hw/elf_ops: Fix a typo
[qemu/ar7.git] / hw / net / e1000e_core.c
blob4dcb92d966bb19790e2760c41f502973c5e5e734
1 /*
2 * Core code for QEMU e1000e emulation
4 * Software developer's manuals:
5 * http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
7 * Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
8 * Developed by Daynix Computing LTD (http://www.daynix.com)
10 * Authors:
11 * Dmitry Fleytman <dmitry@daynix.com>
12 * Leonid Bloch <leonid@daynix.com>
13 * Yan Vugenfirer <yan@daynix.com>
15 * Based on work done by:
16 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
17 * Copyright (c) 2008 Qumranet
18 * Based on work done by:
19 * Copyright (c) 2007 Dan Aloni
20 * Copyright (c) 2004 Antony T Curtis
22 * This library is free software; you can redistribute it and/or
23 * modify it under the terms of the GNU Lesser General Public
24 * License as published by the Free Software Foundation; either
25 * version 2.1 of the License, or (at your option) any later version.
27 * This library is distributed in the hope that it will be useful,
28 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
30 * Lesser General Public License for more details.
32 * You should have received a copy of the GNU Lesser General Public
33 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
36 #include "qemu/osdep.h"
37 #include "qemu/log.h"
38 #include "net/net.h"
39 #include "net/tap.h"
40 #include "hw/pci/msi.h"
41 #include "hw/pci/msix.h"
42 #include "sysemu/runstate.h"
44 #include "net_tx_pkt.h"
45 #include "net_rx_pkt.h"
47 #include "e1000x_common.h"
48 #include "e1000e_core.h"
50 #include "trace.h"
52 #define E1000E_MIN_XITR (500) /* No more then 7813 interrupts per
53 second according to spec 10.2.4.2 */
54 #define E1000E_MAX_TX_FRAGS (64)
56 static inline void
57 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val);
59 static inline void
60 e1000e_process_ts_option(E1000ECore *core, struct e1000_tx_desc *dp)
62 if (le32_to_cpu(dp->upper.data) & E1000_TXD_EXTCMD_TSTAMP) {
63 trace_e1000e_wrn_no_ts_support();
67 static inline void
68 e1000e_process_snap_option(E1000ECore *core, uint32_t cmd_and_length)
70 if (cmd_and_length & E1000_TXD_CMD_SNAP) {
71 trace_e1000e_wrn_no_snap_support();
75 static inline void
76 e1000e_raise_legacy_irq(E1000ECore *core)
78 trace_e1000e_irq_legacy_notify(true);
79 e1000x_inc_reg_if_not_full(core->mac, IAC);
80 pci_set_irq(core->owner, 1);
83 static inline void
84 e1000e_lower_legacy_irq(E1000ECore *core)
86 trace_e1000e_irq_legacy_notify(false);
87 pci_set_irq(core->owner, 0);
90 static inline void
91 e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer *timer)
93 int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] *
94 timer->delay_resolution_ns;
96 trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns);
98 timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns);
100 timer->running = true;
103 static void
104 e1000e_intmgr_timer_resume(E1000IntrDelayTimer *timer)
106 if (timer->running) {
107 e1000e_intrmgr_rearm_timer(timer);
111 static void
112 e1000e_intmgr_timer_pause(E1000IntrDelayTimer *timer)
114 if (timer->running) {
115 timer_del(timer->timer);
119 static inline void
120 e1000e_intrmgr_stop_timer(E1000IntrDelayTimer *timer)
122 if (timer->running) {
123 timer_del(timer->timer);
124 timer->running = false;
128 static inline void
129 e1000e_intrmgr_fire_delayed_interrupts(E1000ECore *core)
131 trace_e1000e_irq_fire_delayed_interrupts();
132 e1000e_set_interrupt_cause(core, 0);
135 static void
136 e1000e_intrmgr_on_timer(void *opaque)
138 E1000IntrDelayTimer *timer = opaque;
140 trace_e1000e_irq_throttling_timer(timer->delay_reg << 2);
142 timer->running = false;
143 e1000e_intrmgr_fire_delayed_interrupts(timer->core);
146 static void
147 e1000e_intrmgr_on_throttling_timer(void *opaque)
149 E1000IntrDelayTimer *timer = opaque;
151 assert(!msix_enabled(timer->core->owner));
153 timer->running = false;
155 if (!timer->core->itr_intr_pending) {
156 trace_e1000e_irq_throttling_no_pending_interrupts();
157 return;
160 if (msi_enabled(timer->core->owner)) {
161 trace_e1000e_irq_msi_notify_postponed();
162 e1000e_set_interrupt_cause(timer->core, 0);
163 } else {
164 trace_e1000e_irq_legacy_notify_postponed();
165 e1000e_set_interrupt_cause(timer->core, 0);
169 static void
170 e1000e_intrmgr_on_msix_throttling_timer(void *opaque)
172 E1000IntrDelayTimer *timer = opaque;
173 int idx = timer - &timer->core->eitr[0];
175 assert(msix_enabled(timer->core->owner));
177 timer->running = false;
179 if (!timer->core->eitr_intr_pending[idx]) {
180 trace_e1000e_irq_throttling_no_pending_vec(idx);
181 return;
184 trace_e1000e_irq_msix_notify_postponed_vec(idx);
185 msix_notify(timer->core->owner, idx);
188 static void
189 e1000e_intrmgr_initialize_all_timers(E1000ECore *core, bool create)
191 int i;
193 core->radv.delay_reg = RADV;
194 core->rdtr.delay_reg = RDTR;
195 core->raid.delay_reg = RAID;
196 core->tadv.delay_reg = TADV;
197 core->tidv.delay_reg = TIDV;
199 core->radv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
200 core->rdtr.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
201 core->raid.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
202 core->tadv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
203 core->tidv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
205 core->radv.core = core;
206 core->rdtr.core = core;
207 core->raid.core = core;
208 core->tadv.core = core;
209 core->tidv.core = core;
211 core->itr.core = core;
212 core->itr.delay_reg = ITR;
213 core->itr.delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
215 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
216 core->eitr[i].core = core;
217 core->eitr[i].delay_reg = EITR + i;
218 core->eitr[i].delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
221 if (!create) {
222 return;
225 core->radv.timer =
226 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->radv);
227 core->rdtr.timer =
228 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->rdtr);
229 core->raid.timer =
230 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->raid);
232 core->tadv.timer =
233 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tadv);
234 core->tidv.timer =
235 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tidv);
237 core->itr.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
238 e1000e_intrmgr_on_throttling_timer,
239 &core->itr);
241 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
242 core->eitr[i].timer =
243 timer_new_ns(QEMU_CLOCK_VIRTUAL,
244 e1000e_intrmgr_on_msix_throttling_timer,
245 &core->eitr[i]);
249 static inline void
250 e1000e_intrmgr_stop_delay_timers(E1000ECore *core)
252 e1000e_intrmgr_stop_timer(&core->radv);
253 e1000e_intrmgr_stop_timer(&core->rdtr);
254 e1000e_intrmgr_stop_timer(&core->raid);
255 e1000e_intrmgr_stop_timer(&core->tidv);
256 e1000e_intrmgr_stop_timer(&core->tadv);
259 static bool
260 e1000e_intrmgr_delay_rx_causes(E1000ECore *core, uint32_t *causes)
262 uint32_t delayable_causes;
263 uint32_t rdtr = core->mac[RDTR];
264 uint32_t radv = core->mac[RADV];
265 uint32_t raid = core->mac[RAID];
267 if (msix_enabled(core->owner)) {
268 return false;
271 delayable_causes = E1000_ICR_RXQ0 |
272 E1000_ICR_RXQ1 |
273 E1000_ICR_RXT0;
275 if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS)) {
276 delayable_causes |= E1000_ICR_ACK;
279 /* Clean up all causes that may be delayed */
280 core->delayed_causes |= *causes & delayable_causes;
281 *causes &= ~delayable_causes;
283 /* Check if delayed RX interrupts disabled by client
284 or if there are causes that cannot be delayed */
285 if ((rdtr == 0) || (*causes != 0)) {
286 return false;
289 /* Check if delayed RX ACK interrupts disabled by client
290 and there is an ACK packet received */
291 if ((raid == 0) && (core->delayed_causes & E1000_ICR_ACK)) {
292 return false;
295 /* All causes delayed */
296 e1000e_intrmgr_rearm_timer(&core->rdtr);
298 if (!core->radv.running && (radv != 0)) {
299 e1000e_intrmgr_rearm_timer(&core->radv);
302 if (!core->raid.running && (core->delayed_causes & E1000_ICR_ACK)) {
303 e1000e_intrmgr_rearm_timer(&core->raid);
306 return true;
309 static bool
310 e1000e_intrmgr_delay_tx_causes(E1000ECore *core, uint32_t *causes)
312 static const uint32_t delayable_causes = E1000_ICR_TXQ0 |
313 E1000_ICR_TXQ1 |
314 E1000_ICR_TXQE |
315 E1000_ICR_TXDW;
317 if (msix_enabled(core->owner)) {
318 return false;
321 /* Clean up all causes that may be delayed */
322 core->delayed_causes |= *causes & delayable_causes;
323 *causes &= ~delayable_causes;
325 /* If there are causes that cannot be delayed */
326 if (*causes != 0) {
327 return false;
330 /* All causes delayed */
331 e1000e_intrmgr_rearm_timer(&core->tidv);
333 if (!core->tadv.running && (core->mac[TADV] != 0)) {
334 e1000e_intrmgr_rearm_timer(&core->tadv);
337 return true;
340 static uint32_t
341 e1000e_intmgr_collect_delayed_causes(E1000ECore *core)
343 uint32_t res;
345 if (msix_enabled(core->owner)) {
346 assert(core->delayed_causes == 0);
347 return 0;
350 res = core->delayed_causes;
351 core->delayed_causes = 0;
353 e1000e_intrmgr_stop_delay_timers(core);
355 return res;
358 static void
359 e1000e_intrmgr_fire_all_timers(E1000ECore *core)
361 int i;
362 uint32_t val = e1000e_intmgr_collect_delayed_causes(core);
364 trace_e1000e_irq_adding_delayed_causes(val, core->mac[ICR]);
365 core->mac[ICR] |= val;
367 if (core->itr.running) {
368 timer_del(core->itr.timer);
369 e1000e_intrmgr_on_throttling_timer(&core->itr);
372 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
373 if (core->eitr[i].running) {
374 timer_del(core->eitr[i].timer);
375 e1000e_intrmgr_on_msix_throttling_timer(&core->eitr[i]);
380 static void
381 e1000e_intrmgr_resume(E1000ECore *core)
383 int i;
385 e1000e_intmgr_timer_resume(&core->radv);
386 e1000e_intmgr_timer_resume(&core->rdtr);
387 e1000e_intmgr_timer_resume(&core->raid);
388 e1000e_intmgr_timer_resume(&core->tidv);
389 e1000e_intmgr_timer_resume(&core->tadv);
391 e1000e_intmgr_timer_resume(&core->itr);
393 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
394 e1000e_intmgr_timer_resume(&core->eitr[i]);
398 static void
399 e1000e_intrmgr_pause(E1000ECore *core)
401 int i;
403 e1000e_intmgr_timer_pause(&core->radv);
404 e1000e_intmgr_timer_pause(&core->rdtr);
405 e1000e_intmgr_timer_pause(&core->raid);
406 e1000e_intmgr_timer_pause(&core->tidv);
407 e1000e_intmgr_timer_pause(&core->tadv);
409 e1000e_intmgr_timer_pause(&core->itr);
411 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
412 e1000e_intmgr_timer_pause(&core->eitr[i]);
416 static void
417 e1000e_intrmgr_reset(E1000ECore *core)
419 int i;
421 core->delayed_causes = 0;
423 e1000e_intrmgr_stop_delay_timers(core);
425 e1000e_intrmgr_stop_timer(&core->itr);
427 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
428 e1000e_intrmgr_stop_timer(&core->eitr[i]);
432 static void
433 e1000e_intrmgr_pci_unint(E1000ECore *core)
435 int i;
437 timer_free(core->radv.timer);
438 timer_free(core->rdtr.timer);
439 timer_free(core->raid.timer);
441 timer_free(core->tadv.timer);
442 timer_free(core->tidv.timer);
444 timer_free(core->itr.timer);
446 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
447 timer_free(core->eitr[i].timer);
451 static void
452 e1000e_intrmgr_pci_realize(E1000ECore *core)
454 e1000e_intrmgr_initialize_all_timers(core, true);
457 static inline bool
458 e1000e_rx_csum_enabled(E1000ECore *core)
460 return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true;
463 static inline bool
464 e1000e_rx_use_legacy_descriptor(E1000ECore *core)
466 return (core->mac[RFCTL] & E1000_RFCTL_EXTEN) ? false : true;
469 static inline bool
470 e1000e_rx_use_ps_descriptor(E1000ECore *core)
472 return !e1000e_rx_use_legacy_descriptor(core) &&
473 (core->mac[RCTL] & E1000_RCTL_DTYP_PS);
476 static inline bool
477 e1000e_rss_enabled(E1000ECore *core)
479 return E1000_MRQC_ENABLED(core->mac[MRQC]) &&
480 !e1000e_rx_csum_enabled(core) &&
481 !e1000e_rx_use_legacy_descriptor(core);
484 typedef struct E1000E_RSSInfo_st {
485 bool enabled;
486 uint32_t hash;
487 uint32_t queue;
488 uint32_t type;
489 } E1000E_RSSInfo;
491 static uint32_t
492 e1000e_rss_get_hash_type(E1000ECore *core, struct NetRxPkt *pkt)
494 bool isip4, isip6, isudp, istcp;
496 assert(e1000e_rss_enabled(core));
498 net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
500 if (isip4) {
501 bool fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
503 trace_e1000e_rx_rss_ip4(fragment, istcp, core->mac[MRQC],
504 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]),
505 E1000_MRQC_EN_IPV4(core->mac[MRQC]));
507 if (!fragment && istcp && E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) {
508 return E1000_MRQ_RSS_TYPE_IPV4TCP;
511 if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) {
512 return E1000_MRQ_RSS_TYPE_IPV4;
514 } else if (isip6) {
515 eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt);
517 bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS;
518 bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS;
521 * Following two traces must not be combined because resulting
522 * event will have 11 arguments totally and some trace backends
523 * (at least "ust") have limitation of maximum 10 arguments per
524 * event. Events with more arguments fail to compile for
525 * backends like these.
527 trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]);
528 trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, istcp,
529 ip6info->has_ext_hdrs,
530 ip6info->rss_ex_dst_valid,
531 ip6info->rss_ex_src_valid,
532 core->mac[MRQC],
533 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC]),
534 E1000_MRQC_EN_IPV6EX(core->mac[MRQC]),
535 E1000_MRQC_EN_IPV6(core->mac[MRQC]));
537 if ((!ex_dis || !ip6info->has_ext_hdrs) &&
538 (!new_ex_dis || !(ip6info->rss_ex_dst_valid ||
539 ip6info->rss_ex_src_valid))) {
541 if (istcp && !ip6info->fragment &&
542 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC])) {
543 return E1000_MRQ_RSS_TYPE_IPV6TCP;
546 if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) {
547 return E1000_MRQ_RSS_TYPE_IPV6EX;
552 if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) {
553 return E1000_MRQ_RSS_TYPE_IPV6;
558 return E1000_MRQ_RSS_TYPE_NONE;
561 static uint32_t
562 e1000e_rss_calc_hash(E1000ECore *core,
563 struct NetRxPkt *pkt,
564 E1000E_RSSInfo *info)
566 NetRxPktRssType type;
568 assert(e1000e_rss_enabled(core));
570 switch (info->type) {
571 case E1000_MRQ_RSS_TYPE_IPV4:
572 type = NetPktRssIpV4;
573 break;
574 case E1000_MRQ_RSS_TYPE_IPV4TCP:
575 type = NetPktRssIpV4Tcp;
576 break;
577 case E1000_MRQ_RSS_TYPE_IPV6TCP:
578 type = NetPktRssIpV6TcpEx;
579 break;
580 case E1000_MRQ_RSS_TYPE_IPV6:
581 type = NetPktRssIpV6;
582 break;
583 case E1000_MRQ_RSS_TYPE_IPV6EX:
584 type = NetPktRssIpV6Ex;
585 break;
586 default:
587 assert(false);
588 return 0;
591 return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]);
594 static void
595 e1000e_rss_parse_packet(E1000ECore *core,
596 struct NetRxPkt *pkt,
597 E1000E_RSSInfo *info)
599 trace_e1000e_rx_rss_started();
601 if (!e1000e_rss_enabled(core)) {
602 info->enabled = false;
603 info->hash = 0;
604 info->queue = 0;
605 info->type = 0;
606 trace_e1000e_rx_rss_disabled();
607 return;
610 info->enabled = true;
612 info->type = e1000e_rss_get_hash_type(core, pkt);
614 trace_e1000e_rx_rss_type(info->type);
616 if (info->type == E1000_MRQ_RSS_TYPE_NONE) {
617 info->hash = 0;
618 info->queue = 0;
619 return;
622 info->hash = e1000e_rss_calc_hash(core, pkt, info);
623 info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash);
626 static void
627 e1000e_setup_tx_offloads(E1000ECore *core, struct e1000e_tx *tx)
629 if (tx->props.tse && tx->cptse) {
630 net_tx_pkt_build_vheader(tx->tx_pkt, true, true, tx->props.mss);
631 net_tx_pkt_update_ip_checksums(tx->tx_pkt);
632 e1000x_inc_reg_if_not_full(core->mac, TSCTC);
633 return;
636 if (tx->sum_needed & E1000_TXD_POPTS_TXSM) {
637 net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0);
640 if (tx->sum_needed & E1000_TXD_POPTS_IXSM) {
641 net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt);
645 static bool
646 e1000e_tx_pkt_send(E1000ECore *core, struct e1000e_tx *tx, int queue_index)
648 int target_queue = MIN(core->max_queue_num, queue_index);
649 NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue);
651 e1000e_setup_tx_offloads(core, tx);
653 net_tx_pkt_dump(tx->tx_pkt);
655 if ((core->phy[0][PHY_CTRL] & MII_CR_LOOPBACK) ||
656 ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) {
657 return net_tx_pkt_send_loopback(tx->tx_pkt, queue);
658 } else {
659 return net_tx_pkt_send(tx->tx_pkt, queue);
663 static void
664 e1000e_on_tx_done_update_stats(E1000ECore *core, struct NetTxPkt *tx_pkt)
666 static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
667 PTC1023, PTC1522 };
669 size_t tot_len = net_tx_pkt_get_total_len(tx_pkt);
671 e1000x_increase_size_stats(core->mac, PTCregs, tot_len);
672 e1000x_inc_reg_if_not_full(core->mac, TPT);
673 e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len);
675 switch (net_tx_pkt_get_packet_type(tx_pkt)) {
676 case ETH_PKT_BCAST:
677 e1000x_inc_reg_if_not_full(core->mac, BPTC);
678 break;
679 case ETH_PKT_MCAST:
680 e1000x_inc_reg_if_not_full(core->mac, MPTC);
681 break;
682 case ETH_PKT_UCAST:
683 break;
684 default:
685 g_assert_not_reached();
688 core->mac[GPTC] = core->mac[TPT];
689 core->mac[GOTCL] = core->mac[TOTL];
690 core->mac[GOTCH] = core->mac[TOTH];
693 static void
694 e1000e_process_tx_desc(E1000ECore *core,
695 struct e1000e_tx *tx,
696 struct e1000_tx_desc *dp,
697 int queue_index)
699 uint32_t txd_lower = le32_to_cpu(dp->lower.data);
700 uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
701 unsigned int split_size = txd_lower & 0xffff;
702 uint64_t addr;
703 struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
704 bool eop = txd_lower & E1000_TXD_CMD_EOP;
706 if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */
707 e1000x_read_tx_ctx_descr(xp, &tx->props);
708 e1000e_process_snap_option(core, le32_to_cpu(xp->cmd_and_length));
709 return;
710 } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
711 /* data descriptor */
712 tx->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
713 tx->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
714 e1000e_process_ts_option(core, dp);
715 } else {
716 /* legacy descriptor */
717 e1000e_process_ts_option(core, dp);
718 tx->cptse = 0;
721 addr = le64_to_cpu(dp->buffer_addr);
723 if (!tx->skip_cp) {
724 if (!net_tx_pkt_add_raw_fragment(tx->tx_pkt, addr, split_size)) {
725 tx->skip_cp = true;
729 if (eop) {
730 if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) {
731 if (e1000x_vlan_enabled(core->mac) &&
732 e1000x_is_vlan_txd(txd_lower)) {
733 net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt,
734 le16_to_cpu(dp->upper.fields.special), core->vet);
736 if (e1000e_tx_pkt_send(core, tx, queue_index)) {
737 e1000e_on_tx_done_update_stats(core, tx->tx_pkt);
741 tx->skip_cp = false;
742 net_tx_pkt_reset(tx->tx_pkt);
744 tx->sum_needed = 0;
745 tx->cptse = 0;
749 static inline uint32_t
750 e1000e_tx_wb_interrupt_cause(E1000ECore *core, int queue_idx)
752 if (!msix_enabled(core->owner)) {
753 return E1000_ICR_TXDW;
756 return (queue_idx == 0) ? E1000_ICR_TXQ0 : E1000_ICR_TXQ1;
759 static inline uint32_t
760 e1000e_rx_wb_interrupt_cause(E1000ECore *core, int queue_idx,
761 bool min_threshold_hit)
763 if (!msix_enabled(core->owner)) {
764 return E1000_ICS_RXT0 | (min_threshold_hit ? E1000_ICS_RXDMT0 : 0);
767 return (queue_idx == 0) ? E1000_ICR_RXQ0 : E1000_ICR_RXQ1;
770 static uint32_t
771 e1000e_txdesc_writeback(E1000ECore *core, dma_addr_t base,
772 struct e1000_tx_desc *dp, bool *ide, int queue_idx)
774 uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
776 if (!(txd_lower & E1000_TXD_CMD_RS) &&
777 !(core->mac[IVAR] & E1000_IVAR_TX_INT_EVERY_WB)) {
778 return 0;
781 *ide = (txd_lower & E1000_TXD_CMD_IDE) ? true : false;
783 txd_upper = le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD;
785 dp->upper.data = cpu_to_le32(txd_upper);
786 pci_dma_write(core->owner, base + ((char *)&dp->upper - (char *)dp),
787 &dp->upper, sizeof(dp->upper));
788 return e1000e_tx_wb_interrupt_cause(core, queue_idx);
791 typedef struct E1000E_RingInfo_st {
792 int dbah;
793 int dbal;
794 int dlen;
795 int dh;
796 int dt;
797 int idx;
798 } E1000E_RingInfo;
800 static inline bool
801 e1000e_ring_empty(E1000ECore *core, const E1000E_RingInfo *r)
803 return core->mac[r->dh] == core->mac[r->dt] ||
804 core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN;
807 static inline uint64_t
808 e1000e_ring_base(E1000ECore *core, const E1000E_RingInfo *r)
810 uint64_t bah = core->mac[r->dbah];
811 uint64_t bal = core->mac[r->dbal];
813 return (bah << 32) + bal;
816 static inline uint64_t
817 e1000e_ring_head_descr(E1000ECore *core, const E1000E_RingInfo *r)
819 return e1000e_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh];
822 static inline void
823 e1000e_ring_advance(E1000ECore *core, const E1000E_RingInfo *r, uint32_t count)
825 core->mac[r->dh] += count;
827 if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) {
828 core->mac[r->dh] = 0;
832 static inline uint32_t
833 e1000e_ring_free_descr_num(E1000ECore *core, const E1000E_RingInfo *r)
835 trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen],
836 core->mac[r->dh], core->mac[r->dt]);
838 if (core->mac[r->dh] <= core->mac[r->dt]) {
839 return core->mac[r->dt] - core->mac[r->dh];
842 if (core->mac[r->dh] > core->mac[r->dt]) {
843 return core->mac[r->dlen] / E1000_RING_DESC_LEN +
844 core->mac[r->dt] - core->mac[r->dh];
847 g_assert_not_reached();
848 return 0;
851 static inline bool
852 e1000e_ring_enabled(E1000ECore *core, const E1000E_RingInfo *r)
854 return core->mac[r->dlen] > 0;
857 static inline uint32_t
858 e1000e_ring_len(E1000ECore *core, const E1000E_RingInfo *r)
860 return core->mac[r->dlen];
863 typedef struct E1000E_TxRing_st {
864 const E1000E_RingInfo *i;
865 struct e1000e_tx *tx;
866 } E1000E_TxRing;
868 static inline int
869 e1000e_mq_queue_idx(int base_reg_idx, int reg_idx)
871 return (reg_idx - base_reg_idx) / (0x100 >> 2);
874 static inline void
875 e1000e_tx_ring_init(E1000ECore *core, E1000E_TxRing *txr, int idx)
877 static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
878 { TDBAH, TDBAL, TDLEN, TDH, TDT, 0 },
879 { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 }
882 assert(idx < ARRAY_SIZE(i));
884 txr->i = &i[idx];
885 txr->tx = &core->tx[idx];
888 typedef struct E1000E_RxRing_st {
889 const E1000E_RingInfo *i;
890 } E1000E_RxRing;
892 static inline void
893 e1000e_rx_ring_init(E1000ECore *core, E1000E_RxRing *rxr, int idx)
895 static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
896 { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 },
897 { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 }
900 assert(idx < ARRAY_SIZE(i));
902 rxr->i = &i[idx];
905 static void
906 e1000e_start_xmit(E1000ECore *core, const E1000E_TxRing *txr)
908 dma_addr_t base;
909 struct e1000_tx_desc desc;
910 bool ide = false;
911 const E1000E_RingInfo *txi = txr->i;
912 uint32_t cause = E1000_ICS_TXQE;
914 if (!(core->mac[TCTL] & E1000_TCTL_EN)) {
915 trace_e1000e_tx_disabled();
916 return;
919 while (!e1000e_ring_empty(core, txi)) {
920 base = e1000e_ring_head_descr(core, txi);
922 pci_dma_read(core->owner, base, &desc, sizeof(desc));
924 trace_e1000e_tx_descr((void *)(intptr_t)desc.buffer_addr,
925 desc.lower.data, desc.upper.data);
927 e1000e_process_tx_desc(core, txr->tx, &desc, txi->idx);
928 cause |= e1000e_txdesc_writeback(core, base, &desc, &ide, txi->idx);
930 e1000e_ring_advance(core, txi, 1);
933 if (!ide || !e1000e_intrmgr_delay_tx_causes(core, &cause)) {
934 e1000e_set_interrupt_cause(core, cause);
938 static bool
939 e1000e_has_rxbufs(E1000ECore *core, const E1000E_RingInfo *r,
940 size_t total_size)
942 uint32_t bufs = e1000e_ring_free_descr_num(core, r);
944 trace_e1000e_rx_has_buffers(r->idx, bufs, total_size,
945 core->rx_desc_buf_size);
947 return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) *
948 core->rx_desc_buf_size;
951 void
952 e1000e_start_recv(E1000ECore *core)
954 int i;
956 trace_e1000e_rx_start_recv();
958 for (i = 0; i <= core->max_queue_num; i++) {
959 qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i));
963 bool
964 e1000e_can_receive(E1000ECore *core)
966 int i;
968 if (!e1000x_rx_ready(core->owner, core->mac)) {
969 return false;
972 for (i = 0; i < E1000E_NUM_QUEUES; i++) {
973 E1000E_RxRing rxr;
975 e1000e_rx_ring_init(core, &rxr, i);
976 if (e1000e_ring_enabled(core, rxr.i) &&
977 e1000e_has_rxbufs(core, rxr.i, 1)) {
978 trace_e1000e_rx_can_recv();
979 return true;
983 trace_e1000e_rx_can_recv_rings_full();
984 return false;
987 ssize_t
988 e1000e_receive(E1000ECore *core, const uint8_t *buf, size_t size)
990 const struct iovec iov = {
991 .iov_base = (uint8_t *)buf,
992 .iov_len = size
995 return e1000e_receive_iov(core, &iov, 1);
998 static inline bool
999 e1000e_rx_l3_cso_enabled(E1000ECore *core)
1001 return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD);
1004 static inline bool
1005 e1000e_rx_l4_cso_enabled(E1000ECore *core)
1007 return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD);
1010 static bool
1011 e1000e_receive_filter(E1000ECore *core, const uint8_t *buf, int size)
1013 uint32_t rctl = core->mac[RCTL];
1015 if (e1000x_is_vlan_packet(buf, core->vet) &&
1016 e1000x_vlan_rx_filter_enabled(core->mac)) {
1017 uint16_t vid = lduw_be_p(buf + 14);
1018 uint32_t vfta = ldl_le_p((uint32_t *)(core->mac + VFTA) +
1019 ((vid >> 5) & 0x7f));
1020 if ((vfta & (1 << (vid & 0x1f))) == 0) {
1021 trace_e1000e_rx_flt_vlan_mismatch(vid);
1022 return false;
1023 } else {
1024 trace_e1000e_rx_flt_vlan_match(vid);
1028 switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1029 case ETH_PKT_UCAST:
1030 if (rctl & E1000_RCTL_UPE) {
1031 return true; /* promiscuous ucast */
1033 break;
1035 case ETH_PKT_BCAST:
1036 if (rctl & E1000_RCTL_BAM) {
1037 return true; /* broadcast enabled */
1039 break;
1041 case ETH_PKT_MCAST:
1042 if (rctl & E1000_RCTL_MPE) {
1043 return true; /* promiscuous mcast */
1045 break;
1047 default:
1048 g_assert_not_reached();
1051 return e1000x_rx_group_filter(core->mac, buf);
1054 static inline void
1055 e1000e_read_lgcy_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr)
1057 struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc;
1058 *buff_addr = le64_to_cpu(d->buffer_addr);
1061 static inline void
1062 e1000e_read_ext_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr)
1064 union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc;
1065 *buff_addr = le64_to_cpu(d->read.buffer_addr);
1068 static inline void
1069 e1000e_read_ps_rx_descr(E1000ECore *core, uint8_t *desc,
1070 hwaddr (*buff_addr)[MAX_PS_BUFFERS])
1072 int i;
1073 union e1000_rx_desc_packet_split *d =
1074 (union e1000_rx_desc_packet_split *) desc;
1076 for (i = 0; i < MAX_PS_BUFFERS; i++) {
1077 (*buff_addr)[i] = le64_to_cpu(d->read.buffer_addr[i]);
1080 trace_e1000e_rx_desc_ps_read((*buff_addr)[0], (*buff_addr)[1],
1081 (*buff_addr)[2], (*buff_addr)[3]);
1084 static inline void
1085 e1000e_read_rx_descr(E1000ECore *core, uint8_t *desc,
1086 hwaddr (*buff_addr)[MAX_PS_BUFFERS])
1088 if (e1000e_rx_use_legacy_descriptor(core)) {
1089 e1000e_read_lgcy_rx_descr(core, desc, &(*buff_addr)[0]);
1090 (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0;
1091 } else {
1092 if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1093 e1000e_read_ps_rx_descr(core, desc, buff_addr);
1094 } else {
1095 e1000e_read_ext_rx_descr(core, desc, &(*buff_addr)[0]);
1096 (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0;
1101 static void
1102 e1000e_verify_csum_in_sw(E1000ECore *core,
1103 struct NetRxPkt *pkt,
1104 uint32_t *status_flags,
1105 bool istcp, bool isudp)
1107 bool csum_valid;
1108 uint32_t csum_error;
1110 if (e1000e_rx_l3_cso_enabled(core)) {
1111 if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) {
1112 trace_e1000e_rx_metadata_l3_csum_validation_failed();
1113 } else {
1114 csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE;
1115 *status_flags |= E1000_RXD_STAT_IPCS | csum_error;
1117 } else {
1118 trace_e1000e_rx_metadata_l3_cso_disabled();
1121 if (!e1000e_rx_l4_cso_enabled(core)) {
1122 trace_e1000e_rx_metadata_l4_cso_disabled();
1123 return;
1126 if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) {
1127 trace_e1000e_rx_metadata_l4_csum_validation_failed();
1128 return;
1131 csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE;
1133 if (istcp) {
1134 *status_flags |= E1000_RXD_STAT_TCPCS |
1135 csum_error;
1136 } else if (isudp) {
1137 *status_flags |= E1000_RXD_STAT_TCPCS |
1138 E1000_RXD_STAT_UDPCS |
1139 csum_error;
1143 static inline bool
1144 e1000e_is_tcp_ack(E1000ECore *core, struct NetRxPkt *rx_pkt)
1146 if (!net_rx_pkt_is_tcp_ack(rx_pkt)) {
1147 return false;
1150 if (core->mac[RFCTL] & E1000_RFCTL_ACK_DATA_DIS) {
1151 return !net_rx_pkt_has_tcp_data(rx_pkt);
1154 return true;
1157 static void
1158 e1000e_build_rx_metadata(E1000ECore *core,
1159 struct NetRxPkt *pkt,
1160 bool is_eop,
1161 const E1000E_RSSInfo *rss_info,
1162 uint32_t *rss, uint32_t *mrq,
1163 uint32_t *status_flags,
1164 uint16_t *ip_id,
1165 uint16_t *vlan_tag)
1167 struct virtio_net_hdr *vhdr;
1168 bool isip4, isip6, istcp, isudp;
1169 uint32_t pkt_type;
1171 *status_flags = E1000_RXD_STAT_DD;
1173 /* No additional metadata needed for non-EOP descriptors */
1174 if (!is_eop) {
1175 goto func_exit;
1178 *status_flags |= E1000_RXD_STAT_EOP;
1180 net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
1181 trace_e1000e_rx_metadata_protocols(isip4, isip6, isudp, istcp);
1183 /* VLAN state */
1184 if (net_rx_pkt_is_vlan_stripped(pkt)) {
1185 *status_flags |= E1000_RXD_STAT_VP;
1186 *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt));
1187 trace_e1000e_rx_metadata_vlan(*vlan_tag);
1190 /* Packet parsing results */
1191 if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) {
1192 if (rss_info->enabled) {
1193 *rss = cpu_to_le32(rss_info->hash);
1194 *mrq = cpu_to_le32(rss_info->type | (rss_info->queue << 8));
1195 trace_e1000e_rx_metadata_rss(*rss, *mrq);
1197 } else if (isip4) {
1198 *status_flags |= E1000_RXD_STAT_IPIDV;
1199 *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt));
1200 trace_e1000e_rx_metadata_ip_id(*ip_id);
1203 if (istcp && e1000e_is_tcp_ack(core, pkt)) {
1204 *status_flags |= E1000_RXD_STAT_ACK;
1205 trace_e1000e_rx_metadata_ack();
1208 if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) {
1209 trace_e1000e_rx_metadata_ipv6_filtering_disabled();
1210 pkt_type = E1000_RXD_PKT_MAC;
1211 } else if (istcp || isudp) {
1212 pkt_type = isip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP;
1213 } else if (isip4 || isip6) {
1214 pkt_type = isip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6;
1215 } else {
1216 pkt_type = E1000_RXD_PKT_MAC;
1219 *status_flags |= E1000_RXD_PKT_TYPE(pkt_type);
1220 trace_e1000e_rx_metadata_pkt_type(pkt_type);
1222 /* RX CSO information */
1223 if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) {
1224 trace_e1000e_rx_metadata_ipv6_sum_disabled();
1225 goto func_exit;
1228 if (!net_rx_pkt_has_virt_hdr(pkt)) {
1229 trace_e1000e_rx_metadata_no_virthdr();
1230 e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp);
1231 goto func_exit;
1234 vhdr = net_rx_pkt_get_vhdr(pkt);
1236 if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) &&
1237 !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) {
1238 trace_e1000e_rx_metadata_virthdr_no_csum_info();
1239 e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp);
1240 goto func_exit;
1243 if (e1000e_rx_l3_cso_enabled(core)) {
1244 *status_flags |= isip4 ? E1000_RXD_STAT_IPCS : 0;
1245 } else {
1246 trace_e1000e_rx_metadata_l3_cso_disabled();
1249 if (e1000e_rx_l4_cso_enabled(core)) {
1250 if (istcp) {
1251 *status_flags |= E1000_RXD_STAT_TCPCS;
1252 } else if (isudp) {
1253 *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS;
1255 } else {
1256 trace_e1000e_rx_metadata_l4_cso_disabled();
1259 trace_e1000e_rx_metadata_status_flags(*status_flags);
1261 func_exit:
1262 *status_flags = cpu_to_le32(*status_flags);
1265 static inline void
1266 e1000e_write_lgcy_rx_descr(E1000ECore *core, uint8_t *desc,
1267 struct NetRxPkt *pkt,
1268 const E1000E_RSSInfo *rss_info,
1269 uint16_t length)
1271 uint32_t status_flags, rss, mrq;
1272 uint16_t ip_id;
1274 struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc;
1276 assert(!rss_info->enabled);
1278 d->length = cpu_to_le16(length);
1279 d->csum = 0;
1281 e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1282 rss_info,
1283 &rss, &mrq,
1284 &status_flags, &ip_id,
1285 &d->special);
1286 d->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24);
1287 d->status = (uint8_t) le32_to_cpu(status_flags);
1288 d->special = 0;
1291 static inline void
1292 e1000e_write_ext_rx_descr(E1000ECore *core, uint8_t *desc,
1293 struct NetRxPkt *pkt,
1294 const E1000E_RSSInfo *rss_info,
1295 uint16_t length)
1297 union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc;
1299 memset(&d->wb, 0, sizeof(d->wb));
1301 d->wb.upper.length = cpu_to_le16(length);
1303 e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1304 rss_info,
1305 &d->wb.lower.hi_dword.rss,
1306 &d->wb.lower.mrq,
1307 &d->wb.upper.status_error,
1308 &d->wb.lower.hi_dword.csum_ip.ip_id,
1309 &d->wb.upper.vlan);
1312 static inline void
1313 e1000e_write_ps_rx_descr(E1000ECore *core, uint8_t *desc,
1314 struct NetRxPkt *pkt,
1315 const E1000E_RSSInfo *rss_info,
1316 size_t ps_hdr_len,
1317 uint16_t(*written)[MAX_PS_BUFFERS])
1319 int i;
1320 union e1000_rx_desc_packet_split *d =
1321 (union e1000_rx_desc_packet_split *) desc;
1323 memset(&d->wb, 0, sizeof(d->wb));
1325 d->wb.middle.length0 = cpu_to_le16((*written)[0]);
1327 for (i = 0; i < PS_PAGE_BUFFERS; i++) {
1328 d->wb.upper.length[i] = cpu_to_le16((*written)[i + 1]);
1331 e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1332 rss_info,
1333 &d->wb.lower.hi_dword.rss,
1334 &d->wb.lower.mrq,
1335 &d->wb.middle.status_error,
1336 &d->wb.lower.hi_dword.csum_ip.ip_id,
1337 &d->wb.middle.vlan);
1339 d->wb.upper.header_status =
1340 cpu_to_le16(ps_hdr_len | (ps_hdr_len ? E1000_RXDPS_HDRSTAT_HDRSP : 0));
1342 trace_e1000e_rx_desc_ps_write((*written)[0], (*written)[1],
1343 (*written)[2], (*written)[3]);
1346 static inline void
1347 e1000e_write_rx_descr(E1000ECore *core, uint8_t *desc,
1348 struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info,
1349 size_t ps_hdr_len, uint16_t(*written)[MAX_PS_BUFFERS])
1351 if (e1000e_rx_use_legacy_descriptor(core)) {
1352 assert(ps_hdr_len == 0);
1353 e1000e_write_lgcy_rx_descr(core, desc, pkt, rss_info, (*written)[0]);
1354 } else {
1355 if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1356 e1000e_write_ps_rx_descr(core, desc, pkt, rss_info,
1357 ps_hdr_len, written);
1358 } else {
1359 assert(ps_hdr_len == 0);
1360 e1000e_write_ext_rx_descr(core, desc, pkt, rss_info,
1361 (*written)[0]);
1366 typedef struct e1000e_ba_state_st {
1367 uint16_t written[MAX_PS_BUFFERS];
1368 uint8_t cur_idx;
1369 } e1000e_ba_state;
1371 static inline void
1372 e1000e_write_hdr_to_rx_buffers(E1000ECore *core,
1373 hwaddr (*ba)[MAX_PS_BUFFERS],
1374 e1000e_ba_state *bastate,
1375 const char *data,
1376 dma_addr_t data_len)
1378 assert(data_len <= core->rxbuf_sizes[0] - bastate->written[0]);
1380 pci_dma_write(core->owner, (*ba)[0] + bastate->written[0], data, data_len);
1381 bastate->written[0] += data_len;
1383 bastate->cur_idx = 1;
1386 static void
1387 e1000e_write_to_rx_buffers(E1000ECore *core,
1388 hwaddr (*ba)[MAX_PS_BUFFERS],
1389 e1000e_ba_state *bastate,
1390 const char *data,
1391 dma_addr_t data_len)
1393 while (data_len > 0) {
1394 uint32_t cur_buf_len = core->rxbuf_sizes[bastate->cur_idx];
1395 uint32_t cur_buf_bytes_left = cur_buf_len -
1396 bastate->written[bastate->cur_idx];
1397 uint32_t bytes_to_write = MIN(data_len, cur_buf_bytes_left);
1399 trace_e1000e_rx_desc_buff_write(bastate->cur_idx,
1400 (*ba)[bastate->cur_idx],
1401 bastate->written[bastate->cur_idx],
1402 data,
1403 bytes_to_write);
1405 pci_dma_write(core->owner,
1406 (*ba)[bastate->cur_idx] + bastate->written[bastate->cur_idx],
1407 data, bytes_to_write);
1409 bastate->written[bastate->cur_idx] += bytes_to_write;
1410 data += bytes_to_write;
1411 data_len -= bytes_to_write;
1413 if (bastate->written[bastate->cur_idx] == cur_buf_len) {
1414 bastate->cur_idx++;
1417 assert(bastate->cur_idx < MAX_PS_BUFFERS);
1421 static void
1422 e1000e_update_rx_stats(E1000ECore *core,
1423 size_t data_size,
1424 size_t data_fcs_size)
1426 e1000x_update_rx_total_stats(core->mac, data_size, data_fcs_size);
1428 switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1429 case ETH_PKT_BCAST:
1430 e1000x_inc_reg_if_not_full(core->mac, BPRC);
1431 break;
1433 case ETH_PKT_MCAST:
1434 e1000x_inc_reg_if_not_full(core->mac, MPRC);
1435 break;
1437 default:
1438 break;
1442 static inline bool
1443 e1000e_rx_descr_threshold_hit(E1000ECore *core, const E1000E_RingInfo *rxi)
1445 return e1000e_ring_free_descr_num(core, rxi) ==
1446 e1000e_ring_len(core, rxi) >> core->rxbuf_min_shift;
1449 static bool
1450 e1000e_do_ps(E1000ECore *core, struct NetRxPkt *pkt, size_t *hdr_len)
1452 bool isip4, isip6, isudp, istcp;
1453 bool fragment;
1455 if (!e1000e_rx_use_ps_descriptor(core)) {
1456 return false;
1459 net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
1461 if (isip4) {
1462 fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
1463 } else if (isip6) {
1464 fragment = net_rx_pkt_get_ip6_info(pkt)->fragment;
1465 } else {
1466 return false;
1469 if (fragment && (core->mac[RFCTL] & E1000_RFCTL_IPFRSP_DIS)) {
1470 return false;
1473 if (!fragment && (isudp || istcp)) {
1474 *hdr_len = net_rx_pkt_get_l5_hdr_offset(pkt);
1475 } else {
1476 *hdr_len = net_rx_pkt_get_l4_hdr_offset(pkt);
1479 if ((*hdr_len > core->rxbuf_sizes[0]) ||
1480 (*hdr_len > net_rx_pkt_get_total_len(pkt))) {
1481 return false;
1484 return true;
1487 static void
1488 e1000e_write_packet_to_guest(E1000ECore *core, struct NetRxPkt *pkt,
1489 const E1000E_RxRing *rxr,
1490 const E1000E_RSSInfo *rss_info)
1492 PCIDevice *d = core->owner;
1493 dma_addr_t base;
1494 uint8_t desc[E1000_MAX_RX_DESC_LEN];
1495 size_t desc_size;
1496 size_t desc_offset = 0;
1497 size_t iov_ofs = 0;
1499 struct iovec *iov = net_rx_pkt_get_iovec(pkt);
1500 size_t size = net_rx_pkt_get_total_len(pkt);
1501 size_t total_size = size + e1000x_fcs_len(core->mac);
1502 const E1000E_RingInfo *rxi;
1503 size_t ps_hdr_len = 0;
1504 bool do_ps = e1000e_do_ps(core, pkt, &ps_hdr_len);
1505 bool is_first = true;
1507 rxi = rxr->i;
1509 do {
1510 hwaddr ba[MAX_PS_BUFFERS];
1511 e1000e_ba_state bastate = { { 0 } };
1512 bool is_last = false;
1514 desc_size = total_size - desc_offset;
1516 if (desc_size > core->rx_desc_buf_size) {
1517 desc_size = core->rx_desc_buf_size;
1520 if (e1000e_ring_empty(core, rxi)) {
1521 return;
1524 base = e1000e_ring_head_descr(core, rxi);
1526 pci_dma_read(d, base, &desc, core->rx_desc_len);
1528 trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len);
1530 e1000e_read_rx_descr(core, desc, &ba);
1532 if (ba[0]) {
1533 if (desc_offset < size) {
1534 static const uint32_t fcs_pad;
1535 size_t iov_copy;
1536 size_t copy_size = size - desc_offset;
1537 if (copy_size > core->rx_desc_buf_size) {
1538 copy_size = core->rx_desc_buf_size;
1541 /* For PS mode copy the packet header first */
1542 if (do_ps) {
1543 if (is_first) {
1544 size_t ps_hdr_copied = 0;
1545 do {
1546 iov_copy = MIN(ps_hdr_len - ps_hdr_copied,
1547 iov->iov_len - iov_ofs);
1549 e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate,
1550 iov->iov_base, iov_copy);
1552 copy_size -= iov_copy;
1553 ps_hdr_copied += iov_copy;
1555 iov_ofs += iov_copy;
1556 if (iov_ofs == iov->iov_len) {
1557 iov++;
1558 iov_ofs = 0;
1560 } while (ps_hdr_copied < ps_hdr_len);
1562 is_first = false;
1563 } else {
1564 /* Leave buffer 0 of each descriptor except first */
1565 /* empty as per spec 7.1.5.1 */
1566 e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate,
1567 NULL, 0);
1571 /* Copy packet payload */
1572 while (copy_size) {
1573 iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
1575 e1000e_write_to_rx_buffers(core, &ba, &bastate,
1576 iov->iov_base + iov_ofs, iov_copy);
1578 copy_size -= iov_copy;
1579 iov_ofs += iov_copy;
1580 if (iov_ofs == iov->iov_len) {
1581 iov++;
1582 iov_ofs = 0;
1586 if (desc_offset + desc_size >= total_size) {
1587 /* Simulate FCS checksum presence in the last descriptor */
1588 e1000e_write_to_rx_buffers(core, &ba, &bastate,
1589 (const char *) &fcs_pad, e1000x_fcs_len(core->mac));
1592 } else { /* as per intel docs; skip descriptors with null buf addr */
1593 trace_e1000e_rx_null_descriptor();
1595 desc_offset += desc_size;
1596 if (desc_offset >= total_size) {
1597 is_last = true;
1600 e1000e_write_rx_descr(core, desc, is_last ? core->rx_pkt : NULL,
1601 rss_info, do_ps ? ps_hdr_len : 0, &bastate.written);
1602 pci_dma_write(d, base, &desc, core->rx_desc_len);
1604 e1000e_ring_advance(core, rxi,
1605 core->rx_desc_len / E1000_MIN_RX_DESC_LEN);
1607 } while (desc_offset < total_size);
1609 e1000e_update_rx_stats(core, size, total_size);
1612 static inline void
1613 e1000e_rx_fix_l4_csum(E1000ECore *core, struct NetRxPkt *pkt)
1615 if (net_rx_pkt_has_virt_hdr(pkt)) {
1616 struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt);
1618 if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1619 net_rx_pkt_fix_l4_csum(pkt);
1624 ssize_t
1625 e1000e_receive_iov(E1000ECore *core, const struct iovec *iov, int iovcnt)
1627 static const int maximum_ethernet_hdr_len = (14 + 4);
1628 /* Min. octets in an ethernet frame sans FCS */
1629 static const int min_buf_size = 60;
1631 uint32_t n = 0;
1632 uint8_t min_buf[min_buf_size];
1633 struct iovec min_iov;
1634 uint8_t *filter_buf;
1635 size_t size, orig_size;
1636 size_t iov_ofs = 0;
1637 E1000E_RxRing rxr;
1638 E1000E_RSSInfo rss_info;
1639 size_t total_size;
1640 ssize_t retval;
1641 bool rdmts_hit;
1643 trace_e1000e_rx_receive_iov(iovcnt);
1645 if (!e1000x_hw_rx_enabled(core->mac)) {
1646 return -1;
1649 /* Pull virtio header in */
1650 if (core->has_vnet) {
1651 net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt);
1652 iov_ofs = sizeof(struct virtio_net_hdr);
1655 filter_buf = iov->iov_base + iov_ofs;
1656 orig_size = iov_size(iov, iovcnt);
1657 size = orig_size - iov_ofs;
1659 /* Pad to minimum Ethernet frame length */
1660 if (size < sizeof(min_buf)) {
1661 iov_to_buf(iov, iovcnt, iov_ofs, min_buf, size);
1662 memset(&min_buf[size], 0, sizeof(min_buf) - size);
1663 e1000x_inc_reg_if_not_full(core->mac, RUC);
1664 min_iov.iov_base = filter_buf = min_buf;
1665 min_iov.iov_len = size = sizeof(min_buf);
1666 iovcnt = 1;
1667 iov = &min_iov;
1668 iov_ofs = 0;
1669 } else if (iov->iov_len < maximum_ethernet_hdr_len) {
1670 /* This is very unlikely, but may happen. */
1671 iov_to_buf(iov, iovcnt, iov_ofs, min_buf, maximum_ethernet_hdr_len);
1672 filter_buf = min_buf;
1675 /* Discard oversized packets if !LPE and !SBP. */
1676 if (e1000x_is_oversized(core->mac, size)) {
1677 return orig_size;
1680 net_rx_pkt_set_packet_type(core->rx_pkt,
1681 get_eth_packet_type(PKT_GET_ETH_HDR(filter_buf)));
1683 if (!e1000e_receive_filter(core, filter_buf, size)) {
1684 trace_e1000e_rx_flt_dropped();
1685 return orig_size;
1688 net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs,
1689 e1000x_vlan_enabled(core->mac), core->vet);
1691 e1000e_rss_parse_packet(core, core->rx_pkt, &rss_info);
1692 e1000e_rx_ring_init(core, &rxr, rss_info.queue);
1694 trace_e1000e_rx_rss_dispatched_to_queue(rxr.i->idx);
1696 total_size = net_rx_pkt_get_total_len(core->rx_pkt) +
1697 e1000x_fcs_len(core->mac);
1699 if (e1000e_has_rxbufs(core, rxr.i, total_size)) {
1700 e1000e_rx_fix_l4_csum(core, core->rx_pkt);
1702 e1000e_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info);
1704 retval = orig_size;
1706 /* Perform small receive detection (RSRPD) */
1707 if (total_size < core->mac[RSRPD]) {
1708 n |= E1000_ICS_SRPD;
1711 /* Perform ACK receive detection */
1712 if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS) &&
1713 (e1000e_is_tcp_ack(core, core->rx_pkt))) {
1714 n |= E1000_ICS_ACK;
1717 /* Check if receive descriptor minimum threshold hit */
1718 rdmts_hit = e1000e_rx_descr_threshold_hit(core, rxr.i);
1719 n |= e1000e_rx_wb_interrupt_cause(core, rxr.i->idx, rdmts_hit);
1721 trace_e1000e_rx_written_to_guest(n);
1722 } else {
1723 n |= E1000_ICS_RXO;
1724 retval = 0;
1726 trace_e1000e_rx_not_written_to_guest(n);
1729 if (!e1000e_intrmgr_delay_rx_causes(core, &n)) {
1730 trace_e1000e_rx_interrupt_set(n);
1731 e1000e_set_interrupt_cause(core, n);
1732 } else {
1733 trace_e1000e_rx_interrupt_delayed(n);
1736 return retval;
1739 static inline bool
1740 e1000e_have_autoneg(E1000ECore *core)
1742 return core->phy[0][PHY_CTRL] & MII_CR_AUTO_NEG_EN;
1745 static void e1000e_update_flowctl_status(E1000ECore *core)
1747 if (e1000e_have_autoneg(core) &&
1748 core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE) {
1749 trace_e1000e_link_autoneg_flowctl(true);
1750 core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE;
1751 } else {
1752 trace_e1000e_link_autoneg_flowctl(false);
1756 static inline void
1757 e1000e_link_down(E1000ECore *core)
1759 e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1760 e1000e_update_flowctl_status(core);
1763 static inline void
1764 e1000e_set_phy_ctrl(E1000ECore *core, int index, uint16_t val)
1766 /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */
1767 core->phy[0][PHY_CTRL] = val & ~(0x3f |
1768 MII_CR_RESET |
1769 MII_CR_RESTART_AUTO_NEG);
1771 if ((val & MII_CR_RESTART_AUTO_NEG) &&
1772 e1000e_have_autoneg(core)) {
1773 e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1777 static void
1778 e1000e_set_phy_oem_bits(E1000ECore *core, int index, uint16_t val)
1780 core->phy[0][PHY_OEM_BITS] = val & ~BIT(10);
1782 if (val & BIT(10)) {
1783 e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1787 static void
1788 e1000e_set_phy_page(E1000ECore *core, int index, uint16_t val)
1790 core->phy[0][PHY_PAGE] = val & PHY_PAGE_RW_MASK;
1793 void
1794 e1000e_core_set_link_status(E1000ECore *core)
1796 NetClientState *nc = qemu_get_queue(core->owner_nic);
1797 uint32_t old_status = core->mac[STATUS];
1799 trace_e1000e_link_status_changed(nc->link_down ? false : true);
1801 if (nc->link_down) {
1802 e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1803 } else {
1804 if (e1000e_have_autoneg(core) &&
1805 !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
1806 e1000x_restart_autoneg(core->mac, core->phy[0],
1807 core->autoneg_timer);
1808 } else {
1809 e1000x_update_regs_on_link_up(core->mac, core->phy[0]);
1810 e1000e_start_recv(core);
1814 if (core->mac[STATUS] != old_status) {
1815 e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
1819 static void
1820 e1000e_set_ctrl(E1000ECore *core, int index, uint32_t val)
1822 trace_e1000e_core_ctrl_write(index, val);
1824 /* RST is self clearing */
1825 core->mac[CTRL] = val & ~E1000_CTRL_RST;
1826 core->mac[CTRL_DUP] = core->mac[CTRL];
1828 trace_e1000e_link_set_params(
1829 !!(val & E1000_CTRL_ASDE),
1830 (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
1831 !!(val & E1000_CTRL_FRCSPD),
1832 !!(val & E1000_CTRL_FRCDPX),
1833 !!(val & E1000_CTRL_RFCE),
1834 !!(val & E1000_CTRL_TFCE));
1836 if (val & E1000_CTRL_RST) {
1837 trace_e1000e_core_ctrl_sw_reset();
1838 e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
1841 if (val & E1000_CTRL_PHY_RST) {
1842 trace_e1000e_core_ctrl_phy_reset();
1843 core->mac[STATUS] |= E1000_STATUS_PHYRA;
1847 static void
1848 e1000e_set_rfctl(E1000ECore *core, int index, uint32_t val)
1850 trace_e1000e_rx_set_rfctl(val);
1852 if (!(val & E1000_RFCTL_ISCSI_DIS)) {
1853 trace_e1000e_wrn_iscsi_filtering_not_supported();
1856 if (!(val & E1000_RFCTL_NFSW_DIS)) {
1857 trace_e1000e_wrn_nfsw_filtering_not_supported();
1860 if (!(val & E1000_RFCTL_NFSR_DIS)) {
1861 trace_e1000e_wrn_nfsr_filtering_not_supported();
1864 core->mac[RFCTL] = val;
1867 static void
1868 e1000e_calc_per_desc_buf_size(E1000ECore *core)
1870 int i;
1871 core->rx_desc_buf_size = 0;
1873 for (i = 0; i < ARRAY_SIZE(core->rxbuf_sizes); i++) {
1874 core->rx_desc_buf_size += core->rxbuf_sizes[i];
1878 static void
1879 e1000e_parse_rxbufsize(E1000ECore *core)
1881 uint32_t rctl = core->mac[RCTL];
1883 memset(core->rxbuf_sizes, 0, sizeof(core->rxbuf_sizes));
1885 if (rctl & E1000_RCTL_DTYP_MASK) {
1886 uint32_t bsize;
1888 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE0_MASK;
1889 core->rxbuf_sizes[0] = (bsize >> E1000_PSRCTL_BSIZE0_SHIFT) * 128;
1891 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE1_MASK;
1892 core->rxbuf_sizes[1] = (bsize >> E1000_PSRCTL_BSIZE1_SHIFT) * 1024;
1894 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE2_MASK;
1895 core->rxbuf_sizes[2] = (bsize >> E1000_PSRCTL_BSIZE2_SHIFT) * 1024;
1897 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE3_MASK;
1898 core->rxbuf_sizes[3] = (bsize >> E1000_PSRCTL_BSIZE3_SHIFT) * 1024;
1899 } else if (rctl & E1000_RCTL_FLXBUF_MASK) {
1900 int flxbuf = rctl & E1000_RCTL_FLXBUF_MASK;
1901 core->rxbuf_sizes[0] = (flxbuf >> E1000_RCTL_FLXBUF_SHIFT) * 1024;
1902 } else {
1903 core->rxbuf_sizes[0] = e1000x_rxbufsize(rctl);
1906 trace_e1000e_rx_desc_buff_sizes(core->rxbuf_sizes[0], core->rxbuf_sizes[1],
1907 core->rxbuf_sizes[2], core->rxbuf_sizes[3]);
1909 e1000e_calc_per_desc_buf_size(core);
1912 static void
1913 e1000e_calc_rxdesclen(E1000ECore *core)
1915 if (e1000e_rx_use_legacy_descriptor(core)) {
1916 core->rx_desc_len = sizeof(struct e1000_rx_desc);
1917 } else {
1918 if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1919 core->rx_desc_len = sizeof(union e1000_rx_desc_packet_split);
1920 } else {
1921 core->rx_desc_len = sizeof(union e1000_rx_desc_extended);
1924 trace_e1000e_rx_desc_len(core->rx_desc_len);
1927 static void
1928 e1000e_set_rx_control(E1000ECore *core, int index, uint32_t val)
1930 core->mac[RCTL] = val;
1931 trace_e1000e_rx_set_rctl(core->mac[RCTL]);
1933 if (val & E1000_RCTL_EN) {
1934 e1000e_parse_rxbufsize(core);
1935 e1000e_calc_rxdesclen(core);
1936 core->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1 +
1937 E1000_RING_DESC_LEN_SHIFT;
1939 e1000e_start_recv(core);
1943 static
1944 void(*e1000e_phyreg_writeops[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE])
1945 (E1000ECore *, int, uint16_t) = {
1946 [0] = {
1947 [PHY_CTRL] = e1000e_set_phy_ctrl,
1948 [PHY_PAGE] = e1000e_set_phy_page,
1949 [PHY_OEM_BITS] = e1000e_set_phy_oem_bits
1953 static inline void
1954 e1000e_clear_ims_bits(E1000ECore *core, uint32_t bits)
1956 trace_e1000e_irq_clear_ims(bits, core->mac[IMS], core->mac[IMS] & ~bits);
1957 core->mac[IMS] &= ~bits;
1960 static inline bool
1961 e1000e_postpone_interrupt(bool *interrupt_pending,
1962 E1000IntrDelayTimer *timer)
1964 if (timer->running) {
1965 trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2);
1967 *interrupt_pending = true;
1968 return true;
1971 if (timer->core->mac[timer->delay_reg] != 0) {
1972 e1000e_intrmgr_rearm_timer(timer);
1975 return false;
1978 static inline bool
1979 e1000e_itr_should_postpone(E1000ECore *core)
1981 return e1000e_postpone_interrupt(&core->itr_intr_pending, &core->itr);
1984 static inline bool
1985 e1000e_eitr_should_postpone(E1000ECore *core, int idx)
1987 return e1000e_postpone_interrupt(&core->eitr_intr_pending[idx],
1988 &core->eitr[idx]);
1991 static void
1992 e1000e_msix_notify_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
1994 uint32_t effective_eiac;
1996 if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
1997 uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
1998 if (vec < E1000E_MSIX_VEC_NUM) {
1999 if (!e1000e_eitr_should_postpone(core, vec)) {
2000 trace_e1000e_irq_msix_notify_vec(vec);
2001 msix_notify(core->owner, vec);
2003 } else {
2004 trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2006 } else {
2007 trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2010 if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_EIAME) {
2011 trace_e1000e_irq_iam_clear_eiame(core->mac[IAM], cause);
2012 core->mac[IAM] &= ~cause;
2015 trace_e1000e_irq_icr_clear_eiac(core->mac[ICR], core->mac[EIAC]);
2017 effective_eiac = core->mac[EIAC] & cause;
2019 core->mac[ICR] &= ~effective_eiac;
2020 core->msi_causes_pending &= ~effective_eiac;
2022 if (!(core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2023 core->mac[IMS] &= ~effective_eiac;
2027 static void
2028 e1000e_msix_notify(E1000ECore *core, uint32_t causes)
2030 if (causes & E1000_ICR_RXQ0) {
2031 e1000e_msix_notify_one(core, E1000_ICR_RXQ0,
2032 E1000_IVAR_RXQ0(core->mac[IVAR]));
2035 if (causes & E1000_ICR_RXQ1) {
2036 e1000e_msix_notify_one(core, E1000_ICR_RXQ1,
2037 E1000_IVAR_RXQ1(core->mac[IVAR]));
2040 if (causes & E1000_ICR_TXQ0) {
2041 e1000e_msix_notify_one(core, E1000_ICR_TXQ0,
2042 E1000_IVAR_TXQ0(core->mac[IVAR]));
2045 if (causes & E1000_ICR_TXQ1) {
2046 e1000e_msix_notify_one(core, E1000_ICR_TXQ1,
2047 E1000_IVAR_TXQ1(core->mac[IVAR]));
2050 if (causes & E1000_ICR_OTHER) {
2051 e1000e_msix_notify_one(core, E1000_ICR_OTHER,
2052 E1000_IVAR_OTHER(core->mac[IVAR]));
2056 static void
2057 e1000e_msix_clear_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
2059 if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
2060 uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
2061 if (vec < E1000E_MSIX_VEC_NUM) {
2062 trace_e1000e_irq_msix_pending_clearing(cause, int_cfg, vec);
2063 msix_clr_pending(core->owner, vec);
2064 } else {
2065 trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2067 } else {
2068 trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2072 static void
2073 e1000e_msix_clear(E1000ECore *core, uint32_t causes)
2075 if (causes & E1000_ICR_RXQ0) {
2076 e1000e_msix_clear_one(core, E1000_ICR_RXQ0,
2077 E1000_IVAR_RXQ0(core->mac[IVAR]));
2080 if (causes & E1000_ICR_RXQ1) {
2081 e1000e_msix_clear_one(core, E1000_ICR_RXQ1,
2082 E1000_IVAR_RXQ1(core->mac[IVAR]));
2085 if (causes & E1000_ICR_TXQ0) {
2086 e1000e_msix_clear_one(core, E1000_ICR_TXQ0,
2087 E1000_IVAR_TXQ0(core->mac[IVAR]));
2090 if (causes & E1000_ICR_TXQ1) {
2091 e1000e_msix_clear_one(core, E1000_ICR_TXQ1,
2092 E1000_IVAR_TXQ1(core->mac[IVAR]));
2095 if (causes & E1000_ICR_OTHER) {
2096 e1000e_msix_clear_one(core, E1000_ICR_OTHER,
2097 E1000_IVAR_OTHER(core->mac[IVAR]));
2101 static inline void
2102 e1000e_fix_icr_asserted(E1000ECore *core)
2104 core->mac[ICR] &= ~E1000_ICR_ASSERTED;
2105 if (core->mac[ICR]) {
2106 core->mac[ICR] |= E1000_ICR_ASSERTED;
2109 trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]);
2112 static void
2113 e1000e_send_msi(E1000ECore *core, bool msix)
2115 uint32_t causes = core->mac[ICR] & core->mac[IMS] & ~E1000_ICR_ASSERTED;
2117 core->msi_causes_pending &= causes;
2118 causes ^= core->msi_causes_pending;
2119 if (causes == 0) {
2120 return;
2122 core->msi_causes_pending |= causes;
2124 if (msix) {
2125 e1000e_msix_notify(core, causes);
2126 } else {
2127 if (!e1000e_itr_should_postpone(core)) {
2128 trace_e1000e_irq_msi_notify(causes);
2129 msi_notify(core->owner, 0);
2134 static void
2135 e1000e_update_interrupt_state(E1000ECore *core)
2137 bool interrupts_pending;
2138 bool is_msix = msix_enabled(core->owner);
2140 /* Set ICR[OTHER] for MSI-X */
2141 if (is_msix) {
2142 if (core->mac[ICR] & E1000_ICR_OTHER_CAUSES) {
2143 core->mac[ICR] |= E1000_ICR_OTHER;
2144 trace_e1000e_irq_add_msi_other(core->mac[ICR]);
2148 e1000e_fix_icr_asserted(core);
2151 * Make sure ICR and ICS registers have the same value.
2152 * The spec says that the ICS register is write-only. However in practice,
2153 * on real hardware ICS is readable, and for reads it has the same value as
2154 * ICR (except that ICS does not have the clear on read behaviour of ICR).
2156 * The VxWorks PRO/1000 driver uses this behaviour.
2158 core->mac[ICS] = core->mac[ICR];
2160 interrupts_pending = (core->mac[IMS] & core->mac[ICR]) ? true : false;
2161 if (!interrupts_pending) {
2162 core->msi_causes_pending = 0;
2165 trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
2166 core->mac[ICR], core->mac[IMS]);
2168 if (is_msix || msi_enabled(core->owner)) {
2169 if (interrupts_pending) {
2170 e1000e_send_msi(core, is_msix);
2172 } else {
2173 if (interrupts_pending) {
2174 if (!e1000e_itr_should_postpone(core)) {
2175 e1000e_raise_legacy_irq(core);
2177 } else {
2178 e1000e_lower_legacy_irq(core);
2183 static void
2184 e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val)
2186 trace_e1000e_irq_set_cause_entry(val, core->mac[ICR]);
2188 val |= e1000e_intmgr_collect_delayed_causes(core);
2189 core->mac[ICR] |= val;
2191 trace_e1000e_irq_set_cause_exit(val, core->mac[ICR]);
2193 e1000e_update_interrupt_state(core);
2196 static inline void
2197 e1000e_autoneg_timer(void *opaque)
2199 E1000ECore *core = opaque;
2200 if (!qemu_get_queue(core->owner_nic)->link_down) {
2201 e1000x_update_regs_on_autoneg_done(core->mac, core->phy[0]);
2202 e1000e_start_recv(core);
2204 e1000e_update_flowctl_status(core);
2205 /* signal link status change to the guest */
2206 e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
2210 static inline uint16_t
2211 e1000e_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr)
2213 uint16_t index = (addr & 0x1ffff) >> 2;
2214 return index + (mac_reg_access[index] & 0xfffe);
2217 static const char e1000e_phy_regcap[E1000E_PHY_PAGES][0x20] = {
2218 [0] = {
2219 [PHY_CTRL] = PHY_ANYPAGE | PHY_RW,
2220 [PHY_STATUS] = PHY_ANYPAGE | PHY_R,
2221 [PHY_ID1] = PHY_ANYPAGE | PHY_R,
2222 [PHY_ID2] = PHY_ANYPAGE | PHY_R,
2223 [PHY_AUTONEG_ADV] = PHY_ANYPAGE | PHY_RW,
2224 [PHY_LP_ABILITY] = PHY_ANYPAGE | PHY_R,
2225 [PHY_AUTONEG_EXP] = PHY_ANYPAGE | PHY_R,
2226 [PHY_NEXT_PAGE_TX] = PHY_ANYPAGE | PHY_RW,
2227 [PHY_LP_NEXT_PAGE] = PHY_ANYPAGE | PHY_R,
2228 [PHY_1000T_CTRL] = PHY_ANYPAGE | PHY_RW,
2229 [PHY_1000T_STATUS] = PHY_ANYPAGE | PHY_R,
2230 [PHY_EXT_STATUS] = PHY_ANYPAGE | PHY_R,
2231 [PHY_PAGE] = PHY_ANYPAGE | PHY_RW,
2233 [PHY_COPPER_CTRL1] = PHY_RW,
2234 [PHY_COPPER_STAT1] = PHY_R,
2235 [PHY_COPPER_CTRL3] = PHY_RW,
2236 [PHY_RX_ERR_CNTR] = PHY_R,
2237 [PHY_OEM_BITS] = PHY_RW,
2238 [PHY_BIAS_1] = PHY_RW,
2239 [PHY_BIAS_2] = PHY_RW,
2240 [PHY_COPPER_INT_ENABLE] = PHY_RW,
2241 [PHY_COPPER_STAT2] = PHY_R,
2242 [PHY_COPPER_CTRL2] = PHY_RW
2244 [2] = {
2245 [PHY_MAC_CTRL1] = PHY_RW,
2246 [PHY_MAC_INT_ENABLE] = PHY_RW,
2247 [PHY_MAC_STAT] = PHY_R,
2248 [PHY_MAC_CTRL2] = PHY_RW
2250 [3] = {
2251 [PHY_LED_03_FUNC_CTRL1] = PHY_RW,
2252 [PHY_LED_03_POL_CTRL] = PHY_RW,
2253 [PHY_LED_TIMER_CTRL] = PHY_RW,
2254 [PHY_LED_45_CTRL] = PHY_RW
2256 [5] = {
2257 [PHY_1000T_SKEW] = PHY_R,
2258 [PHY_1000T_SWAP] = PHY_R
2260 [6] = {
2261 [PHY_CRC_COUNTERS] = PHY_R
2265 static bool
2266 e1000e_phy_reg_check_cap(E1000ECore *core, uint32_t addr,
2267 char cap, uint8_t *page)
2269 *page =
2270 (e1000e_phy_regcap[0][addr] & PHY_ANYPAGE) ? 0
2271 : core->phy[0][PHY_PAGE];
2273 if (*page >= E1000E_PHY_PAGES) {
2274 return false;
2277 return e1000e_phy_regcap[*page][addr] & cap;
2280 static void
2281 e1000e_phy_reg_write(E1000ECore *core, uint8_t page,
2282 uint32_t addr, uint16_t data)
2284 assert(page < E1000E_PHY_PAGES);
2285 assert(addr < E1000E_PHY_PAGE_SIZE);
2287 if (e1000e_phyreg_writeops[page][addr]) {
2288 e1000e_phyreg_writeops[page][addr](core, addr, data);
2289 } else {
2290 core->phy[page][addr] = data;
2294 static void
2295 e1000e_set_mdic(E1000ECore *core, int index, uint32_t val)
2297 uint32_t data = val & E1000_MDIC_DATA_MASK;
2298 uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
2299 uint8_t page;
2301 if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */
2302 val = core->mac[MDIC] | E1000_MDIC_ERROR;
2303 } else if (val & E1000_MDIC_OP_READ) {
2304 if (!e1000e_phy_reg_check_cap(core, addr, PHY_R, &page)) {
2305 trace_e1000e_core_mdic_read_unhandled(page, addr);
2306 val |= E1000_MDIC_ERROR;
2307 } else {
2308 val = (val ^ data) | core->phy[page][addr];
2309 trace_e1000e_core_mdic_read(page, addr, val);
2311 } else if (val & E1000_MDIC_OP_WRITE) {
2312 if (!e1000e_phy_reg_check_cap(core, addr, PHY_W, &page)) {
2313 trace_e1000e_core_mdic_write_unhandled(page, addr);
2314 val |= E1000_MDIC_ERROR;
2315 } else {
2316 trace_e1000e_core_mdic_write(page, addr, data);
2317 e1000e_phy_reg_write(core, page, addr, data);
2320 core->mac[MDIC] = val | E1000_MDIC_READY;
2322 if (val & E1000_MDIC_INT_EN) {
2323 e1000e_set_interrupt_cause(core, E1000_ICR_MDAC);
2327 static void
2328 e1000e_set_rdt(E1000ECore *core, int index, uint32_t val)
2330 core->mac[index] = val & 0xffff;
2331 trace_e1000e_rx_set_rdt(e1000e_mq_queue_idx(RDT0, index), val);
2332 e1000e_start_recv(core);
2335 static void
2336 e1000e_set_status(E1000ECore *core, int index, uint32_t val)
2338 if ((val & E1000_STATUS_PHYRA) == 0) {
2339 core->mac[index] &= ~E1000_STATUS_PHYRA;
2343 static void
2344 e1000e_set_ctrlext(E1000ECore *core, int index, uint32_t val)
2346 trace_e1000e_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK),
2347 !!(val & E1000_CTRL_EXT_SPD_BYPS));
2349 /* Zero self-clearing bits */
2350 val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST);
2351 core->mac[CTRL_EXT] = val;
2354 static void
2355 e1000e_set_pbaclr(E1000ECore *core, int index, uint32_t val)
2357 int i;
2359 core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK;
2361 if (!msix_enabled(core->owner)) {
2362 return;
2365 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
2366 if (core->mac[PBACLR] & BIT(i)) {
2367 msix_clr_pending(core->owner, i);
2372 static void
2373 e1000e_set_fcrth(E1000ECore *core, int index, uint32_t val)
2375 core->mac[FCRTH] = val & 0xFFF8;
2378 static void
2379 e1000e_set_fcrtl(E1000ECore *core, int index, uint32_t val)
2381 core->mac[FCRTL] = val & 0x8000FFF8;
2384 static inline void
2385 e1000e_set_16bit(E1000ECore *core, int index, uint32_t val)
2387 core->mac[index] = val & 0xffff;
2390 static void
2391 e1000e_set_12bit(E1000ECore *core, int index, uint32_t val)
2393 core->mac[index] = val & 0xfff;
2396 static void
2397 e1000e_set_vet(E1000ECore *core, int index, uint32_t val)
2399 core->mac[VET] = val & 0xffff;
2400 core->vet = le16_to_cpu(core->mac[VET]);
2401 trace_e1000e_vlan_vet(core->vet);
2404 static void
2405 e1000e_set_dlen(E1000ECore *core, int index, uint32_t val)
2407 core->mac[index] = val & E1000_XDLEN_MASK;
2410 static void
2411 e1000e_set_dbal(E1000ECore *core, int index, uint32_t val)
2413 core->mac[index] = val & E1000_XDBAL_MASK;
2416 static void
2417 e1000e_set_tctl(E1000ECore *core, int index, uint32_t val)
2419 E1000E_TxRing txr;
2420 core->mac[index] = val;
2422 if (core->mac[TARC0] & E1000_TARC_ENABLE) {
2423 e1000e_tx_ring_init(core, &txr, 0);
2424 e1000e_start_xmit(core, &txr);
2427 if (core->mac[TARC1] & E1000_TARC_ENABLE) {
2428 e1000e_tx_ring_init(core, &txr, 1);
2429 e1000e_start_xmit(core, &txr);
2433 static void
2434 e1000e_set_tdt(E1000ECore *core, int index, uint32_t val)
2436 E1000E_TxRing txr;
2437 int qidx = e1000e_mq_queue_idx(TDT, index);
2438 uint32_t tarc_reg = (qidx == 0) ? TARC0 : TARC1;
2440 core->mac[index] = val & 0xffff;
2442 if (core->mac[tarc_reg] & E1000_TARC_ENABLE) {
2443 e1000e_tx_ring_init(core, &txr, qidx);
2444 e1000e_start_xmit(core, &txr);
2448 static void
2449 e1000e_set_ics(E1000ECore *core, int index, uint32_t val)
2451 trace_e1000e_irq_write_ics(val);
2452 e1000e_set_interrupt_cause(core, val);
2455 static void
2456 e1000e_set_icr(E1000ECore *core, int index, uint32_t val)
2458 uint32_t icr = 0;
2459 if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2460 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2461 trace_e1000e_irq_icr_process_iame();
2462 e1000e_clear_ims_bits(core, core->mac[IAM]);
2465 icr = core->mac[ICR] & ~val;
2466 /* Windows driver expects that the "receive overrun" bit and other
2467 * ones to be cleared when the "Other" bit (#24) is cleared.
2469 icr = (val & E1000_ICR_OTHER) ? (icr & ~E1000_ICR_OTHER_CAUSES) : icr;
2470 trace_e1000e_irq_icr_write(val, core->mac[ICR], icr);
2471 core->mac[ICR] = icr;
2472 e1000e_update_interrupt_state(core);
2475 static void
2476 e1000e_set_imc(E1000ECore *core, int index, uint32_t val)
2478 trace_e1000e_irq_ims_clear_set_imc(val);
2479 e1000e_clear_ims_bits(core, val);
2480 e1000e_update_interrupt_state(core);
2483 static void
2484 e1000e_set_ims(E1000ECore *core, int index, uint32_t val)
2486 static const uint32_t ims_ext_mask =
2487 E1000_IMS_RXQ0 | E1000_IMS_RXQ1 |
2488 E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
2489 E1000_IMS_OTHER;
2491 static const uint32_t ims_valid_mask =
2492 E1000_IMS_TXDW | E1000_IMS_TXQE | E1000_IMS_LSC |
2493 E1000_IMS_RXDMT0 | E1000_IMS_RXO | E1000_IMS_RXT0 |
2494 E1000_IMS_MDAC | E1000_IMS_TXD_LOW | E1000_IMS_SRPD |
2495 E1000_IMS_ACK | E1000_IMS_MNG | E1000_IMS_RXQ0 |
2496 E1000_IMS_RXQ1 | E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
2497 E1000_IMS_OTHER;
2499 uint32_t valid_val = val & ims_valid_mask;
2501 trace_e1000e_irq_set_ims(val, core->mac[IMS], core->mac[IMS] | valid_val);
2502 core->mac[IMS] |= valid_val;
2504 if ((valid_val & ims_ext_mask) &&
2505 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PBA_CLR) &&
2506 msix_enabled(core->owner)) {
2507 e1000e_msix_clear(core, valid_val);
2510 if ((valid_val == ims_valid_mask) &&
2511 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_INT_TIMERS_CLEAR_ENA)) {
2512 trace_e1000e_irq_fire_all_timers(val);
2513 e1000e_intrmgr_fire_all_timers(core);
2516 e1000e_update_interrupt_state(core);
2519 static void
2520 e1000e_set_rdtr(E1000ECore *core, int index, uint32_t val)
2522 e1000e_set_16bit(core, index, val);
2524 if ((val & E1000_RDTR_FPD) && (core->rdtr.running)) {
2525 trace_e1000e_irq_rdtr_fpd_running();
2526 e1000e_intrmgr_fire_delayed_interrupts(core);
2527 } else {
2528 trace_e1000e_irq_rdtr_fpd_not_running();
2532 static void
2533 e1000e_set_tidv(E1000ECore *core, int index, uint32_t val)
2535 e1000e_set_16bit(core, index, val);
2537 if ((val & E1000_TIDV_FPD) && (core->tidv.running)) {
2538 trace_e1000e_irq_tidv_fpd_running();
2539 e1000e_intrmgr_fire_delayed_interrupts(core);
2540 } else {
2541 trace_e1000e_irq_tidv_fpd_not_running();
2545 static uint32_t
2546 e1000e_mac_readreg(E1000ECore *core, int index)
2548 return core->mac[index];
2551 static uint32_t
2552 e1000e_mac_ics_read(E1000ECore *core, int index)
2554 trace_e1000e_irq_read_ics(core->mac[ICS]);
2555 return core->mac[ICS];
2558 static uint32_t
2559 e1000e_mac_ims_read(E1000ECore *core, int index)
2561 trace_e1000e_irq_read_ims(core->mac[IMS]);
2562 return core->mac[IMS];
2565 #define E1000E_LOW_BITS_READ_FUNC(num) \
2566 static uint32_t \
2567 e1000e_mac_low##num##_read(E1000ECore *core, int index) \
2569 return core->mac[index] & (BIT(num) - 1); \
2572 #define E1000E_LOW_BITS_READ(num) \
2573 e1000e_mac_low##num##_read
2575 E1000E_LOW_BITS_READ_FUNC(4);
2576 E1000E_LOW_BITS_READ_FUNC(6);
2577 E1000E_LOW_BITS_READ_FUNC(11);
2578 E1000E_LOW_BITS_READ_FUNC(13);
2579 E1000E_LOW_BITS_READ_FUNC(16);
2581 static uint32_t
2582 e1000e_mac_swsm_read(E1000ECore *core, int index)
2584 uint32_t val = core->mac[SWSM];
2585 core->mac[SWSM] = val | 1;
2586 return val;
2589 static uint32_t
2590 e1000e_mac_itr_read(E1000ECore *core, int index)
2592 return core->itr_guest_value;
2595 static uint32_t
2596 e1000e_mac_eitr_read(E1000ECore *core, int index)
2598 return core->eitr_guest_value[index - EITR];
2601 static uint32_t
2602 e1000e_mac_icr_read(E1000ECore *core, int index)
2604 uint32_t ret = core->mac[ICR];
2605 trace_e1000e_irq_icr_read_entry(ret);
2607 if (core->mac[IMS] == 0) {
2608 trace_e1000e_irq_icr_clear_zero_ims();
2609 core->mac[ICR] = 0;
2612 if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2613 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2614 trace_e1000e_irq_icr_clear_iame();
2615 core->mac[ICR] = 0;
2616 trace_e1000e_irq_icr_process_iame();
2617 e1000e_clear_ims_bits(core, core->mac[IAM]);
2620 trace_e1000e_irq_icr_read_exit(core->mac[ICR]);
2621 e1000e_update_interrupt_state(core);
2622 return ret;
2625 static uint32_t
2626 e1000e_mac_read_clr4(E1000ECore *core, int index)
2628 uint32_t ret = core->mac[index];
2630 core->mac[index] = 0;
2631 return ret;
2634 static uint32_t
2635 e1000e_mac_read_clr8(E1000ECore *core, int index)
2637 uint32_t ret = core->mac[index];
2639 core->mac[index] = 0;
2640 core->mac[index - 1] = 0;
2641 return ret;
2644 static uint32_t
2645 e1000e_get_ctrl(E1000ECore *core, int index)
2647 uint32_t val = core->mac[CTRL];
2649 trace_e1000e_link_read_params(
2650 !!(val & E1000_CTRL_ASDE),
2651 (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
2652 !!(val & E1000_CTRL_FRCSPD),
2653 !!(val & E1000_CTRL_FRCDPX),
2654 !!(val & E1000_CTRL_RFCE),
2655 !!(val & E1000_CTRL_TFCE));
2657 return val;
2660 static uint32_t
2661 e1000e_get_status(E1000ECore *core, int index)
2663 uint32_t res = core->mac[STATUS];
2665 if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE)) {
2666 res |= E1000_STATUS_GIO_MASTER_ENABLE;
2669 if (core->mac[CTRL] & E1000_CTRL_FRCDPX) {
2670 res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0;
2671 } else {
2672 res |= E1000_STATUS_FD;
2675 if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) ||
2676 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) {
2677 switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) {
2678 case E1000_CTRL_SPD_10:
2679 res |= E1000_STATUS_SPEED_10;
2680 break;
2681 case E1000_CTRL_SPD_100:
2682 res |= E1000_STATUS_SPEED_100;
2683 break;
2684 case E1000_CTRL_SPD_1000:
2685 default:
2686 res |= E1000_STATUS_SPEED_1000;
2687 break;
2689 } else {
2690 res |= E1000_STATUS_SPEED_1000;
2693 trace_e1000e_link_status(
2694 !!(res & E1000_STATUS_LU),
2695 !!(res & E1000_STATUS_FD),
2696 (res & E1000_STATUS_SPEED_MASK) >> E1000_STATUS_SPEED_SHIFT,
2697 (res & E1000_STATUS_ASDV) >> E1000_STATUS_ASDV_SHIFT);
2699 return res;
2702 static uint32_t
2703 e1000e_get_tarc(E1000ECore *core, int index)
2705 return core->mac[index] & ((BIT(11) - 1) |
2706 BIT(27) |
2707 BIT(28) |
2708 BIT(29) |
2709 BIT(30));
2712 static void
2713 e1000e_mac_writereg(E1000ECore *core, int index, uint32_t val)
2715 core->mac[index] = val;
2718 static void
2719 e1000e_mac_setmacaddr(E1000ECore *core, int index, uint32_t val)
2721 uint32_t macaddr[2];
2723 core->mac[index] = val;
2725 macaddr[0] = cpu_to_le32(core->mac[RA]);
2726 macaddr[1] = cpu_to_le32(core->mac[RA + 1]);
2727 qemu_format_nic_info_str(qemu_get_queue(core->owner_nic),
2728 (uint8_t *) macaddr);
2730 trace_e1000e_mac_set_sw(MAC_ARG(macaddr));
2733 static void
2734 e1000e_set_eecd(E1000ECore *core, int index, uint32_t val)
2736 static const uint32_t ro_bits = E1000_EECD_PRES |
2737 E1000_EECD_AUTO_RD |
2738 E1000_EECD_SIZE_EX_MASK;
2740 core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits);
2743 static void
2744 e1000e_set_eerd(E1000ECore *core, int index, uint32_t val)
2746 uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2747 uint32_t flags = 0;
2748 uint32_t data = 0;
2750 if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2751 data = core->eeprom[addr];
2752 flags = E1000_EERW_DONE;
2755 core->mac[EERD] = flags |
2756 (addr << E1000_EERW_ADDR_SHIFT) |
2757 (data << E1000_EERW_DATA_SHIFT);
2760 static void
2761 e1000e_set_eewr(E1000ECore *core, int index, uint32_t val)
2763 uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2764 uint32_t data = (val >> E1000_EERW_DATA_SHIFT) & E1000_EERW_DATA_MASK;
2765 uint32_t flags = 0;
2767 if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2768 core->eeprom[addr] = data;
2769 flags = E1000_EERW_DONE;
2772 core->mac[EERD] = flags |
2773 (addr << E1000_EERW_ADDR_SHIFT) |
2774 (data << E1000_EERW_DATA_SHIFT);
2777 static void
2778 e1000e_set_rxdctl(E1000ECore *core, int index, uint32_t val)
2780 core->mac[RXDCTL] = core->mac[RXDCTL1] = val;
2783 static void
2784 e1000e_set_itr(E1000ECore *core, int index, uint32_t val)
2786 uint32_t interval = val & 0xffff;
2788 trace_e1000e_irq_itr_set(val);
2790 core->itr_guest_value = interval;
2791 core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2794 static void
2795 e1000e_set_eitr(E1000ECore *core, int index, uint32_t val)
2797 uint32_t interval = val & 0xffff;
2798 uint32_t eitr_num = index - EITR;
2800 trace_e1000e_irq_eitr_set(eitr_num, val);
2802 core->eitr_guest_value[eitr_num] = interval;
2803 core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2806 static void
2807 e1000e_set_psrctl(E1000ECore *core, int index, uint32_t val)
2809 if (core->mac[RCTL] & E1000_RCTL_DTYP_MASK) {
2811 if ((val & E1000_PSRCTL_BSIZE0_MASK) == 0) {
2812 qemu_log_mask(LOG_GUEST_ERROR,
2813 "e1000e: PSRCTL.BSIZE0 cannot be zero");
2814 return;
2817 if ((val & E1000_PSRCTL_BSIZE1_MASK) == 0) {
2818 qemu_log_mask(LOG_GUEST_ERROR,
2819 "e1000e: PSRCTL.BSIZE1 cannot be zero");
2820 return;
2824 core->mac[PSRCTL] = val;
2827 static void
2828 e1000e_update_rx_offloads(E1000ECore *core)
2830 int cso_state = e1000e_rx_l4_cso_enabled(core);
2832 trace_e1000e_rx_set_cso(cso_state);
2834 if (core->has_vnet) {
2835 qemu_set_offload(qemu_get_queue(core->owner_nic)->peer,
2836 cso_state, 0, 0, 0, 0);
2840 static void
2841 e1000e_set_rxcsum(E1000ECore *core, int index, uint32_t val)
2843 core->mac[RXCSUM] = val;
2844 e1000e_update_rx_offloads(core);
2847 static void
2848 e1000e_set_gcr(E1000ECore *core, int index, uint32_t val)
2850 uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS;
2851 core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits;
2854 #define e1000e_getreg(x) [x] = e1000e_mac_readreg
2855 typedef uint32_t (*readops)(E1000ECore *, int);
2856 static const readops e1000e_macreg_readops[] = {
2857 e1000e_getreg(PBA),
2858 e1000e_getreg(WUFC),
2859 e1000e_getreg(MANC),
2860 e1000e_getreg(TOTL),
2861 e1000e_getreg(RDT0),
2862 e1000e_getreg(RDBAH0),
2863 e1000e_getreg(TDBAL1),
2864 e1000e_getreg(RDLEN0),
2865 e1000e_getreg(RDH1),
2866 e1000e_getreg(LATECOL),
2867 e1000e_getreg(SEQEC),
2868 e1000e_getreg(XONTXC),
2869 e1000e_getreg(WUS),
2870 e1000e_getreg(GORCL),
2871 e1000e_getreg(MGTPRC),
2872 e1000e_getreg(EERD),
2873 e1000e_getreg(EIAC),
2874 e1000e_getreg(PSRCTL),
2875 e1000e_getreg(MANC2H),
2876 e1000e_getreg(RXCSUM),
2877 e1000e_getreg(GSCL_3),
2878 e1000e_getreg(GSCN_2),
2879 e1000e_getreg(RSRPD),
2880 e1000e_getreg(RDBAL1),
2881 e1000e_getreg(FCAH),
2882 e1000e_getreg(FCRTH),
2883 e1000e_getreg(FLOP),
2884 e1000e_getreg(FLASHT),
2885 e1000e_getreg(RXSTMPH),
2886 e1000e_getreg(TXSTMPL),
2887 e1000e_getreg(TIMADJL),
2888 e1000e_getreg(TXDCTL),
2889 e1000e_getreg(RDH0),
2890 e1000e_getreg(TDT1),
2891 e1000e_getreg(TNCRS),
2892 e1000e_getreg(RJC),
2893 e1000e_getreg(IAM),
2894 e1000e_getreg(GSCL_2),
2895 e1000e_getreg(RDBAH1),
2896 e1000e_getreg(FLSWDATA),
2897 e1000e_getreg(RXSATRH),
2898 e1000e_getreg(TIPG),
2899 e1000e_getreg(FLMNGCTL),
2900 e1000e_getreg(FLMNGCNT),
2901 e1000e_getreg(TSYNCTXCTL),
2902 e1000e_getreg(EXTCNF_SIZE),
2903 e1000e_getreg(EXTCNF_CTRL),
2904 e1000e_getreg(EEMNGDATA),
2905 e1000e_getreg(CTRL_EXT),
2906 e1000e_getreg(SYSTIMH),
2907 e1000e_getreg(EEMNGCTL),
2908 e1000e_getreg(FLMNGDATA),
2909 e1000e_getreg(TSYNCRXCTL),
2910 e1000e_getreg(TDH),
2911 e1000e_getreg(LEDCTL),
2912 e1000e_getreg(TCTL),
2913 e1000e_getreg(TDBAL),
2914 e1000e_getreg(TDLEN),
2915 e1000e_getreg(TDH1),
2916 e1000e_getreg(RADV),
2917 e1000e_getreg(ECOL),
2918 e1000e_getreg(DC),
2919 e1000e_getreg(RLEC),
2920 e1000e_getreg(XOFFTXC),
2921 e1000e_getreg(RFC),
2922 e1000e_getreg(RNBC),
2923 e1000e_getreg(MGTPTC),
2924 e1000e_getreg(TIMINCA),
2925 e1000e_getreg(RXCFGL),
2926 e1000e_getreg(MFUTP01),
2927 e1000e_getreg(FACTPS),
2928 e1000e_getreg(GSCL_1),
2929 e1000e_getreg(GSCN_0),
2930 e1000e_getreg(GCR2),
2931 e1000e_getreg(RDT1),
2932 e1000e_getreg(PBACLR),
2933 e1000e_getreg(FCTTV),
2934 e1000e_getreg(EEWR),
2935 e1000e_getreg(FLSWCTL),
2936 e1000e_getreg(RXDCTL1),
2937 e1000e_getreg(RXSATRL),
2938 e1000e_getreg(SYSTIML),
2939 e1000e_getreg(RXUDP),
2940 e1000e_getreg(TORL),
2941 e1000e_getreg(TDLEN1),
2942 e1000e_getreg(MCC),
2943 e1000e_getreg(WUC),
2944 e1000e_getreg(EECD),
2945 e1000e_getreg(MFUTP23),
2946 e1000e_getreg(RAID),
2947 e1000e_getreg(FCRTV),
2948 e1000e_getreg(TXDCTL1),
2949 e1000e_getreg(RCTL),
2950 e1000e_getreg(TDT),
2951 e1000e_getreg(MDIC),
2952 e1000e_getreg(FCRUC),
2953 e1000e_getreg(VET),
2954 e1000e_getreg(RDBAL0),
2955 e1000e_getreg(TDBAH1),
2956 e1000e_getreg(RDTR),
2957 e1000e_getreg(SCC),
2958 e1000e_getreg(COLC),
2959 e1000e_getreg(CEXTERR),
2960 e1000e_getreg(XOFFRXC),
2961 e1000e_getreg(IPAV),
2962 e1000e_getreg(GOTCL),
2963 e1000e_getreg(MGTPDC),
2964 e1000e_getreg(GCR),
2965 e1000e_getreg(IVAR),
2966 e1000e_getreg(POEMB),
2967 e1000e_getreg(MFVAL),
2968 e1000e_getreg(FUNCTAG),
2969 e1000e_getreg(GSCL_4),
2970 e1000e_getreg(GSCN_3),
2971 e1000e_getreg(MRQC),
2972 e1000e_getreg(RDLEN1),
2973 e1000e_getreg(FCT),
2974 e1000e_getreg(FLA),
2975 e1000e_getreg(FLOL),
2976 e1000e_getreg(RXDCTL),
2977 e1000e_getreg(RXSTMPL),
2978 e1000e_getreg(TXSTMPH),
2979 e1000e_getreg(TIMADJH),
2980 e1000e_getreg(FCRTL),
2981 e1000e_getreg(TDBAH),
2982 e1000e_getreg(TADV),
2983 e1000e_getreg(XONRXC),
2984 e1000e_getreg(TSCTFC),
2985 e1000e_getreg(RFCTL),
2986 e1000e_getreg(GSCN_1),
2987 e1000e_getreg(FCAL),
2988 e1000e_getreg(FLSWCNT),
2990 [TOTH] = e1000e_mac_read_clr8,
2991 [GOTCH] = e1000e_mac_read_clr8,
2992 [PRC64] = e1000e_mac_read_clr4,
2993 [PRC255] = e1000e_mac_read_clr4,
2994 [PRC1023] = e1000e_mac_read_clr4,
2995 [PTC64] = e1000e_mac_read_clr4,
2996 [PTC255] = e1000e_mac_read_clr4,
2997 [PTC1023] = e1000e_mac_read_clr4,
2998 [GPRC] = e1000e_mac_read_clr4,
2999 [TPT] = e1000e_mac_read_clr4,
3000 [RUC] = e1000e_mac_read_clr4,
3001 [BPRC] = e1000e_mac_read_clr4,
3002 [MPTC] = e1000e_mac_read_clr4,
3003 [IAC] = e1000e_mac_read_clr4,
3004 [ICR] = e1000e_mac_icr_read,
3005 [RDFH] = E1000E_LOW_BITS_READ(13),
3006 [RDFHS] = E1000E_LOW_BITS_READ(13),
3007 [RDFPC] = E1000E_LOW_BITS_READ(13),
3008 [TDFH] = E1000E_LOW_BITS_READ(13),
3009 [TDFHS] = E1000E_LOW_BITS_READ(13),
3010 [STATUS] = e1000e_get_status,
3011 [TARC0] = e1000e_get_tarc,
3012 [PBS] = E1000E_LOW_BITS_READ(6),
3013 [ICS] = e1000e_mac_ics_read,
3014 [AIT] = E1000E_LOW_BITS_READ(16),
3015 [TORH] = e1000e_mac_read_clr8,
3016 [GORCH] = e1000e_mac_read_clr8,
3017 [PRC127] = e1000e_mac_read_clr4,
3018 [PRC511] = e1000e_mac_read_clr4,
3019 [PRC1522] = e1000e_mac_read_clr4,
3020 [PTC127] = e1000e_mac_read_clr4,
3021 [PTC511] = e1000e_mac_read_clr4,
3022 [PTC1522] = e1000e_mac_read_clr4,
3023 [GPTC] = e1000e_mac_read_clr4,
3024 [TPR] = e1000e_mac_read_clr4,
3025 [ROC] = e1000e_mac_read_clr4,
3026 [MPRC] = e1000e_mac_read_clr4,
3027 [BPTC] = e1000e_mac_read_clr4,
3028 [TSCTC] = e1000e_mac_read_clr4,
3029 [ITR] = e1000e_mac_itr_read,
3030 [RDFT] = E1000E_LOW_BITS_READ(13),
3031 [RDFTS] = E1000E_LOW_BITS_READ(13),
3032 [TDFPC] = E1000E_LOW_BITS_READ(13),
3033 [TDFT] = E1000E_LOW_BITS_READ(13),
3034 [TDFTS] = E1000E_LOW_BITS_READ(13),
3035 [CTRL] = e1000e_get_ctrl,
3036 [TARC1] = e1000e_get_tarc,
3037 [SWSM] = e1000e_mac_swsm_read,
3038 [IMS] = e1000e_mac_ims_read,
3040 [CRCERRS ... MPC] = e1000e_mac_readreg,
3041 [IP6AT ... IP6AT + 3] = e1000e_mac_readreg,
3042 [IP4AT ... IP4AT + 6] = e1000e_mac_readreg,
3043 [RA ... RA + 31] = e1000e_mac_readreg,
3044 [WUPM ... WUPM + 31] = e1000e_mac_readreg,
3045 [MTA ... MTA + 127] = e1000e_mac_readreg,
3046 [VFTA ... VFTA + 127] = e1000e_mac_readreg,
3047 [FFMT ... FFMT + 254] = E1000E_LOW_BITS_READ(4),
3048 [FFVT ... FFVT + 254] = e1000e_mac_readreg,
3049 [MDEF ... MDEF + 7] = e1000e_mac_readreg,
3050 [FFLT ... FFLT + 10] = E1000E_LOW_BITS_READ(11),
3051 [FTFT ... FTFT + 254] = e1000e_mac_readreg,
3052 [PBM ... PBM + 10239] = e1000e_mac_readreg,
3053 [RETA ... RETA + 31] = e1000e_mac_readreg,
3054 [RSSRK ... RSSRK + 31] = e1000e_mac_readreg,
3055 [MAVTV0 ... MAVTV3] = e1000e_mac_readreg,
3056 [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_mac_eitr_read
3058 enum { E1000E_NREADOPS = ARRAY_SIZE(e1000e_macreg_readops) };
3060 #define e1000e_putreg(x) [x] = e1000e_mac_writereg
3061 typedef void (*writeops)(E1000ECore *, int, uint32_t);
3062 static const writeops e1000e_macreg_writeops[] = {
3063 e1000e_putreg(PBA),
3064 e1000e_putreg(SWSM),
3065 e1000e_putreg(WUFC),
3066 e1000e_putreg(RDBAH1),
3067 e1000e_putreg(TDBAH),
3068 e1000e_putreg(TXDCTL),
3069 e1000e_putreg(RDBAH0),
3070 e1000e_putreg(LEDCTL),
3071 e1000e_putreg(FCAL),
3072 e1000e_putreg(FCRUC),
3073 e1000e_putreg(AIT),
3074 e1000e_putreg(TDFH),
3075 e1000e_putreg(TDFT),
3076 e1000e_putreg(TDFHS),
3077 e1000e_putreg(TDFTS),
3078 e1000e_putreg(TDFPC),
3079 e1000e_putreg(WUC),
3080 e1000e_putreg(WUS),
3081 e1000e_putreg(RDFH),
3082 e1000e_putreg(RDFT),
3083 e1000e_putreg(RDFHS),
3084 e1000e_putreg(RDFTS),
3085 e1000e_putreg(RDFPC),
3086 e1000e_putreg(IPAV),
3087 e1000e_putreg(TDBAH1),
3088 e1000e_putreg(TIMINCA),
3089 e1000e_putreg(IAM),
3090 e1000e_putreg(EIAC),
3091 e1000e_putreg(IVAR),
3092 e1000e_putreg(TARC0),
3093 e1000e_putreg(TARC1),
3094 e1000e_putreg(FLSWDATA),
3095 e1000e_putreg(POEMB),
3096 e1000e_putreg(PBS),
3097 e1000e_putreg(MFUTP01),
3098 e1000e_putreg(MFUTP23),
3099 e1000e_putreg(MANC),
3100 e1000e_putreg(MANC2H),
3101 e1000e_putreg(MFVAL),
3102 e1000e_putreg(EXTCNF_CTRL),
3103 e1000e_putreg(FACTPS),
3104 e1000e_putreg(FUNCTAG),
3105 e1000e_putreg(GSCL_1),
3106 e1000e_putreg(GSCL_2),
3107 e1000e_putreg(GSCL_3),
3108 e1000e_putreg(GSCL_4),
3109 e1000e_putreg(GSCN_0),
3110 e1000e_putreg(GSCN_1),
3111 e1000e_putreg(GSCN_2),
3112 e1000e_putreg(GSCN_3),
3113 e1000e_putreg(GCR2),
3114 e1000e_putreg(MRQC),
3115 e1000e_putreg(FLOP),
3116 e1000e_putreg(FLOL),
3117 e1000e_putreg(FLSWCTL),
3118 e1000e_putreg(FLSWCNT),
3119 e1000e_putreg(FLA),
3120 e1000e_putreg(RXDCTL1),
3121 e1000e_putreg(TXDCTL1),
3122 e1000e_putreg(TIPG),
3123 e1000e_putreg(RXSTMPH),
3124 e1000e_putreg(RXSTMPL),
3125 e1000e_putreg(RXSATRL),
3126 e1000e_putreg(RXSATRH),
3127 e1000e_putreg(TXSTMPL),
3128 e1000e_putreg(TXSTMPH),
3129 e1000e_putreg(SYSTIML),
3130 e1000e_putreg(SYSTIMH),
3131 e1000e_putreg(TIMADJL),
3132 e1000e_putreg(TIMADJH),
3133 e1000e_putreg(RXUDP),
3134 e1000e_putreg(RXCFGL),
3135 e1000e_putreg(TSYNCRXCTL),
3136 e1000e_putreg(TSYNCTXCTL),
3137 e1000e_putreg(EXTCNF_SIZE),
3138 e1000e_putreg(EEMNGCTL),
3139 e1000e_putreg(RA),
3141 [TDH1] = e1000e_set_16bit,
3142 [TDT1] = e1000e_set_tdt,
3143 [TCTL] = e1000e_set_tctl,
3144 [TDT] = e1000e_set_tdt,
3145 [MDIC] = e1000e_set_mdic,
3146 [ICS] = e1000e_set_ics,
3147 [TDH] = e1000e_set_16bit,
3148 [RDH0] = e1000e_set_16bit,
3149 [RDT0] = e1000e_set_rdt,
3150 [IMC] = e1000e_set_imc,
3151 [IMS] = e1000e_set_ims,
3152 [ICR] = e1000e_set_icr,
3153 [EECD] = e1000e_set_eecd,
3154 [RCTL] = e1000e_set_rx_control,
3155 [CTRL] = e1000e_set_ctrl,
3156 [RDTR] = e1000e_set_rdtr,
3157 [RADV] = e1000e_set_16bit,
3158 [TADV] = e1000e_set_16bit,
3159 [ITR] = e1000e_set_itr,
3160 [EERD] = e1000e_set_eerd,
3161 [GCR] = e1000e_set_gcr,
3162 [PSRCTL] = e1000e_set_psrctl,
3163 [RXCSUM] = e1000e_set_rxcsum,
3164 [RAID] = e1000e_set_16bit,
3165 [RSRPD] = e1000e_set_12bit,
3166 [TIDV] = e1000e_set_tidv,
3167 [TDLEN1] = e1000e_set_dlen,
3168 [TDLEN] = e1000e_set_dlen,
3169 [RDLEN0] = e1000e_set_dlen,
3170 [RDLEN1] = e1000e_set_dlen,
3171 [TDBAL] = e1000e_set_dbal,
3172 [TDBAL1] = e1000e_set_dbal,
3173 [RDBAL0] = e1000e_set_dbal,
3174 [RDBAL1] = e1000e_set_dbal,
3175 [RDH1] = e1000e_set_16bit,
3176 [RDT1] = e1000e_set_rdt,
3177 [STATUS] = e1000e_set_status,
3178 [PBACLR] = e1000e_set_pbaclr,
3179 [CTRL_EXT] = e1000e_set_ctrlext,
3180 [FCAH] = e1000e_set_16bit,
3181 [FCT] = e1000e_set_16bit,
3182 [FCTTV] = e1000e_set_16bit,
3183 [FCRTV] = e1000e_set_16bit,
3184 [FCRTH] = e1000e_set_fcrth,
3185 [FCRTL] = e1000e_set_fcrtl,
3186 [VET] = e1000e_set_vet,
3187 [RXDCTL] = e1000e_set_rxdctl,
3188 [FLASHT] = e1000e_set_16bit,
3189 [EEWR] = e1000e_set_eewr,
3190 [CTRL_DUP] = e1000e_set_ctrl,
3191 [RFCTL] = e1000e_set_rfctl,
3192 [RA + 1] = e1000e_mac_setmacaddr,
3194 [IP6AT ... IP6AT + 3] = e1000e_mac_writereg,
3195 [IP4AT ... IP4AT + 6] = e1000e_mac_writereg,
3196 [RA + 2 ... RA + 31] = e1000e_mac_writereg,
3197 [WUPM ... WUPM + 31] = e1000e_mac_writereg,
3198 [MTA ... MTA + 127] = e1000e_mac_writereg,
3199 [VFTA ... VFTA + 127] = e1000e_mac_writereg,
3200 [FFMT ... FFMT + 254] = e1000e_mac_writereg,
3201 [FFVT ... FFVT + 254] = e1000e_mac_writereg,
3202 [PBM ... PBM + 10239] = e1000e_mac_writereg,
3203 [MDEF ... MDEF + 7] = e1000e_mac_writereg,
3204 [FFLT ... FFLT + 10] = e1000e_mac_writereg,
3205 [FTFT ... FTFT + 254] = e1000e_mac_writereg,
3206 [RETA ... RETA + 31] = e1000e_mac_writereg,
3207 [RSSRK ... RSSRK + 31] = e1000e_mac_writereg,
3208 [MAVTV0 ... MAVTV3] = e1000e_mac_writereg,
3209 [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_set_eitr
3211 enum { E1000E_NWRITEOPS = ARRAY_SIZE(e1000e_macreg_writeops) };
3213 enum { MAC_ACCESS_PARTIAL = 1 };
3215 /* The array below combines alias offsets of the index values for the
3216 * MAC registers that have aliases, with the indication of not fully
3217 * implemented registers (lowest bit). This combination is possible
3218 * because all of the offsets are even. */
3219 static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = {
3220 /* Alias index offsets */
3221 [FCRTL_A] = 0x07fe, [FCRTH_A] = 0x0802,
3222 [RDH0_A] = 0x09bc, [RDT0_A] = 0x09bc, [RDTR_A] = 0x09c6,
3223 [RDFH_A] = 0xe904, [RDFT_A] = 0xe904,
3224 [TDH_A] = 0x0cf8, [TDT_A] = 0x0cf8, [TIDV_A] = 0x0cf8,
3225 [TDFH_A] = 0xed00, [TDFT_A] = 0xed00,
3226 [RA_A ... RA_A + 31] = 0x14f0,
3227 [VFTA_A ... VFTA_A + 127] = 0x1400,
3228 [RDBAL0_A ... RDLEN0_A] = 0x09bc,
3229 [TDBAL_A ... TDLEN_A] = 0x0cf8,
3230 /* Access options */
3231 [RDFH] = MAC_ACCESS_PARTIAL, [RDFT] = MAC_ACCESS_PARTIAL,
3232 [RDFHS] = MAC_ACCESS_PARTIAL, [RDFTS] = MAC_ACCESS_PARTIAL,
3233 [RDFPC] = MAC_ACCESS_PARTIAL,
3234 [TDFH] = MAC_ACCESS_PARTIAL, [TDFT] = MAC_ACCESS_PARTIAL,
3235 [TDFHS] = MAC_ACCESS_PARTIAL, [TDFTS] = MAC_ACCESS_PARTIAL,
3236 [TDFPC] = MAC_ACCESS_PARTIAL, [EECD] = MAC_ACCESS_PARTIAL,
3237 [PBM] = MAC_ACCESS_PARTIAL, [FLA] = MAC_ACCESS_PARTIAL,
3238 [FCAL] = MAC_ACCESS_PARTIAL, [FCAH] = MAC_ACCESS_PARTIAL,
3239 [FCT] = MAC_ACCESS_PARTIAL, [FCTTV] = MAC_ACCESS_PARTIAL,
3240 [FCRTV] = MAC_ACCESS_PARTIAL, [FCRTL] = MAC_ACCESS_PARTIAL,
3241 [FCRTH] = MAC_ACCESS_PARTIAL, [TXDCTL] = MAC_ACCESS_PARTIAL,
3242 [TXDCTL1] = MAC_ACCESS_PARTIAL,
3243 [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL
3246 void
3247 e1000e_core_write(E1000ECore *core, hwaddr addr, uint64_t val, unsigned size)
3249 uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3251 if (index < E1000E_NWRITEOPS && e1000e_macreg_writeops[index]) {
3252 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3253 trace_e1000e_wrn_regs_write_trivial(index << 2);
3255 trace_e1000e_core_write(index << 2, size, val);
3256 e1000e_macreg_writeops[index](core, index, val);
3257 } else if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3258 trace_e1000e_wrn_regs_write_ro(index << 2, size, val);
3259 } else {
3260 trace_e1000e_wrn_regs_write_unknown(index << 2, size, val);
3264 uint64_t
3265 e1000e_core_read(E1000ECore *core, hwaddr addr, unsigned size)
3267 uint64_t val;
3268 uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3270 if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3271 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3272 trace_e1000e_wrn_regs_read_trivial(index << 2);
3274 val = e1000e_macreg_readops[index](core, index);
3275 trace_e1000e_core_read(index << 2, size, val);
3276 return val;
3277 } else {
3278 trace_e1000e_wrn_regs_read_unknown(index << 2, size);
3280 return 0;
3283 static inline void
3284 e1000e_autoneg_pause(E1000ECore *core)
3286 timer_del(core->autoneg_timer);
3289 static void
3290 e1000e_autoneg_resume(E1000ECore *core)
3292 if (e1000e_have_autoneg(core) &&
3293 !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
3294 qemu_get_queue(core->owner_nic)->link_down = false;
3295 timer_mod(core->autoneg_timer,
3296 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
3300 static void
3301 e1000e_vm_state_change(void *opaque, int running, RunState state)
3303 E1000ECore *core = opaque;
3305 if (running) {
3306 trace_e1000e_vm_state_running();
3307 e1000e_intrmgr_resume(core);
3308 e1000e_autoneg_resume(core);
3309 } else {
3310 trace_e1000e_vm_state_stopped();
3311 e1000e_autoneg_pause(core);
3312 e1000e_intrmgr_pause(core);
3316 void
3317 e1000e_core_pci_realize(E1000ECore *core,
3318 const uint16_t *eeprom_templ,
3319 uint32_t eeprom_size,
3320 const uint8_t *macaddr)
3322 int i;
3324 core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
3325 e1000e_autoneg_timer, core);
3326 e1000e_intrmgr_pci_realize(core);
3328 core->vmstate =
3329 qemu_add_vm_change_state_handler(e1000e_vm_state_change, core);
3331 for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3332 net_tx_pkt_init(&core->tx[i].tx_pkt, core->owner,
3333 E1000E_MAX_TX_FRAGS, core->has_vnet);
3336 net_rx_pkt_init(&core->rx_pkt, core->has_vnet);
3338 e1000x_core_prepare_eeprom(core->eeprom,
3339 eeprom_templ,
3340 eeprom_size,
3341 PCI_DEVICE_GET_CLASS(core->owner)->device_id,
3342 macaddr);
3343 e1000e_update_rx_offloads(core);
3346 void
3347 e1000e_core_pci_uninit(E1000ECore *core)
3349 int i;
3351 timer_free(core->autoneg_timer);
3353 e1000e_intrmgr_pci_unint(core);
3355 qemu_del_vm_change_state_handler(core->vmstate);
3357 for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3358 net_tx_pkt_reset(core->tx[i].tx_pkt);
3359 net_tx_pkt_uninit(core->tx[i].tx_pkt);
3362 net_rx_pkt_uninit(core->rx_pkt);
3365 static const uint16_t
3366 e1000e_phy_reg_init[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE] = {
3367 [0] = {
3368 [PHY_CTRL] = MII_CR_SPEED_SELECT_MSB |
3369 MII_CR_FULL_DUPLEX |
3370 MII_CR_AUTO_NEG_EN,
3372 [PHY_STATUS] = MII_SR_EXTENDED_CAPS |
3373 MII_SR_LINK_STATUS |
3374 MII_SR_AUTONEG_CAPS |
3375 MII_SR_PREAMBLE_SUPPRESS |
3376 MII_SR_EXTENDED_STATUS |
3377 MII_SR_10T_HD_CAPS |
3378 MII_SR_10T_FD_CAPS |
3379 MII_SR_100X_HD_CAPS |
3380 MII_SR_100X_FD_CAPS,
3382 [PHY_ID1] = 0x141,
3383 [PHY_ID2] = E1000_PHY_ID2_82574x,
3384 [PHY_AUTONEG_ADV] = 0xde1,
3385 [PHY_LP_ABILITY] = 0x7e0,
3386 [PHY_AUTONEG_EXP] = BIT(2),
3387 [PHY_NEXT_PAGE_TX] = BIT(0) | BIT(13),
3388 [PHY_1000T_CTRL] = BIT(8) | BIT(9) | BIT(10) | BIT(11),
3389 [PHY_1000T_STATUS] = 0x3c00,
3390 [PHY_EXT_STATUS] = BIT(12) | BIT(13),
3392 [PHY_COPPER_CTRL1] = BIT(5) | BIT(6) | BIT(8) | BIT(9) |
3393 BIT(12) | BIT(13),
3394 [PHY_COPPER_STAT1] = BIT(3) | BIT(10) | BIT(11) | BIT(13) | BIT(15)
3396 [2] = {
3397 [PHY_MAC_CTRL1] = BIT(3) | BIT(7),
3398 [PHY_MAC_CTRL2] = BIT(1) | BIT(2) | BIT(6) | BIT(12)
3400 [3] = {
3401 [PHY_LED_TIMER_CTRL] = BIT(0) | BIT(2) | BIT(14)
3405 static const uint32_t e1000e_mac_reg_init[] = {
3406 [PBA] = 0x00140014,
3407 [LEDCTL] = BIT(1) | BIT(8) | BIT(9) | BIT(15) | BIT(17) | BIT(18),
3408 [EXTCNF_CTRL] = BIT(3),
3409 [EEMNGCTL] = BIT(31),
3410 [FLASHT] = 0x2,
3411 [FLSWCTL] = BIT(30) | BIT(31),
3412 [FLOL] = BIT(0),
3413 [RXDCTL] = BIT(16),
3414 [RXDCTL1] = BIT(16),
3415 [TIPG] = 0x8 | (0x8 << 10) | (0x6 << 20),
3416 [RXCFGL] = 0x88F7,
3417 [RXUDP] = 0x319,
3418 [CTRL] = E1000_CTRL_FD | E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
3419 E1000_CTRL_SPD_1000 | E1000_CTRL_SLU |
3420 E1000_CTRL_ADVD3WUC,
3421 [STATUS] = E1000_STATUS_ASDV_1000 | E1000_STATUS_LU,
3422 [PSRCTL] = (2 << E1000_PSRCTL_BSIZE0_SHIFT) |
3423 (4 << E1000_PSRCTL_BSIZE1_SHIFT) |
3424 (4 << E1000_PSRCTL_BSIZE2_SHIFT),
3425 [TARC0] = 0x3 | E1000_TARC_ENABLE,
3426 [TARC1] = 0x3 | E1000_TARC_ENABLE,
3427 [EECD] = E1000_EECD_AUTO_RD | E1000_EECD_PRES,
3428 [EERD] = E1000_EERW_DONE,
3429 [EEWR] = E1000_EERW_DONE,
3430 [GCR] = E1000_L0S_ADJUST |
3431 E1000_L1_ENTRY_LATENCY_MSB |
3432 E1000_L1_ENTRY_LATENCY_LSB,
3433 [TDFH] = 0x600,
3434 [TDFT] = 0x600,
3435 [TDFHS] = 0x600,
3436 [TDFTS] = 0x600,
3437 [POEMB] = 0x30D,
3438 [PBS] = 0x028,
3439 [MANC] = E1000_MANC_DIS_IP_CHK_ARP,
3440 [FACTPS] = E1000_FACTPS_LAN0_ON | 0x20000000,
3441 [SWSM] = 1,
3442 [RXCSUM] = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD,
3443 [ITR] = E1000E_MIN_XITR,
3444 [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = E1000E_MIN_XITR,
3447 void
3448 e1000e_core_reset(E1000ECore *core)
3450 int i;
3452 timer_del(core->autoneg_timer);
3454 e1000e_intrmgr_reset(core);
3456 memset(core->phy, 0, sizeof core->phy);
3457 memmove(core->phy, e1000e_phy_reg_init, sizeof e1000e_phy_reg_init);
3458 memset(core->mac, 0, sizeof core->mac);
3459 memmove(core->mac, e1000e_mac_reg_init, sizeof e1000e_mac_reg_init);
3461 core->rxbuf_min_shift = 1 + E1000_RING_DESC_LEN_SHIFT;
3463 if (qemu_get_queue(core->owner_nic)->link_down) {
3464 e1000e_link_down(core);
3467 e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
3469 for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3470 net_tx_pkt_reset(core->tx[i].tx_pkt);
3471 memset(&core->tx[i].props, 0, sizeof(core->tx[i].props));
3472 core->tx[i].skip_cp = false;
3476 void e1000e_core_pre_save(E1000ECore *core)
3478 int i;
3479 NetClientState *nc = qemu_get_queue(core->owner_nic);
3482 * If link is down and auto-negotiation is supported and ongoing,
3483 * complete auto-negotiation immediately. This allows us to look
3484 * at MII_SR_AUTONEG_COMPLETE to infer link status on load.
3486 if (nc->link_down && e1000e_have_autoneg(core)) {
3487 core->phy[0][PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE;
3488 e1000e_update_flowctl_status(core);
3491 for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3492 if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) {
3493 core->tx[i].skip_cp = true;
3499 e1000e_core_post_load(E1000ECore *core)
3501 NetClientState *nc = qemu_get_queue(core->owner_nic);
3503 /* nc.link_down can't be migrated, so infer link_down according
3504 * to link status bit in core.mac[STATUS].
3506 nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0;
3508 return 0;