hw/elf_ops: Fix a typo
[qemu/ar7.git] / hw / riscv / spike.c
blobed4ca9808e1121dfe02fa345756e81c07280454d
1 /*
2 * QEMU RISC-V Spike Board
4 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5 * Copyright (c) 2017-2018 SiFive, Inc.
7 * This provides a RISC-V Board with the following devices:
9 * 0) HTIF Console and Poweroff
10 * 1) CLINT (Timer and IPI)
11 * 2) PLIC (Platform Level Interrupt Controller)
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms and conditions of the GNU General Public License,
15 * version 2 or later, as published by the Free Software Foundation.
17 * This program is distributed in the hope it will be useful, but WITHOUT
18 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
20 * more details.
22 * You should have received a copy of the GNU General Public License along with
23 * this program. If not, see <http://www.gnu.org/licenses/>.
26 #include "qemu/osdep.h"
27 #include "qemu/log.h"
28 #include "qemu/error-report.h"
29 #include "qapi/error.h"
30 #include "hw/boards.h"
31 #include "hw/loader.h"
32 #include "hw/sysbus.h"
33 #include "target/riscv/cpu.h"
34 #include "hw/riscv/riscv_hart.h"
35 #include "hw/riscv/spike.h"
36 #include "hw/riscv/boot.h"
37 #include "hw/riscv/numa.h"
38 #include "hw/char/riscv_htif.h"
39 #include "hw/intc/sifive_clint.h"
40 #include "chardev/char.h"
41 #include "sysemu/arch_init.h"
42 #include "sysemu/device_tree.h"
43 #include "sysemu/qtest.h"
44 #include "sysemu/sysemu.h"
46 static const MemMapEntry spike_memmap[] = {
47 [SPIKE_MROM] = { 0x1000, 0xf000 },
48 [SPIKE_CLINT] = { 0x2000000, 0x10000 },
49 [SPIKE_DRAM] = { 0x80000000, 0x0 },
52 static void create_fdt(SpikeState *s, const MemMapEntry *memmap,
53 uint64_t mem_size, const char *cmdline, bool is_32_bit)
55 void *fdt;
56 uint64_t addr, size;
57 unsigned long clint_addr;
58 int cpu, socket;
59 MachineState *mc = MACHINE(s);
60 uint32_t *clint_cells;
61 uint32_t cpu_phandle, intc_phandle, phandle = 1;
62 char *name, *mem_name, *clint_name, *clust_name;
63 char *core_name, *cpu_name, *intc_name;
65 fdt = s->fdt = create_device_tree(&s->fdt_size);
66 if (!fdt) {
67 error_report("create_device_tree() failed");
68 exit(1);
71 qemu_fdt_setprop_string(fdt, "/", "model", "ucbbar,spike-bare,qemu");
72 qemu_fdt_setprop_string(fdt, "/", "compatible", "ucbbar,spike-bare-dev");
73 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
74 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
76 qemu_fdt_add_subnode(fdt, "/htif");
77 qemu_fdt_setprop_string(fdt, "/htif", "compatible", "ucb,htif0");
79 qemu_fdt_add_subnode(fdt, "/soc");
80 qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
81 qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
82 qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
83 qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
85 qemu_fdt_add_subnode(fdt, "/cpus");
86 qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
87 SIFIVE_CLINT_TIMEBASE_FREQ);
88 qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
89 qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
90 qemu_fdt_add_subnode(fdt, "/cpus/cpu-map");
92 for (socket = (riscv_socket_count(mc) - 1); socket >= 0; socket--) {
93 clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
94 qemu_fdt_add_subnode(fdt, clust_name);
96 clint_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
98 for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
99 cpu_phandle = phandle++;
101 cpu_name = g_strdup_printf("/cpus/cpu@%d",
102 s->soc[socket].hartid_base + cpu);
103 qemu_fdt_add_subnode(fdt, cpu_name);
104 if (is_32_bit) {
105 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv32");
106 } else {
107 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv48");
109 name = riscv_isa_string(&s->soc[socket].harts[cpu]);
110 qemu_fdt_setprop_string(fdt, cpu_name, "riscv,isa", name);
111 g_free(name);
112 qemu_fdt_setprop_string(fdt, cpu_name, "compatible", "riscv");
113 qemu_fdt_setprop_string(fdt, cpu_name, "status", "okay");
114 qemu_fdt_setprop_cell(fdt, cpu_name, "reg",
115 s->soc[socket].hartid_base + cpu);
116 qemu_fdt_setprop_string(fdt, cpu_name, "device_type", "cpu");
117 riscv_socket_fdt_write_id(mc, fdt, cpu_name, socket);
118 qemu_fdt_setprop_cell(fdt, cpu_name, "phandle", cpu_phandle);
120 intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
121 qemu_fdt_add_subnode(fdt, intc_name);
122 intc_phandle = phandle++;
123 qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_phandle);
124 qemu_fdt_setprop_string(fdt, intc_name, "compatible",
125 "riscv,cpu-intc");
126 qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0);
127 qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1);
129 clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
130 clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
131 clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
132 clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
134 core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
135 qemu_fdt_add_subnode(fdt, core_name);
136 qemu_fdt_setprop_cell(fdt, core_name, "cpu", cpu_phandle);
138 g_free(core_name);
139 g_free(intc_name);
140 g_free(cpu_name);
143 addr = memmap[SPIKE_DRAM].base + riscv_socket_mem_offset(mc, socket);
144 size = riscv_socket_mem_size(mc, socket);
145 mem_name = g_strdup_printf("/memory@%lx", (long)addr);
146 qemu_fdt_add_subnode(fdt, mem_name);
147 qemu_fdt_setprop_cells(fdt, mem_name, "reg",
148 addr >> 32, addr, size >> 32, size);
149 qemu_fdt_setprop_string(fdt, mem_name, "device_type", "memory");
150 riscv_socket_fdt_write_id(mc, fdt, mem_name, socket);
151 g_free(mem_name);
153 clint_addr = memmap[SPIKE_CLINT].base +
154 (memmap[SPIKE_CLINT].size * socket);
155 clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
156 qemu_fdt_add_subnode(fdt, clint_name);
157 qemu_fdt_setprop_string(fdt, clint_name, "compatible", "riscv,clint0");
158 qemu_fdt_setprop_cells(fdt, clint_name, "reg",
159 0x0, clint_addr, 0x0, memmap[SPIKE_CLINT].size);
160 qemu_fdt_setprop(fdt, clint_name, "interrupts-extended",
161 clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
162 riscv_socket_fdt_write_id(mc, fdt, clint_name, socket);
164 g_free(clint_name);
165 g_free(clint_cells);
166 g_free(clust_name);
169 riscv_socket_fdt_write_distance_matrix(mc, fdt);
171 if (cmdline) {
172 qemu_fdt_add_subnode(fdt, "/chosen");
173 qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
177 static void spike_board_init(MachineState *machine)
179 const MemMapEntry *memmap = spike_memmap;
180 SpikeState *s = SPIKE_MACHINE(machine);
181 MemoryRegion *system_memory = get_system_memory();
182 MemoryRegion *main_mem = g_new(MemoryRegion, 1);
183 MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
184 target_ulong firmware_end_addr, kernel_start_addr;
185 uint32_t fdt_load_addr;
186 uint64_t kernel_entry;
187 char *soc_name;
188 int i, base_hartid, hart_count;
190 /* Check socket count limit */
191 if (SPIKE_SOCKETS_MAX < riscv_socket_count(machine)) {
192 error_report("number of sockets/nodes should be less than %d",
193 SPIKE_SOCKETS_MAX);
194 exit(1);
197 /* Initialize sockets */
198 for (i = 0; i < riscv_socket_count(machine); i++) {
199 if (!riscv_socket_check_hartids(machine, i)) {
200 error_report("discontinuous hartids in socket%d", i);
201 exit(1);
204 base_hartid = riscv_socket_first_hartid(machine, i);
205 if (base_hartid < 0) {
206 error_report("can't find hartid base for socket%d", i);
207 exit(1);
210 hart_count = riscv_socket_hart_count(machine, i);
211 if (hart_count < 0) {
212 error_report("can't find hart count for socket%d", i);
213 exit(1);
216 soc_name = g_strdup_printf("soc%d", i);
217 object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
218 TYPE_RISCV_HART_ARRAY);
219 g_free(soc_name);
220 object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
221 machine->cpu_type, &error_abort);
222 object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
223 base_hartid, &error_abort);
224 object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
225 hart_count, &error_abort);
226 sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_abort);
228 /* Core Local Interruptor (timer and IPI) for each socket */
229 sifive_clint_create(
230 memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size,
231 memmap[SPIKE_CLINT].size, base_hartid, hart_count,
232 SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE,
233 SIFIVE_CLINT_TIMEBASE_FREQ, false);
236 /* register system main memory (actual RAM) */
237 memory_region_init_ram(main_mem, NULL, "riscv.spike.ram",
238 machine->ram_size, &error_fatal);
239 memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
240 main_mem);
242 /* create device tree */
243 create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline,
244 riscv_is_32bit(&s->soc[0]));
246 /* boot rom */
247 memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom",
248 memmap[SPIKE_MROM].size, &error_fatal);
249 memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base,
250 mask_rom);
253 * Not like other RISC-V machines that use plain binary bios images,
254 * keeping ELF files here was intentional because BIN files don't work
255 * for the Spike machine as HTIF emulation depends on ELF parsing.
257 if (riscv_is_32bit(&s->soc[0])) {
258 firmware_end_addr = riscv_find_and_load_firmware(machine,
259 "opensbi-riscv32-generic-fw_dynamic.elf",
260 memmap[SPIKE_DRAM].base,
261 htif_symbol_callback);
262 } else {
263 firmware_end_addr = riscv_find_and_load_firmware(machine,
264 "opensbi-riscv64-generic-fw_dynamic.elf",
265 memmap[SPIKE_DRAM].base,
266 htif_symbol_callback);
269 if (machine->kernel_filename) {
270 kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0],
271 firmware_end_addr);
273 kernel_entry = riscv_load_kernel(machine->kernel_filename,
274 kernel_start_addr,
275 htif_symbol_callback);
277 if (machine->initrd_filename) {
278 hwaddr start;
279 hwaddr end = riscv_load_initrd(machine->initrd_filename,
280 machine->ram_size, kernel_entry,
281 &start);
282 qemu_fdt_setprop_cell(s->fdt, "/chosen",
283 "linux,initrd-start", start);
284 qemu_fdt_setprop_cell(s->fdt, "/chosen", "linux,initrd-end",
285 end);
287 } else {
289 * If dynamic firmware is used, it doesn't know where is the next mode
290 * if kernel argument is not set.
292 kernel_entry = 0;
295 /* Compute the fdt load address in dram */
296 fdt_load_addr = riscv_load_fdt(memmap[SPIKE_DRAM].base,
297 machine->ram_size, s->fdt);
298 /* load the reset vector */
299 riscv_setup_rom_reset_vec(machine, &s->soc[0], memmap[SPIKE_DRAM].base,
300 memmap[SPIKE_MROM].base,
301 memmap[SPIKE_MROM].size, kernel_entry,
302 fdt_load_addr, s->fdt);
304 /* initialize HTIF using symbols found in load_kernel */
305 htif_mm_init(system_memory, mask_rom,
306 &s->soc[0].harts[0].env, serial_hd(0));
309 static void spike_machine_instance_init(Object *obj)
313 static void spike_machine_class_init(ObjectClass *oc, void *data)
315 MachineClass *mc = MACHINE_CLASS(oc);
317 mc->desc = "RISC-V Spike board";
318 mc->init = spike_board_init;
319 mc->max_cpus = SPIKE_CPUS_MAX;
320 mc->is_default = true;
321 mc->default_cpu_type = TYPE_RISCV_CPU_BASE;
322 mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
323 mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
324 mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
325 mc->numa_mem_supported = true;
328 static const TypeInfo spike_machine_typeinfo = {
329 .name = MACHINE_TYPE_NAME("spike"),
330 .parent = TYPE_MACHINE,
331 .class_init = spike_machine_class_init,
332 .instance_init = spike_machine_instance_init,
333 .instance_size = sizeof(SpikeState),
336 static void spike_machine_init_register_types(void)
338 type_register_static(&spike_machine_typeinfo);
341 type_init(spike_machine_init_register_types)