hw/elf_ops: Fix a typo
[qemu/ar7.git] / hw / misc / mps2-fpgaio.c
blobf3db88ddcc851d12198a8550f7c14fadefbac519
1 /*
2 * ARM MPS2 AN505 FPGAIO emulation
4 * Copyright (c) 2018 Linaro Limited
5 * Written by Peter Maydell
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
12 /* This is a model of the "FPGA system control and I/O" block found
13 * in the AN505 FPGA image for the MPS2 devboard.
14 * It is documented in AN505:
15 * https://developer.arm.com/documentation/dai0505/latest/
18 #include "qemu/osdep.h"
19 #include "qemu/log.h"
20 #include "qemu/module.h"
21 #include "qapi/error.h"
22 #include "trace.h"
23 #include "hw/sysbus.h"
24 #include "migration/vmstate.h"
25 #include "hw/registerfields.h"
26 #include "hw/misc/mps2-fpgaio.h"
27 #include "hw/misc/led.h"
28 #include "hw/qdev-properties.h"
29 #include "qemu/timer.h"
31 REG32(LED0, 0)
32 REG32(BUTTON, 8)
33 REG32(CLK1HZ, 0x10)
34 REG32(CLK100HZ, 0x14)
35 REG32(COUNTER, 0x18)
36 REG32(PRESCALE, 0x1c)
37 REG32(PSCNTR, 0x20)
38 REG32(SWITCH, 0x28)
39 REG32(MISC, 0x4c)
41 static uint32_t counter_from_tickoff(int64_t now, int64_t tick_offset, int frq)
43 return muldiv64(now - tick_offset, frq, NANOSECONDS_PER_SECOND);
46 static int64_t tickoff_from_counter(int64_t now, uint32_t count, int frq)
48 return now - muldiv64(count, NANOSECONDS_PER_SECOND, frq);
51 static void resync_counter(MPS2FPGAIO *s)
54 * Update s->counter and s->pscntr to their true current values
55 * by calculating how many times PSCNTR has ticked since the
56 * last time we did a resync.
58 int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
59 int64_t elapsed = now - s->pscntr_sync_ticks;
62 * Round elapsed down to a whole number of PSCNTR ticks, so we don't
63 * lose time if we do multiple resyncs in a single tick.
65 uint64_t ticks = muldiv64(elapsed, s->prescale_clk, NANOSECONDS_PER_SECOND);
68 * Work out what PSCNTR and COUNTER have moved to. We assume that
69 * PSCNTR reloads from PRESCALE one tick-period after it hits zero,
70 * and that COUNTER increments at the same moment.
72 if (ticks == 0) {
73 /* We haven't ticked since the last time we were asked */
74 return;
75 } else if (ticks < s->pscntr) {
76 /* We haven't yet reached zero, just reduce the PSCNTR */
77 s->pscntr -= ticks;
78 } else {
79 if (s->prescale == 0) {
81 * If the reload value is zero then the PSCNTR will stick
82 * at zero once it reaches it, and so we will increment
83 * COUNTER every tick after that.
85 s->counter += ticks - s->pscntr;
86 s->pscntr = 0;
87 } else {
89 * This is the complicated bit. This ASCII art diagram gives an
90 * example with PRESCALE==5 PSCNTR==7:
92 * ticks 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
93 * PSCNTR 7 6 5 4 3 2 1 0 5 4 3 2 1 0 5
94 * cinc 1 2
95 * y 0 1 2 3 4 5 6 7 8 9 10 11 12
96 * x 0 1 2 3 4 5 0 1 2 3 4 5 0
98 * where x = y % (s->prescale + 1)
99 * and so PSCNTR = s->prescale - x
100 * and COUNTER is incremented by y / (s->prescale + 1)
102 * The case where PSCNTR < PRESCALE works out the same,
103 * though we must be careful to calculate y as 64-bit unsigned
104 * for all parts of the expression.
105 * y < 0 is not possible because that implies ticks < s->pscntr.
107 uint64_t y = ticks - s->pscntr + s->prescale;
108 s->pscntr = s->prescale - (y % (s->prescale + 1));
109 s->counter += y / (s->prescale + 1);
114 * Only advance the sync time to the timestamp of the last PSCNTR tick,
115 * not all the way to 'now', so we don't lose time if we do multiple
116 * resyncs in a single tick.
118 s->pscntr_sync_ticks += muldiv64(ticks, NANOSECONDS_PER_SECOND,
119 s->prescale_clk);
122 static uint64_t mps2_fpgaio_read(void *opaque, hwaddr offset, unsigned size)
124 MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
125 uint64_t r;
126 int64_t now;
128 switch (offset) {
129 case A_LED0:
130 r = s->led0;
131 break;
132 case A_BUTTON:
133 /* User-pressable board buttons. We don't model that, so just return
134 * zeroes.
136 r = 0;
137 break;
138 case A_PRESCALE:
139 r = s->prescale;
140 break;
141 case A_MISC:
142 r = s->misc;
143 break;
144 case A_CLK1HZ:
145 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
146 r = counter_from_tickoff(now, s->clk1hz_tick_offset, 1);
147 break;
148 case A_CLK100HZ:
149 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
150 r = counter_from_tickoff(now, s->clk100hz_tick_offset, 100);
151 break;
152 case A_COUNTER:
153 resync_counter(s);
154 r = s->counter;
155 break;
156 case A_PSCNTR:
157 resync_counter(s);
158 r = s->pscntr;
159 break;
160 case A_SWITCH:
161 if (!s->has_switches) {
162 goto bad_offset;
164 /* User-togglable board switches. We don't model that, so report 0. */
165 r = 0;
166 break;
167 default:
168 bad_offset:
169 qemu_log_mask(LOG_GUEST_ERROR,
170 "MPS2 FPGAIO read: bad offset %x\n", (int) offset);
171 r = 0;
172 break;
175 trace_mps2_fpgaio_read(offset, r, size);
176 return r;
179 static void mps2_fpgaio_write(void *opaque, hwaddr offset, uint64_t value,
180 unsigned size)
182 MPS2FPGAIO *s = MPS2_FPGAIO(opaque);
183 int64_t now;
185 trace_mps2_fpgaio_write(offset, value, size);
187 switch (offset) {
188 case A_LED0:
189 if (s->num_leds != 0) {
190 uint32_t i;
192 s->led0 = value & MAKE_64BIT_MASK(0, s->num_leds);
193 for (i = 0; i < s->num_leds; i++) {
194 led_set_state(s->led[i], value & (1 << i));
197 break;
198 case A_PRESCALE:
199 resync_counter(s);
200 s->prescale = value;
201 break;
202 case A_MISC:
203 /* These are control bits for some of the other devices on the
204 * board (SPI, CLCD, etc). We don't implement that yet, so just
205 * make the bits read as written.
207 qemu_log_mask(LOG_UNIMP,
208 "MPS2 FPGAIO: MISC control bits unimplemented\n");
209 s->misc = value;
210 break;
211 case A_CLK1HZ:
212 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
213 s->clk1hz_tick_offset = tickoff_from_counter(now, value, 1);
214 break;
215 case A_CLK100HZ:
216 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
217 s->clk100hz_tick_offset = tickoff_from_counter(now, value, 100);
218 break;
219 case A_COUNTER:
220 resync_counter(s);
221 s->counter = value;
222 break;
223 case A_PSCNTR:
224 resync_counter(s);
225 s->pscntr = value;
226 break;
227 default:
228 qemu_log_mask(LOG_GUEST_ERROR,
229 "MPS2 FPGAIO write: bad offset 0x%x\n", (int) offset);
230 break;
234 static const MemoryRegionOps mps2_fpgaio_ops = {
235 .read = mps2_fpgaio_read,
236 .write = mps2_fpgaio_write,
237 .endianness = DEVICE_LITTLE_ENDIAN,
240 static void mps2_fpgaio_reset(DeviceState *dev)
242 MPS2FPGAIO *s = MPS2_FPGAIO(dev);
243 int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
245 trace_mps2_fpgaio_reset();
246 s->led0 = 0;
247 s->prescale = 0;
248 s->misc = 0;
249 s->clk1hz_tick_offset = tickoff_from_counter(now, 0, 1);
250 s->clk100hz_tick_offset = tickoff_from_counter(now, 0, 100);
251 s->counter = 0;
252 s->pscntr = 0;
253 s->pscntr_sync_ticks = now;
255 for (size_t i = 0; i < s->num_leds; i++) {
256 device_cold_reset(DEVICE(s->led[i]));
260 static void mps2_fpgaio_init(Object *obj)
262 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
263 MPS2FPGAIO *s = MPS2_FPGAIO(obj);
265 memory_region_init_io(&s->iomem, obj, &mps2_fpgaio_ops, s,
266 "mps2-fpgaio", 0x1000);
267 sysbus_init_mmio(sbd, &s->iomem);
270 static void mps2_fpgaio_realize(DeviceState *dev, Error **errp)
272 MPS2FPGAIO *s = MPS2_FPGAIO(dev);
273 uint32_t i;
275 if (s->num_leds > MPS2FPGAIO_MAX_LEDS) {
276 error_setg(errp, "num-leds cannot be greater than %d",
277 MPS2FPGAIO_MAX_LEDS);
278 return;
281 for (i = 0; i < s->num_leds; i++) {
282 g_autofree char *ledname = g_strdup_printf("USERLED%d", i);
283 s->led[i] = led_create_simple(OBJECT(dev), GPIO_POLARITY_ACTIVE_HIGH,
284 LED_COLOR_GREEN, ledname);
288 static bool mps2_fpgaio_counters_needed(void *opaque)
290 /* Currently vmstate.c insists all subsections have a 'needed' function */
291 return true;
294 static const VMStateDescription mps2_fpgaio_counters_vmstate = {
295 .name = "mps2-fpgaio/counters",
296 .version_id = 2,
297 .minimum_version_id = 2,
298 .needed = mps2_fpgaio_counters_needed,
299 .fields = (VMStateField[]) {
300 VMSTATE_INT64(clk1hz_tick_offset, MPS2FPGAIO),
301 VMSTATE_INT64(clk100hz_tick_offset, MPS2FPGAIO),
302 VMSTATE_UINT32(counter, MPS2FPGAIO),
303 VMSTATE_UINT32(pscntr, MPS2FPGAIO),
304 VMSTATE_INT64(pscntr_sync_ticks, MPS2FPGAIO),
305 VMSTATE_END_OF_LIST()
309 static const VMStateDescription mps2_fpgaio_vmstate = {
310 .name = "mps2-fpgaio",
311 .version_id = 1,
312 .minimum_version_id = 1,
313 .fields = (VMStateField[]) {
314 VMSTATE_UINT32(led0, MPS2FPGAIO),
315 VMSTATE_UINT32(prescale, MPS2FPGAIO),
316 VMSTATE_UINT32(misc, MPS2FPGAIO),
317 VMSTATE_END_OF_LIST()
319 .subsections = (const VMStateDescription*[]) {
320 &mps2_fpgaio_counters_vmstate,
321 NULL
325 static Property mps2_fpgaio_properties[] = {
326 /* Frequency of the prescale counter */
327 DEFINE_PROP_UINT32("prescale-clk", MPS2FPGAIO, prescale_clk, 20000000),
328 /* Number of LEDs controlled by LED0 register */
329 DEFINE_PROP_UINT32("num-leds", MPS2FPGAIO, num_leds, 2),
330 DEFINE_PROP_BOOL("has-switches", MPS2FPGAIO, has_switches, false),
331 DEFINE_PROP_END_OF_LIST(),
334 static void mps2_fpgaio_class_init(ObjectClass *klass, void *data)
336 DeviceClass *dc = DEVICE_CLASS(klass);
338 dc->vmsd = &mps2_fpgaio_vmstate;
339 dc->realize = mps2_fpgaio_realize;
340 dc->reset = mps2_fpgaio_reset;
341 device_class_set_props(dc, mps2_fpgaio_properties);
344 static const TypeInfo mps2_fpgaio_info = {
345 .name = TYPE_MPS2_FPGAIO,
346 .parent = TYPE_SYS_BUS_DEVICE,
347 .instance_size = sizeof(MPS2FPGAIO),
348 .instance_init = mps2_fpgaio_init,
349 .class_init = mps2_fpgaio_class_init,
352 static void mps2_fpgaio_register_types(void)
354 type_register_static(&mps2_fpgaio_info);
357 type_init(mps2_fpgaio_register_types);