGS; i++) {
2388 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].ZMM_Q(0));
2389 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].ZMM_Q(1));
2391 fpu.mxcsr = env->mxcsr;
2393 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
2396 #define XSAVE_FCW_FSW 0
2397 #define XSAVE_FTW_FOP 1
2398 #define XSAVE_CWD_RIP 2
2399 #define XSAVE_CWD_RDP 4
2400 #define XSAVE_MXCSR 6
2401 #define XSAVE_ST_SPACE 8
2402 #define XSAVE_XMM_SPACE 40
2403 #define XSAVE_XSTATE_BV 128
2404 #define XSAVE_YMMH_SPACE 144
2405 #define XSAVE_BNDREGS 240
2406 #define XSAVE_BNDCSR 256
2407 #define XSAVE_OPMASK 272
2408 #define XSAVE_ZMM_Hi256 288
2409 #define XSAVE_Hi16_ZMM 416
2410 #define XSAVE_PKRU 672
2412 #define XSAVE_BYTE_OFFSET(word_offset) \
2413 ((word_offset) * sizeof_field(struct kvm_xsave, region[0]))
2415 #define ASSERT_OFFSET(word_offset, field) \
2416 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
2417 offsetof(X86XSaveArea, field))
2419 ASSERT_OFFSET(XSAVE_FCW_FSW, legacy.fcw);
2420 ASSERT_OFFSET(XSAVE_FTW_FOP, legacy.ftw);
2421 ASSERT_OFFSET(XSAVE_CWD_RIP, legacy.fpip);
2422 ASSERT_OFFSET(XSAVE_CWD_RDP, legacy.fpdp);
2423 ASSERT_OFFSET(XSAVE_MXCSR, legacy.mxcsr);
2424 ASSERT_OFFSET(XSAVE_ST_SPACE, legacy.fpregs);
2425 ASSERT_OFFSET(XSAVE_XMM_SPACE, legacy.xmm_regs);
2426 ASSERT_OFFSET(XSAVE_XSTATE_BV, header.xstate_bv);
2427 ASSERT_OFFSET(XSAVE_YMMH_SPACE, avx_state);
2428 ASSERT_OFFSET(XSAVE_BNDREGS, bndreg_state);
2429 ASSERT_OFFSET(XSAVE_BNDCSR, bndcsr_state);
2430 ASSERT_OFFSET(XSAVE_OPMASK, opmask_state);
2431 ASSERT_OFFSET(XSAVE_ZMM_Hi256, zmm_hi256_state);
2432 ASSERT_OFFSET(XSAVE_Hi16_ZMM, hi16_zmm_state);
2433 ASSERT_OFFSET(XSAVE_PKRU, pkru_state);
2435 static int kvm_put_xsave(X86CPU *cpu)
2437 CPUX86State *env = &cpu->env;
2438 X86XSaveArea *xsave = env->xsave_buf;
2440 if (!has_xsave) {
2441 return kvm_put_fpu(cpu);
2443 x86_cpu_xsave_all_areas(cpu, xsave);
2445 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
2448 static int kvm_put_xcrs(X86CPU *cpu)
2450 CPUX86State *env = &cpu->env;
2451 struct kvm_xcrs xcrs = {};
2453 if (!has_xcrs) {
2454 return 0;
2457 xcrs.nr_xcrs = 1;
2458 xcrs.flags = 0;
2459 xcrs.xcrs[0].xcr = 0;
2460 xcrs.xcrs[0].value = env->xcr0;
2461 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
2464 static int kvm_put_sregs(X86CPU *cpu)
2466 CPUX86State *env = &cpu->env;
2467 struct kvm_sregs sregs;
2469 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
2470 if (env->interrupt_injected >= 0) {
2471 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
2472 (uint64_t)1 << (env->interrupt_injected % 64);
2475 if ((env->eflags & VM_MASK)) {
2476 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
2477 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
2478 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
2479 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
2480 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
2481 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
2482 } else {
2483 set_seg(&sregs.cs, &env->segs[R_CS]);
2484 set_seg(&sregs.ds, &env->segs[R_DS]);
2485 set_seg(&sregs.es, &env->segs[R_ES]);
2486 set_seg(&sregs.fs, &env->segs[R_FS]);
2487 set_seg(&sregs.gs, &env->segs[R_GS]);
2488 set_seg(&sregs.ss, &env->segs[R_SS]);
2491 set_seg(&sregs.tr, &env->tr);
2492 set_seg(&sregs.ldt, &env->ldt);
2494 sregs.idt.limit = env->idt.limit;
2495 sregs.idt.base = env->idt.base;
2496 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
2497 sregs.gdt.limit = env->gdt.limit;
2498 sregs.gdt.base = env->gdt.base;
2499 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
2501 sregs.cr0 = env->cr[0];
2502 sregs.cr2 = env->cr[2];
2503 sregs.cr3 = env->cr[3];
2504 sregs.cr4 = env->cr[4];
2506 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
2507 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
2509 sregs.efer = env->efer;
2511 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
2514 static void kvm_msr_buf_reset(X86CPU *cpu)
2516 memset(cpu->kvm_msr_buf, 0, MSR_BUF_SIZE);
2519 static void kvm_msr_entry_add(X86CPU *cpu, uint32_t index, uint64_t value)
2521 struct kvm_msrs *msrs = cpu->kvm_msr_buf;
2522 void *limit = ((void *)msrs) + MSR_BUF_SIZE;
2523 struct kvm_msr_entry *entry = &msrs->entries[msrs->nmsrs];
2525 assert((void *)(entry + 1) <= limit);
2527 entry->index = index;
2528 entry->reserved = 0;
2529 entry->data = value;
2530 msrs->nmsrs++;
2533 static int kvm_put_one_msr(X86CPU *cpu, int index, uint64_t value)
2535 kvm_msr_buf_reset(cpu);
2536 kvm_msr_entry_add(cpu, index, value);
2538 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2541 void kvm_put_apicbase(X86CPU *cpu, uint64_t value)
2543 int ret;
2545 ret = kvm_put_one_msr(cpu, MSR_IA32_APICBASE, value);
2546 assert(ret == 1);
2549 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
2551 CPUX86State *env = &cpu->env;
2552 int ret;
2554 if (!has_msr_tsc_deadline) {
2555 return 0;
2558 ret = kvm_put_one_msr(cpu, MSR_IA32_TSCDEADLINE, env->tsc_deadline);
2559 if (ret < 0) {
2560 return ret;
2563 assert(ret == 1);
2564 return 0;
2568 * Provide a separate write service for the feature control MSR in order to
2569 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
2570 * before writing any other state because forcibly leaving nested mode
2571 * invalidates the VCPU state.
2573 static int kvm_put_msr_feature_control(X86CPU *cpu)
2575 int ret;
2577 if (!has_msr_feature_control) {
2578 return 0;
2581 ret = kvm_put_one_msr(cpu, MSR_IA32_FEATURE_CONTROL,
2582 cpu->env.msr_ia32_feature_control);
2583 if (ret < 0) {
2584 return ret;
2587 assert(ret == 1);
2588 return 0;
2591 static uint64_t make_vmx_msr_value(uint32_t index, uint32_t features)
2593 uint32_t default1, can_be_one, can_be_zero;
2594 uint32_t must_be_one;
2596 switch (index) {
2597 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2598 default1 = 0x00000016;
2599 break;
2600 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2601 default1 = 0x0401e172;
2602 break;
2603 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2604 default1 = 0x000011ff;
2605 break;
2606 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2607 default1 = 0x00036dff;
2608 break;
2609 case MSR_IA32_VMX_PROCBASED_CTLS2:
2610 default1 = 0;
2611 break;
2612 default:
2613 abort();
2616 /* If a feature bit is set, the control can be either set or clear.
2617 * Otherwise the value is limited to either 0 or 1 by default1.
2619 can_be_one = features | default1;
2620 can_be_zero = features | ~default1;
2621 must_be_one = ~can_be_zero;
2624 * Bit 0:31 -> 0 if the control bit can be zero (i.e. 1 if it must be one).
2625 * Bit 32:63 -> 1 if the control bit can be one.
2627 return must_be_one | (((uint64_t)can_be_one) << 32);
2630 #define VMCS12_MAX_FIELD_INDEX (0x17)
2632 static void kvm_msr_entry_add_vmx(X86CPU *cpu, FeatureWordArray f)
2634 uint64_t kvm_vmx_basic =
2635 kvm_arch_get_supported_msr_feature(kvm_state,
2636 MSR_IA32_VMX_BASIC);
2638 if (!kvm_vmx_basic) {
2639 /* If the kernel doesn't support VMX feature (kvm_intel.nested=0),
2640 * then kvm_vmx_basic will be 0 and KVM_SET_MSR will fail.
2642 return;
2645 uint64_t kvm_vmx_misc =
2646 kvm_arch_get_supported_msr_feature(kvm_state,
2647 MSR_IA32_VMX_MISC);
2648 uint64_t kvm_vmx_ept_vpid =
2649 kvm_arch_get_supported_msr_feature(kvm_state,
2650 MSR_IA32_VMX_EPT_VPID_CAP);
2653 * If the guest is 64-bit, a value of 1 is allowed for the host address
2654 * space size vmexit control.
2656 uint64_t fixed_vmx_exit = f[FEAT_8000_0001_EDX] & CPUID_EXT2_LM
2657 ? (uint64_t)VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE << 32 : 0;
2660 * Bits 0-30, 32-44 and 50-53 come from the host. KVM should
2661 * not change them for backwards compatibility.
2663 uint64_t fixed_vmx_basic = kvm_vmx_basic &
2664 (MSR_VMX_BASIC_VMCS_REVISION_MASK |
2665 MSR_VMX_BASIC_VMXON_REGION_SIZE_MASK |
2666 MSR_VMX_BASIC_VMCS_MEM_TYPE_MASK);
2669 * Same for bits 0-4 and 25-27. Bits 16-24 (CR3 target count) can
2670 * change in the future but are always zero for now, clear them to be
2671 * future proof. Bits 32-63 in theory could change, though KVM does
2672 * not support dual-monitor treatment and probably never will; mask
2673 * them out as well.
2675 uint64_t fixed_vmx_misc = kvm_vmx_misc &
2676 (MSR_VMX_MISC_PREEMPTION_TIMER_SHIFT_MASK |
2677 MSR_VMX_MISC_MAX_MSR_LIST_SIZE_MASK);
2680 * EPT memory types should not change either, so we do not bother
2681 * adding features for them.
2683 uint64_t fixed_vmx_ept_mask =
2684 (f[FEAT_VMX_SECONDARY_CTLS] & VMX_SECONDARY_EXEC_ENABLE_EPT ?
2685 MSR_VMX_EPT_UC | MSR_VMX_EPT_WB : 0);
2686 uint64_t fixed_vmx_ept_vpid = kvm_vmx_ept_vpid & fixed_vmx_ept_mask;
2688 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2689 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
2690 f[FEAT_VMX_PROCBASED_CTLS]));
2691 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2692 make_vmx_msr_value(MSR_IA32_VMX_TRUE_PINBASED_CTLS,
2693 f[FEAT_VMX_PINBASED_CTLS]));
2694 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_EXIT_CTLS,
2695 make_vmx_msr_value(MSR_IA32_VMX_TRUE_EXIT_CTLS,
2696 f[FEAT_VMX_EXIT_CTLS]) | fixed_vmx_exit);
2697 kvm_msr_entry_add(cpu, MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2698 make_vmx_msr_value(MSR_IA32_VMX_TRUE_ENTRY_CTLS,
2699 f[FEAT_VMX_ENTRY_CTLS]));
2700 kvm_msr_entry_add(cpu, MSR_IA32_VMX_PROCBASED_CTLS2,
2701 make_vmx_msr_value(MSR_IA32_VMX_PROCBASED_CTLS2,
2702 f[FEAT_VMX_SECONDARY_CTLS]));
2703 kvm_msr_entry_add(cpu, MSR_IA32_VMX_EPT_VPID_CAP,
2704 f[FEAT_VMX_EPT_VPID_CAPS] | fixed_vmx_ept_vpid);
2705 kvm_msr_entry_add(cpu, MSR_IA32_VMX_BASIC,
2706 f[FEAT_VMX_BASIC] | fixed_vmx_basic);
2707 kvm_msr_entry_add(cpu, MSR_IA32_VMX_MISC,
2708 f[FEAT_VMX_MISC] | fixed_vmx_misc);
2709 if (has_msr_vmx_vmfunc) {
2710 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMFUNC, f[FEAT_VMX_VMFUNC]);
2714 * Just to be safe, write these with constant values. The CRn_FIXED1
2715 * MSRs are generated by KVM based on the vCPU's CPUID.
2717 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR0_FIXED0,
2718 CR0_PE_MASK | CR0_PG_MASK | CR0_NE_MASK);
2719 kvm_msr_entry_add(cpu, MSR_IA32_VMX_CR4_FIXED0,
2720 CR4_VMXE_MASK);
2721 kvm_msr_entry_add(cpu, MSR_IA32_VMX_VMCS_ENUM,
2722 VMCS12_MAX_FIELD_INDEX << 1);
2725 static void kvm_msr_entry_add_perf(X86CPU *cpu, FeatureWordArray f)
2727 uint64_t kvm_perf_cap =
2728 kvm_arch_get_supported_msr_feature(kvm_state,
2729 MSR_IA32_PERF_CAPABILITIES);
2731 if (kvm_perf_cap) {
2732 kvm_msr_entry_add(cpu, MSR_IA32_PERF_CAPABILITIES,
2733 kvm_perf_cap & f[FEAT_PERF_CAPABILITIES]);
2737 static int kvm_buf_set_msrs(X86CPU *cpu)
2739 int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, cpu->kvm_msr_buf);
2740 if (ret < 0) {
2741 return ret;
2744 if (ret < cpu->kvm_msr_buf->nmsrs) {
2745 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
2746 error_report("error: failed to set MSR 0x%" PRIx32 " to 0x%" PRIx64,
2747 (uint32_t)e->index, (uint64_t)e->data);
2750 assert(ret == cpu->kvm_msr_buf->nmsrs);
2751 return 0;
2754 static void kvm_init_msrs(X86CPU *cpu)
2756 CPUX86State *env = &cpu->env;
2758 kvm_msr_buf_reset(cpu);
2759 if (has_msr_arch_capabs) {
2760 kvm_msr_entry_add(cpu, MSR_IA32_ARCH_CAPABILITIES,
2761 env->features[FEAT_ARCH_CAPABILITIES]);
2764 if (has_msr_core_capabs) {
2765 kvm_msr_entry_add(cpu, MSR_IA32_CORE_CAPABILITY,
2766 env->features[FEAT_CORE_CAPABILITY]);
2769 if (has_msr_perf_capabs && cpu->enable_pmu) {
2770 kvm_msr_entry_add_perf(cpu, env->features);
2773 if (has_msr_ucode_rev) {
2774 kvm_msr_entry_add(cpu, MSR_IA32_UCODE_REV, cpu->ucode_rev);
2778 * Older kernels do not include VMX MSRs in KVM_GET_MSR_INDEX_LIST, but
2779 * all kernels with MSR features should have them.
2781 if (kvm_feature_msrs && cpu_has_vmx(env)) {
2782 kvm_msr_entry_add_vmx(cpu, env->features);
2785 assert(kvm_buf_set_msrs(cpu) == 0);
2788 static int kvm_put_msrs(X86CPU *cpu, int level)
2790 CPUX86State *env = &cpu->env;
2791 int i;
2793 kvm_msr_buf_reset(cpu);
2795 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, env->sysenter_cs);
2796 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
2797 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
2798 kvm_msr_entry_add(cpu, MSR_PAT, env->pat);
2799 if (has_msr_star) {
2800 kvm_msr_entry_add(cpu, MSR_STAR, env->star);
2802 if (has_msr_hsave_pa) {
2803 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, env->vm_hsave);
2805 if (has_msr_tsc_aux) {
2806 kvm_msr_entry_add(cpu, MSR_TSC_AUX, env->tsc_aux);
2808 if (has_msr_tsc_adjust) {
2809 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, env->tsc_adjust);
2811 if (has_msr_misc_enable) {
2812 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE,
2813 env->msr_ia32_misc_enable);
2815 if (has_msr_smbase) {
2816 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, env->smbase);
2818 if (has_msr_smi_count) {
2819 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, env->msr_smi_count);
2821 if (has_msr_pkrs) {
2822 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, env->pkrs);
2824 if (has_msr_bndcfgs) {
2825 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, env->msr_bndcfgs);
2827 if (has_msr_xss) {
2828 kvm_msr_entry_add(cpu, MSR_IA32_XSS, env->xss);
2830 if (has_msr_umwait) {
2831 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, env->umwait);
2833 if (has_msr_spec_ctrl) {
2834 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, env->spec_ctrl);
2836 if (has_msr_tsx_ctrl) {
2837 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, env->tsx_ctrl);
2839 if (has_msr_virt_ssbd) {
2840 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, env->virt_ssbd);
2843 #ifdef TARGET_X86_64
2844 if (lm_capable_kernel) {
2845 kvm_msr_entry_add(cpu, MSR_CSTAR, env->cstar);
2846 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, env->kernelgsbase);
2847 kvm_msr_entry_add(cpu, MSR_FMASK, env->fmask);
2848 kvm_msr_entry_add(cpu, MSR_LSTAR, env->lstar);
2850 #endif
2853 * The following MSRs have side effects on the guest or are too heavy
2854 * for normal writeback. Limit them to reset or full state updates.
2856 if (level >= KVM_PUT_RESET_STATE) {
2857 kvm_msr_entry_add(cpu, MSR_IA32_TSC, env->tsc);
2858 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, env->system_time_msr);
2859 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
2860 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
2861 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, env->async_pf_int_msr);
2863 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
2864 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
2866 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
2867 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, env->pv_eoi_en_msr);
2869 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
2870 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, env->steal_time_msr);
2873 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
2874 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, env->poll_control_msr);
2877 if (has_architectural_pmu_version > 0) {
2878 if (has_architectural_pmu_version > 1) {
2879 /* Stop the counter. */
2880 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
2881 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
2884 /* Set the counter values. */
2885 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
2886 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i,
2887 env->msr_fixed_counters[i]);
2889 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
2890 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i,
2891 env->msr_gp_counters[i]);
2892 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i,
2893 env->msr_gp_evtsel[i]);
2895 if (has_architectural_pmu_version > 1) {
2896 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS,
2897 env->msr_global_status);
2898 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
2899 env->msr_global_ovf_ctrl);
2901 /* Now start the PMU. */
2902 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL,
2903 env->msr_fixed_ctr_ctrl);
2904 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL,
2905 env->msr_global_ctrl);
2909 * Hyper-V partition-wide MSRs: to avoid clearing them on cpu hot-add,
2910 * only sync them to KVM on the first cpu
2912 if (current_cpu == first_cpu) {
2913 if (has_msr_hv_hypercall) {
2914 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID,
2915 env->msr_hv_guest_os_id);
2916 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL,
2917 env->msr_hv_hypercall);
2919 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
2920 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC,
2921 env->msr_hv_tsc);
2923 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
2924 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL,
2925 env->msr_hv_reenlightenment_control);
2926 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL,
2927 env->msr_hv_tsc_emulation_control);
2928 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS,
2929 env->msr_hv_tsc_emulation_status);
2932 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
2933 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE,
2934 env->msr_hv_vapic);
2936 if (has_msr_hv_crash) {
2937 int j;
2939 for (j = 0; j < HV_CRASH_PARAMS; j++)
2940 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j,
2941 env->msr_hv_crash_params[j]);
2943 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_CTL, HV_CRASH_CTL_NOTIFY);
2945 if (has_msr_hv_runtime) {
2946 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, env->msr_hv_runtime);
2948 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX)
2949 && hv_vpindex_settable) {
2950 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_INDEX,
2951 hyperv_vp_index(CPU(cpu)));
2953 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
2954 int j;
2956 kvm_msr_entry_add(cpu, HV_X64_MSR_SVERSION, HV_SYNIC_VERSION);
2958 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL,
2959 env->msr_hv_synic_control);
2960 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP,
2961 env->msr_hv_synic_evt_page);
2962 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP,
2963 env->msr_hv_synic_msg_page);
2965 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
2966 kvm_msr_entry_add(cpu, HV_X64_MSR_SINT0 + j,
2967 env->msr_hv_synic_sint[j]);
2970 if (has_msr_hv_stimer) {
2971 int j;
2973 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_config); j++) {
2974 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_CONFIG + j * 2,
2975 env->msr_hv_stimer_config[j]);
2978 for (j = 0; j < ARRAY_SIZE(env->msr_hv_stimer_count); j++) {
2979 kvm_msr_entry_add(cpu, HV_X64_MSR_STIMER0_COUNT + j * 2,
2980 env->msr_hv_stimer_count[j]);
2983 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
2984 uint64_t phys_mask = MAKE_64BIT_MASK(0, cpu->phys_bits);
2986 kvm_msr_entry_add(cpu, MSR_MTRRdefType, env->mtrr_deftype);
2987 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
2988 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
2989 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
2990 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
2991 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
2992 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
2993 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
2994 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
2995 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
2996 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
2997 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
2998 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
2999 /* The CPU GPs if we write to a bit above the physical limit of
3000 * the host CPU (and KVM emulates that)
3002 uint64_t mask = env->mtrr_var[i].mask;
3003 mask &= phys_mask;
3005 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i),
3006 env->mtrr_var[i].base);
3007 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), mask);
3010 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3011 int addr_num = kvm_arch_get_supported_cpuid(kvm_state,
3012 0x14, 1, R_EAX) & 0x7;
3014 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL,
3015 env->msr_rtit_ctrl);
3016 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS,
3017 env->msr_rtit_status);
3018 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE,
3019 env->msr_rtit_output_base);
3020 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK,
3021 env->msr_rtit_output_mask);
3022 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH,
3023 env->msr_rtit_cr3_match);
3024 for (i = 0; i < addr_num; i++) {
3025 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i,
3026 env->msr_rtit_addrs[i]);
3030 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
3031 * kvm_put_msr_feature_control. */
3034 if (env->mcg_cap) {
3035 int i;
3037 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, env->mcg_status);
3038 kvm_msr_entry_add(cpu, MSR_MCG_CTL, env->mcg_ctl);
3039 if (has_msr_mcg_ext_ctl) {
3040 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, env->mcg_ext_ctl);
3042 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3043 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, env->mce_banks[i]);
3047 return kvm_buf_set_msrs(cpu);
3051 static int kvm_get_fpu(X86CPU *cpu)
3053 CPUX86State *env = &cpu->env;
3054 struct kvm_fpu fpu;
3055 int i, ret;
3057 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
3058 if (ret < 0) {
3059 return ret;
3062 env->fpstt = (fpu.fsw >> 11) & 7;
3063 env->fpus = fpu.fsw;
3064 env->fpuc = fpu.fcw;
3065 env->fpop = fpu.last_opcode;
3066 env->fpip = fpu.last_ip;
3067 env->fpdp = fpu.last_dp;
3068 for (i = 0; i < 8; ++i) {
3069 env->fptags[i] = !((fpu.ftwx >> i) & 1);
3071 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
3072 for (i = 0; i < CPU_NB_REGS; i++) {
3073 env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
3074 env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
3076 env->mxcsr = fpu.mxcsr;
3078 return 0;
3081 static int kvm_get_xsave(X86CPU *cpu)
3083 CPUX86State *env = &cpu->env;
3084 X86XSaveArea *xsave = env->xsave_buf;
3085 int ret;
3087 if (!has_xsave) {
3088 return kvm_get_fpu(cpu);
3091 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
3092 if (ret < 0) {
3093 return ret;
3095 x86_cpu_xrstor_all_areas(cpu, xsave);
3097 return 0;
3100 static int kvm_get_xcrs(X86CPU *cpu)
3102 CPUX86State *env = &cpu->env;
3103 int i, ret;
3104 struct kvm_xcrs xcrs;
3106 if (!has_xcrs) {
3107 return 0;
3110 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
3111 if (ret < 0) {
3112 return ret;
3115 for (i = 0; i < xcrs.nr_xcrs; i++) {
3116 /* Only support xcr0 now */
3117 if (xcrs.xcrs[i].xcr == 0) {
3118 env->xcr0 = xcrs.xcrs[i].value;
3119 break;
3122 return 0;
3125 static int kvm_get_sregs(X86CPU *cpu)
3127 CPUX86State *env = &cpu->env;
3128 struct kvm_sregs sregs;
3129 int bit, i, ret;
3131 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
3132 if (ret < 0) {
3133 return ret;
3136 /* There can only be one pending IRQ set in the bitmap at a time, so try
3137 to find it and save its number instead (-1 for none). */
3138 env->interrupt_injected = -1;
3139 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
3140 if (sregs.interrupt_bitmap[i]) {
3141 bit = ctz64(sregs.interrupt_bitmap[i]);
3142 env->interrupt_injected = i * 64 + bit;
3143 break;
3147 get_seg(&env->segs[R_CS], &sregs.cs);
3148 get_seg(&env->segs[R_DS], &sregs.ds);
3149 get_seg(&env->segs[R_ES], &sregs.es);
3150 get_seg(&env->segs[R_FS], &sregs.fs);
3151 get_seg(&env->segs[R_GS], &sregs.gs);
3152 get_seg(&env->segs[R_SS], &sregs.ss);
3154 get_seg(&env->tr, &sregs.tr);
3155 get_seg(&env->ldt, &sregs.ldt);
3157 env->idt.limit = sregs.idt.limit;
3158 env->idt.base = sregs.idt.base;
3159 env->gdt.limit = sregs.gdt.limit;
3160 env->gdt.base = sregs.gdt.base;
3162 env->cr[0] = sregs.cr0;
3163 env->cr[2] = sregs.cr2;
3164 env->cr[3] = sregs.cr3;
3165 env->cr[4] = sregs.cr4;
3167 env->efer = sregs.efer;
3169 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
3170 x86_update_hflags(env);
3172 return 0;
3175 static int kvm_get_msrs(X86CPU *cpu)
3177 CPUX86State *env = &cpu->env;
3178 struct kvm_msr_entry *msrs = cpu->kvm_msr_buf->entries;
3179 int ret, i;
3180 uint64_t mtrr_top_bits;
3182 kvm_msr_buf_reset(cpu);
3184 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_CS, 0);
3185 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_ESP, 0);
3186 kvm_msr_entry_add(cpu, MSR_IA32_SYSENTER_EIP, 0);
3187 kvm_msr_entry_add(cpu, MSR_PAT, 0);
3188 if (has_msr_star) {
3189 kvm_msr_entry_add(cpu, MSR_STAR, 0);
3191 if (has_msr_hsave_pa) {
3192 kvm_msr_entry_add(cpu, MSR_VM_HSAVE_PA, 0);
3194 if (has_msr_tsc_aux) {
3195 kvm_msr_entry_add(cpu, MSR_TSC_AUX, 0);
3197 if (has_msr_tsc_adjust) {
3198 kvm_msr_entry_add(cpu, MSR_TSC_ADJUST, 0);
3200 if (has_msr_tsc_deadline) {
3201 kvm_msr_entry_add(cpu, MSR_IA32_TSCDEADLINE, 0);
3203 if (has_msr_misc_enable) {
3204 kvm_msr_entry_add(cpu, MSR_IA32_MISC_ENABLE, 0);
3206 if (has_msr_smbase) {
3207 kvm_msr_entry_add(cpu, MSR_IA32_SMBASE, 0);
3209 if (has_msr_smi_count) {
3210 kvm_msr_entry_add(cpu, MSR_SMI_COUNT, 0);
3212 if (has_msr_feature_control) {
3213 kvm_msr_entry_add(cpu, MSR_IA32_FEATURE_CONTROL, 0);
3215 if (has_msr_pkrs) {
3216 kvm_msr_entry_add(cpu, MSR_IA32_PKRS, 0);
3218 if (has_msr_bndcfgs) {
3219 kvm_msr_entry_add(cpu, MSR_IA32_BNDCFGS, 0);
3221 if (has_msr_xss) {
3222 kvm_msr_entry_add(cpu, MSR_IA32_XSS, 0);
3224 if (has_msr_umwait) {
3225 kvm_msr_entry_add(cpu, MSR_IA32_UMWAIT_CONTROL, 0);
3227 if (has_msr_spec_ctrl) {
3228 kvm_msr_entry_add(cpu, MSR_IA32_SPEC_CTRL, 0);
3230 if (has_msr_tsx_ctrl) {
3231 kvm_msr_entry_add(cpu, MSR_IA32_TSX_CTRL, 0);
3233 if (has_msr_virt_ssbd) {
3234 kvm_msr_entry_add(cpu, MSR_VIRT_SSBD, 0);
3236 if (!env->tsc_valid) {
3237 kvm_msr_entry_add(cpu, MSR_IA32_TSC, 0);
3238 env->tsc_valid = !runstate_is_running();
3241 #ifdef TARGET_X86_64
3242 if (lm_capable_kernel) {
3243 kvm_msr_entry_add(cpu, MSR_CSTAR, 0);
3244 kvm_msr_entry_add(cpu, MSR_KERNELGSBASE, 0);
3245 kvm_msr_entry_add(cpu, MSR_FMASK, 0);
3246 kvm_msr_entry_add(cpu, MSR_LSTAR, 0);
3248 #endif
3249 kvm_msr_entry_add(cpu, MSR_KVM_SYSTEM_TIME, 0);
3250 kvm_msr_entry_add(cpu, MSR_KVM_WALL_CLOCK, 0);
3251 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF_INT)) {
3252 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_INT, 0);
3254 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_ASYNC_PF)) {
3255 kvm_msr_entry_add(cpu, MSR_KVM_ASYNC_PF_EN, 0);
3257 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_PV_EOI)) {
3258 kvm_msr_entry_add(cpu, MSR_KVM_PV_EOI_EN, 0);
3260 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_STEAL_TIME)) {
3261 kvm_msr_entry_add(cpu, MSR_KVM_STEAL_TIME, 0);
3263 if (env->features[FEAT_KVM] & (1 << KVM_FEATURE_POLL_CONTROL)) {
3264 kvm_msr_entry_add(cpu, MSR_KVM_POLL_CONTROL, 1);
3266 if (has_architectural_pmu_version > 0) {
3267 if (has_architectural_pmu_version > 1) {
3268 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
3269 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_CTRL, 0);
3270 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_STATUS, 0);
3271 kvm_msr_entry_add(cpu, MSR_CORE_PERF_GLOBAL_OVF_CTRL, 0);
3273 for (i = 0; i < num_architectural_pmu_fixed_counters; i++) {
3274 kvm_msr_entry_add(cpu, MSR_CORE_PERF_FIXED_CTR0 + i, 0);
3276 for (i = 0; i < num_architectural_pmu_gp_counters; i++) {
3277 kvm_msr_entry_add(cpu, MSR_P6_PERFCTR0 + i, 0);
3278 kvm_msr_entry_add(cpu, MSR_P6_EVNTSEL0 + i, 0);
3282 if (env->mcg_cap) {
3283 kvm_msr_entry_add(cpu, MSR_MCG_STATUS, 0);
3284 kvm_msr_entry_add(cpu, MSR_MCG_CTL, 0);
3285 if (has_msr_mcg_ext_ctl) {
3286 kvm_msr_entry_add(cpu, MSR_MCG_EXT_CTL, 0);
3288 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
3289 kvm_msr_entry_add(cpu, MSR_MC0_CTL + i, 0);
3293 if (has_msr_hv_hypercall) {
3294 kvm_msr_entry_add(cpu, HV_X64_MSR_HYPERCALL, 0);
3295 kvm_msr_entry_add(cpu, HV_X64_MSR_GUEST_OS_ID, 0);
3297 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VAPIC)) {
3298 kvm_msr_entry_add(cpu, HV_X64_MSR_APIC_ASSIST_PAGE, 0);
3300 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_TIME)) {
3301 kvm_msr_entry_add(cpu, HV_X64_MSR_REFERENCE_TSC, 0);
3303 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_REENLIGHTENMENT)) {
3304 kvm_msr_entry_add(cpu, HV_X64_MSR_REENLIGHTENMENT_CONTROL, 0);
3305 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_CONTROL, 0);
3306 kvm_msr_entry_add(cpu, HV_X64_MSR_TSC_EMULATION_STATUS, 0);
3308 if (has_msr_hv_crash) {
3309 int j;
3311 for (j = 0; j < HV_CRASH_PARAMS; j++) {
3312 kvm_msr_entry_add(cpu, HV_X64_MSR_CRASH_P0 + j, 0);
3315 if (has_msr_hv_runtime) {
3316 kvm_msr_entry_add(cpu, HV_X64_MSR_VP_RUNTIME, 0);
3318 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_SYNIC)) {
3319 uint32_t msr;
3321 kvm_msr_entry_add(cpu, HV_X64_MSR_SCONTROL, 0);
3322 kvm_msr_entry_add(cpu, HV_X64_MSR_SIEFP, 0);
3323 kvm_msr_entry_add(cpu, HV_X64_MSR_SIMP, 0);
3324 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
3325 kvm_msr_entry_add(cpu, msr, 0);
3328 if (has_msr_hv_stimer) {
3329 uint32_t msr;
3331 for (msr = HV_X64_MSR_STIMER0_CONFIG; msr <= HV_X64_MSR_STIMER3_COUNT;
3332 msr++) {
3333 kvm_msr_entry_add(cpu, msr, 0);
3336 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
3337 kvm_msr_entry_add(cpu, MSR_MTRRdefType, 0);
3338 kvm_msr_entry_add(cpu, MSR_MTRRfix64K_00000, 0);
3339 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_80000, 0);
3340 kvm_msr_entry_add(cpu, MSR_MTRRfix16K_A0000, 0);
3341 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C0000, 0);
3342 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_C8000, 0);
3343 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D0000, 0);
3344 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_D8000, 0);
3345 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E0000, 0);
3346 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_E8000, 0);
3347 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F0000, 0);
3348 kvm_msr_entry_add(cpu, MSR_MTRRfix4K_F8000, 0);
3349 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
3350 kvm_msr_entry_add(cpu, MSR_MTRRphysBase(i), 0);
3351 kvm_msr_entry_add(cpu, MSR_MTRRphysMask(i), 0);
3355 if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) {
3356 int addr_num =
3357 kvm_arch_get_supported_cpuid(kvm_state, 0x14, 1, R_EAX) & 0x7;
3359 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CTL, 0);
3360 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_STATUS, 0);
3361 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_BASE, 0);
3362 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_OUTPUT_MASK, 0);
3363 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_CR3_MATCH, 0);
3364 for (i = 0; i < addr_num; i++) {
3365 kvm_msr_entry_add(cpu, MSR_IA32_RTIT_ADDR0_A + i, 0);
3369 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, cpu->kvm_msr_buf);
3370 if (ret < 0) {
3371 return ret;
3374 if (ret < cpu->kvm_msr_buf->nmsrs) {
3375 struct kvm_msr_entry *e = &cpu->kvm_msr_buf->entries[ret];
3376 error_report("error: failed to get MSR 0x%" PRIx32,
3377 (uint32_t)e->index);
3380 assert(ret == cpu->kvm_msr_buf->nmsrs);
3382 * MTRR masks: Each mask consists of 5 parts
3383 * a 10..0: must be zero
3384 * b 11 : valid bit
3385 * c n-1.12: actual mask bits
3386 * d 51..n: reserved must be zero
3387 * e 63.52: reserved must be zero
3389 * 'n' is the number of physical bits supported by the CPU and is
3390 * apparently always <= 52. We know our 'n' but don't know what
3391 * the destinations 'n' is; it might be smaller, in which case
3392 * it masks (c) on loading. It might be larger, in which case
3393 * we fill 'd' so that d..c is consistent irrespetive of the 'n'
3394 * we're migrating to.
3397 if (cpu->fill_mtrr_mask) {
3398 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 52);
3399 assert(cpu->phys_bits <= TARGET_PHYS_ADDR_SPACE_BITS);
3400 mtrr_top_bits = MAKE_64BIT_MASK(cpu->phys_bits, 52 - cpu->phys_bits);
3401 } else {
3402 mtrr_top_bits = 0;
3405 for (i = 0; i < ret; i++) {
3406 uint32_t index = msrs[i].index;
3407 switch (index) {
3408 case MSR_IA32_SYSENTER_CS:
3409 env->sysenter_cs = msrs[i].data;
3410 break;
3411 case MSR_IA32_SYSENTER_ESP:
3412 env->sysenter_esp = msrs[i].data;
3413 break;
3414 case MSR_IA32_SYSENTER_EIP:
3415 env->sysenter_eip = msrs[i].data;
3416 break;
3417 case MSR_PAT:
3418 env->pat = msrs[i].data;
3419 break;
3420 case MSR_STAR:
3421 env->star = msrs[i].data;
3422 break;
3423 #ifdef TARGET_X86_64
3424 case MSR_CSTAR:
3425 env->cstar = msrs[i].data;
3426 break;
3427 case MSR_KERNELGSBASE:
3428 env->kernelgsbase = msrs[i].data;
3429 break;
3430 case MSR_FMASK:
3431 env->fmask = msrs[i].data;
3432 break;
3433 case MSR_LSTAR:
3434 env->lstar = msrs[i].data;
3435 break;
3436 #endif
3437 case MSR_IA32_TSC:
3438 env->tsc = msrs[i].data;
3439 break;
3440 case MSR_TSC_AUX:
3441 env->tsc_aux = msrs[i].data;
3442 break;
3443 case MSR_TSC_ADJUST:
3444 env->tsc_adjust = msrs[i].data;
3445 break;
3446 case MSR_IA32_TSCDEADLINE:
3447 env->tsc_deadline = msrs[i].data;
3448 break;
3449 case MSR_VM_HSAVE_PA:
3450 env->vm_hsave = msrs[i].data;
3451 break;
3452 case MSR_KVM_SYSTEM_TIME:
3453 env->system_time_msr = msrs[i].data;
3454 break;
3455 case MSR_KVM_WALL_CLOCK:
3456 env->wall_clock_msr = msrs[i].data;
3457 break;
3458 case MSR_MCG_STATUS:
3459 env->mcg_status = msrs[i].data;
3460 break;
3461 case MSR_MCG_CTL:
3462 env->mcg_ctl = msrs[i].data;
3463 break;
3464 case MSR_MCG_EXT_CTL:
3465 env->mcg_ext_ctl = msrs[i].data;
3466 break;
3467 case MSR_IA32_MISC_ENABLE:
3468 env->msr_ia32_misc_enable = msrs[i].data;
3469 break;
3470 case MSR_IA32_SMBASE:
3471 env->smbase = msrs[i].data;
3472 break;
3473 case MSR_SMI_COUNT:
3474 env->msr_smi_count = msrs[i].data;
3475 break;
3476 case MSR_IA32_FEATURE_CONTROL:
3477 env->msr_ia32_feature_control = msrs[i].data;
3478 break;
3479 case MSR_IA32_BNDCFGS:
3480 env->msr_bndcfgs = msrs[i].data;
3481 break;
3482 case MSR_IA32_XSS:
3483 env->xss = msrs[i].data;
3484 break;
3485 case MSR_IA32_UMWAIT_CONTROL:
3486 env->umwait = msrs[i].data;
3487 break;
3488 case MSR_IA32_PKRS:
3489 env->pkrs = msrs[i].data;
3490 break;
3491 default:
3492 if (msrs[i].index >= MSR_MC0_CTL &&
3493 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
3494 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
3496 break;
3497 case MSR_KVM_ASYNC_PF_EN:
3498 env->async_pf_en_msr = msrs[i].data;
3499 break;
3500 case MSR_KVM_ASYNC_PF_INT:
3501 env->async_pf_int_msr = msrs[i].data;
3502 break;
3503 case MSR_KVM_PV_EOI_EN:
3504 env->pv_eoi_en_msr = msrs[i].data;
3505 break;
3506 case MSR_KVM_STEAL_TIME:
3507 env->steal_time_msr = msrs[i].data;
3508 break;
3509 case MSR_KVM_POLL_CONTROL: {
3510 env->poll_control_msr = msrs[i].data;
3511 break;
3513 case MSR_CORE_PERF_FIXED_CTR_CTRL:
3514 env->msr_fixed_ctr_ctrl = msrs[i].data;
3515 break;
3516 case MSR_CORE_PERF_GLOBAL_CTRL:
3517 env->msr_global_ctrl = msrs[i].data;
3518 break;
3519 case MSR_CORE_PERF_GLOBAL_STATUS:
3520 env->msr_global_status = msrs[i].data;
3521 break;
3522 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
3523 env->msr_global_ovf_ctrl = msrs[i].data;
3524 break;
3525 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
3526 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
3527 break;
3528 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
3529 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
3530 break;
3531 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
3532 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
3533 break;
3534 case HV_X64_MSR_HYPERCALL:
3535 env->msr_hv_hypercall = msrs[i].data;
3536 break;
3537 case HV_X64_MSR_GUEST_OS_ID:
3538 env->msr_hv_guest_os_id = msrs[i].data;
3539 break;
3540 case HV_X64_MSR_APIC_ASSIST_PAGE:
3541 env->msr_hv_vapic = msrs[i].data;
3542 break;
3543 case HV_X64_MSR_REFERENCE_TSC:
3544 env->msr_hv_tsc = msrs[i].data;
3545 break;
3546 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3547 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
3548 break;
3549 case HV_X64_MSR_VP_RUNTIME:
3550 env->msr_hv_runtime = msrs[i].data;
3551 break;
3552 case HV_X64_MSR_SCONTROL:
3553 env->msr_hv_synic_control = msrs[i].data;
3554 break;
3555 case HV_X64_MSR_SIEFP:
3556 env->msr_hv_synic_evt_page = msrs[i].data;
3557 break;
3558 case HV_X64_MSR_SIMP:
3559 env->msr_hv_synic_msg_page = msrs[i].data;
3560 break;
3561 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
3562 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
3563 break;
3564 case HV_X64_MSR_STIMER0_CONFIG:
3565 case HV_X64_MSR_STIMER1_CONFIG:
3566 case HV_X64_MSR_STIMER2_CONFIG:
3567 case HV_X64_MSR_STIMER3_CONFIG:
3568 env->msr_hv_stimer_config[(index - HV_X64_MSR_STIMER0_CONFIG)/2] =
3569 msrs[i].data;
3570 break;
3571 case HV_X64_MSR_STIMER0_COUNT:
3572 case HV_X64_MSR_STIMER1_COUNT:
3573 case HV_X64_MSR_STIMER2_COUNT:
3574 case HV_X64_MSR_STIMER3_COUNT:
3575 env->msr_hv_stimer_count[(index - HV_X64_MSR_STIMER0_COUNT)/2] =
3576 msrs[i].data;
3577 break;
3578 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3579 env->msr_hv_reenlightenment_control = msrs[i].data;
3580 break;
3581 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3582 env->msr_hv_tsc_emulation_control = msrs[i].data;
3583 break;
3584 case HV_X64_MSR_TSC_EMULATION_STATUS:
3585 env->msr_hv_tsc_emulation_status = msrs[i].data;
3586 break;
3587 case MSR_MTRRdefType:
3588 env->mtrr_deftype = msrs[i].data;
3589 break;
3590 case MSR_MTRRfix64K_00000:
3591 env->mtrr_fixed[0] = msrs[i].data;
3592 break;
3593 case MSR_MTRRfix16K_80000:
3594 env->mtrr_fixed[1] = msrs[i].data;
3595 break;
3596 case MSR_MTRRfix16K_A0000:
3597 env->mtrr_fixed[2] = msrs[i].data;
3598 break;
3599 case MSR_MTRRfix4K_C0000:
3600 env->mtrr_fixed[3] = msrs[i].data;
3601 break;
3602 case MSR_MTRRfix4K_C8000:
3603 env->mtrr_fixed[4] = msrs[i].data;
3604 break;
3605 case MSR_MTRRfix4K_D0000:
3606 env->mtrr_fixed[5] = msrs[i].data;
3607 break;
3608 case MSR_MTRRfix4K_D8000:
3609 env->mtrr_fixed[6] = msrs[i].data;
3610 break;
3611 case MSR_MTRRfix4K_E0000:
3612 env->mtrr_fixed[7] = msrs[i].data;
3613 break;
3614 case MSR_MTRRfix4K_E8000:
3615 env->mtrr_fixed[8] = msrs[i].data;
3616 break;
3617 case MSR_MTRRfix4K_F0000:
3618 env->mtrr_fixed[9] = msrs[i].data;
3619 break;
3620 case MSR_MTRRfix4K_F8000:
3621 env->mtrr_fixed[10] = msrs[i].data;
3622 break;
3623 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
3624 if (index & 1) {
3625 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data |
3626 mtrr_top_bits;
3627 } else {
3628 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
3630 break;
3631 case MSR_IA32_SPEC_CTRL:
3632 env->spec_ctrl = msrs[i].data;
3633 break;
3634 case MSR_IA32_TSX_CTRL:
3635 env->tsx_ctrl = msrs[i].data;
3636 break;
3637 case MSR_VIRT_SSBD:
3638 env->virt_ssbd = msrs[i].data;
3639 break;
3640 case MSR_IA32_RTIT_CTL:
3641 env->msr_rtit_ctrl = msrs[i].data;
3642 break;
3643 case MSR_IA32_RTIT_STATUS:
3644 env->msr_rtit_status = msrs[i].data;
3645 break;
3646 case MSR_IA32_RTIT_OUTPUT_BASE:
3647 env->msr_rtit_output_base = msrs[i].data;
3648 break;
3649 case MSR_IA32_RTIT_OUTPUT_MASK:
3650 env->msr_rtit_output_mask = msrs[i].data;
3651 break;
3652 case MSR_IA32_RTIT_CR3_MATCH:
3653 env->msr_rtit_cr3_match = msrs[i].data;
3654 break;
3655 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
3656 env->msr_rtit_addrs[index - MSR_IA32_RTIT_ADDR0_A] = msrs[i].data;
3657 break;
3661 return 0;
3664 static int kvm_put_mp_state(X86CPU *cpu)
3666 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
3668 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
3671 static int kvm_get_mp_state(X86CPU *cpu)
3673 CPUState *cs = CPU(cpu);
3674 CPUX86State *env = &cpu->env;
3675 struct kvm_mp_state mp_state;
3676 int ret;
3678 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
3679 if (ret < 0) {
3680 return ret;
3682 env->mp_state = mp_state.mp_state;
3683 if (kvm_irqchip_in_kernel()) {
3684 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
3686 return 0;
3689 static int kvm_get_apic(X86CPU *cpu)
3691 DeviceState *apic = cpu->apic_state;
3692 struct kvm_lapic_state kapic;
3693 int ret;
3695 if (apic && kvm_irqchip_in_kernel()) {
3696 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
3697 if (ret < 0) {
3698 return ret;
3701 kvm_get_apic_state(apic, &kapic);
3703 return 0;
3706 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
3708 CPUState *cs = CPU(cpu);
3709 CPUX86State *env = &cpu->env;
3710 struct kvm_vcpu_events events = {};
3712 if (!kvm_has_vcpu_events()) {
3713 return 0;
3716 events.flags = 0;
3718 if (has_exception_payload) {
3719 events.flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3720 events.exception.pending = env->exception_pending;
3721 events.exception_has_payload = env->exception_has_payload;
3722 events.exception_payload = env->exception_payload;
3724 events.exception.nr = env->exception_nr;
3725 events.exception.injected = env->exception_injected;
3726 events.exception.has_error_code = env->has_error_code;
3727 events.exception.error_code = env->error_code;
3729 events.interrupt.injected = (env->interrupt_injected >= 0);
3730 events.interrupt.nr = env->interrupt_injected;
3731 events.interrupt.soft = env->soft_interrupt;
3733 events.nmi.injected = env->nmi_injected;
3734 events.nmi.pending = env->nmi_pending;
3735 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
3737 events.sipi_vector = env->sipi_vector;
3739 if (has_msr_smbase) {
3740 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
3741 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
3742 if (kvm_irqchip_in_kernel()) {
3743 /* As soon as these are moved to the kernel, remove them
3744 * from cs->interrupt_request.
3746 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
3747 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
3748 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
3749 } else {
3750 /* Keep these in cs->interrupt_request. */
3751 events.smi.pending = 0;
3752 events.smi.latched_init = 0;
3754 /* Stop SMI delivery on old machine types to avoid a reboot
3755 * on an inward migration of an old VM.
3757 if (!cpu->kvm_no_smi_migration) {
3758 events.flags |= KVM_VCPUEVENT_VALID_SMM;
3762 if (level >= KVM_PUT_RESET_STATE) {
3763 events.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
3764 if (env->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
3765 events.flags |= KVM_VCPUEVENT_VALID_SIPI_VECTOR;
3769 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
3772 static int kvm_get_vcpu_events(X86CPU *cpu)
3774 CPUX86State *env = &cpu->env;
3775 struct kvm_vcpu_events events;
3776 int ret;
3778 if (!kvm_has_vcpu_events()) {
3779 return 0;
3782 memset(&events, 0, sizeof(events));
3783 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
3784 if (ret < 0) {
3785 return ret;
3788 if (events.flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3789 env->exception_pending = events.exception.pending;
3790 env->exception_has_payload = events.exception_has_payload;
3791 env->exception_payload = events.exception_payload;
3792 } else {
3793 env->exception_pending = 0;
3794 env->exception_has_payload = false;
3796 env->exception_injected = events.exception.injected;
3797 env->exception_nr =
3798 (env->exception_pending || env->exception_injected) ?
3799 events.exception.nr : -1;
3800 env->has_error_code = events.exception.has_error_code;
3801 env->error_code = events.exception.error_code;
3803 env->interrupt_injected =
3804 events.interrupt.injected ? events.interrupt.nr : -1;
3805 env->soft_interrupt = events.interrupt.soft;
3807 env->nmi_injected = events.nmi.injected;
3808 env->nmi_pending = events.nmi.pending;
3809 if (events.nmi.masked) {
3810 env->hflags2 |= HF2_NMI_MASK;
3811 } else {
3812 env->hflags2 &= ~HF2_NMI_MASK;
3815 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
3816 if (events.smi.smm) {
3817 env->hflags |= HF_SMM_MASK;
3818 } else {
3819 env->hflags &= ~HF_SMM_MASK;
3821 if (events.smi.pending) {
3822 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3823 } else {
3824 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
3826 if (events.smi.smm_inside_nmi) {
3827 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
3828 } else {
3829 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
3831 if (events.smi.latched_init) {
3832 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3833 } else {
3834 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
3838 env->sipi_vector = events.sipi_vector;
3840 return 0;
3843 static int kvm_guest_debug_workarounds(X86CPU *cpu)
3845 CPUState *cs = CPU(cpu);
3846 CPUX86State *env = &cpu->env;
3847 int ret = 0;
3848 unsigned long reinject_trap = 0;
3850 if (!kvm_has_vcpu_events()) {
3851 if (env->exception_nr == EXCP01_DB) {
3852 reinject_trap = KVM_GUESTDBG_INJECT_DB;
3853 } else if (env->exception_injected == EXCP03_INT3) {
3854 reinject_trap = KVM_GUESTDBG_INJECT_BP;
3856 kvm_reset_exception(env);
3860 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
3861 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
3862 * by updating the debug state once again if single-stepping is on.
3863 * Another reason to call kvm_update_guest_debug here is a pending debug
3864 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
3865 * reinject them via SET_GUEST_DEBUG.
3867 if (reinject_trap ||
3868 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
3869 ret = kvm_update_guest_debug(cs, reinject_trap);
3871 return ret;
3874 static int kvm_put_debugregs(X86CPU *cpu)
3876 CPUX86State *env = &cpu->env;
3877 struct kvm_debugregs dbgregs;
3878 int i;
3880 if (!kvm_has_debugregs()) {
3881 return 0;
3884 memset(&dbgregs, 0, sizeof(dbgregs));
3885 for (i = 0; i < 4; i++) {
3886 dbgregs.db[i] = env->dr[i];
3888 dbgregs.dr6 = env->dr[6];
3889 dbgregs.dr7 = env->dr[7];
3890 dbgregs.flags = 0;
3892 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
3895 static int kvm_get_debugregs(X86CPU *cpu)
3897 CPUX86State *env = &cpu->env;
3898 struct kvm_debugregs dbgregs;
3899 int i, ret;
3901 if (!kvm_has_debugregs()) {
3902 return 0;
3905 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
3906 if (ret < 0) {
3907 return ret;
3909 for (i = 0; i < 4; i++) {
3910 env->dr[i] = dbgregs.db[i];
3912 env->dr[4] = env->dr[6] = dbgregs.dr6;
3913 env->dr[5] = env->dr[7] = dbgregs.dr7;
3915 return 0;
3918 static int kvm_put_nested_state(X86CPU *cpu)
3920 CPUX86State *env = &cpu->env;
3921 int max_nested_state_len = kvm_max_nested_state_length();
3923 if (!env->nested_state) {
3924 return 0;
3928 * Copy flags that are affected by reset from env->hflags and env->hflags2.
3930 if (env->hflags & HF_GUEST_MASK) {
3931 env->nested_state->flags |= KVM_STATE_NESTED_GUEST_MODE;
3932 } else {
3933 env->nested_state->flags &= ~KVM_STATE_NESTED_GUEST_MODE;
3936 /* Don't set KVM_STATE_NESTED_GIF_SET on VMX as it is illegal */
3937 if (cpu_has_svm(env) && (env->hflags2 & HF2_GIF_MASK)) {
3938 env->nested_state->flags |= KVM_STATE_NESTED_GIF_SET;
3939 } else {
3940 env->nested_state->flags &= ~KVM_STATE_NESTED_GIF_SET;
3943 assert(env->nested_state->size <= max_nested_state_len);
3944 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_NESTED_STATE, env->nested_state);
3947 static int kvm_get_nested_state(X86CPU *cpu)
3949 CPUX86State *env = &cpu->env;
3950 int max_nested_state_len = kvm_max_nested_state_length();
3951 int ret;
3953 if (!env->nested_state) {
3954 return 0;
3958 * It is possible that migration restored a smaller size into
3959 * nested_state->hdr.size than what our kernel support.
3960 * We preserve migration origin nested_state->hdr.size for
3961 * call to KVM_SET_NESTED_STATE but wish that our next call
3962 * to KVM_GET_NESTED_STATE will use max size our kernel support.
3964 env->nested_state->size = max_nested_state_len;
3966 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_NESTED_STATE, env->nested_state);
3967 if (ret < 0) {
3968 return ret;
3972 * Copy flags that are affected by reset to env->hflags and env->hflags2.
3974 if (env->nested_state->flags & KVM_STATE_NESTED_GUEST_MODE) {
3975 env->hflags |= HF_GUEST_MASK;
3976 } else {
3977 env->hflags &= ~HF_GUEST_MASK;
3980 /* Keep HF2_GIF_MASK set on !SVM as x86_cpu_pending_interrupt() needs it */
3981 if (cpu_has_svm(env)) {
3982 if (env->nested_state->flags & KVM_STATE_NESTED_GIF_SET) {
3983 env->hflags2 |= HF2_GIF_MASK;
3984 } else {
3985 env->hflags2 &= ~HF2_GIF_MASK;
3989 return ret;
3992 int kvm_arch_put_registers(CPUState *cpu, int level)
3994 X86CPU *x86_cpu = X86_CPU(cpu);
3995 int ret;
3997 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
3999 /* must be before kvm_put_nested_state so that EFER.SVME is set */
4000 ret = kvm_put_sregs(x86_cpu);
4001 if (ret < 0) {
4002 return ret;
4005 if (level >= KVM_PUT_RESET_STATE) {
4006 ret = kvm_put_nested_state(x86_cpu);
4007 if (ret < 0) {
4008 return ret;
4011 ret = kvm_put_msr_feature_control(x86_cpu);
4012 if (ret < 0) {
4013 return ret;
4017 if (level == KVM_PUT_FULL_STATE) {
4018 /* We don't check for kvm_arch_set_tsc_khz() errors here,
4019 * because TSC frequency mismatch shouldn't abort migration,
4020 * unless the user explicitly asked for a more strict TSC
4021 * setting (e.g. using an explicit "tsc-freq" option).
4023 kvm_arch_set_tsc_khz(cpu);
4026 ret = kvm_getput_regs(x86_cpu, 1);
4027 if (ret < 0) {
4028 return ret;
4030 ret = kvm_put_xsave(x86_cpu);
4031 if (ret < 0) {
4032 return ret;
4034 ret = kvm_put_xcrs(x86_cpu);
4035 if (ret < 0) {
4036 return ret;
4038 /* must be before kvm_put_msrs */
4039 ret = kvm_inject_mce_oldstyle(x86_cpu);
4040 if (ret < 0) {
4041 return ret;
4043 ret = kvm_put_msrs(x86_cpu, level);
4044 if (ret < 0) {
4045 return ret;
4047 ret = kvm_put_vcpu_events(x86_cpu, level);
4048 if (ret < 0) {
4049 return ret;
4051 if (level >= KVM_PUT_RESET_STATE) {
4052 ret = kvm_put_mp_state(x86_cpu);
4053 if (ret < 0) {
4054 return ret;
4058 ret = kvm_put_tscdeadline_msr(x86_cpu);
4059 if (ret < 0) {
4060 return ret;
4062 ret = kvm_put_debugregs(x86_cpu);
4063 if (ret < 0) {
4064 return ret;
4066 /* must be last */
4067 ret = kvm_guest_debug_workarounds(x86_cpu);
4068 if (ret < 0) {
4069 return ret;
4071 return 0;
4074 int kvm_arch_get_registers(CPUState *cs)
4076 X86CPU *cpu = X86_CPU(cs);
4077 int ret;
4079 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
4081 ret = kvm_get_vcpu_events(cpu);
4082 if (ret < 0) {
4083 goto out;
4086 * KVM_GET_MPSTATE can modify CS and RIP, call it before
4087 * KVM_GET_REGS and KVM_GET_SREGS.
4089 ret = kvm_get_mp_state(cpu);
4090 if (ret < 0) {
4091 goto out;
4093 ret = kvm_getput_regs(cpu, 0);
4094 if (ret < 0) {
4095 goto out;
4097 ret = kvm_get_xsave(cpu);
4098 if (ret < 0) {
4099 goto out;
4101 ret = kvm_get_xcrs(cpu);
4102 if (ret < 0) {
4103 goto out;
4105 ret = kvm_get_sregs(cpu);
4106 if (ret < 0) {
4107 goto out;
4109 ret = kvm_get_msrs(cpu);
4110 if (ret < 0) {
4111 goto out;
4113 ret = kvm_get_apic(cpu);
4114 if (ret < 0) {
4115 goto out;
4117 ret = kvm_get_debugregs(cpu);
4118 if (ret < 0) {
4119 goto out;
4121 ret = kvm_get_nested_state(cpu);
4122 if (ret < 0) {
4123 goto out;
4125 ret = 0;
4126 out:
4127 cpu_sync_bndcs_hflags(&cpu->env);
4128 return ret;
4131 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
4133 X86CPU *x86_cpu = X86_CPU(cpu);
4134 CPUX86State *env = &x86_cpu->env;
4135 int ret;
4137 /* Inject NMI */
4138 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
4139 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
4140 qemu_mutex_lock_iothread();
4141 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
4142 qemu_mutex_unlock_iothread();
4143 DPRINTF("injected NMI\n");
4144 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
4145 if (ret < 0) {
4146 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
4147 strerror(-ret));
4150 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
4151 qemu_mutex_lock_iothread();
4152 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
4153 qemu_mutex_unlock_iothread();
4154 DPRINTF("injected SMI\n");
4155 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
4156 if (ret < 0) {
4157 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
4158 strerror(-ret));
4163 if (!kvm_pic_in_kernel()) {
4164 qemu_mutex_lock_iothread();
4167 /* Force the VCPU out of its inner loop to process any INIT requests
4168 * or (for userspace APIC, but it is cheap to combine the checks here)
4169 * pending TPR access reports.
4171 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
4172 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
4173 !(env->hflags & HF_SMM_MASK)) {
4174 cpu->exit_request = 1;
4176 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
4177 cpu->exit_request = 1;
4181 if (!kvm_pic_in_kernel()) {
4182 /* Try to inject an interrupt if the guest can accept it */
4183 if (run->ready_for_interrupt_injection &&
4184 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
4185 (env->eflags & IF_MASK)) {
4186 int irq;
4188 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
4189 irq = cpu_get_pic_interrupt(env);
4190 if (irq >= 0) {
4191 struct kvm_interrupt intr;
4193 intr.irq = irq;
4194 DPRINTF("injected interrupt %d\n", irq);
4195 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
4196 if (ret < 0) {
4197 fprintf(stderr,
4198 "KVM: injection failed, interrupt lost (%s)\n",
4199 strerror(-ret));
4204 /* If we have an interrupt but the guest is not ready to receive an
4205 * interrupt, request an interrupt window exit. This will
4206 * cause a return to userspace as soon as the guest is ready to
4207 * receive interrupts. */
4208 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
4209 run->request_interrupt_window = 1;
4210 } else {
4211 run->request_interrupt_window = 0;
4214 DPRINTF("setting tpr\n");
4215 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
4217 qemu_mutex_unlock_iothread();
4221 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
4223 X86CPU *x86_cpu = X86_CPU(cpu);
4224 CPUX86State *env = &x86_cpu->env;
4226 if (run->flags & KVM_RUN_X86_SMM) {
4227 env->hflags |= HF_SMM_MASK;
4228 } else {
4229 env->hflags &= ~HF_SMM_MASK;
4231 if (run->if_flag) {
4232 env->eflags |= IF_MASK;
4233 } else {
4234 env->eflags &= ~IF_MASK;
4237 /* We need to protect the apic state against concurrent accesses from
4238 * different threads in case the userspace irqchip is used. */
4239 if (!kvm_irqchip_in_kernel()) {
4240 qemu_mutex_lock_iothread();
4242 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
4243 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
4244 if (!kvm_irqchip_in_kernel()) {
4245 qemu_mutex_unlock_iothread();
4247 return cpu_get_mem_attrs(env);
4250 int kvm_arch_process_async_events(CPUState *cs)
4252 X86CPU *cpu = X86_CPU(cs);
4253 CPUX86State *env = &cpu->env;
4255 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
4256 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
4257 assert(env->mcg_cap);
4259 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
4261 kvm_cpu_synchronize_state(cs);
4263 if (env->exception_nr == EXCP08_DBLE) {
4264 /* this means triple fault */
4265 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
4266 cs->exit_request = 1;
4267 return 0;
4269 kvm_queue_exception(env, EXCP12_MCHK, 0, 0);
4270 env->has_error_code = 0;
4272 cs->halted = 0;
4273 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
4274 env->mp_state = KVM_MP_STATE_RUNNABLE;
4278 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
4279 !(env->hflags & HF_SMM_MASK)) {
4280 kvm_cpu_synchronize_state(cs);
4281 do_cpu_init(cpu);
4284 if (kvm_irqchip_in_kernel()) {
4285 return 0;
4288 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
4289 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
4290 apic_poll_irq(cpu->apic_state);
4292 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4293 (env->eflags & IF_MASK)) ||
4294 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4295 cs->halted = 0;
4297 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
4298 kvm_cpu_synchronize_state(cs);
4299 do_cpu_sipi(cpu);
4301 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
4302 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
4303 kvm_cpu_synchronize_state(cs);
4304 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
4305 env->tpr_access_type);
4308 return cs->halted;
4311 static int kvm_handle_halt(X86CPU *cpu)
4313 CPUState *cs = CPU(cpu);
4314 CPUX86State *env = &cpu->env;
4316 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
4317 (env->eflags & IF_MASK)) &&
4318 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
4319 cs->halted = 1;
4320 return EXCP_HLT;
4323 return 0;
4326 static int kvm_handle_tpr_access(X86CPU *cpu)
4328 CPUState *cs = CPU(cpu);
4329 struct kvm_run *run = cs->kvm_run;
4331 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
4332 run->tpr_access.is_write ? TPR_ACCESS_WRITE
4333 : TPR_ACCESS_READ);
4334 return 1;
4337 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4339 static const uint8_t int3 = 0xcc;
4341 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
4342 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
4343 return -EINVAL;
4345 return 0;
4348 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
4350 uint8_t int3;
4352 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
4353 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
4354 return -EINVAL;
4356 return 0;
4359 static struct {
4360 target_ulong addr;
4361 int len;
4362 int type;
4363 } hw_breakpoint[4];
4365 static int nb_hw_breakpoint;
4367 static int find_hw_breakpoint(target_ulong addr, int len, int type)
4369 int n;
4371 for (n = 0; n < nb_hw_breakpoint; n++) {
4372 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
4373 (hw_breakpoint[n].len == len || len == -1)) {
4374 return n;
4377 return -1;
4380 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
4381 target_ulong len, int type)
4383 switch (type) {
4384 case GDB_BREAKPOINT_HW:
4385 len = 1;
4386 break;
4387 case GDB_WATCHPOINT_WRITE:
4388 case GDB_WATCHPOINT_ACCESS:
4389 switch (len) {
4390 case 1:
4391 break;
4392 case 2:
4393 case 4:
4394 case 8:
4395 if (addr & (len - 1)) {
4396 return -EINVAL;
4398 break;
4399 default:
4400 return -EINVAL;
4402 break;
4403 default:
4404 return -ENOSYS;
4407 if (nb_hw_breakpoint == 4) {
4408 return -ENOBUFS;
4410 if (find_hw_breakpoint(addr, len, type) >= 0) {
4411 return -EEXIST;
4413 hw_breakpoint[nb_hw_breakpoint].addr = addr;
4414 hw_breakpoint[nb_hw_breakpoint].len = len;
4415 hw_breakpoint[nb_hw_breakpoint].type = type;
4416 nb_hw_breakpoint++;
4418 return 0;
4421 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
4422 target_ulong len, int type)
4424 int n;
4426 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
4427 if (n < 0) {
4428 return -ENOENT;
4430 nb_hw_breakpoint--;
4431 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
4433 return 0;
4436 void kvm_arch_remove_all_hw_breakpoints(void)
4438 nb_hw_breakpoint = 0;
4441 static CPUWatchpoint hw_watchpoint;
4443 static int kvm_handle_debug(X86CPU *cpu,
4444 struct kvm_debug_exit_arch *arch_info)
4446 CPUState *cs = CPU(cpu);
4447 CPUX86State *env = &cpu->env;
4448 int ret = 0;
4449 int n;
4451 if (arch_info->exception == EXCP01_DB) {
4452 if (arch_info->dr6 & DR6_BS) {
4453 if (cs->singlestep_enabled) {
4454 ret = EXCP_DEBUG;
4456 } else {
4457 for (n = 0; n < 4; n++) {
4458 if (arch_info->dr6 & (1 << n)) {
4459 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
4460 case 0x0:
4461 ret = EXCP_DEBUG;
4462 break;
4463 case 0x1:
4464 ret = EXCP_DEBUG;
4465 cs->watchpoint_hit = &hw_watchpoint;
4466 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4467 hw_watchpoint.flags = BP_MEM_WRITE;
4468 break;
4469 case 0x3:
4470 ret = EXCP_DEBUG;
4471 cs->watchpoint_hit = &hw_watchpoint;
4472 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
4473 hw_watchpoint.flags = BP_MEM_ACCESS;
4474 break;
4479 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
4480 ret = EXCP_DEBUG;
4482 if (ret == 0) {
4483 cpu_synchronize_state(cs);
4484 assert(env->exception_nr == -1);
4486 /* pass to guest */
4487 kvm_queue_exception(env, arch_info->exception,
4488 arch_info->exception == EXCP01_DB,
4489 arch_info->dr6);
4490 env->has_error_code = 0;
4493 return ret;
4496 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
4498 const uint8_t type_code[] = {
4499 [GDB_BREAKPOINT_HW] = 0x0,
4500 [GDB_WATCHPOINT_WRITE] = 0x1,
4501 [GDB_WATCHPOINT_ACCESS] = 0x3
4503 const uint8_t len_code[] = {
4504 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
4506 int n;
4508 if (kvm_sw_breakpoints_active(cpu)) {
4509 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
4511 if (nb_hw_breakpoint > 0) {
4512 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
4513 dbg->arch.debugreg[7] = 0x0600;
4514 for (n = 0; n < nb_hw_breakpoint; n++) {
4515 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
4516 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
4517 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
4518 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
4523 static bool host_supports_vmx(void)
4525 uint32_t ecx, unused;
4527 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
4528 return ecx & CPUID_EXT_VMX;
4531 #define VMX_INVALID_GUEST_STATE 0x80000021
4533 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
4535 X86CPU *cpu = X86_CPU(cs);
4536 uint64_t code;
4537 int ret;
4539 switch (run->exit_reason) {
4540 case KVM_EXIT_HLT:
4541 DPRINTF("handle_hlt\n");
4542 qemu_mutex_lock_iothread();
4543 ret = kvm_handle_halt(cpu);
4544 qemu_mutex_unlock_iothread();
4545 break;
4546 case KVM_EXIT_SET_TPR:
4547 ret = 0;
4548 break;
4549 case KVM_EXIT_TPR_ACCESS:
4550 qemu_mutex_lock_iothread();
4551 ret = kvm_handle_tpr_access(cpu);
4552 qemu_mutex_unlock_iothread();
4553 break;
4554 case KVM_EXIT_FAIL_ENTRY:
4555 code = run->fail_entry.hardware_entry_failure_reason;
4556 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
4557 code);
4558 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
4559 fprintf(stderr,
4560 "\nIf you're running a guest on an Intel machine without "
4561 "unrestricted mode\n"
4562 "support, the failure can be most likely due to the guest "
4563 "entering an invalid\n"
4564 "state for Intel VT. For example, the guest maybe running "
4565 "in big real mode\n"
4566 "which is not supported on less recent Intel processors."
4567 "\n\n");
4569 ret = -1;
4570 break;
4571 case KVM_EXIT_EXCEPTION:
4572 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
4573 run->ex.exception, run->ex.error_code);
4574 ret = -1;
4575 break;
4576 case KVM_EXIT_DEBUG:
4577 DPRINTF("kvm_exit_debug\n");
4578 qemu_mutex_lock_iothread();
4579 ret = kvm_handle_debug(cpu, &run->debug.arch);
4580 qemu_mutex_unlock_iothread();
4581 break;
4582 case KVM_EXIT_HYPERV:
4583 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
4584 break;
4585 case KVM_EXIT_IOAPIC_EOI:
4586 ioapic_eoi_broadcast(run->eoi.vector);
4587 ret = 0;
4588 break;
4589 default:
4590 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
4591 ret = -1;
4592 break;
4595 return ret;
4598 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
4600 X86CPU *cpu = X86_CPU(cs);
4601 CPUX86State *env = &cpu->env;
4603 kvm_cpu_synchronize_state(cs);
4604 return !(env->cr[0] & CR0_PE_MASK) ||
4605 ((env->segs[R_CS].selector & 3) != 3);
4608 void kvm_arch_init_irq_routing(KVMState *s)
4610 /* We know at this point that we're using the in-kernel
4611 * irqchip, so we can use irqfds, and on x86 we know
4612 * we can use msi via irqfd and GSI routing.
4614 kvm_msi_via_irqfd_allowed = true;
4615 kvm_gsi_routing_allowed = true;
4617 if (kvm_irqchip_is_split()) {
4618 int i;
4620 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
4621 MSI routes for signaling interrupts to the local apics. */
4622 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
4623 if (kvm_irqchip_add_msi_route(s, 0, NULL) < 0) {
4624 error_report("Could not enable split IRQ mode.");
4625 exit(1);
4631 int kvm_arch_irqchip_create(KVMState *s)
4633 int ret;
4634 if (kvm_kernel_irqchip_split()) {
4635 ret = kvm_vm_enable_cap(s, KVM_CAP_SPLIT_IRQCHIP, 0, 24);
4636 if (ret) {
4637 error_report("Could not enable split irqchip mode: %s",
4638 strerror(-ret));
4639 exit(1);
4640 } else {
4641 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
4642 kvm_split_irqchip = true;
4643 return 1;
4645 } else {
4646 return 0;
4650 uint64_t kvm_swizzle_msi_ext_dest_id(uint64_t address)
4652 CPUX86State *env;
4653 uint64_t ext_id;
4655 if (!first_cpu) {
4656 return address;
4658 env = &X86_CPU(first_cpu)->env;
4659 if (!(env->features[FEAT_KVM] & (1 << KVM_FEATURE_MSI_EXT_DEST_ID))) {
4660 return address;
4664 * If the remappable format bit is set, or the upper bits are
4665 * already set in address_hi, or the low extended bits aren't
4666 * there anyway, do nothing.
4668 ext_id = address & (0xff << MSI_ADDR_DEST_IDX_SHIFT);
4669 if (!ext_id || (ext_id & (1 << MSI_ADDR_DEST_IDX_SHIFT)) || (address >> 32)) {
4670 return address;
4673 address &= ~ext_id;
4674 address |= ext_id << 35;
4675 return address;
4678 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
4679 uint64_t address, uint32_t data, PCIDevice *dev)
4681 X86IOMMUState *iommu = x86_iommu_get_default();
4683 if (iommu) {
4684 X86IOMMUClass *class = X86_IOMMU_DEVICE_GET_CLASS(iommu);
4686 if (class->int_remap) {
4687 int ret;
4688 MSIMessage src, dst;
4690 src.address = route->u.msi.address_hi;
4691 src.address <<= VTD_MSI_ADDR_HI_SHIFT;
4692 src.address |= route->u.msi.address_lo;
4693 src.data = route->u.msi.data;
4695 ret = class->int_remap(iommu, &src, &dst, dev ? \
4696 pci_requester_id(dev) : \
4697 X86_IOMMU_SID_INVALID);
4698 if (ret) {
4699 trace_kvm_x86_fixup_msi_error(route->gsi);
4700 return 1;
4704 * Handled untranslated compatibilty format interrupt with
4705 * extended destination ID in the low bits 11-5. */
4706 dst.address = kvm_swizzle_msi_ext_dest_id(dst.address);
4708 route->u.msi.address_hi = dst.address >> VTD_MSI_ADDR_HI_SHIFT;
4709 route->u.msi.address_lo = dst.address & VTD_MSI_ADDR_LO_MASK;
4710 route->u.msi.data = dst.data;
4711 return 0;
4715 address = kvm_swizzle_msi_ext_dest_id(address);
4716 route->u.msi.address_hi = address >> VTD_MSI_ADDR_HI_SHIFT;
4717 route->u.msi.address_lo = address & VTD_MSI_ADDR_LO_MASK;
4718 return 0;
4721 typedef struct MSIRouteEntry MSIRouteEntry;
4723 struct MSIRouteEntry {
4724 PCIDevice *dev; /* Device pointer */
4725 int vector; /* MSI/MSIX vector index */
4726 int virq; /* Virtual IRQ index */
4727 QLIST_ENTRY(MSIRouteEntry) list;
4730 /* List of used GSI routes */
4731 static QLIST_HEAD(, MSIRouteEntry) msi_route_list = \
4732 QLIST_HEAD_INITIALIZER(msi_route_list);
4734 static void kvm_update_msi_routes_all(void *private, bool global,
4735 uint32_t index, uint32_t mask)
4737 int cnt = 0, vector;
4738 MSIRouteEntry *entry;
4739 MSIMessage msg;
4740 PCIDevice *dev;
4742 /* TODO: explicit route update */
4743 QLIST_FOREACH(entry, &msi_route_list, list) {
4744 cnt++;
4745 vector = entry->vector;
4746 dev = entry->dev;
4747 if (msix_enabled(dev) && !msix_is_masked(dev, vector)) {
4748 msg = msix_get_message(dev, vector);
4749 } else if (msi_enabled(dev) && !msi_is_masked(dev, vector)) {
4750 msg = msi_get_message(dev, vector);
4751 } else {
4753 * Either MSI/MSIX is disabled for the device, or the
4754 * specific message was masked out. Skip this one.
4756 continue;
4758 kvm_irqchip_update_msi_route(kvm_state, entry->virq, msg, dev);
4760 kvm_irqchip_commit_routes(kvm_state);
4761 trace_kvm_x86_update_msi_routes(cnt);
4764 int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route,
4765 int vector, PCIDevice *dev)
4767 static bool notify_list_inited = false;
4768 MSIRouteEntry *entry;
4770 if (!dev) {
4771 /* These are (possibly) IOAPIC routes only used for split
4772 * kernel irqchip mode, while what we are housekeeping are
4773 * PCI devices only. */
4774 return 0;
4777 entry = g_new0(MSIRouteEntry, 1);
4778 entry->dev = dev;
4779 entry->vector = vector;
4780 entry->virq = route->gsi;
4781 QLIST_INSERT_HEAD(&msi_route_list, entry, list);
4783 trace_kvm_x86_add_msi_route(route->gsi);
4785 if (!notify_list_inited) {
4786 /* For the first time we do add route, add ourselves into
4787 * IOMMU's IEC notify list if needed. */
4788 X86IOMMUState *iommu = x86_iommu_get_default();
4789 if (iommu) {
4790 x86_iommu_iec_register_notifier(iommu,
4791 kvm_update_msi_routes_all,
4792 NULL);
4794 notify_list_inited = true;
4796 return 0;
4799 int kvm_arch_release_virq_post(int virq)
4801 MSIRouteEntry *entry, *next;
4802 QLIST_FOREACH_SAFE(entry, &msi_route_list, list, next) {
4803 if (entry->virq == virq) {
4804 trace_kvm_x86_remove_msi_route(virq);
4805 QLIST_REMOVE(entry, list);
4806 g_free(entry);
4807 break;
4810 return 0;
4813 int kvm_arch_msi_data_to_gsi(uint32_t data)
4815 abort();
4818 bool kvm_has_waitpkg(void)
4820 return has_msr_umwait;