vnc: remove bogus object_unref on client socket
[qemu/ar7.git] / linux-user / elfload.c
blob8bb9a2c3e896f7f30617b1f3981c974f1c2456d6
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
5 #include <sys/resource.h>
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
11 #ifdef _ARCH_PPC64
12 #undef ARCH_DLINFO
13 #undef ELF_PLATFORM
14 #undef ELF_HWCAP
15 #undef ELF_HWCAP2
16 #undef ELF_CLASS
17 #undef ELF_DATA
18 #undef ELF_ARCH
19 #endif
21 #define ELF_OSABI ELFOSABI_SYSV
23 /* from personality.h */
26 * Flags for bug emulation.
28 * These occupy the top three bytes.
30 enum {
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
45 * Personality types.
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
50 enum {
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
77 * Return the base personality without flags.
79 #define personality(pers) (pers & PER_MASK)
81 /* this flag is uneffective under linux too, should be deleted */
82 #ifndef MAP_DENYWRITE
83 #define MAP_DENYWRITE 0
84 #endif
86 /* should probably go in elf.h */
87 #ifndef ELIBBAD
88 #define ELIBBAD 80
89 #endif
91 #ifdef TARGET_WORDS_BIGENDIAN
92 #define ELF_DATA ELFDATA2MSB
93 #else
94 #define ELF_DATA ELFDATA2LSB
95 #endif
97 #ifdef TARGET_ABI_MIPSN32
98 typedef abi_ullong target_elf_greg_t;
99 #define tswapreg(ptr) tswap64(ptr)
100 #else
101 typedef abi_ulong target_elf_greg_t;
102 #define tswapreg(ptr) tswapal(ptr)
103 #endif
105 #ifdef USE_UID16
106 typedef abi_ushort target_uid_t;
107 typedef abi_ushort target_gid_t;
108 #else
109 typedef abi_uint target_uid_t;
110 typedef abi_uint target_gid_t;
111 #endif
112 typedef abi_int target_pid_t;
114 #ifdef TARGET_I386
116 #define ELF_PLATFORM get_elf_platform()
118 static const char *get_elf_platform(void)
120 static char elf_platform[] = "i386";
121 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
122 if (family > 6)
123 family = 6;
124 if (family >= 3)
125 elf_platform[1] = '0' + family;
126 return elf_platform;
129 #define ELF_HWCAP get_elf_hwcap()
131 static uint32_t get_elf_hwcap(void)
133 X86CPU *cpu = X86_CPU(thread_cpu);
135 return cpu->env.features[FEAT_1_EDX];
138 #ifdef TARGET_X86_64
139 #define ELF_START_MMAP 0x2aaaaab000ULL
141 #define ELF_CLASS ELFCLASS64
142 #define ELF_ARCH EM_X86_64
144 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
146 regs->rax = 0;
147 regs->rsp = infop->start_stack;
148 regs->rip = infop->entry;
151 #define ELF_NREG 27
152 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
155 * Note that ELF_NREG should be 29 as there should be place for
156 * TRAPNO and ERR "registers" as well but linux doesn't dump
157 * those.
159 * See linux kernel: arch/x86/include/asm/elf.h
161 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
163 (*regs)[0] = env->regs[15];
164 (*regs)[1] = env->regs[14];
165 (*regs)[2] = env->regs[13];
166 (*regs)[3] = env->regs[12];
167 (*regs)[4] = env->regs[R_EBP];
168 (*regs)[5] = env->regs[R_EBX];
169 (*regs)[6] = env->regs[11];
170 (*regs)[7] = env->regs[10];
171 (*regs)[8] = env->regs[9];
172 (*regs)[9] = env->regs[8];
173 (*regs)[10] = env->regs[R_EAX];
174 (*regs)[11] = env->regs[R_ECX];
175 (*regs)[12] = env->regs[R_EDX];
176 (*regs)[13] = env->regs[R_ESI];
177 (*regs)[14] = env->regs[R_EDI];
178 (*regs)[15] = env->regs[R_EAX]; /* XXX */
179 (*regs)[16] = env->eip;
180 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
181 (*regs)[18] = env->eflags;
182 (*regs)[19] = env->regs[R_ESP];
183 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
184 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
185 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
186 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
187 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
188 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
189 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
192 #else
194 #define ELF_START_MMAP 0x80000000
197 * This is used to ensure we don't load something for the wrong architecture.
199 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
202 * These are used to set parameters in the core dumps.
204 #define ELF_CLASS ELFCLASS32
205 #define ELF_ARCH EM_386
207 static inline void init_thread(struct target_pt_regs *regs,
208 struct image_info *infop)
210 regs->esp = infop->start_stack;
211 regs->eip = infop->entry;
213 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
214 starts %edx contains a pointer to a function which might be
215 registered using `atexit'. This provides a mean for the
216 dynamic linker to call DT_FINI functions for shared libraries
217 that have been loaded before the code runs.
219 A value of 0 tells we have no such handler. */
220 regs->edx = 0;
223 #define ELF_NREG 17
224 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
227 * Note that ELF_NREG should be 19 as there should be place for
228 * TRAPNO and ERR "registers" as well but linux doesn't dump
229 * those.
231 * See linux kernel: arch/x86/include/asm/elf.h
233 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
235 (*regs)[0] = env->regs[R_EBX];
236 (*regs)[1] = env->regs[R_ECX];
237 (*regs)[2] = env->regs[R_EDX];
238 (*regs)[3] = env->regs[R_ESI];
239 (*regs)[4] = env->regs[R_EDI];
240 (*regs)[5] = env->regs[R_EBP];
241 (*regs)[6] = env->regs[R_EAX];
242 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
243 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
244 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
245 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
246 (*regs)[11] = env->regs[R_EAX]; /* XXX */
247 (*regs)[12] = env->eip;
248 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
249 (*regs)[14] = env->eflags;
250 (*regs)[15] = env->regs[R_ESP];
251 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
253 #endif
255 #define USE_ELF_CORE_DUMP
256 #define ELF_EXEC_PAGESIZE 4096
258 #endif
260 #ifdef TARGET_ARM
262 #ifndef TARGET_AARCH64
263 /* 32 bit ARM definitions */
265 #define ELF_START_MMAP 0x80000000
267 #define ELF_ARCH EM_ARM
268 #define ELF_CLASS ELFCLASS32
270 static inline void init_thread(struct target_pt_regs *regs,
271 struct image_info *infop)
273 abi_long stack = infop->start_stack;
274 memset(regs, 0, sizeof(*regs));
276 regs->uregs[16] = ARM_CPU_MODE_USR;
277 if (infop->entry & 1) {
278 regs->uregs[16] |= CPSR_T;
280 regs->uregs[15] = infop->entry & 0xfffffffe;
281 regs->uregs[13] = infop->start_stack;
282 /* FIXME - what to for failure of get_user()? */
283 get_user_ual(regs->uregs[2], stack + 8); /* envp */
284 get_user_ual(regs->uregs[1], stack + 4); /* envp */
285 /* XXX: it seems that r0 is zeroed after ! */
286 regs->uregs[0] = 0;
287 /* For uClinux PIC binaries. */
288 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
289 regs->uregs[10] = infop->start_data;
292 #define ELF_NREG 18
293 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
295 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
297 (*regs)[0] = tswapreg(env->regs[0]);
298 (*regs)[1] = tswapreg(env->regs[1]);
299 (*regs)[2] = tswapreg(env->regs[2]);
300 (*regs)[3] = tswapreg(env->regs[3]);
301 (*regs)[4] = tswapreg(env->regs[4]);
302 (*regs)[5] = tswapreg(env->regs[5]);
303 (*regs)[6] = tswapreg(env->regs[6]);
304 (*regs)[7] = tswapreg(env->regs[7]);
305 (*regs)[8] = tswapreg(env->regs[8]);
306 (*regs)[9] = tswapreg(env->regs[9]);
307 (*regs)[10] = tswapreg(env->regs[10]);
308 (*regs)[11] = tswapreg(env->regs[11]);
309 (*regs)[12] = tswapreg(env->regs[12]);
310 (*regs)[13] = tswapreg(env->regs[13]);
311 (*regs)[14] = tswapreg(env->regs[14]);
312 (*regs)[15] = tswapreg(env->regs[15]);
314 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
315 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
318 #define USE_ELF_CORE_DUMP
319 #define ELF_EXEC_PAGESIZE 4096
321 enum
323 ARM_HWCAP_ARM_SWP = 1 << 0,
324 ARM_HWCAP_ARM_HALF = 1 << 1,
325 ARM_HWCAP_ARM_THUMB = 1 << 2,
326 ARM_HWCAP_ARM_26BIT = 1 << 3,
327 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
328 ARM_HWCAP_ARM_FPA = 1 << 5,
329 ARM_HWCAP_ARM_VFP = 1 << 6,
330 ARM_HWCAP_ARM_EDSP = 1 << 7,
331 ARM_HWCAP_ARM_JAVA = 1 << 8,
332 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
333 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
334 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
335 ARM_HWCAP_ARM_NEON = 1 << 12,
336 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
337 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
338 ARM_HWCAP_ARM_TLS = 1 << 15,
339 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
340 ARM_HWCAP_ARM_IDIVA = 1 << 17,
341 ARM_HWCAP_ARM_IDIVT = 1 << 18,
342 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
343 ARM_HWCAP_ARM_LPAE = 1 << 20,
344 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
347 enum {
348 ARM_HWCAP2_ARM_AES = 1 << 0,
349 ARM_HWCAP2_ARM_PMULL = 1 << 1,
350 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
351 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
352 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
355 /* The commpage only exists for 32 bit kernels */
357 #define TARGET_HAS_VALIDATE_GUEST_SPACE
358 /* Return 1 if the proposed guest space is suitable for the guest.
359 * Return 0 if the proposed guest space isn't suitable, but another
360 * address space should be tried.
361 * Return -1 if there is no way the proposed guest space can be
362 * valid regardless of the base.
363 * The guest code may leave a page mapped and populate it if the
364 * address is suitable.
366 static int validate_guest_space(unsigned long guest_base,
367 unsigned long guest_size)
369 unsigned long real_start, test_page_addr;
371 /* We need to check that we can force a fault on access to the
372 * commpage at 0xffff0fxx
374 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
376 /* If the commpage lies within the already allocated guest space,
377 * then there is no way we can allocate it.
379 if (test_page_addr >= guest_base
380 && test_page_addr < (guest_base + guest_size)) {
381 return -1;
384 /* Note it needs to be writeable to let us initialise it */
385 real_start = (unsigned long)
386 mmap((void *)test_page_addr, qemu_host_page_size,
387 PROT_READ | PROT_WRITE,
388 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
390 /* If we can't map it then try another address */
391 if (real_start == -1ul) {
392 return 0;
395 if (real_start != test_page_addr) {
396 /* OS didn't put the page where we asked - unmap and reject */
397 munmap((void *)real_start, qemu_host_page_size);
398 return 0;
401 /* Leave the page mapped
402 * Populate it (mmap should have left it all 0'd)
405 /* Kernel helper versions */
406 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
408 /* Now it's populated make it RO */
409 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
410 perror("Protecting guest commpage");
411 exit(-1);
414 return 1; /* All good */
417 #define ELF_HWCAP get_elf_hwcap()
418 #define ELF_HWCAP2 get_elf_hwcap2()
420 static uint32_t get_elf_hwcap(void)
422 ARMCPU *cpu = ARM_CPU(thread_cpu);
423 uint32_t hwcaps = 0;
425 hwcaps |= ARM_HWCAP_ARM_SWP;
426 hwcaps |= ARM_HWCAP_ARM_HALF;
427 hwcaps |= ARM_HWCAP_ARM_THUMB;
428 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
430 /* probe for the extra features */
431 #define GET_FEATURE(feat, hwcap) \
432 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
433 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
434 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
435 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
436 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
439 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
440 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
441 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
442 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
443 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
444 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
445 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
446 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
447 * to our VFP_FP16 feature bit.
449 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
450 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
452 return hwcaps;
455 static uint32_t get_elf_hwcap2(void)
457 ARMCPU *cpu = ARM_CPU(thread_cpu);
458 uint32_t hwcaps = 0;
460 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
461 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
462 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
463 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
464 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
465 return hwcaps;
468 #undef GET_FEATURE
470 #else
471 /* 64 bit ARM definitions */
472 #define ELF_START_MMAP 0x80000000
474 #define ELF_ARCH EM_AARCH64
475 #define ELF_CLASS ELFCLASS64
476 #define ELF_PLATFORM "aarch64"
478 static inline void init_thread(struct target_pt_regs *regs,
479 struct image_info *infop)
481 abi_long stack = infop->start_stack;
482 memset(regs, 0, sizeof(*regs));
484 regs->pc = infop->entry & ~0x3ULL;
485 regs->sp = stack;
488 #define ELF_NREG 34
489 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
491 static void elf_core_copy_regs(target_elf_gregset_t *regs,
492 const CPUARMState *env)
494 int i;
496 for (i = 0; i < 32; i++) {
497 (*regs)[i] = tswapreg(env->xregs[i]);
499 (*regs)[32] = tswapreg(env->pc);
500 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
503 #define USE_ELF_CORE_DUMP
504 #define ELF_EXEC_PAGESIZE 4096
506 enum {
507 ARM_HWCAP_A64_FP = 1 << 0,
508 ARM_HWCAP_A64_ASIMD = 1 << 1,
509 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
510 ARM_HWCAP_A64_AES = 1 << 3,
511 ARM_HWCAP_A64_PMULL = 1 << 4,
512 ARM_HWCAP_A64_SHA1 = 1 << 5,
513 ARM_HWCAP_A64_SHA2 = 1 << 6,
514 ARM_HWCAP_A64_CRC32 = 1 << 7,
515 ARM_HWCAP_A64_ATOMICS = 1 << 8,
516 ARM_HWCAP_A64_FPHP = 1 << 9,
517 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
518 ARM_HWCAP_A64_CPUID = 1 << 11,
519 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
520 ARM_HWCAP_A64_JSCVT = 1 << 13,
521 ARM_HWCAP_A64_FCMA = 1 << 14,
522 ARM_HWCAP_A64_LRCPC = 1 << 15,
523 ARM_HWCAP_A64_DCPOP = 1 << 16,
524 ARM_HWCAP_A64_SHA3 = 1 << 17,
525 ARM_HWCAP_A64_SM3 = 1 << 18,
526 ARM_HWCAP_A64_SM4 = 1 << 19,
527 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
528 ARM_HWCAP_A64_SHA512 = 1 << 21,
529 ARM_HWCAP_A64_SVE = 1 << 22,
532 #define ELF_HWCAP get_elf_hwcap()
534 static uint32_t get_elf_hwcap(void)
536 ARMCPU *cpu = ARM_CPU(thread_cpu);
537 uint32_t hwcaps = 0;
539 hwcaps |= ARM_HWCAP_A64_FP;
540 hwcaps |= ARM_HWCAP_A64_ASIMD;
542 /* probe for the extra features */
543 #define GET_FEATURE(feat, hwcap) \
544 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
545 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
546 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
547 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
548 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
549 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
550 GET_FEATURE(ARM_FEATURE_V8_SHA3, ARM_HWCAP_A64_SHA3);
551 GET_FEATURE(ARM_FEATURE_V8_SM3, ARM_HWCAP_A64_SM3);
552 GET_FEATURE(ARM_FEATURE_V8_SM4, ARM_HWCAP_A64_SM4);
553 GET_FEATURE(ARM_FEATURE_V8_SHA512, ARM_HWCAP_A64_SHA512);
554 #undef GET_FEATURE
556 return hwcaps;
559 #endif /* not TARGET_AARCH64 */
560 #endif /* TARGET_ARM */
562 #ifdef TARGET_UNICORE32
564 #define ELF_START_MMAP 0x80000000
566 #define ELF_CLASS ELFCLASS32
567 #define ELF_DATA ELFDATA2LSB
568 #define ELF_ARCH EM_UNICORE32
570 static inline void init_thread(struct target_pt_regs *regs,
571 struct image_info *infop)
573 abi_long stack = infop->start_stack;
574 memset(regs, 0, sizeof(*regs));
575 regs->UC32_REG_asr = 0x10;
576 regs->UC32_REG_pc = infop->entry & 0xfffffffe;
577 regs->UC32_REG_sp = infop->start_stack;
578 /* FIXME - what to for failure of get_user()? */
579 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
580 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
581 /* XXX: it seems that r0 is zeroed after ! */
582 regs->UC32_REG_00 = 0;
585 #define ELF_NREG 34
586 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
588 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
590 (*regs)[0] = env->regs[0];
591 (*regs)[1] = env->regs[1];
592 (*regs)[2] = env->regs[2];
593 (*regs)[3] = env->regs[3];
594 (*regs)[4] = env->regs[4];
595 (*regs)[5] = env->regs[5];
596 (*regs)[6] = env->regs[6];
597 (*regs)[7] = env->regs[7];
598 (*regs)[8] = env->regs[8];
599 (*regs)[9] = env->regs[9];
600 (*regs)[10] = env->regs[10];
601 (*regs)[11] = env->regs[11];
602 (*regs)[12] = env->regs[12];
603 (*regs)[13] = env->regs[13];
604 (*regs)[14] = env->regs[14];
605 (*regs)[15] = env->regs[15];
606 (*regs)[16] = env->regs[16];
607 (*regs)[17] = env->regs[17];
608 (*regs)[18] = env->regs[18];
609 (*regs)[19] = env->regs[19];
610 (*regs)[20] = env->regs[20];
611 (*regs)[21] = env->regs[21];
612 (*regs)[22] = env->regs[22];
613 (*regs)[23] = env->regs[23];
614 (*regs)[24] = env->regs[24];
615 (*regs)[25] = env->regs[25];
616 (*regs)[26] = env->regs[26];
617 (*regs)[27] = env->regs[27];
618 (*regs)[28] = env->regs[28];
619 (*regs)[29] = env->regs[29];
620 (*regs)[30] = env->regs[30];
621 (*regs)[31] = env->regs[31];
623 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
624 (*regs)[33] = env->regs[0]; /* XXX */
627 #define USE_ELF_CORE_DUMP
628 #define ELF_EXEC_PAGESIZE 4096
630 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
632 #endif
634 #ifdef TARGET_SPARC
635 #ifdef TARGET_SPARC64
637 #define ELF_START_MMAP 0x80000000
638 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
639 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
640 #ifndef TARGET_ABI32
641 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
642 #else
643 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
644 #endif
646 #define ELF_CLASS ELFCLASS64
647 #define ELF_ARCH EM_SPARCV9
649 #define STACK_BIAS 2047
651 static inline void init_thread(struct target_pt_regs *regs,
652 struct image_info *infop)
654 #ifndef TARGET_ABI32
655 regs->tstate = 0;
656 #endif
657 regs->pc = infop->entry;
658 regs->npc = regs->pc + 4;
659 regs->y = 0;
660 #ifdef TARGET_ABI32
661 regs->u_regs[14] = infop->start_stack - 16 * 4;
662 #else
663 if (personality(infop->personality) == PER_LINUX32)
664 regs->u_regs[14] = infop->start_stack - 16 * 4;
665 else
666 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
667 #endif
670 #else
671 #define ELF_START_MMAP 0x80000000
672 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
673 | HWCAP_SPARC_MULDIV)
675 #define ELF_CLASS ELFCLASS32
676 #define ELF_ARCH EM_SPARC
678 static inline void init_thread(struct target_pt_regs *regs,
679 struct image_info *infop)
681 regs->psr = 0;
682 regs->pc = infop->entry;
683 regs->npc = regs->pc + 4;
684 regs->y = 0;
685 regs->u_regs[14] = infop->start_stack - 16 * 4;
688 #endif
689 #endif
691 #ifdef TARGET_PPC
693 #define ELF_MACHINE PPC_ELF_MACHINE
694 #define ELF_START_MMAP 0x80000000
696 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
698 #define elf_check_arch(x) ( (x) == EM_PPC64 )
700 #define ELF_CLASS ELFCLASS64
702 #else
704 #define ELF_CLASS ELFCLASS32
706 #endif
708 #define ELF_ARCH EM_PPC
710 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
711 See arch/powerpc/include/asm/cputable.h. */
712 enum {
713 QEMU_PPC_FEATURE_32 = 0x80000000,
714 QEMU_PPC_FEATURE_64 = 0x40000000,
715 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
716 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
717 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
718 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
719 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
720 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
721 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
722 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
723 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
724 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
725 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
726 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
727 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
728 QEMU_PPC_FEATURE_CELL = 0x00010000,
729 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
730 QEMU_PPC_FEATURE_SMT = 0x00004000,
731 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
732 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
733 QEMU_PPC_FEATURE_PA6T = 0x00000800,
734 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
735 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
736 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
737 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
738 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
740 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
741 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
743 /* Feature definitions in AT_HWCAP2. */
744 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
745 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
746 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
747 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
748 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
749 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
752 #define ELF_HWCAP get_elf_hwcap()
754 static uint32_t get_elf_hwcap(void)
756 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
757 uint32_t features = 0;
759 /* We don't have to be terribly complete here; the high points are
760 Altivec/FP/SPE support. Anything else is just a bonus. */
761 #define GET_FEATURE(flag, feature) \
762 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
763 #define GET_FEATURE2(flags, feature) \
764 do { \
765 if ((cpu->env.insns_flags2 & flags) == flags) { \
766 features |= feature; \
768 } while (0)
769 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
770 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
771 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
772 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
773 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
774 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
775 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
776 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
777 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
778 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
779 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
780 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
781 QEMU_PPC_FEATURE_ARCH_2_06);
782 #undef GET_FEATURE
783 #undef GET_FEATURE2
785 return features;
788 #define ELF_HWCAP2 get_elf_hwcap2()
790 static uint32_t get_elf_hwcap2(void)
792 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
793 uint32_t features = 0;
795 #define GET_FEATURE(flag, feature) \
796 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
797 #define GET_FEATURE2(flag, feature) \
798 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
800 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
801 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
802 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
803 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
805 #undef GET_FEATURE
806 #undef GET_FEATURE2
808 return features;
812 * The requirements here are:
813 * - keep the final alignment of sp (sp & 0xf)
814 * - make sure the 32-bit value at the first 16 byte aligned position of
815 * AUXV is greater than 16 for glibc compatibility.
816 * AT_IGNOREPPC is used for that.
817 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
818 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
820 #define DLINFO_ARCH_ITEMS 5
821 #define ARCH_DLINFO \
822 do { \
823 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
824 /* \
825 * Handle glibc compatibility: these magic entries must \
826 * be at the lowest addresses in the final auxv. \
827 */ \
828 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
829 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
830 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
831 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
832 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
833 } while (0)
835 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
837 _regs->gpr[1] = infop->start_stack;
838 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
839 if (get_ppc64_abi(infop) < 2) {
840 uint64_t val;
841 get_user_u64(val, infop->entry + 8);
842 _regs->gpr[2] = val + infop->load_bias;
843 get_user_u64(val, infop->entry);
844 infop->entry = val + infop->load_bias;
845 } else {
846 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
848 #endif
849 _regs->nip = infop->entry;
852 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
853 #define ELF_NREG 48
854 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
856 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
858 int i;
859 target_ulong ccr = 0;
861 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
862 (*regs)[i] = tswapreg(env->gpr[i]);
865 (*regs)[32] = tswapreg(env->nip);
866 (*regs)[33] = tswapreg(env->msr);
867 (*regs)[35] = tswapreg(env->ctr);
868 (*regs)[36] = tswapreg(env->lr);
869 (*regs)[37] = tswapreg(env->xer);
871 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
872 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
874 (*regs)[38] = tswapreg(ccr);
877 #define USE_ELF_CORE_DUMP
878 #define ELF_EXEC_PAGESIZE 4096
880 #endif
882 #ifdef TARGET_MIPS
884 #define ELF_START_MMAP 0x80000000
886 #ifdef TARGET_MIPS64
887 #define ELF_CLASS ELFCLASS64
888 #else
889 #define ELF_CLASS ELFCLASS32
890 #endif
891 #define ELF_ARCH EM_MIPS
893 static inline void init_thread(struct target_pt_regs *regs,
894 struct image_info *infop)
896 regs->cp0_status = 2 << CP0St_KSU;
897 regs->cp0_epc = infop->entry;
898 regs->regs[29] = infop->start_stack;
901 /* See linux kernel: arch/mips/include/asm/elf.h. */
902 #define ELF_NREG 45
903 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
905 /* See linux kernel: arch/mips/include/asm/reg.h. */
906 enum {
907 #ifdef TARGET_MIPS64
908 TARGET_EF_R0 = 0,
909 #else
910 TARGET_EF_R0 = 6,
911 #endif
912 TARGET_EF_R26 = TARGET_EF_R0 + 26,
913 TARGET_EF_R27 = TARGET_EF_R0 + 27,
914 TARGET_EF_LO = TARGET_EF_R0 + 32,
915 TARGET_EF_HI = TARGET_EF_R0 + 33,
916 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
917 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
918 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
919 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
922 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
923 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
925 int i;
927 for (i = 0; i < TARGET_EF_R0; i++) {
928 (*regs)[i] = 0;
930 (*regs)[TARGET_EF_R0] = 0;
932 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
933 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
936 (*regs)[TARGET_EF_R26] = 0;
937 (*regs)[TARGET_EF_R27] = 0;
938 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
939 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
940 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
941 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
942 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
943 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
946 #define USE_ELF_CORE_DUMP
947 #define ELF_EXEC_PAGESIZE 4096
949 #endif /* TARGET_MIPS */
951 #ifdef TARGET_MICROBLAZE
953 #define ELF_START_MMAP 0x80000000
955 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
957 #define ELF_CLASS ELFCLASS32
958 #define ELF_ARCH EM_MICROBLAZE
960 static inline void init_thread(struct target_pt_regs *regs,
961 struct image_info *infop)
963 regs->pc = infop->entry;
964 regs->r1 = infop->start_stack;
968 #define ELF_EXEC_PAGESIZE 4096
970 #define USE_ELF_CORE_DUMP
971 #define ELF_NREG 38
972 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
974 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
975 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
977 int i, pos = 0;
979 for (i = 0; i < 32; i++) {
980 (*regs)[pos++] = tswapreg(env->regs[i]);
983 for (i = 0; i < 6; i++) {
984 (*regs)[pos++] = tswapreg(env->sregs[i]);
988 #endif /* TARGET_MICROBLAZE */
990 #ifdef TARGET_NIOS2
992 #define ELF_START_MMAP 0x80000000
994 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
996 #define ELF_CLASS ELFCLASS32
997 #define ELF_ARCH EM_ALTERA_NIOS2
999 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1001 regs->ea = infop->entry;
1002 regs->sp = infop->start_stack;
1003 regs->estatus = 0x3;
1006 #define ELF_EXEC_PAGESIZE 4096
1008 #define USE_ELF_CORE_DUMP
1009 #define ELF_NREG 49
1010 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1012 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1013 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1014 const CPUNios2State *env)
1016 int i;
1018 (*regs)[0] = -1;
1019 for (i = 1; i < 8; i++) /* r0-r7 */
1020 (*regs)[i] = tswapreg(env->regs[i + 7]);
1022 for (i = 8; i < 16; i++) /* r8-r15 */
1023 (*regs)[i] = tswapreg(env->regs[i - 8]);
1025 for (i = 16; i < 24; i++) /* r16-r23 */
1026 (*regs)[i] = tswapreg(env->regs[i + 7]);
1027 (*regs)[24] = -1; /* R_ET */
1028 (*regs)[25] = -1; /* R_BT */
1029 (*regs)[26] = tswapreg(env->regs[R_GP]);
1030 (*regs)[27] = tswapreg(env->regs[R_SP]);
1031 (*regs)[28] = tswapreg(env->regs[R_FP]);
1032 (*regs)[29] = tswapreg(env->regs[R_EA]);
1033 (*regs)[30] = -1; /* R_SSTATUS */
1034 (*regs)[31] = tswapreg(env->regs[R_RA]);
1036 (*regs)[32] = tswapreg(env->regs[R_PC]);
1038 (*regs)[33] = -1; /* R_STATUS */
1039 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1041 for (i = 35; i < 49; i++) /* ... */
1042 (*regs)[i] = -1;
1045 #endif /* TARGET_NIOS2 */
1047 #ifdef TARGET_OPENRISC
1049 #define ELF_START_MMAP 0x08000000
1051 #define ELF_ARCH EM_OPENRISC
1052 #define ELF_CLASS ELFCLASS32
1053 #define ELF_DATA ELFDATA2MSB
1055 static inline void init_thread(struct target_pt_regs *regs,
1056 struct image_info *infop)
1058 regs->pc = infop->entry;
1059 regs->gpr[1] = infop->start_stack;
1062 #define USE_ELF_CORE_DUMP
1063 #define ELF_EXEC_PAGESIZE 8192
1065 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1066 #define ELF_NREG 34 /* gprs and pc, sr */
1067 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1069 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1070 const CPUOpenRISCState *env)
1072 int i;
1074 for (i = 0; i < 32; i++) {
1075 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1077 (*regs)[32] = tswapreg(env->pc);
1078 (*regs)[33] = tswapreg(cpu_get_sr(env));
1080 #define ELF_HWCAP 0
1081 #define ELF_PLATFORM NULL
1083 #endif /* TARGET_OPENRISC */
1085 #ifdef TARGET_SH4
1087 #define ELF_START_MMAP 0x80000000
1089 #define ELF_CLASS ELFCLASS32
1090 #define ELF_ARCH EM_SH
1092 static inline void init_thread(struct target_pt_regs *regs,
1093 struct image_info *infop)
1095 /* Check other registers XXXXX */
1096 regs->pc = infop->entry;
1097 regs->regs[15] = infop->start_stack;
1100 /* See linux kernel: arch/sh/include/asm/elf.h. */
1101 #define ELF_NREG 23
1102 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1104 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1105 enum {
1106 TARGET_REG_PC = 16,
1107 TARGET_REG_PR = 17,
1108 TARGET_REG_SR = 18,
1109 TARGET_REG_GBR = 19,
1110 TARGET_REG_MACH = 20,
1111 TARGET_REG_MACL = 21,
1112 TARGET_REG_SYSCALL = 22
1115 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1116 const CPUSH4State *env)
1118 int i;
1120 for (i = 0; i < 16; i++) {
1121 (*regs)[i] = tswapreg(env->gregs[i]);
1124 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1125 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1126 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1127 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1128 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1129 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1130 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1133 #define USE_ELF_CORE_DUMP
1134 #define ELF_EXEC_PAGESIZE 4096
1136 enum {
1137 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1138 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1139 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1140 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1141 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1142 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1143 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1144 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1145 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1146 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1149 #define ELF_HWCAP get_elf_hwcap()
1151 static uint32_t get_elf_hwcap(void)
1153 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1154 uint32_t hwcap = 0;
1156 hwcap |= SH_CPU_HAS_FPU;
1158 if (cpu->env.features & SH_FEATURE_SH4A) {
1159 hwcap |= SH_CPU_HAS_LLSC;
1162 return hwcap;
1165 #endif
1167 #ifdef TARGET_CRIS
1169 #define ELF_START_MMAP 0x80000000
1171 #define ELF_CLASS ELFCLASS32
1172 #define ELF_ARCH EM_CRIS
1174 static inline void init_thread(struct target_pt_regs *regs,
1175 struct image_info *infop)
1177 regs->erp = infop->entry;
1180 #define ELF_EXEC_PAGESIZE 8192
1182 #endif
1184 #ifdef TARGET_M68K
1186 #define ELF_START_MMAP 0x80000000
1188 #define ELF_CLASS ELFCLASS32
1189 #define ELF_ARCH EM_68K
1191 /* ??? Does this need to do anything?
1192 #define ELF_PLAT_INIT(_r) */
1194 static inline void init_thread(struct target_pt_regs *regs,
1195 struct image_info *infop)
1197 regs->usp = infop->start_stack;
1198 regs->sr = 0;
1199 regs->pc = infop->entry;
1202 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1203 #define ELF_NREG 20
1204 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1206 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1208 (*regs)[0] = tswapreg(env->dregs[1]);
1209 (*regs)[1] = tswapreg(env->dregs[2]);
1210 (*regs)[2] = tswapreg(env->dregs[3]);
1211 (*regs)[3] = tswapreg(env->dregs[4]);
1212 (*regs)[4] = tswapreg(env->dregs[5]);
1213 (*regs)[5] = tswapreg(env->dregs[6]);
1214 (*regs)[6] = tswapreg(env->dregs[7]);
1215 (*regs)[7] = tswapreg(env->aregs[0]);
1216 (*regs)[8] = tswapreg(env->aregs[1]);
1217 (*regs)[9] = tswapreg(env->aregs[2]);
1218 (*regs)[10] = tswapreg(env->aregs[3]);
1219 (*regs)[11] = tswapreg(env->aregs[4]);
1220 (*regs)[12] = tswapreg(env->aregs[5]);
1221 (*regs)[13] = tswapreg(env->aregs[6]);
1222 (*regs)[14] = tswapreg(env->dregs[0]);
1223 (*regs)[15] = tswapreg(env->aregs[7]);
1224 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1225 (*regs)[17] = tswapreg(env->sr);
1226 (*regs)[18] = tswapreg(env->pc);
1227 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1230 #define USE_ELF_CORE_DUMP
1231 #define ELF_EXEC_PAGESIZE 8192
1233 #endif
1235 #ifdef TARGET_ALPHA
1237 #define ELF_START_MMAP (0x30000000000ULL)
1239 #define ELF_CLASS ELFCLASS64
1240 #define ELF_ARCH EM_ALPHA
1242 static inline void init_thread(struct target_pt_regs *regs,
1243 struct image_info *infop)
1245 regs->pc = infop->entry;
1246 regs->ps = 8;
1247 regs->usp = infop->start_stack;
1250 #define ELF_EXEC_PAGESIZE 8192
1252 #endif /* TARGET_ALPHA */
1254 #ifdef TARGET_S390X
1256 #define ELF_START_MMAP (0x20000000000ULL)
1258 #define ELF_CLASS ELFCLASS64
1259 #define ELF_DATA ELFDATA2MSB
1260 #define ELF_ARCH EM_S390
1262 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1264 regs->psw.addr = infop->entry;
1265 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1266 regs->gprs[15] = infop->start_stack;
1269 #endif /* TARGET_S390X */
1271 #ifdef TARGET_TILEGX
1273 /* 42 bits real used address, a half for user mode */
1274 #define ELF_START_MMAP (0x00000020000000000ULL)
1276 #define elf_check_arch(x) ((x) == EM_TILEGX)
1278 #define ELF_CLASS ELFCLASS64
1279 #define ELF_DATA ELFDATA2LSB
1280 #define ELF_ARCH EM_TILEGX
1282 static inline void init_thread(struct target_pt_regs *regs,
1283 struct image_info *infop)
1285 regs->pc = infop->entry;
1286 regs->sp = infop->start_stack;
1290 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1292 #endif /* TARGET_TILEGX */
1294 #ifdef TARGET_HPPA
1296 #define ELF_START_MMAP 0x80000000
1297 #define ELF_CLASS ELFCLASS32
1298 #define ELF_ARCH EM_PARISC
1299 #define ELF_PLATFORM "PARISC"
1300 #define STACK_GROWS_DOWN 0
1301 #define STACK_ALIGNMENT 64
1303 static inline void init_thread(struct target_pt_regs *regs,
1304 struct image_info *infop)
1306 regs->iaoq[0] = infop->entry;
1307 regs->iaoq[1] = infop->entry + 4;
1308 regs->gr[23] = 0;
1309 regs->gr[24] = infop->arg_start;
1310 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1311 /* The top-of-stack contains a linkage buffer. */
1312 regs->gr[30] = infop->start_stack + 64;
1313 regs->gr[31] = infop->entry;
1316 #endif /* TARGET_HPPA */
1318 #ifndef ELF_PLATFORM
1319 #define ELF_PLATFORM (NULL)
1320 #endif
1322 #ifndef ELF_MACHINE
1323 #define ELF_MACHINE ELF_ARCH
1324 #endif
1326 #ifndef elf_check_arch
1327 #define elf_check_arch(x) ((x) == ELF_ARCH)
1328 #endif
1330 #ifndef ELF_HWCAP
1331 #define ELF_HWCAP 0
1332 #endif
1334 #ifndef STACK_GROWS_DOWN
1335 #define STACK_GROWS_DOWN 1
1336 #endif
1338 #ifndef STACK_ALIGNMENT
1339 #define STACK_ALIGNMENT 16
1340 #endif
1342 #ifdef TARGET_ABI32
1343 #undef ELF_CLASS
1344 #define ELF_CLASS ELFCLASS32
1345 #undef bswaptls
1346 #define bswaptls(ptr) bswap32s(ptr)
1347 #endif
1349 #include "elf.h"
1351 struct exec
1353 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1354 unsigned int a_text; /* length of text, in bytes */
1355 unsigned int a_data; /* length of data, in bytes */
1356 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1357 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1358 unsigned int a_entry; /* start address */
1359 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1360 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1364 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1365 #define OMAGIC 0407
1366 #define NMAGIC 0410
1367 #define ZMAGIC 0413
1368 #define QMAGIC 0314
1370 /* Necessary parameters */
1371 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1372 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1373 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1374 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1376 #define DLINFO_ITEMS 15
1378 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1380 memcpy(to, from, n);
1383 #ifdef BSWAP_NEEDED
1384 static void bswap_ehdr(struct elfhdr *ehdr)
1386 bswap16s(&ehdr->e_type); /* Object file type */
1387 bswap16s(&ehdr->e_machine); /* Architecture */
1388 bswap32s(&ehdr->e_version); /* Object file version */
1389 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1390 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1391 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1392 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1393 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1394 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1395 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1396 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1397 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1398 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1401 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1403 int i;
1404 for (i = 0; i < phnum; ++i, ++phdr) {
1405 bswap32s(&phdr->p_type); /* Segment type */
1406 bswap32s(&phdr->p_flags); /* Segment flags */
1407 bswaptls(&phdr->p_offset); /* Segment file offset */
1408 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1409 bswaptls(&phdr->p_paddr); /* Segment physical address */
1410 bswaptls(&phdr->p_filesz); /* Segment size in file */
1411 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1412 bswaptls(&phdr->p_align); /* Segment alignment */
1416 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1418 int i;
1419 for (i = 0; i < shnum; ++i, ++shdr) {
1420 bswap32s(&shdr->sh_name);
1421 bswap32s(&shdr->sh_type);
1422 bswaptls(&shdr->sh_flags);
1423 bswaptls(&shdr->sh_addr);
1424 bswaptls(&shdr->sh_offset);
1425 bswaptls(&shdr->sh_size);
1426 bswap32s(&shdr->sh_link);
1427 bswap32s(&shdr->sh_info);
1428 bswaptls(&shdr->sh_addralign);
1429 bswaptls(&shdr->sh_entsize);
1433 static void bswap_sym(struct elf_sym *sym)
1435 bswap32s(&sym->st_name);
1436 bswaptls(&sym->st_value);
1437 bswaptls(&sym->st_size);
1438 bswap16s(&sym->st_shndx);
1440 #else
1441 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1442 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1443 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1444 static inline void bswap_sym(struct elf_sym *sym) { }
1445 #endif
1447 #ifdef USE_ELF_CORE_DUMP
1448 static int elf_core_dump(int, const CPUArchState *);
1449 #endif /* USE_ELF_CORE_DUMP */
1450 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1452 /* Verify the portions of EHDR within E_IDENT for the target.
1453 This can be performed before bswapping the entire header. */
1454 static bool elf_check_ident(struct elfhdr *ehdr)
1456 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1457 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1458 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1459 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1460 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1461 && ehdr->e_ident[EI_DATA] == ELF_DATA
1462 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1465 /* Verify the portions of EHDR outside of E_IDENT for the target.
1466 This has to wait until after bswapping the header. */
1467 static bool elf_check_ehdr(struct elfhdr *ehdr)
1469 return (elf_check_arch(ehdr->e_machine)
1470 && ehdr->e_ehsize == sizeof(struct elfhdr)
1471 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1472 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1476 * 'copy_elf_strings()' copies argument/envelope strings from user
1477 * memory to free pages in kernel mem. These are in a format ready
1478 * to be put directly into the top of new user memory.
1481 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1482 abi_ulong p, abi_ulong stack_limit)
1484 char *tmp;
1485 int len, i;
1486 abi_ulong top = p;
1488 if (!p) {
1489 return 0; /* bullet-proofing */
1492 if (STACK_GROWS_DOWN) {
1493 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1494 for (i = argc - 1; i >= 0; --i) {
1495 tmp = argv[i];
1496 if (!tmp) {
1497 fprintf(stderr, "VFS: argc is wrong");
1498 exit(-1);
1500 len = strlen(tmp) + 1;
1501 tmp += len;
1503 if (len > (p - stack_limit)) {
1504 return 0;
1506 while (len) {
1507 int bytes_to_copy = (len > offset) ? offset : len;
1508 tmp -= bytes_to_copy;
1509 p -= bytes_to_copy;
1510 offset -= bytes_to_copy;
1511 len -= bytes_to_copy;
1513 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1515 if (offset == 0) {
1516 memcpy_to_target(p, scratch, top - p);
1517 top = p;
1518 offset = TARGET_PAGE_SIZE;
1522 if (p != top) {
1523 memcpy_to_target(p, scratch + offset, top - p);
1525 } else {
1526 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1527 for (i = 0; i < argc; ++i) {
1528 tmp = argv[i];
1529 if (!tmp) {
1530 fprintf(stderr, "VFS: argc is wrong");
1531 exit(-1);
1533 len = strlen(tmp) + 1;
1534 if (len > (stack_limit - p)) {
1535 return 0;
1537 while (len) {
1538 int bytes_to_copy = (len > remaining) ? remaining : len;
1540 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1542 tmp += bytes_to_copy;
1543 remaining -= bytes_to_copy;
1544 p += bytes_to_copy;
1545 len -= bytes_to_copy;
1547 if (remaining == 0) {
1548 memcpy_to_target(top, scratch, p - top);
1549 top = p;
1550 remaining = TARGET_PAGE_SIZE;
1554 if (p != top) {
1555 memcpy_to_target(top, scratch, p - top);
1559 return p;
1562 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1563 * argument/environment space. Newer kernels (>2.6.33) allow more,
1564 * dependent on stack size, but guarantee at least 32 pages for
1565 * backwards compatibility.
1567 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1569 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1570 struct image_info *info)
1572 abi_ulong size, error, guard;
1574 size = guest_stack_size;
1575 if (size < STACK_LOWER_LIMIT) {
1576 size = STACK_LOWER_LIMIT;
1578 guard = TARGET_PAGE_SIZE;
1579 if (guard < qemu_real_host_page_size) {
1580 guard = qemu_real_host_page_size;
1583 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1584 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1585 if (error == -1) {
1586 perror("mmap stack");
1587 exit(-1);
1590 /* We reserve one extra page at the top of the stack as guard. */
1591 if (STACK_GROWS_DOWN) {
1592 target_mprotect(error, guard, PROT_NONE);
1593 info->stack_limit = error + guard;
1594 return info->stack_limit + size - sizeof(void *);
1595 } else {
1596 target_mprotect(error + size, guard, PROT_NONE);
1597 info->stack_limit = error + size;
1598 return error;
1602 /* Map and zero the bss. We need to explicitly zero any fractional pages
1603 after the data section (i.e. bss). */
1604 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1606 uintptr_t host_start, host_map_start, host_end;
1608 last_bss = TARGET_PAGE_ALIGN(last_bss);
1610 /* ??? There is confusion between qemu_real_host_page_size and
1611 qemu_host_page_size here and elsewhere in target_mmap, which
1612 may lead to the end of the data section mapping from the file
1613 not being mapped. At least there was an explicit test and
1614 comment for that here, suggesting that "the file size must
1615 be known". The comment probably pre-dates the introduction
1616 of the fstat system call in target_mmap which does in fact
1617 find out the size. What isn't clear is if the workaround
1618 here is still actually needed. For now, continue with it,
1619 but merge it with the "normal" mmap that would allocate the bss. */
1621 host_start = (uintptr_t) g2h(elf_bss);
1622 host_end = (uintptr_t) g2h(last_bss);
1623 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1625 if (host_map_start < host_end) {
1626 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1627 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1628 if (p == MAP_FAILED) {
1629 perror("cannot mmap brk");
1630 exit(-1);
1634 /* Ensure that the bss page(s) are valid */
1635 if ((page_get_flags(last_bss-1) & prot) != prot) {
1636 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1639 if (host_start < host_map_start) {
1640 memset((void *)host_start, 0, host_map_start - host_start);
1644 #ifdef CONFIG_USE_FDPIC
1645 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1647 uint16_t n;
1648 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1650 /* elf32_fdpic_loadseg */
1651 n = info->nsegs;
1652 while (n--) {
1653 sp -= 12;
1654 put_user_u32(loadsegs[n].addr, sp+0);
1655 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1656 put_user_u32(loadsegs[n].p_memsz, sp+8);
1659 /* elf32_fdpic_loadmap */
1660 sp -= 4;
1661 put_user_u16(0, sp+0); /* version */
1662 put_user_u16(info->nsegs, sp+2); /* nsegs */
1664 info->personality = PER_LINUX_FDPIC;
1665 info->loadmap_addr = sp;
1667 return sp;
1669 #endif
1671 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1672 struct elfhdr *exec,
1673 struct image_info *info,
1674 struct image_info *interp_info)
1676 abi_ulong sp;
1677 abi_ulong u_argc, u_argv, u_envp, u_auxv;
1678 int size;
1679 int i;
1680 abi_ulong u_rand_bytes;
1681 uint8_t k_rand_bytes[16];
1682 abi_ulong u_platform;
1683 const char *k_platform;
1684 const int n = sizeof(elf_addr_t);
1686 sp = p;
1688 #ifdef CONFIG_USE_FDPIC
1689 /* Needs to be before we load the env/argc/... */
1690 if (elf_is_fdpic(exec)) {
1691 /* Need 4 byte alignment for these structs */
1692 sp &= ~3;
1693 sp = loader_build_fdpic_loadmap(info, sp);
1694 info->other_info = interp_info;
1695 if (interp_info) {
1696 interp_info->other_info = info;
1697 sp = loader_build_fdpic_loadmap(interp_info, sp);
1700 #endif
1702 u_platform = 0;
1703 k_platform = ELF_PLATFORM;
1704 if (k_platform) {
1705 size_t len = strlen(k_platform) + 1;
1706 if (STACK_GROWS_DOWN) {
1707 sp -= (len + n - 1) & ~(n - 1);
1708 u_platform = sp;
1709 /* FIXME - check return value of memcpy_to_target() for failure */
1710 memcpy_to_target(sp, k_platform, len);
1711 } else {
1712 memcpy_to_target(sp, k_platform, len);
1713 u_platform = sp;
1714 sp += len + 1;
1718 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1719 * the argv and envp pointers.
1721 if (STACK_GROWS_DOWN) {
1722 sp = QEMU_ALIGN_DOWN(sp, 16);
1723 } else {
1724 sp = QEMU_ALIGN_UP(sp, 16);
1728 * Generate 16 random bytes for userspace PRNG seeding (not
1729 * cryptically secure but it's not the aim of QEMU).
1731 for (i = 0; i < 16; i++) {
1732 k_rand_bytes[i] = rand();
1734 if (STACK_GROWS_DOWN) {
1735 sp -= 16;
1736 u_rand_bytes = sp;
1737 /* FIXME - check return value of memcpy_to_target() for failure */
1738 memcpy_to_target(sp, k_rand_bytes, 16);
1739 } else {
1740 memcpy_to_target(sp, k_rand_bytes, 16);
1741 u_rand_bytes = sp;
1742 sp += 16;
1745 size = (DLINFO_ITEMS + 1) * 2;
1746 if (k_platform)
1747 size += 2;
1748 #ifdef DLINFO_ARCH_ITEMS
1749 size += DLINFO_ARCH_ITEMS * 2;
1750 #endif
1751 #ifdef ELF_HWCAP2
1752 size += 2;
1753 #endif
1754 info->auxv_len = size * n;
1756 size += envc + argc + 2;
1757 size += 1; /* argc itself */
1758 size *= n;
1760 /* Allocate space and finalize stack alignment for entry now. */
1761 if (STACK_GROWS_DOWN) {
1762 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1763 sp = u_argc;
1764 } else {
1765 u_argc = sp;
1766 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1769 u_argv = u_argc + n;
1770 u_envp = u_argv + (argc + 1) * n;
1771 u_auxv = u_envp + (envc + 1) * n;
1772 info->saved_auxv = u_auxv;
1773 info->arg_start = u_argv;
1774 info->arg_end = u_argv + argc * n;
1776 /* This is correct because Linux defines
1777 * elf_addr_t as Elf32_Off / Elf64_Off
1779 #define NEW_AUX_ENT(id, val) do { \
1780 put_user_ual(id, u_auxv); u_auxv += n; \
1781 put_user_ual(val, u_auxv); u_auxv += n; \
1782 } while(0)
1784 #ifdef ARCH_DLINFO
1786 * ARCH_DLINFO must come first so platform specific code can enforce
1787 * special alignment requirements on the AUXV if necessary (eg. PPC).
1789 ARCH_DLINFO;
1790 #endif
1791 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1792 * on info->auxv_len will trigger.
1794 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1795 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1796 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1797 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
1798 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1799 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1800 NEW_AUX_ENT(AT_ENTRY, info->entry);
1801 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1802 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1803 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1804 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1805 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1806 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1807 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1808 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
1810 #ifdef ELF_HWCAP2
1811 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1812 #endif
1814 if (u_platform) {
1815 NEW_AUX_ENT(AT_PLATFORM, u_platform);
1817 NEW_AUX_ENT (AT_NULL, 0);
1818 #undef NEW_AUX_ENT
1820 /* Check that our initial calculation of the auxv length matches how much
1821 * we actually put into it.
1823 assert(info->auxv_len == u_auxv - info->saved_auxv);
1825 put_user_ual(argc, u_argc);
1827 p = info->arg_strings;
1828 for (i = 0; i < argc; ++i) {
1829 put_user_ual(p, u_argv);
1830 u_argv += n;
1831 p += target_strlen(p) + 1;
1833 put_user_ual(0, u_argv);
1835 p = info->env_strings;
1836 for (i = 0; i < envc; ++i) {
1837 put_user_ual(p, u_envp);
1838 u_envp += n;
1839 p += target_strlen(p) + 1;
1841 put_user_ual(0, u_envp);
1843 return sp;
1846 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1847 /* If the guest doesn't have a validation function just agree */
1848 static int validate_guest_space(unsigned long guest_base,
1849 unsigned long guest_size)
1851 return 1;
1853 #endif
1855 unsigned long init_guest_space(unsigned long host_start,
1856 unsigned long host_size,
1857 unsigned long guest_start,
1858 bool fixed)
1860 unsigned long current_start, real_start;
1861 int flags;
1863 assert(host_start || host_size);
1865 /* If just a starting address is given, then just verify that
1866 * address. */
1867 if (host_start && !host_size) {
1868 if (validate_guest_space(host_start, host_size) == 1) {
1869 return host_start;
1870 } else {
1871 return (unsigned long)-1;
1875 /* Setup the initial flags and start address. */
1876 current_start = host_start & qemu_host_page_mask;
1877 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1878 if (fixed) {
1879 flags |= MAP_FIXED;
1882 /* Otherwise, a non-zero size region of memory needs to be mapped
1883 * and validated. */
1884 while (1) {
1885 unsigned long real_size = host_size;
1887 /* Do not use mmap_find_vma here because that is limited to the
1888 * guest address space. We are going to make the
1889 * guest address space fit whatever we're given.
1891 real_start = (unsigned long)
1892 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1893 if (real_start == (unsigned long)-1) {
1894 return (unsigned long)-1;
1897 /* Ensure the address is properly aligned. */
1898 if (real_start & ~qemu_host_page_mask) {
1899 munmap((void *)real_start, host_size);
1900 real_size = host_size + qemu_host_page_size;
1901 real_start = (unsigned long)
1902 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1903 if (real_start == (unsigned long)-1) {
1904 return (unsigned long)-1;
1906 real_start = HOST_PAGE_ALIGN(real_start);
1909 /* Check to see if the address is valid. */
1910 if (!host_start || real_start == current_start) {
1911 int valid = validate_guest_space(real_start - guest_start,
1912 real_size);
1913 if (valid == 1) {
1914 break;
1915 } else if (valid == -1) {
1916 return (unsigned long)-1;
1918 /* valid == 0, so try again. */
1921 /* That address didn't work. Unmap and try a different one.
1922 * The address the host picked because is typically right at
1923 * the top of the host address space and leaves the guest with
1924 * no usable address space. Resort to a linear search. We
1925 * already compensated for mmap_min_addr, so this should not
1926 * happen often. Probably means we got unlucky and host
1927 * address space randomization put a shared library somewhere
1928 * inconvenient.
1930 munmap((void *)real_start, host_size);
1931 current_start += qemu_host_page_size;
1932 if (host_start == current_start) {
1933 /* Theoretically possible if host doesn't have any suitably
1934 * aligned areas. Normally the first mmap will fail.
1936 return (unsigned long)-1;
1940 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
1942 return real_start;
1945 static void probe_guest_base(const char *image_name,
1946 abi_ulong loaddr, abi_ulong hiaddr)
1948 /* Probe for a suitable guest base address, if the user has not set
1949 * it explicitly, and set guest_base appropriately.
1950 * In case of error we will print a suitable message and exit.
1952 const char *errmsg;
1953 if (!have_guest_base && !reserved_va) {
1954 unsigned long host_start, real_start, host_size;
1956 /* Round addresses to page boundaries. */
1957 loaddr &= qemu_host_page_mask;
1958 hiaddr = HOST_PAGE_ALIGN(hiaddr);
1960 if (loaddr < mmap_min_addr) {
1961 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1962 } else {
1963 host_start = loaddr;
1964 if (host_start != loaddr) {
1965 errmsg = "Address overflow loading ELF binary";
1966 goto exit_errmsg;
1969 host_size = hiaddr - loaddr;
1971 /* Setup the initial guest memory space with ranges gleaned from
1972 * the ELF image that is being loaded.
1974 real_start = init_guest_space(host_start, host_size, loaddr, false);
1975 if (real_start == (unsigned long)-1) {
1976 errmsg = "Unable to find space for application";
1977 goto exit_errmsg;
1979 guest_base = real_start - loaddr;
1981 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
1982 TARGET_ABI_FMT_lx " to 0x%lx\n",
1983 loaddr, real_start);
1985 return;
1987 exit_errmsg:
1988 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1989 exit(-1);
1993 /* Load an ELF image into the address space.
1995 IMAGE_NAME is the filename of the image, to use in error messages.
1996 IMAGE_FD is the open file descriptor for the image.
1998 BPRM_BUF is a copy of the beginning of the file; this of course
1999 contains the elf file header at offset 0. It is assumed that this
2000 buffer is sufficiently aligned to present no problems to the host
2001 in accessing data at aligned offsets within the buffer.
2003 On return: INFO values will be filled in, as necessary or available. */
2005 static void load_elf_image(const char *image_name, int image_fd,
2006 struct image_info *info, char **pinterp_name,
2007 char bprm_buf[BPRM_BUF_SIZE])
2009 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2010 struct elf_phdr *phdr;
2011 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2012 int i, retval;
2013 const char *errmsg;
2015 /* First of all, some simple consistency checks */
2016 errmsg = "Invalid ELF image for this architecture";
2017 if (!elf_check_ident(ehdr)) {
2018 goto exit_errmsg;
2020 bswap_ehdr(ehdr);
2021 if (!elf_check_ehdr(ehdr)) {
2022 goto exit_errmsg;
2025 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2026 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2027 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2028 } else {
2029 phdr = (struct elf_phdr *) alloca(i);
2030 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2031 if (retval != i) {
2032 goto exit_read;
2035 bswap_phdr(phdr, ehdr->e_phnum);
2037 #ifdef CONFIG_USE_FDPIC
2038 info->nsegs = 0;
2039 info->pt_dynamic_addr = 0;
2040 #endif
2042 mmap_lock();
2044 /* Find the maximum size of the image and allocate an appropriate
2045 amount of memory to handle that. */
2046 loaddr = -1, hiaddr = 0;
2047 for (i = 0; i < ehdr->e_phnum; ++i) {
2048 if (phdr[i].p_type == PT_LOAD) {
2049 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2050 if (a < loaddr) {
2051 loaddr = a;
2053 a = phdr[i].p_vaddr + phdr[i].p_memsz;
2054 if (a > hiaddr) {
2055 hiaddr = a;
2057 #ifdef CONFIG_USE_FDPIC
2058 ++info->nsegs;
2059 #endif
2063 load_addr = loaddr;
2064 if (ehdr->e_type == ET_DYN) {
2065 /* The image indicates that it can be loaded anywhere. Find a
2066 location that can hold the memory space required. If the
2067 image is pre-linked, LOADDR will be non-zero. Since we do
2068 not supply MAP_FIXED here we'll use that address if and
2069 only if it remains available. */
2070 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2071 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2072 -1, 0);
2073 if (load_addr == -1) {
2074 goto exit_perror;
2076 } else if (pinterp_name != NULL) {
2077 /* This is the main executable. Make sure that the low
2078 address does not conflict with MMAP_MIN_ADDR or the
2079 QEMU application itself. */
2080 probe_guest_base(image_name, loaddr, hiaddr);
2082 load_bias = load_addr - loaddr;
2084 #ifdef CONFIG_USE_FDPIC
2086 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2087 g_malloc(sizeof(*loadsegs) * info->nsegs);
2089 for (i = 0; i < ehdr->e_phnum; ++i) {
2090 switch (phdr[i].p_type) {
2091 case PT_DYNAMIC:
2092 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2093 break;
2094 case PT_LOAD:
2095 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2096 loadsegs->p_vaddr = phdr[i].p_vaddr;
2097 loadsegs->p_memsz = phdr[i].p_memsz;
2098 ++loadsegs;
2099 break;
2103 #endif
2105 info->load_bias = load_bias;
2106 info->load_addr = load_addr;
2107 info->entry = ehdr->e_entry + load_bias;
2108 info->start_code = -1;
2109 info->end_code = 0;
2110 info->start_data = -1;
2111 info->end_data = 0;
2112 info->brk = 0;
2113 info->elf_flags = ehdr->e_flags;
2115 for (i = 0; i < ehdr->e_phnum; i++) {
2116 struct elf_phdr *eppnt = phdr + i;
2117 if (eppnt->p_type == PT_LOAD) {
2118 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
2119 int elf_prot = 0;
2121 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2122 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2123 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2125 vaddr = load_bias + eppnt->p_vaddr;
2126 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2127 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2129 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
2130 elf_prot, MAP_PRIVATE | MAP_FIXED,
2131 image_fd, eppnt->p_offset - vaddr_po);
2132 if (error == -1) {
2133 goto exit_perror;
2136 vaddr_ef = vaddr + eppnt->p_filesz;
2137 vaddr_em = vaddr + eppnt->p_memsz;
2139 /* If the load segment requests extra zeros (e.g. bss), map it. */
2140 if (vaddr_ef < vaddr_em) {
2141 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2144 /* Find the full program boundaries. */
2145 if (elf_prot & PROT_EXEC) {
2146 if (vaddr < info->start_code) {
2147 info->start_code = vaddr;
2149 if (vaddr_ef > info->end_code) {
2150 info->end_code = vaddr_ef;
2153 if (elf_prot & PROT_WRITE) {
2154 if (vaddr < info->start_data) {
2155 info->start_data = vaddr;
2157 if (vaddr_ef > info->end_data) {
2158 info->end_data = vaddr_ef;
2160 if (vaddr_em > info->brk) {
2161 info->brk = vaddr_em;
2164 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2165 char *interp_name;
2167 if (*pinterp_name) {
2168 errmsg = "Multiple PT_INTERP entries";
2169 goto exit_errmsg;
2171 interp_name = malloc(eppnt->p_filesz);
2172 if (!interp_name) {
2173 goto exit_perror;
2176 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2177 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2178 eppnt->p_filesz);
2179 } else {
2180 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2181 eppnt->p_offset);
2182 if (retval != eppnt->p_filesz) {
2183 goto exit_perror;
2186 if (interp_name[eppnt->p_filesz - 1] != 0) {
2187 errmsg = "Invalid PT_INTERP entry";
2188 goto exit_errmsg;
2190 *pinterp_name = interp_name;
2194 if (info->end_data == 0) {
2195 info->start_data = info->end_code;
2196 info->end_data = info->end_code;
2197 info->brk = info->end_code;
2200 if (qemu_log_enabled()) {
2201 load_symbols(ehdr, image_fd, load_bias);
2204 mmap_unlock();
2206 close(image_fd);
2207 return;
2209 exit_read:
2210 if (retval >= 0) {
2211 errmsg = "Incomplete read of file header";
2212 goto exit_errmsg;
2214 exit_perror:
2215 errmsg = strerror(errno);
2216 exit_errmsg:
2217 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2218 exit(-1);
2221 static void load_elf_interp(const char *filename, struct image_info *info,
2222 char bprm_buf[BPRM_BUF_SIZE])
2224 int fd, retval;
2226 fd = open(path(filename), O_RDONLY);
2227 if (fd < 0) {
2228 goto exit_perror;
2231 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2232 if (retval < 0) {
2233 goto exit_perror;
2235 if (retval < BPRM_BUF_SIZE) {
2236 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2239 load_elf_image(filename, fd, info, NULL, bprm_buf);
2240 return;
2242 exit_perror:
2243 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2244 exit(-1);
2247 static int symfind(const void *s0, const void *s1)
2249 target_ulong addr = *(target_ulong *)s0;
2250 struct elf_sym *sym = (struct elf_sym *)s1;
2251 int result = 0;
2252 if (addr < sym->st_value) {
2253 result = -1;
2254 } else if (addr >= sym->st_value + sym->st_size) {
2255 result = 1;
2257 return result;
2260 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2262 #if ELF_CLASS == ELFCLASS32
2263 struct elf_sym *syms = s->disas_symtab.elf32;
2264 #else
2265 struct elf_sym *syms = s->disas_symtab.elf64;
2266 #endif
2268 // binary search
2269 struct elf_sym *sym;
2271 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2272 if (sym != NULL) {
2273 return s->disas_strtab + sym->st_name;
2276 return "";
2279 /* FIXME: This should use elf_ops.h */
2280 static int symcmp(const void *s0, const void *s1)
2282 struct elf_sym *sym0 = (struct elf_sym *)s0;
2283 struct elf_sym *sym1 = (struct elf_sym *)s1;
2284 return (sym0->st_value < sym1->st_value)
2285 ? -1
2286 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2289 /* Best attempt to load symbols from this ELF object. */
2290 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2292 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2293 uint64_t segsz;
2294 struct elf_shdr *shdr;
2295 char *strings = NULL;
2296 struct syminfo *s = NULL;
2297 struct elf_sym *new_syms, *syms = NULL;
2299 shnum = hdr->e_shnum;
2300 i = shnum * sizeof(struct elf_shdr);
2301 shdr = (struct elf_shdr *)alloca(i);
2302 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2303 return;
2306 bswap_shdr(shdr, shnum);
2307 for (i = 0; i < shnum; ++i) {
2308 if (shdr[i].sh_type == SHT_SYMTAB) {
2309 sym_idx = i;
2310 str_idx = shdr[i].sh_link;
2311 goto found;
2315 /* There will be no symbol table if the file was stripped. */
2316 return;
2318 found:
2319 /* Now know where the strtab and symtab are. Snarf them. */
2320 s = g_try_new(struct syminfo, 1);
2321 if (!s) {
2322 goto give_up;
2325 segsz = shdr[str_idx].sh_size;
2326 s->disas_strtab = strings = g_try_malloc(segsz);
2327 if (!strings ||
2328 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2329 goto give_up;
2332 segsz = shdr[sym_idx].sh_size;
2333 syms = g_try_malloc(segsz);
2334 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2335 goto give_up;
2338 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2339 /* Implausibly large symbol table: give up rather than ploughing
2340 * on with the number of symbols calculation overflowing
2342 goto give_up;
2344 nsyms = segsz / sizeof(struct elf_sym);
2345 for (i = 0; i < nsyms; ) {
2346 bswap_sym(syms + i);
2347 /* Throw away entries which we do not need. */
2348 if (syms[i].st_shndx == SHN_UNDEF
2349 || syms[i].st_shndx >= SHN_LORESERVE
2350 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2351 if (i < --nsyms) {
2352 syms[i] = syms[nsyms];
2354 } else {
2355 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2356 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2357 syms[i].st_value &= ~(target_ulong)1;
2358 #endif
2359 syms[i].st_value += load_bias;
2360 i++;
2364 /* No "useful" symbol. */
2365 if (nsyms == 0) {
2366 goto give_up;
2369 /* Attempt to free the storage associated with the local symbols
2370 that we threw away. Whether or not this has any effect on the
2371 memory allocation depends on the malloc implementation and how
2372 many symbols we managed to discard. */
2373 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2374 if (new_syms == NULL) {
2375 goto give_up;
2377 syms = new_syms;
2379 qsort(syms, nsyms, sizeof(*syms), symcmp);
2381 s->disas_num_syms = nsyms;
2382 #if ELF_CLASS == ELFCLASS32
2383 s->disas_symtab.elf32 = syms;
2384 #else
2385 s->disas_symtab.elf64 = syms;
2386 #endif
2387 s->lookup_symbol = lookup_symbolxx;
2388 s->next = syminfos;
2389 syminfos = s;
2391 return;
2393 give_up:
2394 g_free(s);
2395 g_free(strings);
2396 g_free(syms);
2399 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2401 struct image_info interp_info;
2402 struct elfhdr elf_ex;
2403 char *elf_interpreter = NULL;
2404 char *scratch;
2406 info->start_mmap = (abi_ulong)ELF_START_MMAP;
2408 load_elf_image(bprm->filename, bprm->fd, info,
2409 &elf_interpreter, bprm->buf);
2411 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2412 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2413 when we load the interpreter. */
2414 elf_ex = *(struct elfhdr *)bprm->buf;
2416 /* Do this so that we can load the interpreter, if need be. We will
2417 change some of these later */
2418 bprm->p = setup_arg_pages(bprm, info);
2420 scratch = g_new0(char, TARGET_PAGE_SIZE);
2421 if (STACK_GROWS_DOWN) {
2422 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2423 bprm->p, info->stack_limit);
2424 info->file_string = bprm->p;
2425 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2426 bprm->p, info->stack_limit);
2427 info->env_strings = bprm->p;
2428 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2429 bprm->p, info->stack_limit);
2430 info->arg_strings = bprm->p;
2431 } else {
2432 info->arg_strings = bprm->p;
2433 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2434 bprm->p, info->stack_limit);
2435 info->env_strings = bprm->p;
2436 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2437 bprm->p, info->stack_limit);
2438 info->file_string = bprm->p;
2439 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2440 bprm->p, info->stack_limit);
2443 g_free(scratch);
2445 if (!bprm->p) {
2446 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2447 exit(-1);
2450 if (elf_interpreter) {
2451 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2453 /* If the program interpreter is one of these two, then assume
2454 an iBCS2 image. Otherwise assume a native linux image. */
2456 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2457 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2458 info->personality = PER_SVR4;
2460 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2461 and some applications "depend" upon this behavior. Since
2462 we do not have the power to recompile these, we emulate
2463 the SVr4 behavior. Sigh. */
2464 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2465 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2469 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2470 info, (elf_interpreter ? &interp_info : NULL));
2471 info->start_stack = bprm->p;
2473 /* If we have an interpreter, set that as the program's entry point.
2474 Copy the load_bias as well, to help PPC64 interpret the entry
2475 point as a function descriptor. Do this after creating elf tables
2476 so that we copy the original program entry point into the AUXV. */
2477 if (elf_interpreter) {
2478 info->load_bias = interp_info.load_bias;
2479 info->entry = interp_info.entry;
2480 free(elf_interpreter);
2483 #ifdef USE_ELF_CORE_DUMP
2484 bprm->core_dump = &elf_core_dump;
2485 #endif
2487 return 0;
2490 #ifdef USE_ELF_CORE_DUMP
2492 * Definitions to generate Intel SVR4-like core files.
2493 * These mostly have the same names as the SVR4 types with "target_elf_"
2494 * tacked on the front to prevent clashes with linux definitions,
2495 * and the typedef forms have been avoided. This is mostly like
2496 * the SVR4 structure, but more Linuxy, with things that Linux does
2497 * not support and which gdb doesn't really use excluded.
2499 * Fields we don't dump (their contents is zero) in linux-user qemu
2500 * are marked with XXX.
2502 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2504 * Porting ELF coredump for target is (quite) simple process. First you
2505 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2506 * the target resides):
2508 * #define USE_ELF_CORE_DUMP
2510 * Next you define type of register set used for dumping. ELF specification
2511 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2513 * typedef <target_regtype> target_elf_greg_t;
2514 * #define ELF_NREG <number of registers>
2515 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2517 * Last step is to implement target specific function that copies registers
2518 * from given cpu into just specified register set. Prototype is:
2520 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2521 * const CPUArchState *env);
2523 * Parameters:
2524 * regs - copy register values into here (allocated and zeroed by caller)
2525 * env - copy registers from here
2527 * Example for ARM target is provided in this file.
2530 /* An ELF note in memory */
2531 struct memelfnote {
2532 const char *name;
2533 size_t namesz;
2534 size_t namesz_rounded;
2535 int type;
2536 size_t datasz;
2537 size_t datasz_rounded;
2538 void *data;
2539 size_t notesz;
2542 struct target_elf_siginfo {
2543 abi_int si_signo; /* signal number */
2544 abi_int si_code; /* extra code */
2545 abi_int si_errno; /* errno */
2548 struct target_elf_prstatus {
2549 struct target_elf_siginfo pr_info; /* Info associated with signal */
2550 abi_short pr_cursig; /* Current signal */
2551 abi_ulong pr_sigpend; /* XXX */
2552 abi_ulong pr_sighold; /* XXX */
2553 target_pid_t pr_pid;
2554 target_pid_t pr_ppid;
2555 target_pid_t pr_pgrp;
2556 target_pid_t pr_sid;
2557 struct target_timeval pr_utime; /* XXX User time */
2558 struct target_timeval pr_stime; /* XXX System time */
2559 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2560 struct target_timeval pr_cstime; /* XXX Cumulative system time */
2561 target_elf_gregset_t pr_reg; /* GP registers */
2562 abi_int pr_fpvalid; /* XXX */
2565 #define ELF_PRARGSZ (80) /* Number of chars for args */
2567 struct target_elf_prpsinfo {
2568 char pr_state; /* numeric process state */
2569 char pr_sname; /* char for pr_state */
2570 char pr_zomb; /* zombie */
2571 char pr_nice; /* nice val */
2572 abi_ulong pr_flag; /* flags */
2573 target_uid_t pr_uid;
2574 target_gid_t pr_gid;
2575 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2576 /* Lots missing */
2577 char pr_fname[16]; /* filename of executable */
2578 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2581 /* Here is the structure in which status of each thread is captured. */
2582 struct elf_thread_status {
2583 QTAILQ_ENTRY(elf_thread_status) ets_link;
2584 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
2585 #if 0
2586 elf_fpregset_t fpu; /* NT_PRFPREG */
2587 struct task_struct *thread;
2588 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2589 #endif
2590 struct memelfnote notes[1];
2591 int num_notes;
2594 struct elf_note_info {
2595 struct memelfnote *notes;
2596 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2597 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
2599 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2600 #if 0
2602 * Current version of ELF coredump doesn't support
2603 * dumping fp regs etc.
2605 elf_fpregset_t *fpu;
2606 elf_fpxregset_t *xfpu;
2607 int thread_status_size;
2608 #endif
2609 int notes_size;
2610 int numnote;
2613 struct vm_area_struct {
2614 target_ulong vma_start; /* start vaddr of memory region */
2615 target_ulong vma_end; /* end vaddr of memory region */
2616 abi_ulong vma_flags; /* protection etc. flags for the region */
2617 QTAILQ_ENTRY(vm_area_struct) vma_link;
2620 struct mm_struct {
2621 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2622 int mm_count; /* number of mappings */
2625 static struct mm_struct *vma_init(void);
2626 static void vma_delete(struct mm_struct *);
2627 static int vma_add_mapping(struct mm_struct *, target_ulong,
2628 target_ulong, abi_ulong);
2629 static int vma_get_mapping_count(const struct mm_struct *);
2630 static struct vm_area_struct *vma_first(const struct mm_struct *);
2631 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2632 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2633 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2634 unsigned long flags);
2636 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2637 static void fill_note(struct memelfnote *, const char *, int,
2638 unsigned int, void *);
2639 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2640 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2641 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2642 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2643 static size_t note_size(const struct memelfnote *);
2644 static void free_note_info(struct elf_note_info *);
2645 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2646 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2647 static int core_dump_filename(const TaskState *, char *, size_t);
2649 static int dump_write(int, const void *, size_t);
2650 static int write_note(struct memelfnote *, int);
2651 static int write_note_info(struct elf_note_info *, int);
2653 #ifdef BSWAP_NEEDED
2654 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2656 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2657 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2658 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2659 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2660 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2661 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2662 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2663 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2664 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2665 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2666 /* cpu times are not filled, so we skip them */
2667 /* regs should be in correct format already */
2668 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2671 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2673 psinfo->pr_flag = tswapal(psinfo->pr_flag);
2674 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2675 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2676 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2677 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2678 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2679 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2682 static void bswap_note(struct elf_note *en)
2684 bswap32s(&en->n_namesz);
2685 bswap32s(&en->n_descsz);
2686 bswap32s(&en->n_type);
2688 #else
2689 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2690 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2691 static inline void bswap_note(struct elf_note *en) { }
2692 #endif /* BSWAP_NEEDED */
2695 * Minimal support for linux memory regions. These are needed
2696 * when we are finding out what memory exactly belongs to
2697 * emulated process. No locks needed here, as long as
2698 * thread that received the signal is stopped.
2701 static struct mm_struct *vma_init(void)
2703 struct mm_struct *mm;
2705 if ((mm = g_malloc(sizeof (*mm))) == NULL)
2706 return (NULL);
2708 mm->mm_count = 0;
2709 QTAILQ_INIT(&mm->mm_mmap);
2711 return (mm);
2714 static void vma_delete(struct mm_struct *mm)
2716 struct vm_area_struct *vma;
2718 while ((vma = vma_first(mm)) != NULL) {
2719 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2720 g_free(vma);
2722 g_free(mm);
2725 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2726 target_ulong end, abi_ulong flags)
2728 struct vm_area_struct *vma;
2730 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2731 return (-1);
2733 vma->vma_start = start;
2734 vma->vma_end = end;
2735 vma->vma_flags = flags;
2737 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2738 mm->mm_count++;
2740 return (0);
2743 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2745 return (QTAILQ_FIRST(&mm->mm_mmap));
2748 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2750 return (QTAILQ_NEXT(vma, vma_link));
2753 static int vma_get_mapping_count(const struct mm_struct *mm)
2755 return (mm->mm_count);
2759 * Calculate file (dump) size of given memory region.
2761 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2763 /* if we cannot even read the first page, skip it */
2764 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2765 return (0);
2768 * Usually we don't dump executable pages as they contain
2769 * non-writable code that debugger can read directly from
2770 * target library etc. However, thread stacks are marked
2771 * also executable so we read in first page of given region
2772 * and check whether it contains elf header. If there is
2773 * no elf header, we dump it.
2775 if (vma->vma_flags & PROT_EXEC) {
2776 char page[TARGET_PAGE_SIZE];
2778 copy_from_user(page, vma->vma_start, sizeof (page));
2779 if ((page[EI_MAG0] == ELFMAG0) &&
2780 (page[EI_MAG1] == ELFMAG1) &&
2781 (page[EI_MAG2] == ELFMAG2) &&
2782 (page[EI_MAG3] == ELFMAG3)) {
2784 * Mappings are possibly from ELF binary. Don't dump
2785 * them.
2787 return (0);
2791 return (vma->vma_end - vma->vma_start);
2794 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2795 unsigned long flags)
2797 struct mm_struct *mm = (struct mm_struct *)priv;
2799 vma_add_mapping(mm, start, end, flags);
2800 return (0);
2803 static void fill_note(struct memelfnote *note, const char *name, int type,
2804 unsigned int sz, void *data)
2806 unsigned int namesz;
2808 namesz = strlen(name) + 1;
2809 note->name = name;
2810 note->namesz = namesz;
2811 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2812 note->type = type;
2813 note->datasz = sz;
2814 note->datasz_rounded = roundup(sz, sizeof (int32_t));
2816 note->data = data;
2819 * We calculate rounded up note size here as specified by
2820 * ELF document.
2822 note->notesz = sizeof (struct elf_note) +
2823 note->namesz_rounded + note->datasz_rounded;
2826 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2827 uint32_t flags)
2829 (void) memset(elf, 0, sizeof(*elf));
2831 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2832 elf->e_ident[EI_CLASS] = ELF_CLASS;
2833 elf->e_ident[EI_DATA] = ELF_DATA;
2834 elf->e_ident[EI_VERSION] = EV_CURRENT;
2835 elf->e_ident[EI_OSABI] = ELF_OSABI;
2837 elf->e_type = ET_CORE;
2838 elf->e_machine = machine;
2839 elf->e_version = EV_CURRENT;
2840 elf->e_phoff = sizeof(struct elfhdr);
2841 elf->e_flags = flags;
2842 elf->e_ehsize = sizeof(struct elfhdr);
2843 elf->e_phentsize = sizeof(struct elf_phdr);
2844 elf->e_phnum = segs;
2846 bswap_ehdr(elf);
2849 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2851 phdr->p_type = PT_NOTE;
2852 phdr->p_offset = offset;
2853 phdr->p_vaddr = 0;
2854 phdr->p_paddr = 0;
2855 phdr->p_filesz = sz;
2856 phdr->p_memsz = 0;
2857 phdr->p_flags = 0;
2858 phdr->p_align = 0;
2860 bswap_phdr(phdr, 1);
2863 static size_t note_size(const struct memelfnote *note)
2865 return (note->notesz);
2868 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2869 const TaskState *ts, int signr)
2871 (void) memset(prstatus, 0, sizeof (*prstatus));
2872 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2873 prstatus->pr_pid = ts->ts_tid;
2874 prstatus->pr_ppid = getppid();
2875 prstatus->pr_pgrp = getpgrp();
2876 prstatus->pr_sid = getsid(0);
2878 bswap_prstatus(prstatus);
2881 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2883 char *base_filename;
2884 unsigned int i, len;
2886 (void) memset(psinfo, 0, sizeof (*psinfo));
2888 len = ts->info->arg_end - ts->info->arg_start;
2889 if (len >= ELF_PRARGSZ)
2890 len = ELF_PRARGSZ - 1;
2891 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2892 return -EFAULT;
2893 for (i = 0; i < len; i++)
2894 if (psinfo->pr_psargs[i] == 0)
2895 psinfo->pr_psargs[i] = ' ';
2896 psinfo->pr_psargs[len] = 0;
2898 psinfo->pr_pid = getpid();
2899 psinfo->pr_ppid = getppid();
2900 psinfo->pr_pgrp = getpgrp();
2901 psinfo->pr_sid = getsid(0);
2902 psinfo->pr_uid = getuid();
2903 psinfo->pr_gid = getgid();
2905 base_filename = g_path_get_basename(ts->bprm->filename);
2907 * Using strncpy here is fine: at max-length,
2908 * this field is not NUL-terminated.
2910 (void) strncpy(psinfo->pr_fname, base_filename,
2911 sizeof(psinfo->pr_fname));
2913 g_free(base_filename);
2914 bswap_psinfo(psinfo);
2915 return (0);
2918 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2920 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2921 elf_addr_t orig_auxv = auxv;
2922 void *ptr;
2923 int len = ts->info->auxv_len;
2926 * Auxiliary vector is stored in target process stack. It contains
2927 * {type, value} pairs that we need to dump into note. This is not
2928 * strictly necessary but we do it here for sake of completeness.
2931 /* read in whole auxv vector and copy it to memelfnote */
2932 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2933 if (ptr != NULL) {
2934 fill_note(note, "CORE", NT_AUXV, len, ptr);
2935 unlock_user(ptr, auxv, len);
2940 * Constructs name of coredump file. We have following convention
2941 * for the name:
2942 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2944 * Returns 0 in case of success, -1 otherwise (errno is set).
2946 static int core_dump_filename(const TaskState *ts, char *buf,
2947 size_t bufsize)
2949 char timestamp[64];
2950 char *base_filename = NULL;
2951 struct timeval tv;
2952 struct tm tm;
2954 assert(bufsize >= PATH_MAX);
2956 if (gettimeofday(&tv, NULL) < 0) {
2957 (void) fprintf(stderr, "unable to get current timestamp: %s",
2958 strerror(errno));
2959 return (-1);
2962 base_filename = g_path_get_basename(ts->bprm->filename);
2963 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2964 localtime_r(&tv.tv_sec, &tm));
2965 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2966 base_filename, timestamp, (int)getpid());
2967 g_free(base_filename);
2969 return (0);
2972 static int dump_write(int fd, const void *ptr, size_t size)
2974 const char *bufp = (const char *)ptr;
2975 ssize_t bytes_written, bytes_left;
2976 struct rlimit dumpsize;
2977 off_t pos;
2979 bytes_written = 0;
2980 getrlimit(RLIMIT_CORE, &dumpsize);
2981 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2982 if (errno == ESPIPE) { /* not a seekable stream */
2983 bytes_left = size;
2984 } else {
2985 return pos;
2987 } else {
2988 if (dumpsize.rlim_cur <= pos) {
2989 return -1;
2990 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2991 bytes_left = size;
2992 } else {
2993 size_t limit_left=dumpsize.rlim_cur - pos;
2994 bytes_left = limit_left >= size ? size : limit_left ;
2999 * In normal conditions, single write(2) should do but
3000 * in case of socket etc. this mechanism is more portable.
3002 do {
3003 bytes_written = write(fd, bufp, bytes_left);
3004 if (bytes_written < 0) {
3005 if (errno == EINTR)
3006 continue;
3007 return (-1);
3008 } else if (bytes_written == 0) { /* eof */
3009 return (-1);
3011 bufp += bytes_written;
3012 bytes_left -= bytes_written;
3013 } while (bytes_left > 0);
3015 return (0);
3018 static int write_note(struct memelfnote *men, int fd)
3020 struct elf_note en;
3022 en.n_namesz = men->namesz;
3023 en.n_type = men->type;
3024 en.n_descsz = men->datasz;
3026 bswap_note(&en);
3028 if (dump_write(fd, &en, sizeof(en)) != 0)
3029 return (-1);
3030 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3031 return (-1);
3032 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3033 return (-1);
3035 return (0);
3038 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3040 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3041 TaskState *ts = (TaskState *)cpu->opaque;
3042 struct elf_thread_status *ets;
3044 ets = g_malloc0(sizeof (*ets));
3045 ets->num_notes = 1; /* only prstatus is dumped */
3046 fill_prstatus(&ets->prstatus, ts, 0);
3047 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3048 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3049 &ets->prstatus);
3051 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3053 info->notes_size += note_size(&ets->notes[0]);
3056 static void init_note_info(struct elf_note_info *info)
3058 /* Initialize the elf_note_info structure so that it is at
3059 * least safe to call free_note_info() on it. Must be
3060 * called before calling fill_note_info().
3062 memset(info, 0, sizeof (*info));
3063 QTAILQ_INIT(&info->thread_list);
3066 static int fill_note_info(struct elf_note_info *info,
3067 long signr, const CPUArchState *env)
3069 #define NUMNOTES 3
3070 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3071 TaskState *ts = (TaskState *)cpu->opaque;
3072 int i;
3074 info->notes = g_new0(struct memelfnote, NUMNOTES);
3075 if (info->notes == NULL)
3076 return (-ENOMEM);
3077 info->prstatus = g_malloc0(sizeof (*info->prstatus));
3078 if (info->prstatus == NULL)
3079 return (-ENOMEM);
3080 info->psinfo = g_malloc0(sizeof (*info->psinfo));
3081 if (info->prstatus == NULL)
3082 return (-ENOMEM);
3085 * First fill in status (and registers) of current thread
3086 * including process info & aux vector.
3088 fill_prstatus(info->prstatus, ts, signr);
3089 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3090 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3091 sizeof (*info->prstatus), info->prstatus);
3092 fill_psinfo(info->psinfo, ts);
3093 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3094 sizeof (*info->psinfo), info->psinfo);
3095 fill_auxv_note(&info->notes[2], ts);
3096 info->numnote = 3;
3098 info->notes_size = 0;
3099 for (i = 0; i < info->numnote; i++)
3100 info->notes_size += note_size(&info->notes[i]);
3102 /* read and fill status of all threads */
3103 cpu_list_lock();
3104 CPU_FOREACH(cpu) {
3105 if (cpu == thread_cpu) {
3106 continue;
3108 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3110 cpu_list_unlock();
3112 return (0);
3115 static void free_note_info(struct elf_note_info *info)
3117 struct elf_thread_status *ets;
3119 while (!QTAILQ_EMPTY(&info->thread_list)) {
3120 ets = QTAILQ_FIRST(&info->thread_list);
3121 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3122 g_free(ets);
3125 g_free(info->prstatus);
3126 g_free(info->psinfo);
3127 g_free(info->notes);
3130 static int write_note_info(struct elf_note_info *info, int fd)
3132 struct elf_thread_status *ets;
3133 int i, error = 0;
3135 /* write prstatus, psinfo and auxv for current thread */
3136 for (i = 0; i < info->numnote; i++)
3137 if ((error = write_note(&info->notes[i], fd)) != 0)
3138 return (error);
3140 /* write prstatus for each thread */
3141 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3142 if ((error = write_note(&ets->notes[0], fd)) != 0)
3143 return (error);
3146 return (0);
3150 * Write out ELF coredump.
3152 * See documentation of ELF object file format in:
3153 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3155 * Coredump format in linux is following:
3157 * 0 +----------------------+ \
3158 * | ELF header | ET_CORE |
3159 * +----------------------+ |
3160 * | ELF program headers | |--- headers
3161 * | - NOTE section | |
3162 * | - PT_LOAD sections | |
3163 * +----------------------+ /
3164 * | NOTEs: |
3165 * | - NT_PRSTATUS |
3166 * | - NT_PRSINFO |
3167 * | - NT_AUXV |
3168 * +----------------------+ <-- aligned to target page
3169 * | Process memory dump |
3170 * : :
3171 * . .
3172 * : :
3173 * | |
3174 * +----------------------+
3176 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3177 * NT_PRSINFO -> struct elf_prpsinfo
3178 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3180 * Format follows System V format as close as possible. Current
3181 * version limitations are as follows:
3182 * - no floating point registers are dumped
3184 * Function returns 0 in case of success, negative errno otherwise.
3186 * TODO: make this work also during runtime: it should be
3187 * possible to force coredump from running process and then
3188 * continue processing. For example qemu could set up SIGUSR2
3189 * handler (provided that target process haven't registered
3190 * handler for that) that does the dump when signal is received.
3192 static int elf_core_dump(int signr, const CPUArchState *env)
3194 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3195 const TaskState *ts = (const TaskState *)cpu->opaque;
3196 struct vm_area_struct *vma = NULL;
3197 char corefile[PATH_MAX];
3198 struct elf_note_info info;
3199 struct elfhdr elf;
3200 struct elf_phdr phdr;
3201 struct rlimit dumpsize;
3202 struct mm_struct *mm = NULL;
3203 off_t offset = 0, data_offset = 0;
3204 int segs = 0;
3205 int fd = -1;
3207 init_note_info(&info);
3209 errno = 0;
3210 getrlimit(RLIMIT_CORE, &dumpsize);
3211 if (dumpsize.rlim_cur == 0)
3212 return 0;
3214 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3215 return (-errno);
3217 if ((fd = open(corefile, O_WRONLY | O_CREAT,
3218 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3219 return (-errno);
3222 * Walk through target process memory mappings and
3223 * set up structure containing this information. After
3224 * this point vma_xxx functions can be used.
3226 if ((mm = vma_init()) == NULL)
3227 goto out;
3229 walk_memory_regions(mm, vma_walker);
3230 segs = vma_get_mapping_count(mm);
3233 * Construct valid coredump ELF header. We also
3234 * add one more segment for notes.
3236 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3237 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3238 goto out;
3240 /* fill in the in-memory version of notes */
3241 if (fill_note_info(&info, signr, env) < 0)
3242 goto out;
3244 offset += sizeof (elf); /* elf header */
3245 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3247 /* write out notes program header */
3248 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3250 offset += info.notes_size;
3251 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3252 goto out;
3255 * ELF specification wants data to start at page boundary so
3256 * we align it here.
3258 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3261 * Write program headers for memory regions mapped in
3262 * the target process.
3264 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3265 (void) memset(&phdr, 0, sizeof (phdr));
3267 phdr.p_type = PT_LOAD;
3268 phdr.p_offset = offset;
3269 phdr.p_vaddr = vma->vma_start;
3270 phdr.p_paddr = 0;
3271 phdr.p_filesz = vma_dump_size(vma);
3272 offset += phdr.p_filesz;
3273 phdr.p_memsz = vma->vma_end - vma->vma_start;
3274 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3275 if (vma->vma_flags & PROT_WRITE)
3276 phdr.p_flags |= PF_W;
3277 if (vma->vma_flags & PROT_EXEC)
3278 phdr.p_flags |= PF_X;
3279 phdr.p_align = ELF_EXEC_PAGESIZE;
3281 bswap_phdr(&phdr, 1);
3282 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3283 goto out;
3288 * Next we write notes just after program headers. No
3289 * alignment needed here.
3291 if (write_note_info(&info, fd) < 0)
3292 goto out;
3294 /* align data to page boundary */
3295 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3296 goto out;
3299 * Finally we can dump process memory into corefile as well.
3301 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3302 abi_ulong addr;
3303 abi_ulong end;
3305 end = vma->vma_start + vma_dump_size(vma);
3307 for (addr = vma->vma_start; addr < end;
3308 addr += TARGET_PAGE_SIZE) {
3309 char page[TARGET_PAGE_SIZE];
3310 int error;
3313 * Read in page from target process memory and
3314 * write it to coredump file.
3316 error = copy_from_user(page, addr, sizeof (page));
3317 if (error != 0) {
3318 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3319 addr);
3320 errno = -error;
3321 goto out;
3323 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3324 goto out;
3328 out:
3329 free_note_info(&info);
3330 if (mm != NULL)
3331 vma_delete(mm);
3332 (void) close(fd);
3334 if (errno != 0)
3335 return (-errno);
3336 return (0);
3338 #endif /* USE_ELF_CORE_DUMP */
3340 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3342 init_thread(regs, infop);