4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
22 #include "qemu/cutils.h"
24 #include "exec/exec-all.h"
25 #include "exec/target_page.h"
27 #include "hw/qdev-core.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
40 #else /* !CONFIG_USER_ONLY */
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "sysemu/numa.h"
46 #include "sysemu/hw_accel.h"
47 #include "exec/address-spaces.h"
48 #include "sysemu/xen-mapcache.h"
49 #include "trace-root.h"
51 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
52 #include <linux/falloc.h>
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "translate-all.h"
59 #include "sysemu/replay.h"
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
65 #include "migration/vmstate.h"
67 #include "qemu/range.h"
69 #include "qemu/mmap-alloc.h"
72 #include "monitor/monitor.h"
74 //#define DEBUG_SUBPAGE
76 #if !defined(CONFIG_USER_ONLY)
77 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
80 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
82 static MemoryRegion
*system_memory
;
83 static MemoryRegion
*system_io
;
85 AddressSpace address_space_io
;
86 AddressSpace address_space_memory
;
88 MemoryRegion io_mem_rom
, io_mem_notdirty
;
89 static MemoryRegion io_mem_unassigned
;
91 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
92 #define RAM_PREALLOC (1 << 0)
94 /* RAM is mmap-ed with MAP_SHARED */
95 #define RAM_SHARED (1 << 1)
97 /* Only a portion of RAM (used_length) is actually used, and migrated.
98 * This used_length size can change across reboots.
100 #define RAM_RESIZEABLE (1 << 2)
102 /* UFFDIO_ZEROPAGE is available on this RAMBlock to atomically
103 * zero the page and wake waiting processes.
104 * (Set during postcopy)
106 #define RAM_UF_ZEROPAGE (1 << 3)
109 #ifdef TARGET_PAGE_BITS_VARY
110 int target_page_bits
;
111 bool target_page_bits_decided
;
114 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
115 /* current CPU in the current thread. It is only valid inside
117 __thread CPUState
*current_cpu
;
118 /* 0 = Do not count executed instructions.
119 1 = Precise instruction counting.
120 2 = Adaptive rate instruction counting. */
123 uintptr_t qemu_host_page_size
;
124 intptr_t qemu_host_page_mask
;
126 bool set_preferred_target_page_bits(int bits
)
128 /* The target page size is the lowest common denominator for all
129 * the CPUs in the system, so we can only make it smaller, never
130 * larger. And we can't make it smaller once we've committed to
133 #ifdef TARGET_PAGE_BITS_VARY
134 assert(bits
>= TARGET_PAGE_BITS_MIN
);
135 if (target_page_bits
== 0 || target_page_bits
> bits
) {
136 if (target_page_bits_decided
) {
139 target_page_bits
= bits
;
145 #if !defined(CONFIG_USER_ONLY)
147 static void finalize_target_page_bits(void)
149 #ifdef TARGET_PAGE_BITS_VARY
150 if (target_page_bits
== 0) {
151 target_page_bits
= TARGET_PAGE_BITS_MIN
;
153 target_page_bits_decided
= true;
157 typedef struct PhysPageEntry PhysPageEntry
;
159 struct PhysPageEntry
{
160 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
162 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
166 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
168 /* Size of the L2 (and L3, etc) page tables. */
169 #define ADDR_SPACE_BITS 64
172 #define P_L2_SIZE (1 << P_L2_BITS)
174 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
176 typedef PhysPageEntry Node
[P_L2_SIZE
];
178 typedef struct PhysPageMap
{
181 unsigned sections_nb
;
182 unsigned sections_nb_alloc
;
184 unsigned nodes_nb_alloc
;
186 MemoryRegionSection
*sections
;
189 struct AddressSpaceDispatch
{
190 MemoryRegionSection
*mru_section
;
191 /* This is a multi-level map on the physical address space.
192 * The bottom level has pointers to MemoryRegionSections.
194 PhysPageEntry phys_map
;
198 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
199 typedef struct subpage_t
{
203 uint16_t sub_section
[];
206 #define PHYS_SECTION_UNASSIGNED 0
207 #define PHYS_SECTION_NOTDIRTY 1
208 #define PHYS_SECTION_ROM 2
209 #define PHYS_SECTION_WATCH 3
211 static void io_mem_init(void);
212 static void memory_map_init(void);
213 static void tcg_commit(MemoryListener
*listener
);
215 static MemoryRegion io_mem_watch
;
218 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
219 * @cpu: the CPU whose AddressSpace this is
220 * @as: the AddressSpace itself
221 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
222 * @tcg_as_listener: listener for tracking changes to the AddressSpace
224 struct CPUAddressSpace
{
227 struct AddressSpaceDispatch
*memory_dispatch
;
228 MemoryListener tcg_as_listener
;
231 struct DirtyBitmapSnapshot
{
234 unsigned long dirty
[];
239 #if !defined(CONFIG_USER_ONLY)
241 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
243 static unsigned alloc_hint
= 16;
244 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
245 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, alloc_hint
);
246 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
247 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
248 alloc_hint
= map
->nodes_nb_alloc
;
252 static uint32_t phys_map_node_alloc(PhysPageMap
*map
, bool leaf
)
259 ret
= map
->nodes_nb
++;
261 assert(ret
!= PHYS_MAP_NODE_NIL
);
262 assert(ret
!= map
->nodes_nb_alloc
);
264 e
.skip
= leaf
? 0 : 1;
265 e
.ptr
= leaf
? PHYS_SECTION_UNASSIGNED
: PHYS_MAP_NODE_NIL
;
266 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
267 memcpy(&p
[i
], &e
, sizeof(e
));
272 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
273 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
277 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
279 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
280 lp
->ptr
= phys_map_node_alloc(map
, level
== 0);
282 p
= map
->nodes
[lp
->ptr
];
283 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
285 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
286 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
292 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
298 static void phys_page_set(AddressSpaceDispatch
*d
,
299 hwaddr index
, hwaddr nb
,
302 /* Wildly overreserve - it doesn't matter much. */
303 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
305 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
308 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
309 * and update our entry so we can skip it and go directly to the destination.
311 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
)
313 unsigned valid_ptr
= P_L2_SIZE
;
318 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
323 for (i
= 0; i
< P_L2_SIZE
; i
++) {
324 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
331 phys_page_compact(&p
[i
], nodes
);
335 /* We can only compress if there's only one child. */
340 assert(valid_ptr
< P_L2_SIZE
);
342 /* Don't compress if it won't fit in the # of bits we have. */
343 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
347 lp
->ptr
= p
[valid_ptr
].ptr
;
348 if (!p
[valid_ptr
].skip
) {
349 /* If our only child is a leaf, make this a leaf. */
350 /* By design, we should have made this node a leaf to begin with so we
351 * should never reach here.
352 * But since it's so simple to handle this, let's do it just in case we
357 lp
->skip
+= p
[valid_ptr
].skip
;
361 void address_space_dispatch_compact(AddressSpaceDispatch
*d
)
363 if (d
->phys_map
.skip
) {
364 phys_page_compact(&d
->phys_map
, d
->map
.nodes
);
368 static inline bool section_covers_addr(const MemoryRegionSection
*section
,
371 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
372 * the section must cover the entire address space.
374 return int128_gethi(section
->size
) ||
375 range_covers_byte(section
->offset_within_address_space
,
376 int128_getlo(section
->size
), addr
);
379 static MemoryRegionSection
*phys_page_find(AddressSpaceDispatch
*d
, hwaddr addr
)
381 PhysPageEntry lp
= d
->phys_map
, *p
;
382 Node
*nodes
= d
->map
.nodes
;
383 MemoryRegionSection
*sections
= d
->map
.sections
;
384 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
387 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
388 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
389 return §ions
[PHYS_SECTION_UNASSIGNED
];
392 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
395 if (section_covers_addr(§ions
[lp
.ptr
], addr
)) {
396 return §ions
[lp
.ptr
];
398 return §ions
[PHYS_SECTION_UNASSIGNED
];
402 bool memory_region_is_unassigned(MemoryRegion
*mr
)
404 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
405 && mr
!= &io_mem_watch
;
408 /* Called from RCU critical section */
409 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
411 bool resolve_subpage
)
413 MemoryRegionSection
*section
= atomic_read(&d
->mru_section
);
416 if (!section
|| section
== &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
] ||
417 !section_covers_addr(section
, addr
)) {
418 section
= phys_page_find(d
, addr
);
419 atomic_set(&d
->mru_section
, section
);
421 if (resolve_subpage
&& section
->mr
->subpage
) {
422 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
423 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
428 /* Called from RCU critical section */
429 static MemoryRegionSection
*
430 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
431 hwaddr
*plen
, bool resolve_subpage
)
433 MemoryRegionSection
*section
;
437 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
438 /* Compute offset within MemoryRegionSection */
439 addr
-= section
->offset_within_address_space
;
441 /* Compute offset within MemoryRegion */
442 *xlat
= addr
+ section
->offset_within_region
;
446 /* MMIO registers can be expected to perform full-width accesses based only
447 * on their address, without considering adjacent registers that could
448 * decode to completely different MemoryRegions. When such registers
449 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
450 * regions overlap wildly. For this reason we cannot clamp the accesses
453 * If the length is small (as is the case for address_space_ldl/stl),
454 * everything works fine. If the incoming length is large, however,
455 * the caller really has to do the clamping through memory_access_size.
457 if (memory_region_is_ram(mr
)) {
458 diff
= int128_sub(section
->size
, int128_make64(addr
));
459 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
465 * flatview_do_translate - translate an address in FlatView
467 * @fv: the flat view that we want to translate on
468 * @addr: the address to be translated in above address space
469 * @xlat: the translated address offset within memory region. It
471 * @plen_out: valid read/write length of the translated address. It
472 * can be @NULL when we don't care about it.
473 * @page_mask_out: page mask for the translated address. This
474 * should only be meaningful for IOMMU translated
475 * addresses, since there may be huge pages that this bit
476 * would tell. It can be @NULL if we don't care about it.
477 * @is_write: whether the translation operation is for write
478 * @is_mmio: whether this can be MMIO, set true if it can
480 * This function is called from RCU critical section
482 static MemoryRegionSection
flatview_do_translate(FlatView
*fv
,
486 hwaddr
*page_mask_out
,
489 AddressSpace
**target_as
)
492 MemoryRegionSection
*section
;
493 IOMMUMemoryRegion
*iommu_mr
;
494 IOMMUMemoryRegionClass
*imrc
;
495 hwaddr page_mask
= (hwaddr
)(-1);
496 hwaddr plen
= (hwaddr
)(-1);
503 section
= address_space_translate_internal(
504 flatview_to_dispatch(fv
), addr
, &addr
,
507 iommu_mr
= memory_region_get_iommu(section
->mr
);
511 imrc
= memory_region_get_iommu_class_nocheck(iommu_mr
);
513 iotlb
= imrc
->translate(iommu_mr
, addr
, is_write
?
514 IOMMU_WO
: IOMMU_RO
);
515 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
516 | (addr
& iotlb
.addr_mask
));
517 page_mask
&= iotlb
.addr_mask
;
518 plen
= MIN(plen
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
519 if (!(iotlb
.perm
& (1 << is_write
))) {
523 fv
= address_space_to_flatview(iotlb
.target_as
);
524 *target_as
= iotlb
.target_as
;
529 if (page_mask
== (hwaddr
)(-1)) {
530 /* Not behind an IOMMU, use default page size. */
531 page_mask
= ~TARGET_PAGE_MASK
;
535 *page_mask_out
= page_mask
;
545 return (MemoryRegionSection
) { .mr
= &io_mem_unassigned
};
548 /* Called from RCU critical section */
549 IOMMUTLBEntry
address_space_get_iotlb_entry(AddressSpace
*as
, hwaddr addr
,
552 MemoryRegionSection section
;
553 hwaddr xlat
, page_mask
;
556 * This can never be MMIO, and we don't really care about plen,
559 section
= flatview_do_translate(address_space_to_flatview(as
), addr
, &xlat
,
560 NULL
, &page_mask
, is_write
, false, &as
);
562 /* Illegal translation */
563 if (section
.mr
== &io_mem_unassigned
) {
567 /* Convert memory region offset into address space offset */
568 xlat
+= section
.offset_within_address_space
-
569 section
.offset_within_region
;
571 return (IOMMUTLBEntry
) {
573 .iova
= addr
& ~page_mask
,
574 .translated_addr
= xlat
& ~page_mask
,
575 .addr_mask
= page_mask
,
576 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
581 return (IOMMUTLBEntry
) {0};
584 /* Called from RCU critical section */
585 MemoryRegion
*flatview_translate(FlatView
*fv
, hwaddr addr
, hwaddr
*xlat
,
586 hwaddr
*plen
, bool is_write
)
589 MemoryRegionSection section
;
590 AddressSpace
*as
= NULL
;
592 /* This can be MMIO, so setup MMIO bit. */
593 section
= flatview_do_translate(fv
, addr
, xlat
, plen
, NULL
,
594 is_write
, true, &as
);
597 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
598 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
599 *plen
= MIN(page
, *plen
);
605 /* Called from RCU critical section */
606 MemoryRegionSection
*
607 address_space_translate_for_iotlb(CPUState
*cpu
, int asidx
, hwaddr addr
,
608 hwaddr
*xlat
, hwaddr
*plen
)
610 MemoryRegionSection
*section
;
611 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpu
->cpu_ases
[asidx
].memory_dispatch
);
613 section
= address_space_translate_internal(d
, addr
, xlat
, plen
, false);
615 assert(!memory_region_is_iommu(section
->mr
));
620 #if !defined(CONFIG_USER_ONLY)
622 static int cpu_common_post_load(void *opaque
, int version_id
)
624 CPUState
*cpu
= opaque
;
626 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
627 version_id is increased. */
628 cpu
->interrupt_request
&= ~0x01;
631 /* loadvm has just updated the content of RAM, bypassing the
632 * usual mechanisms that ensure we flush TBs for writes to
633 * memory we've translated code from. So we must flush all TBs,
634 * which will now be stale.
641 static int cpu_common_pre_load(void *opaque
)
643 CPUState
*cpu
= opaque
;
645 cpu
->exception_index
= -1;
650 static bool cpu_common_exception_index_needed(void *opaque
)
652 CPUState
*cpu
= opaque
;
654 return tcg_enabled() && cpu
->exception_index
!= -1;
657 static const VMStateDescription vmstate_cpu_common_exception_index
= {
658 .name
= "cpu_common/exception_index",
660 .minimum_version_id
= 1,
661 .needed
= cpu_common_exception_index_needed
,
662 .fields
= (VMStateField
[]) {
663 VMSTATE_INT32(exception_index
, CPUState
),
664 VMSTATE_END_OF_LIST()
668 static bool cpu_common_crash_occurred_needed(void *opaque
)
670 CPUState
*cpu
= opaque
;
672 return cpu
->crash_occurred
;
675 static const VMStateDescription vmstate_cpu_common_crash_occurred
= {
676 .name
= "cpu_common/crash_occurred",
678 .minimum_version_id
= 1,
679 .needed
= cpu_common_crash_occurred_needed
,
680 .fields
= (VMStateField
[]) {
681 VMSTATE_BOOL(crash_occurred
, CPUState
),
682 VMSTATE_END_OF_LIST()
686 const VMStateDescription vmstate_cpu_common
= {
687 .name
= "cpu_common",
689 .minimum_version_id
= 1,
690 .pre_load
= cpu_common_pre_load
,
691 .post_load
= cpu_common_post_load
,
692 .fields
= (VMStateField
[]) {
693 VMSTATE_UINT32(halted
, CPUState
),
694 VMSTATE_UINT32(interrupt_request
, CPUState
),
695 VMSTATE_END_OF_LIST()
697 .subsections
= (const VMStateDescription
*[]) {
698 &vmstate_cpu_common_exception_index
,
699 &vmstate_cpu_common_crash_occurred
,
706 CPUState
*qemu_get_cpu(int index
)
711 if (cpu
->cpu_index
== index
) {
719 #if !defined(CONFIG_USER_ONLY)
720 void cpu_address_space_init(CPUState
*cpu
, int asidx
,
721 const char *prefix
, MemoryRegion
*mr
)
723 CPUAddressSpace
*newas
;
724 AddressSpace
*as
= g_new0(AddressSpace
, 1);
728 as_name
= g_strdup_printf("%s-%d", prefix
, cpu
->cpu_index
);
729 address_space_init(as
, mr
, as_name
);
732 /* Target code should have set num_ases before calling us */
733 assert(asidx
< cpu
->num_ases
);
736 /* address space 0 gets the convenience alias */
740 /* KVM cannot currently support multiple address spaces. */
741 assert(asidx
== 0 || !kvm_enabled());
743 if (!cpu
->cpu_ases
) {
744 cpu
->cpu_ases
= g_new0(CPUAddressSpace
, cpu
->num_ases
);
747 newas
= &cpu
->cpu_ases
[asidx
];
751 newas
->tcg_as_listener
.commit
= tcg_commit
;
752 memory_listener_register(&newas
->tcg_as_listener
, as
);
756 AddressSpace
*cpu_get_address_space(CPUState
*cpu
, int asidx
)
758 /* Return the AddressSpace corresponding to the specified index */
759 return cpu
->cpu_ases
[asidx
].as
;
763 void cpu_exec_unrealizefn(CPUState
*cpu
)
765 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
767 cpu_list_remove(cpu
);
769 if (cc
->vmsd
!= NULL
) {
770 vmstate_unregister(NULL
, cc
->vmsd
, cpu
);
772 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
773 vmstate_unregister(NULL
, &vmstate_cpu_common
, cpu
);
777 Property cpu_common_props
[] = {
778 #ifndef CONFIG_USER_ONLY
779 /* Create a memory property for softmmu CPU object,
780 * so users can wire up its memory. (This can't go in qom/cpu.c
781 * because that file is compiled only once for both user-mode
782 * and system builds.) The default if no link is set up is to use
783 * the system address space.
785 DEFINE_PROP_LINK("memory", CPUState
, memory
, TYPE_MEMORY_REGION
,
788 DEFINE_PROP_END_OF_LIST(),
791 void cpu_exec_initfn(CPUState
*cpu
)
796 #ifndef CONFIG_USER_ONLY
797 cpu
->thread_id
= qemu_get_thread_id();
798 cpu
->memory
= system_memory
;
799 object_ref(OBJECT(cpu
->memory
));
803 void cpu_exec_realizefn(CPUState
*cpu
, Error
**errp
)
805 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
806 static bool tcg_target_initialized
;
810 if (tcg_enabled() && !tcg_target_initialized
) {
811 tcg_target_initialized
= true;
812 cc
->tcg_initialize();
815 #ifndef CONFIG_USER_ONLY
816 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
817 vmstate_register(NULL
, cpu
->cpu_index
, &vmstate_cpu_common
, cpu
);
819 if (cc
->vmsd
!= NULL
) {
820 vmstate_register(NULL
, cpu
->cpu_index
, cc
->vmsd
, cpu
);
825 const char *parse_cpu_model(const char *cpu_model
)
829 gchar
**model_pieces
;
830 const char *cpu_type
;
832 model_pieces
= g_strsplit(cpu_model
, ",", 2);
834 oc
= cpu_class_by_name(CPU_RESOLVING_TYPE
, model_pieces
[0]);
836 error_report("unable to find CPU model '%s'", model_pieces
[0]);
837 g_strfreev(model_pieces
);
841 cpu_type
= object_class_get_name(oc
);
843 cc
->parse_features(cpu_type
, model_pieces
[1], &error_fatal
);
844 g_strfreev(model_pieces
);
848 #if defined(CONFIG_USER_ONLY)
849 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
853 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
858 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
861 hwaddr phys
= cpu_get_phys_page_attrs_debug(cpu
, pc
, &attrs
);
862 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
864 /* Locks grabbed by tb_invalidate_phys_addr */
865 tb_invalidate_phys_addr(cpu
->cpu_ases
[asidx
].as
,
866 phys
| (pc
& ~TARGET_PAGE_MASK
));
871 #if defined(CONFIG_USER_ONLY)
872 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
877 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
883 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
887 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
888 int flags
, CPUWatchpoint
**watchpoint
)
893 /* Add a watchpoint. */
894 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
895 int flags
, CPUWatchpoint
**watchpoint
)
899 /* forbid ranges which are empty or run off the end of the address space */
900 if (len
== 0 || (addr
+ len
- 1) < addr
) {
901 error_report("tried to set invalid watchpoint at %"
902 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
905 wp
= g_malloc(sizeof(*wp
));
911 /* keep all GDB-injected watchpoints in front */
912 if (flags
& BP_GDB
) {
913 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
915 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
918 tlb_flush_page(cpu
, addr
);
925 /* Remove a specific watchpoint. */
926 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
931 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
932 if (addr
== wp
->vaddr
&& len
== wp
->len
933 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
934 cpu_watchpoint_remove_by_ref(cpu
, wp
);
941 /* Remove a specific watchpoint by reference. */
942 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
944 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
946 tlb_flush_page(cpu
, watchpoint
->vaddr
);
951 /* Remove all matching watchpoints. */
952 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
954 CPUWatchpoint
*wp
, *next
;
956 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
957 if (wp
->flags
& mask
) {
958 cpu_watchpoint_remove_by_ref(cpu
, wp
);
963 /* Return true if this watchpoint address matches the specified
964 * access (ie the address range covered by the watchpoint overlaps
965 * partially or completely with the address range covered by the
968 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint
*wp
,
972 /* We know the lengths are non-zero, but a little caution is
973 * required to avoid errors in the case where the range ends
974 * exactly at the top of the address space and so addr + len
975 * wraps round to zero.
977 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
978 vaddr addrend
= addr
+ len
- 1;
980 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
985 /* Add a breakpoint. */
986 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
987 CPUBreakpoint
**breakpoint
)
991 bp
= g_malloc(sizeof(*bp
));
996 /* keep all GDB-injected breakpoints in front */
997 if (flags
& BP_GDB
) {
998 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
1000 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
1003 breakpoint_invalidate(cpu
, pc
);
1011 /* Remove a specific breakpoint. */
1012 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
1016 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
1017 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
1018 cpu_breakpoint_remove_by_ref(cpu
, bp
);
1025 /* Remove a specific breakpoint by reference. */
1026 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
1028 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
1030 breakpoint_invalidate(cpu
, breakpoint
->pc
);
1035 /* Remove all matching breakpoints. */
1036 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
1038 CPUBreakpoint
*bp
, *next
;
1040 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
1041 if (bp
->flags
& mask
) {
1042 cpu_breakpoint_remove_by_ref(cpu
, bp
);
1047 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1048 CPU loop after each instruction */
1049 void cpu_single_step(CPUState
*cpu
, int enabled
)
1051 if (cpu
->singlestep_enabled
!= enabled
) {
1052 cpu
->singlestep_enabled
= enabled
;
1053 if (kvm_enabled()) {
1054 kvm_update_guest_debug(cpu
, 0);
1056 /* must flush all the translated code to avoid inconsistencies */
1057 /* XXX: only flush what is necessary */
1063 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
1070 fprintf(stderr
, "qemu: fatal: ");
1071 vfprintf(stderr
, fmt
, ap
);
1072 fprintf(stderr
, "\n");
1073 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
1074 if (qemu_log_separate()) {
1076 qemu_log("qemu: fatal: ");
1077 qemu_log_vprintf(fmt
, ap2
);
1079 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
1087 #if defined(CONFIG_USER_ONLY)
1089 struct sigaction act
;
1090 sigfillset(&act
.sa_mask
);
1091 act
.sa_handler
= SIG_DFL
;
1092 sigaction(SIGABRT
, &act
, NULL
);
1098 #if !defined(CONFIG_USER_ONLY)
1099 /* Called from RCU critical section */
1100 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
1104 block
= atomic_rcu_read(&ram_list
.mru_block
);
1105 if (block
&& addr
- block
->offset
< block
->max_length
) {
1108 RAMBLOCK_FOREACH(block
) {
1109 if (addr
- block
->offset
< block
->max_length
) {
1114 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1118 /* It is safe to write mru_block outside the iothread lock. This
1123 * xxx removed from list
1127 * call_rcu(reclaim_ramblock, xxx);
1130 * atomic_rcu_set is not needed here. The block was already published
1131 * when it was placed into the list. Here we're just making an extra
1132 * copy of the pointer.
1134 ram_list
.mru_block
= block
;
1138 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
1145 end
= TARGET_PAGE_ALIGN(start
+ length
);
1146 start
&= TARGET_PAGE_MASK
;
1149 block
= qemu_get_ram_block(start
);
1150 assert(block
== qemu_get_ram_block(end
- 1));
1151 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
1153 tlb_reset_dirty(cpu
, start1
, length
);
1158 /* Note: start and end must be within the same ram block. */
1159 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
1163 DirtyMemoryBlocks
*blocks
;
1164 unsigned long end
, page
;
1171 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
1172 page
= start
>> TARGET_PAGE_BITS
;
1176 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1178 while (page
< end
) {
1179 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1180 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1181 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1183 dirty
|= bitmap_test_and_clear_atomic(blocks
->blocks
[idx
],
1190 if (dirty
&& tcg_enabled()) {
1191 tlb_reset_dirty_range_all(start
, length
);
1197 DirtyBitmapSnapshot
*cpu_physical_memory_snapshot_and_clear_dirty
1198 (ram_addr_t start
, ram_addr_t length
, unsigned client
)
1200 DirtyMemoryBlocks
*blocks
;
1201 unsigned long align
= 1UL << (TARGET_PAGE_BITS
+ BITS_PER_LEVEL
);
1202 ram_addr_t first
= QEMU_ALIGN_DOWN(start
, align
);
1203 ram_addr_t last
= QEMU_ALIGN_UP(start
+ length
, align
);
1204 DirtyBitmapSnapshot
*snap
;
1205 unsigned long page
, end
, dest
;
1207 snap
= g_malloc0(sizeof(*snap
) +
1208 ((last
- first
) >> (TARGET_PAGE_BITS
+ 3)));
1209 snap
->start
= first
;
1212 page
= first
>> TARGET_PAGE_BITS
;
1213 end
= last
>> TARGET_PAGE_BITS
;
1218 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1220 while (page
< end
) {
1221 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1222 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1223 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1225 assert(QEMU_IS_ALIGNED(offset
, (1 << BITS_PER_LEVEL
)));
1226 assert(QEMU_IS_ALIGNED(num
, (1 << BITS_PER_LEVEL
)));
1227 offset
>>= BITS_PER_LEVEL
;
1229 bitmap_copy_and_clear_atomic(snap
->dirty
+ dest
,
1230 blocks
->blocks
[idx
] + offset
,
1233 dest
+= num
>> BITS_PER_LEVEL
;
1238 if (tcg_enabled()) {
1239 tlb_reset_dirty_range_all(start
, length
);
1245 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot
*snap
,
1249 unsigned long page
, end
;
1251 assert(start
>= snap
->start
);
1252 assert(start
+ length
<= snap
->end
);
1254 end
= TARGET_PAGE_ALIGN(start
+ length
- snap
->start
) >> TARGET_PAGE_BITS
;
1255 page
= (start
- snap
->start
) >> TARGET_PAGE_BITS
;
1257 while (page
< end
) {
1258 if (test_bit(page
, snap
->dirty
)) {
1266 /* Called from RCU critical section */
1267 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
1268 MemoryRegionSection
*section
,
1270 hwaddr paddr
, hwaddr xlat
,
1272 target_ulong
*address
)
1277 if (memory_region_is_ram(section
->mr
)) {
1279 iotlb
= memory_region_get_ram_addr(section
->mr
) + xlat
;
1280 if (!section
->readonly
) {
1281 iotlb
|= PHYS_SECTION_NOTDIRTY
;
1283 iotlb
|= PHYS_SECTION_ROM
;
1286 AddressSpaceDispatch
*d
;
1288 d
= flatview_to_dispatch(section
->fv
);
1289 iotlb
= section
- d
->map
.sections
;
1293 /* Make accesses to pages with watchpoints go via the
1294 watchpoint trap routines. */
1295 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1296 if (cpu_watchpoint_address_matches(wp
, vaddr
, TARGET_PAGE_SIZE
)) {
1297 /* Avoid trapping reads of pages with a write breakpoint. */
1298 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
1299 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
1300 *address
|= TLB_MMIO
;
1308 #endif /* defined(CONFIG_USER_ONLY) */
1310 #if !defined(CONFIG_USER_ONLY)
1312 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1314 static subpage_t
*subpage_init(FlatView
*fv
, hwaddr base
);
1316 static void *(*phys_mem_alloc
)(size_t size
, uint64_t *align
, bool shared
) =
1317 qemu_anon_ram_alloc
;
1320 * Set a custom physical guest memory alloator.
1321 * Accelerators with unusual needs may need this. Hopefully, we can
1322 * get rid of it eventually.
1324 void phys_mem_set_alloc(void *(*alloc
)(size_t, uint64_t *align
, bool shared
))
1326 phys_mem_alloc
= alloc
;
1329 static uint16_t phys_section_add(PhysPageMap
*map
,
1330 MemoryRegionSection
*section
)
1332 /* The physical section number is ORed with a page-aligned
1333 * pointer to produce the iotlb entries. Thus it should
1334 * never overflow into the page-aligned value.
1336 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
1338 if (map
->sections_nb
== map
->sections_nb_alloc
) {
1339 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
1340 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
1341 map
->sections_nb_alloc
);
1343 map
->sections
[map
->sections_nb
] = *section
;
1344 memory_region_ref(section
->mr
);
1345 return map
->sections_nb
++;
1348 static void phys_section_destroy(MemoryRegion
*mr
)
1350 bool have_sub_page
= mr
->subpage
;
1352 memory_region_unref(mr
);
1354 if (have_sub_page
) {
1355 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
1356 object_unref(OBJECT(&subpage
->iomem
));
1361 static void phys_sections_free(PhysPageMap
*map
)
1363 while (map
->sections_nb
> 0) {
1364 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
1365 phys_section_destroy(section
->mr
);
1367 g_free(map
->sections
);
1371 static void register_subpage(FlatView
*fv
, MemoryRegionSection
*section
)
1373 AddressSpaceDispatch
*d
= flatview_to_dispatch(fv
);
1375 hwaddr base
= section
->offset_within_address_space
1377 MemoryRegionSection
*existing
= phys_page_find(d
, base
);
1378 MemoryRegionSection subsection
= {
1379 .offset_within_address_space
= base
,
1380 .size
= int128_make64(TARGET_PAGE_SIZE
),
1384 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
1386 if (!(existing
->mr
->subpage
)) {
1387 subpage
= subpage_init(fv
, base
);
1389 subsection
.mr
= &subpage
->iomem
;
1390 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
1391 phys_section_add(&d
->map
, &subsection
));
1393 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
1395 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
1396 end
= start
+ int128_get64(section
->size
) - 1;
1397 subpage_register(subpage
, start
, end
,
1398 phys_section_add(&d
->map
, section
));
1402 static void register_multipage(FlatView
*fv
,
1403 MemoryRegionSection
*section
)
1405 AddressSpaceDispatch
*d
= flatview_to_dispatch(fv
);
1406 hwaddr start_addr
= section
->offset_within_address_space
;
1407 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1408 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1412 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1415 void flatview_add_to_dispatch(FlatView
*fv
, MemoryRegionSection
*section
)
1417 MemoryRegionSection now
= *section
, remain
= *section
;
1418 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1420 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1421 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
1422 - now
.offset_within_address_space
;
1424 now
.size
= int128_min(int128_make64(left
), now
.size
);
1425 register_subpage(fv
, &now
);
1427 now
.size
= int128_zero();
1429 while (int128_ne(remain
.size
, now
.size
)) {
1430 remain
.size
= int128_sub(remain
.size
, now
.size
);
1431 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1432 remain
.offset_within_region
+= int128_get64(now
.size
);
1434 if (int128_lt(remain
.size
, page_size
)) {
1435 register_subpage(fv
, &now
);
1436 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1437 now
.size
= page_size
;
1438 register_subpage(fv
, &now
);
1440 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1441 register_multipage(fv
, &now
);
1446 void qemu_flush_coalesced_mmio_buffer(void)
1449 kvm_flush_coalesced_mmio_buffer();
1452 void qemu_mutex_lock_ramlist(void)
1454 qemu_mutex_lock(&ram_list
.mutex
);
1457 void qemu_mutex_unlock_ramlist(void)
1459 qemu_mutex_unlock(&ram_list
.mutex
);
1462 void ram_block_dump(Monitor
*mon
)
1468 monitor_printf(mon
, "%24s %8s %18s %18s %18s\n",
1469 "Block Name", "PSize", "Offset", "Used", "Total");
1470 RAMBLOCK_FOREACH(block
) {
1471 psize
= size_to_str(block
->page_size
);
1472 monitor_printf(mon
, "%24s %8s 0x%016" PRIx64
" 0x%016" PRIx64
1473 " 0x%016" PRIx64
"\n", block
->idstr
, psize
,
1474 (uint64_t)block
->offset
,
1475 (uint64_t)block
->used_length
,
1476 (uint64_t)block
->max_length
);
1484 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1485 * may or may not name the same files / on the same filesystem now as
1486 * when we actually open and map them. Iterate over the file
1487 * descriptors instead, and use qemu_fd_getpagesize().
1489 static int find_max_supported_pagesize(Object
*obj
, void *opaque
)
1492 long *hpsize_min
= opaque
;
1494 if (object_dynamic_cast(obj
, TYPE_MEMORY_BACKEND
)) {
1495 mem_path
= object_property_get_str(obj
, "mem-path", NULL
);
1497 long hpsize
= qemu_mempath_getpagesize(mem_path
);
1499 if (hpsize
< *hpsize_min
) {
1500 *hpsize_min
= hpsize
;
1503 *hpsize_min
= getpagesize();
1510 long qemu_getrampagesize(void)
1512 long hpsize
= LONG_MAX
;
1513 long mainrampagesize
;
1514 Object
*memdev_root
;
1517 mainrampagesize
= qemu_mempath_getpagesize(mem_path
);
1519 mainrampagesize
= getpagesize();
1522 /* it's possible we have memory-backend objects with
1523 * hugepage-backed RAM. these may get mapped into system
1524 * address space via -numa parameters or memory hotplug
1525 * hooks. we want to take these into account, but we
1526 * also want to make sure these supported hugepage
1527 * sizes are applicable across the entire range of memory
1528 * we may boot from, so we take the min across all
1529 * backends, and assume normal pages in cases where a
1530 * backend isn't backed by hugepages.
1532 memdev_root
= object_resolve_path("/objects", NULL
);
1534 object_child_foreach(memdev_root
, find_max_supported_pagesize
, &hpsize
);
1536 if (hpsize
== LONG_MAX
) {
1537 /* No additional memory regions found ==> Report main RAM page size */
1538 return mainrampagesize
;
1541 /* If NUMA is disabled or the NUMA nodes are not backed with a
1542 * memory-backend, then there is at least one node using "normal" RAM,
1543 * so if its page size is smaller we have got to report that size instead.
1545 if (hpsize
> mainrampagesize
&&
1546 (nb_numa_nodes
== 0 || numa_info
[0].node_memdev
== NULL
)) {
1549 error_report("Huge page support disabled (n/a for main memory).");
1552 return mainrampagesize
;
1558 long qemu_getrampagesize(void)
1560 return getpagesize();
1565 static int64_t get_file_size(int fd
)
1567 int64_t size
= lseek(fd
, 0, SEEK_END
);
1574 static int file_ram_open(const char *path
,
1575 const char *region_name
,
1580 char *sanitized_name
;
1586 fd
= open(path
, O_RDWR
);
1588 /* @path names an existing file, use it */
1591 if (errno
== ENOENT
) {
1592 /* @path names a file that doesn't exist, create it */
1593 fd
= open(path
, O_RDWR
| O_CREAT
| O_EXCL
, 0644);
1598 } else if (errno
== EISDIR
) {
1599 /* @path names a directory, create a file there */
1600 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1601 sanitized_name
= g_strdup(region_name
);
1602 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1608 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1610 g_free(sanitized_name
);
1612 fd
= mkstemp(filename
);
1620 if (errno
!= EEXIST
&& errno
!= EINTR
) {
1621 error_setg_errno(errp
, errno
,
1622 "can't open backing store %s for guest RAM",
1627 * Try again on EINTR and EEXIST. The latter happens when
1628 * something else creates the file between our two open().
1635 static void *file_ram_alloc(RAMBlock
*block
,
1643 block
->page_size
= qemu_fd_getpagesize(fd
);
1644 if (block
->mr
->align
% block
->page_size
) {
1645 error_setg(errp
, "alignment 0x%" PRIx64
1646 " must be multiples of page size 0x%zx",
1647 block
->mr
->align
, block
->page_size
);
1650 block
->mr
->align
= MAX(block
->page_size
, block
->mr
->align
);
1651 #if defined(__s390x__)
1652 if (kvm_enabled()) {
1653 block
->mr
->align
= MAX(block
->mr
->align
, QEMU_VMALLOC_ALIGN
);
1657 if (memory
< block
->page_size
) {
1658 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1659 "or larger than page size 0x%zx",
1660 memory
, block
->page_size
);
1664 memory
= ROUND_UP(memory
, block
->page_size
);
1667 * ftruncate is not supported by hugetlbfs in older
1668 * hosts, so don't bother bailing out on errors.
1669 * If anything goes wrong with it under other filesystems,
1672 * Do not truncate the non-empty backend file to avoid corrupting
1673 * the existing data in the file. Disabling shrinking is not
1674 * enough. For example, the current vNVDIMM implementation stores
1675 * the guest NVDIMM labels at the end of the backend file. If the
1676 * backend file is later extended, QEMU will not be able to find
1677 * those labels. Therefore, extending the non-empty backend file
1678 * is disabled as well.
1680 if (truncate
&& ftruncate(fd
, memory
)) {
1681 perror("ftruncate");
1684 area
= qemu_ram_mmap(fd
, memory
, block
->mr
->align
,
1685 block
->flags
& RAM_SHARED
);
1686 if (area
== MAP_FAILED
) {
1687 error_setg_errno(errp
, errno
,
1688 "unable to map backing store for guest RAM");
1693 os_mem_prealloc(fd
, area
, memory
, smp_cpus
, errp
);
1694 if (errp
&& *errp
) {
1695 qemu_ram_munmap(area
, memory
);
1705 /* Allocate space within the ram_addr_t space that governs the
1707 * Called with the ramlist lock held.
1709 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1711 RAMBlock
*block
, *next_block
;
1712 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1714 assert(size
!= 0); /* it would hand out same offset multiple times */
1716 if (QLIST_EMPTY_RCU(&ram_list
.blocks
)) {
1720 RAMBLOCK_FOREACH(block
) {
1721 ram_addr_t candidate
, next
= RAM_ADDR_MAX
;
1723 /* Align blocks to start on a 'long' in the bitmap
1724 * which makes the bitmap sync'ing take the fast path.
1726 candidate
= block
->offset
+ block
->max_length
;
1727 candidate
= ROUND_UP(candidate
, BITS_PER_LONG
<< TARGET_PAGE_BITS
);
1729 /* Search for the closest following block
1732 RAMBLOCK_FOREACH(next_block
) {
1733 if (next_block
->offset
>= candidate
) {
1734 next
= MIN(next
, next_block
->offset
);
1738 /* If it fits remember our place and remember the size
1739 * of gap, but keep going so that we might find a smaller
1740 * gap to fill so avoiding fragmentation.
1742 if (next
- candidate
>= size
&& next
- candidate
< mingap
) {
1744 mingap
= next
- candidate
;
1747 trace_find_ram_offset_loop(size
, candidate
, offset
, next
, mingap
);
1750 if (offset
== RAM_ADDR_MAX
) {
1751 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1756 trace_find_ram_offset(size
, offset
);
1761 unsigned long last_ram_page(void)
1764 ram_addr_t last
= 0;
1767 RAMBLOCK_FOREACH(block
) {
1768 last
= MAX(last
, block
->offset
+ block
->max_length
);
1771 return last
>> TARGET_PAGE_BITS
;
1774 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1778 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1779 if (!machine_dump_guest_core(current_machine
)) {
1780 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1782 perror("qemu_madvise");
1783 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1784 "but dump_guest_core=off specified\n");
1789 const char *qemu_ram_get_idstr(RAMBlock
*rb
)
1794 bool qemu_ram_is_shared(RAMBlock
*rb
)
1796 return rb
->flags
& RAM_SHARED
;
1799 /* Note: Only set at the start of postcopy */
1800 bool qemu_ram_is_uf_zeroable(RAMBlock
*rb
)
1802 return rb
->flags
& RAM_UF_ZEROPAGE
;
1805 void qemu_ram_set_uf_zeroable(RAMBlock
*rb
)
1807 rb
->flags
|= RAM_UF_ZEROPAGE
;
1810 /* Called with iothread lock held. */
1811 void qemu_ram_set_idstr(RAMBlock
*new_block
, const char *name
, DeviceState
*dev
)
1816 assert(!new_block
->idstr
[0]);
1819 char *id
= qdev_get_dev_path(dev
);
1821 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1825 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1828 RAMBLOCK_FOREACH(block
) {
1829 if (block
!= new_block
&&
1830 !strcmp(block
->idstr
, new_block
->idstr
)) {
1831 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1839 /* Called with iothread lock held. */
1840 void qemu_ram_unset_idstr(RAMBlock
*block
)
1842 /* FIXME: arch_init.c assumes that this is not called throughout
1843 * migration. Ignore the problem since hot-unplug during migration
1844 * does not work anyway.
1847 memset(block
->idstr
, 0, sizeof(block
->idstr
));
1851 size_t qemu_ram_pagesize(RAMBlock
*rb
)
1853 return rb
->page_size
;
1856 /* Returns the largest size of page in use */
1857 size_t qemu_ram_pagesize_largest(void)
1862 RAMBLOCK_FOREACH(block
) {
1863 largest
= MAX(largest
, qemu_ram_pagesize(block
));
1869 static int memory_try_enable_merging(void *addr
, size_t len
)
1871 if (!machine_mem_merge(current_machine
)) {
1872 /* disabled by the user */
1876 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1879 /* Only legal before guest might have detected the memory size: e.g. on
1880 * incoming migration, or right after reset.
1882 * As memory core doesn't know how is memory accessed, it is up to
1883 * resize callback to update device state and/or add assertions to detect
1884 * misuse, if necessary.
1886 int qemu_ram_resize(RAMBlock
*block
, ram_addr_t newsize
, Error
**errp
)
1890 newsize
= HOST_PAGE_ALIGN(newsize
);
1892 if (block
->used_length
== newsize
) {
1896 if (!(block
->flags
& RAM_RESIZEABLE
)) {
1897 error_setg_errno(errp
, EINVAL
,
1898 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1899 " in != 0x" RAM_ADDR_FMT
, block
->idstr
,
1900 newsize
, block
->used_length
);
1904 if (block
->max_length
< newsize
) {
1905 error_setg_errno(errp
, EINVAL
,
1906 "Length too large: %s: 0x" RAM_ADDR_FMT
1907 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
1908 newsize
, block
->max_length
);
1912 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
1913 block
->used_length
= newsize
;
1914 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
,
1916 memory_region_set_size(block
->mr
, newsize
);
1917 if (block
->resized
) {
1918 block
->resized(block
->idstr
, newsize
, block
->host
);
1923 /* Called with ram_list.mutex held */
1924 static void dirty_memory_extend(ram_addr_t old_ram_size
,
1925 ram_addr_t new_ram_size
)
1927 ram_addr_t old_num_blocks
= DIV_ROUND_UP(old_ram_size
,
1928 DIRTY_MEMORY_BLOCK_SIZE
);
1929 ram_addr_t new_num_blocks
= DIV_ROUND_UP(new_ram_size
,
1930 DIRTY_MEMORY_BLOCK_SIZE
);
1933 /* Only need to extend if block count increased */
1934 if (new_num_blocks
<= old_num_blocks
) {
1938 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
1939 DirtyMemoryBlocks
*old_blocks
;
1940 DirtyMemoryBlocks
*new_blocks
;
1943 old_blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[i
]);
1944 new_blocks
= g_malloc(sizeof(*new_blocks
) +
1945 sizeof(new_blocks
->blocks
[0]) * new_num_blocks
);
1947 if (old_num_blocks
) {
1948 memcpy(new_blocks
->blocks
, old_blocks
->blocks
,
1949 old_num_blocks
* sizeof(old_blocks
->blocks
[0]));
1952 for (j
= old_num_blocks
; j
< new_num_blocks
; j
++) {
1953 new_blocks
->blocks
[j
] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE
);
1956 atomic_rcu_set(&ram_list
.dirty_memory
[i
], new_blocks
);
1959 g_free_rcu(old_blocks
, rcu
);
1964 static void ram_block_add(RAMBlock
*new_block
, Error
**errp
, bool shared
)
1967 RAMBlock
*last_block
= NULL
;
1968 ram_addr_t old_ram_size
, new_ram_size
;
1971 old_ram_size
= last_ram_page();
1973 qemu_mutex_lock_ramlist();
1974 new_block
->offset
= find_ram_offset(new_block
->max_length
);
1976 if (!new_block
->host
) {
1977 if (xen_enabled()) {
1978 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
1979 new_block
->mr
, &err
);
1981 error_propagate(errp
, err
);
1982 qemu_mutex_unlock_ramlist();
1986 new_block
->host
= phys_mem_alloc(new_block
->max_length
,
1987 &new_block
->mr
->align
, shared
);
1988 if (!new_block
->host
) {
1989 error_setg_errno(errp
, errno
,
1990 "cannot set up guest memory '%s'",
1991 memory_region_name(new_block
->mr
));
1992 qemu_mutex_unlock_ramlist();
1995 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
1999 new_ram_size
= MAX(old_ram_size
,
2000 (new_block
->offset
+ new_block
->max_length
) >> TARGET_PAGE_BITS
);
2001 if (new_ram_size
> old_ram_size
) {
2002 dirty_memory_extend(old_ram_size
, new_ram_size
);
2004 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2005 * QLIST (which has an RCU-friendly variant) does not have insertion at
2006 * tail, so save the last element in last_block.
2008 RAMBLOCK_FOREACH(block
) {
2010 if (block
->max_length
< new_block
->max_length
) {
2015 QLIST_INSERT_BEFORE_RCU(block
, new_block
, next
);
2016 } else if (last_block
) {
2017 QLIST_INSERT_AFTER_RCU(last_block
, new_block
, next
);
2018 } else { /* list is empty */
2019 QLIST_INSERT_HEAD_RCU(&ram_list
.blocks
, new_block
, next
);
2021 ram_list
.mru_block
= NULL
;
2023 /* Write list before version */
2026 qemu_mutex_unlock_ramlist();
2028 cpu_physical_memory_set_dirty_range(new_block
->offset
,
2029 new_block
->used_length
,
2032 if (new_block
->host
) {
2033 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
2034 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
2035 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2036 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_DONTFORK
);
2037 ram_block_notify_add(new_block
->host
, new_block
->max_length
);
2042 RAMBlock
*qemu_ram_alloc_from_fd(ram_addr_t size
, MemoryRegion
*mr
,
2046 RAMBlock
*new_block
;
2047 Error
*local_err
= NULL
;
2050 if (xen_enabled()) {
2051 error_setg(errp
, "-mem-path not supported with Xen");
2055 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2057 "host lacks kvm mmu notifiers, -mem-path unsupported");
2061 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
2063 * file_ram_alloc() needs to allocate just like
2064 * phys_mem_alloc, but we haven't bothered to provide
2068 "-mem-path not supported with this accelerator");
2072 size
= HOST_PAGE_ALIGN(size
);
2073 file_size
= get_file_size(fd
);
2074 if (file_size
> 0 && file_size
< size
) {
2075 error_setg(errp
, "backing store %s size 0x%" PRIx64
2076 " does not match 'size' option 0x" RAM_ADDR_FMT
,
2077 mem_path
, file_size
, size
);
2081 new_block
= g_malloc0(sizeof(*new_block
));
2083 new_block
->used_length
= size
;
2084 new_block
->max_length
= size
;
2085 new_block
->flags
= share
? RAM_SHARED
: 0;
2086 new_block
->host
= file_ram_alloc(new_block
, size
, fd
, !file_size
, errp
);
2087 if (!new_block
->host
) {
2092 ram_block_add(new_block
, &local_err
, share
);
2095 error_propagate(errp
, local_err
);
2103 RAMBlock
*qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
2104 bool share
, const char *mem_path
,
2111 fd
= file_ram_open(mem_path
, memory_region_name(mr
), &created
, errp
);
2116 block
= qemu_ram_alloc_from_fd(size
, mr
, share
, fd
, errp
);
2130 RAMBlock
*qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
2131 void (*resized
)(const char*,
2134 void *host
, bool resizeable
, bool share
,
2135 MemoryRegion
*mr
, Error
**errp
)
2137 RAMBlock
*new_block
;
2138 Error
*local_err
= NULL
;
2140 size
= HOST_PAGE_ALIGN(size
);
2141 max_size
= HOST_PAGE_ALIGN(max_size
);
2142 new_block
= g_malloc0(sizeof(*new_block
));
2144 new_block
->resized
= resized
;
2145 new_block
->used_length
= size
;
2146 new_block
->max_length
= max_size
;
2147 assert(max_size
>= size
);
2149 new_block
->page_size
= getpagesize();
2150 new_block
->host
= host
;
2152 new_block
->flags
|= RAM_PREALLOC
;
2155 new_block
->flags
|= RAM_RESIZEABLE
;
2157 ram_block_add(new_block
, &local_err
, share
);
2160 error_propagate(errp
, local_err
);
2166 RAMBlock
*qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
2167 MemoryRegion
*mr
, Error
**errp
)
2169 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, false,
2173 RAMBlock
*qemu_ram_alloc(ram_addr_t size
, bool share
,
2174 MemoryRegion
*mr
, Error
**errp
)
2176 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, false,
2180 RAMBlock
*qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
2181 void (*resized
)(const char*,
2184 MemoryRegion
*mr
, Error
**errp
)
2186 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
, true,
2190 static void reclaim_ramblock(RAMBlock
*block
)
2192 if (block
->flags
& RAM_PREALLOC
) {
2194 } else if (xen_enabled()) {
2195 xen_invalidate_map_cache_entry(block
->host
);
2197 } else if (block
->fd
>= 0) {
2198 qemu_ram_munmap(block
->host
, block
->max_length
);
2202 qemu_anon_ram_free(block
->host
, block
->max_length
);
2207 void qemu_ram_free(RAMBlock
*block
)
2214 ram_block_notify_remove(block
->host
, block
->max_length
);
2217 qemu_mutex_lock_ramlist();
2218 QLIST_REMOVE_RCU(block
, next
);
2219 ram_list
.mru_block
= NULL
;
2220 /* Write list before version */
2223 call_rcu(block
, reclaim_ramblock
, rcu
);
2224 qemu_mutex_unlock_ramlist();
2228 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
2235 RAMBLOCK_FOREACH(block
) {
2236 offset
= addr
- block
->offset
;
2237 if (offset
< block
->max_length
) {
2238 vaddr
= ramblock_ptr(block
, offset
);
2239 if (block
->flags
& RAM_PREALLOC
) {
2241 } else if (xen_enabled()) {
2245 if (block
->fd
>= 0) {
2246 flags
|= (block
->flags
& RAM_SHARED
?
2247 MAP_SHARED
: MAP_PRIVATE
);
2248 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2249 flags
, block
->fd
, offset
);
2252 * Remap needs to match alloc. Accelerators that
2253 * set phys_mem_alloc never remap. If they did,
2254 * we'd need a remap hook here.
2256 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
2258 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
2259 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
2262 if (area
!= vaddr
) {
2263 error_report("Could not remap addr: "
2264 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"",
2268 memory_try_enable_merging(vaddr
, length
);
2269 qemu_ram_setup_dump(vaddr
, length
);
2274 #endif /* !_WIN32 */
2276 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2277 * This should not be used for general purpose DMA. Use address_space_map
2278 * or address_space_rw instead. For local memory (e.g. video ram) that the
2279 * device owns, use memory_region_get_ram_ptr.
2281 * Called within RCU critical section.
2283 void *qemu_map_ram_ptr(RAMBlock
*ram_block
, ram_addr_t addr
)
2285 RAMBlock
*block
= ram_block
;
2287 if (block
== NULL
) {
2288 block
= qemu_get_ram_block(addr
);
2289 addr
-= block
->offset
;
2292 if (xen_enabled() && block
->host
== NULL
) {
2293 /* We need to check if the requested address is in the RAM
2294 * because we don't want to map the entire memory in QEMU.
2295 * In that case just map until the end of the page.
2297 if (block
->offset
== 0) {
2298 return xen_map_cache(addr
, 0, 0, false);
2301 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, false);
2303 return ramblock_ptr(block
, addr
);
2306 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2307 * but takes a size argument.
2309 * Called within RCU critical section.
2311 static void *qemu_ram_ptr_length(RAMBlock
*ram_block
, ram_addr_t addr
,
2312 hwaddr
*size
, bool lock
)
2314 RAMBlock
*block
= ram_block
;
2319 if (block
== NULL
) {
2320 block
= qemu_get_ram_block(addr
);
2321 addr
-= block
->offset
;
2323 *size
= MIN(*size
, block
->max_length
- addr
);
2325 if (xen_enabled() && block
->host
== NULL
) {
2326 /* We need to check if the requested address is in the RAM
2327 * because we don't want to map the entire memory in QEMU.
2328 * In that case just map the requested area.
2330 if (block
->offset
== 0) {
2331 return xen_map_cache(addr
, *size
, lock
, lock
);
2334 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1, lock
);
2337 return ramblock_ptr(block
, addr
);
2340 /* Return the offset of a hostpointer within a ramblock */
2341 ram_addr_t
qemu_ram_block_host_offset(RAMBlock
*rb
, void *host
)
2343 ram_addr_t res
= (uint8_t *)host
- (uint8_t *)rb
->host
;
2344 assert((uintptr_t)host
>= (uintptr_t)rb
->host
);
2345 assert(res
< rb
->max_length
);
2351 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2354 * ptr: Host pointer to look up
2355 * round_offset: If true round the result offset down to a page boundary
2356 * *ram_addr: set to result ram_addr
2357 * *offset: set to result offset within the RAMBlock
2359 * Returns: RAMBlock (or NULL if not found)
2361 * By the time this function returns, the returned pointer is not protected
2362 * by RCU anymore. If the caller is not within an RCU critical section and
2363 * does not hold the iothread lock, it must have other means of protecting the
2364 * pointer, such as a reference to the region that includes the incoming
2367 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
2371 uint8_t *host
= ptr
;
2373 if (xen_enabled()) {
2374 ram_addr_t ram_addr
;
2376 ram_addr
= xen_ram_addr_from_mapcache(ptr
);
2377 block
= qemu_get_ram_block(ram_addr
);
2379 *offset
= ram_addr
- block
->offset
;
2386 block
= atomic_rcu_read(&ram_list
.mru_block
);
2387 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
2391 RAMBLOCK_FOREACH(block
) {
2392 /* This case append when the block is not mapped. */
2393 if (block
->host
== NULL
) {
2396 if (host
- block
->host
< block
->max_length
) {
2405 *offset
= (host
- block
->host
);
2407 *offset
&= TARGET_PAGE_MASK
;
2414 * Finds the named RAMBlock
2416 * name: The name of RAMBlock to find
2418 * Returns: RAMBlock (or NULL if not found)
2420 RAMBlock
*qemu_ram_block_by_name(const char *name
)
2424 RAMBLOCK_FOREACH(block
) {
2425 if (!strcmp(name
, block
->idstr
)) {
2433 /* Some of the softmmu routines need to translate from a host pointer
2434 (typically a TLB entry) back to a ram offset. */
2435 ram_addr_t
qemu_ram_addr_from_host(void *ptr
)
2440 block
= qemu_ram_block_from_host(ptr
, false, &offset
);
2442 return RAM_ADDR_INVALID
;
2445 return block
->offset
+ offset
;
2448 /* Called within RCU critical section. */
2449 void memory_notdirty_write_prepare(NotDirtyInfo
*ndi
,
2452 ram_addr_t ram_addr
,
2456 ndi
->ram_addr
= ram_addr
;
2457 ndi
->mem_vaddr
= mem_vaddr
;
2459 ndi
->locked
= false;
2461 assert(tcg_enabled());
2462 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
2465 tb_invalidate_phys_page_fast(ram_addr
, size
);
2469 /* Called within RCU critical section. */
2470 void memory_notdirty_write_complete(NotDirtyInfo
*ndi
)
2476 /* Set both VGA and migration bits for simplicity and to remove
2477 * the notdirty callback faster.
2479 cpu_physical_memory_set_dirty_range(ndi
->ram_addr
, ndi
->size
,
2480 DIRTY_CLIENTS_NOCODE
);
2481 /* we remove the notdirty callback only if the code has been
2483 if (!cpu_physical_memory_is_clean(ndi
->ram_addr
)) {
2484 tlb_set_dirty(ndi
->cpu
, ndi
->mem_vaddr
);
2488 /* Called within RCU critical section. */
2489 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
2490 uint64_t val
, unsigned size
)
2494 memory_notdirty_write_prepare(&ndi
, current_cpu
, current_cpu
->mem_io_vaddr
,
2499 stb_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2502 stw_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2505 stl_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2508 stq_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2513 memory_notdirty_write_complete(&ndi
);
2516 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
2517 unsigned size
, bool is_write
)
2522 static const MemoryRegionOps notdirty_mem_ops
= {
2523 .write
= notdirty_mem_write
,
2524 .valid
.accepts
= notdirty_mem_accepts
,
2525 .endianness
= DEVICE_NATIVE_ENDIAN
,
2527 .min_access_size
= 1,
2528 .max_access_size
= 8,
2532 .min_access_size
= 1,
2533 .max_access_size
= 8,
2538 /* Generate a debug exception if a watchpoint has been hit. */
2539 static void check_watchpoint(int offset
, int len
, MemTxAttrs attrs
, int flags
)
2541 CPUState
*cpu
= current_cpu
;
2542 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
2546 assert(tcg_enabled());
2547 if (cpu
->watchpoint_hit
) {
2548 /* We re-entered the check after replacing the TB. Now raise
2549 * the debug interrupt so that is will trigger after the
2550 * current instruction. */
2551 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
2554 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2555 vaddr
= cc
->adjust_watchpoint_address(cpu
, vaddr
, len
);
2556 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
2557 if (cpu_watchpoint_address_matches(wp
, vaddr
, len
)
2558 && (wp
->flags
& flags
)) {
2559 if (flags
== BP_MEM_READ
) {
2560 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
2562 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
2564 wp
->hitaddr
= vaddr
;
2565 wp
->hitattrs
= attrs
;
2566 if (!cpu
->watchpoint_hit
) {
2567 if (wp
->flags
& BP_CPU
&&
2568 !cc
->debug_check_watchpoint(cpu
, wp
)) {
2569 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2572 cpu
->watchpoint_hit
= wp
;
2574 /* Both tb_lock and iothread_mutex will be reset when
2575 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2576 * back into the cpu_exec main loop.
2579 tb_check_watchpoint(cpu
);
2580 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2581 cpu
->exception_index
= EXCP_DEBUG
;
2584 /* Force execution of one insn next time. */
2585 cpu
->cflags_next_tb
= 1 | curr_cflags();
2586 cpu_loop_exit_noexc(cpu
);
2590 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2595 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2596 so these check for a hit then pass through to the normal out-of-line
2598 static MemTxResult
watch_mem_read(void *opaque
, hwaddr addr
, uint64_t *pdata
,
2599 unsigned size
, MemTxAttrs attrs
)
2603 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2604 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2606 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_READ
);
2609 data
= address_space_ldub(as
, addr
, attrs
, &res
);
2612 data
= address_space_lduw(as
, addr
, attrs
, &res
);
2615 data
= address_space_ldl(as
, addr
, attrs
, &res
);
2618 data
= address_space_ldq(as
, addr
, attrs
, &res
);
2626 static MemTxResult
watch_mem_write(void *opaque
, hwaddr addr
,
2627 uint64_t val
, unsigned size
,
2631 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2632 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2634 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_WRITE
);
2637 address_space_stb(as
, addr
, val
, attrs
, &res
);
2640 address_space_stw(as
, addr
, val
, attrs
, &res
);
2643 address_space_stl(as
, addr
, val
, attrs
, &res
);
2646 address_space_stq(as
, addr
, val
, attrs
, &res
);
2653 static const MemoryRegionOps watch_mem_ops
= {
2654 .read_with_attrs
= watch_mem_read
,
2655 .write_with_attrs
= watch_mem_write
,
2656 .endianness
= DEVICE_NATIVE_ENDIAN
,
2658 .min_access_size
= 1,
2659 .max_access_size
= 8,
2663 .min_access_size
= 1,
2664 .max_access_size
= 8,
2669 static MemTxResult
flatview_read(FlatView
*fv
, hwaddr addr
,
2670 MemTxAttrs attrs
, uint8_t *buf
, int len
);
2671 static MemTxResult
flatview_write(FlatView
*fv
, hwaddr addr
, MemTxAttrs attrs
,
2672 const uint8_t *buf
, int len
);
2673 static bool flatview_access_valid(FlatView
*fv
, hwaddr addr
, int len
,
2676 static MemTxResult
subpage_read(void *opaque
, hwaddr addr
, uint64_t *data
,
2677 unsigned len
, MemTxAttrs attrs
)
2679 subpage_t
*subpage
= opaque
;
2683 #if defined(DEBUG_SUBPAGE)
2684 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
2685 subpage
, len
, addr
);
2687 res
= flatview_read(subpage
->fv
, addr
+ subpage
->base
, attrs
, buf
, len
);
2693 *data
= ldub_p(buf
);
2696 *data
= lduw_p(buf
);
2709 static MemTxResult
subpage_write(void *opaque
, hwaddr addr
,
2710 uint64_t value
, unsigned len
, MemTxAttrs attrs
)
2712 subpage_t
*subpage
= opaque
;
2715 #if defined(DEBUG_SUBPAGE)
2716 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2717 " value %"PRIx64
"\n",
2718 __func__
, subpage
, len
, addr
, value
);
2736 return flatview_write(subpage
->fv
, addr
+ subpage
->base
, attrs
, buf
, len
);
2739 static bool subpage_accepts(void *opaque
, hwaddr addr
,
2740 unsigned len
, bool is_write
)
2742 subpage_t
*subpage
= opaque
;
2743 #if defined(DEBUG_SUBPAGE)
2744 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
2745 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
2748 return flatview_access_valid(subpage
->fv
, addr
+ subpage
->base
,
2752 static const MemoryRegionOps subpage_ops
= {
2753 .read_with_attrs
= subpage_read
,
2754 .write_with_attrs
= subpage_write
,
2755 .impl
.min_access_size
= 1,
2756 .impl
.max_access_size
= 8,
2757 .valid
.min_access_size
= 1,
2758 .valid
.max_access_size
= 8,
2759 .valid
.accepts
= subpage_accepts
,
2760 .endianness
= DEVICE_NATIVE_ENDIAN
,
2763 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2768 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2770 idx
= SUBPAGE_IDX(start
);
2771 eidx
= SUBPAGE_IDX(end
);
2772 #if defined(DEBUG_SUBPAGE)
2773 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2774 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
2776 for (; idx
<= eidx
; idx
++) {
2777 mmio
->sub_section
[idx
] = section
;
2783 static subpage_t
*subpage_init(FlatView
*fv
, hwaddr base
)
2787 mmio
= g_malloc0(sizeof(subpage_t
) + TARGET_PAGE_SIZE
* sizeof(uint16_t));
2790 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
2791 NULL
, TARGET_PAGE_SIZE
);
2792 mmio
->iomem
.subpage
= true;
2793 #if defined(DEBUG_SUBPAGE)
2794 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
2795 mmio
, base
, TARGET_PAGE_SIZE
);
2797 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
2802 static uint16_t dummy_section(PhysPageMap
*map
, FlatView
*fv
, MemoryRegion
*mr
)
2805 MemoryRegionSection section
= {
2808 .offset_within_address_space
= 0,
2809 .offset_within_region
= 0,
2810 .size
= int128_2_64(),
2813 return phys_section_add(map
, §ion
);
2816 static void readonly_mem_write(void *opaque
, hwaddr addr
,
2817 uint64_t val
, unsigned size
)
2819 /* Ignore any write to ROM. */
2822 static bool readonly_mem_accepts(void *opaque
, hwaddr addr
,
2823 unsigned size
, bool is_write
)
2828 /* This will only be used for writes, because reads are special cased
2829 * to directly access the underlying host ram.
2831 static const MemoryRegionOps readonly_mem_ops
= {
2832 .write
= readonly_mem_write
,
2833 .valid
.accepts
= readonly_mem_accepts
,
2834 .endianness
= DEVICE_NATIVE_ENDIAN
,
2836 .min_access_size
= 1,
2837 .max_access_size
= 8,
2841 .min_access_size
= 1,
2842 .max_access_size
= 8,
2847 MemoryRegion
*iotlb_to_region(CPUState
*cpu
, hwaddr index
, MemTxAttrs attrs
)
2849 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
2850 CPUAddressSpace
*cpuas
= &cpu
->cpu_ases
[asidx
];
2851 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpuas
->memory_dispatch
);
2852 MemoryRegionSection
*sections
= d
->map
.sections
;
2854 return sections
[index
& ~TARGET_PAGE_MASK
].mr
;
2857 static void io_mem_init(void)
2859 memory_region_init_io(&io_mem_rom
, NULL
, &readonly_mem_ops
,
2860 NULL
, NULL
, UINT64_MAX
);
2861 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
2864 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2865 * which can be called without the iothread mutex.
2867 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
2869 memory_region_clear_global_locking(&io_mem_notdirty
);
2871 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
2875 AddressSpaceDispatch
*address_space_dispatch_new(FlatView
*fv
)
2877 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
2880 n
= dummy_section(&d
->map
, fv
, &io_mem_unassigned
);
2881 assert(n
== PHYS_SECTION_UNASSIGNED
);
2882 n
= dummy_section(&d
->map
, fv
, &io_mem_notdirty
);
2883 assert(n
== PHYS_SECTION_NOTDIRTY
);
2884 n
= dummy_section(&d
->map
, fv
, &io_mem_rom
);
2885 assert(n
== PHYS_SECTION_ROM
);
2886 n
= dummy_section(&d
->map
, fv
, &io_mem_watch
);
2887 assert(n
== PHYS_SECTION_WATCH
);
2889 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
2894 void address_space_dispatch_free(AddressSpaceDispatch
*d
)
2896 phys_sections_free(&d
->map
);
2900 static void tcg_commit(MemoryListener
*listener
)
2902 CPUAddressSpace
*cpuas
;
2903 AddressSpaceDispatch
*d
;
2905 /* since each CPU stores ram addresses in its TLB cache, we must
2906 reset the modified entries */
2907 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
2908 cpu_reloading_memory_map();
2909 /* The CPU and TLB are protected by the iothread lock.
2910 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2911 * may have split the RCU critical section.
2913 d
= address_space_to_dispatch(cpuas
->as
);
2914 atomic_rcu_set(&cpuas
->memory_dispatch
, d
);
2915 tlb_flush(cpuas
->cpu
);
2918 static void memory_map_init(void)
2920 system_memory
= g_malloc(sizeof(*system_memory
));
2922 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
2923 address_space_init(&address_space_memory
, system_memory
, "memory");
2925 system_io
= g_malloc(sizeof(*system_io
));
2926 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
2928 address_space_init(&address_space_io
, system_io
, "I/O");
2931 MemoryRegion
*get_system_memory(void)
2933 return system_memory
;
2936 MemoryRegion
*get_system_io(void)
2941 #endif /* !defined(CONFIG_USER_ONLY) */
2943 /* physical memory access (slow version, mainly for debug) */
2944 #if defined(CONFIG_USER_ONLY)
2945 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2946 uint8_t *buf
, int len
, int is_write
)
2953 page
= addr
& TARGET_PAGE_MASK
;
2954 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2957 flags
= page_get_flags(page
);
2958 if (!(flags
& PAGE_VALID
))
2961 if (!(flags
& PAGE_WRITE
))
2963 /* XXX: this code should not depend on lock_user */
2964 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2967 unlock_user(p
, addr
, l
);
2969 if (!(flags
& PAGE_READ
))
2971 /* XXX: this code should not depend on lock_user */
2972 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2975 unlock_user(p
, addr
, 0);
2986 static void invalidate_and_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
2989 uint8_t dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
2990 addr
+= memory_region_get_ram_addr(mr
);
2992 /* No early return if dirty_log_mask is or becomes 0, because
2993 * cpu_physical_memory_set_dirty_range will still call
2994 * xen_modified_memory.
2996 if (dirty_log_mask
) {
2998 cpu_physical_memory_range_includes_clean(addr
, length
, dirty_log_mask
);
3000 if (dirty_log_mask
& (1 << DIRTY_MEMORY_CODE
)) {
3001 assert(tcg_enabled());
3003 tb_invalidate_phys_range(addr
, addr
+ length
);
3005 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
3007 cpu_physical_memory_set_dirty_range(addr
, length
, dirty_log_mask
);
3010 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
3012 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
3014 /* Regions are assumed to support 1-4 byte accesses unless
3015 otherwise specified. */
3016 if (access_size_max
== 0) {
3017 access_size_max
= 4;
3020 /* Bound the maximum access by the alignment of the address. */
3021 if (!mr
->ops
->impl
.unaligned
) {
3022 unsigned align_size_max
= addr
& -addr
;
3023 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
3024 access_size_max
= align_size_max
;
3028 /* Don't attempt accesses larger than the maximum. */
3029 if (l
> access_size_max
) {
3030 l
= access_size_max
;
3037 static bool prepare_mmio_access(MemoryRegion
*mr
)
3039 bool unlocked
= !qemu_mutex_iothread_locked();
3040 bool release_lock
= false;
3042 if (unlocked
&& mr
->global_locking
) {
3043 qemu_mutex_lock_iothread();
3045 release_lock
= true;
3047 if (mr
->flush_coalesced_mmio
) {
3049 qemu_mutex_lock_iothread();
3051 qemu_flush_coalesced_mmio_buffer();
3053 qemu_mutex_unlock_iothread();
3057 return release_lock
;
3060 /* Called within RCU critical section. */
3061 static MemTxResult
flatview_write_continue(FlatView
*fv
, hwaddr addr
,
3064 int len
, hwaddr addr1
,
3065 hwaddr l
, MemoryRegion
*mr
)
3069 MemTxResult result
= MEMTX_OK
;
3070 bool release_lock
= false;
3073 if (!memory_access_is_direct(mr
, true)) {
3074 release_lock
|= prepare_mmio_access(mr
);
3075 l
= memory_access_size(mr
, l
, addr1
);
3076 /* XXX: could force current_cpu to NULL to avoid
3080 /* 64 bit write access */
3082 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 8,
3086 /* 32 bit write access */
3087 val
= (uint32_t)ldl_p(buf
);
3088 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 4,
3092 /* 16 bit write access */
3094 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 2,
3098 /* 8 bit write access */
3100 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 1,
3108 ptr
= qemu_ram_ptr_length(mr
->ram_block
, addr1
, &l
, false);
3109 memcpy(ptr
, buf
, l
);
3110 invalidate_and_set_dirty(mr
, addr1
, l
);
3114 qemu_mutex_unlock_iothread();
3115 release_lock
= false;
3127 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, true);
3133 /* Called from RCU critical section. */
3134 static MemTxResult
flatview_write(FlatView
*fv
, hwaddr addr
, MemTxAttrs attrs
,
3135 const uint8_t *buf
, int len
)
3140 MemTxResult result
= MEMTX_OK
;
3143 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, true);
3144 result
= flatview_write_continue(fv
, addr
, attrs
, buf
, len
,
3150 /* Called within RCU critical section. */
3151 MemTxResult
flatview_read_continue(FlatView
*fv
, hwaddr addr
,
3152 MemTxAttrs attrs
, uint8_t *buf
,
3153 int len
, hwaddr addr1
, hwaddr l
,
3158 MemTxResult result
= MEMTX_OK
;
3159 bool release_lock
= false;
3162 if (!memory_access_is_direct(mr
, false)) {
3164 release_lock
|= prepare_mmio_access(mr
);
3165 l
= memory_access_size(mr
, l
, addr1
);
3168 /* 64 bit read access */
3169 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 8,
3174 /* 32 bit read access */
3175 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 4,
3180 /* 16 bit read access */
3181 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 2,
3186 /* 8 bit read access */
3187 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 1,
3196 ptr
= qemu_ram_ptr_length(mr
->ram_block
, addr1
, &l
, false);
3197 memcpy(buf
, ptr
, l
);
3201 qemu_mutex_unlock_iothread();
3202 release_lock
= false;
3214 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, false);
3220 /* Called from RCU critical section. */
3221 static MemTxResult
flatview_read(FlatView
*fv
, hwaddr addr
,
3222 MemTxAttrs attrs
, uint8_t *buf
, int len
)
3229 mr
= flatview_translate(fv
, addr
, &addr1
, &l
, false);
3230 return flatview_read_continue(fv
, addr
, attrs
, buf
, len
,
3234 MemTxResult
address_space_read_full(AddressSpace
*as
, hwaddr addr
,
3235 MemTxAttrs attrs
, uint8_t *buf
, int len
)
3237 MemTxResult result
= MEMTX_OK
;
3242 fv
= address_space_to_flatview(as
);
3243 result
= flatview_read(fv
, addr
, attrs
, buf
, len
);
3250 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
,
3252 const uint8_t *buf
, int len
)
3254 MemTxResult result
= MEMTX_OK
;
3259 fv
= address_space_to_flatview(as
);
3260 result
= flatview_write(fv
, addr
, attrs
, buf
, len
);
3267 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
3268 uint8_t *buf
, int len
, bool is_write
)
3271 return address_space_write(as
, addr
, attrs
, buf
, len
);
3273 return address_space_read_full(as
, addr
, attrs
, buf
, len
);
3277 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
3278 int len
, int is_write
)
3280 address_space_rw(&address_space_memory
, addr
, MEMTXATTRS_UNSPECIFIED
,
3281 buf
, len
, is_write
);
3284 enum write_rom_type
{
3289 static inline void cpu_physical_memory_write_rom_internal(AddressSpace
*as
,
3290 hwaddr addr
, const uint8_t *buf
, int len
, enum write_rom_type type
)
3300 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
3302 if (!(memory_region_is_ram(mr
) ||
3303 memory_region_is_romd(mr
))) {
3304 l
= memory_access_size(mr
, l
, addr1
);
3307 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3310 memcpy(ptr
, buf
, l
);
3311 invalidate_and_set_dirty(mr
, addr1
, l
);
3314 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
3325 /* used for ROM loading : can write in RAM and ROM */
3326 void cpu_physical_memory_write_rom(AddressSpace
*as
, hwaddr addr
,
3327 const uint8_t *buf
, int len
)
3329 cpu_physical_memory_write_rom_internal(as
, addr
, buf
, len
, WRITE_DATA
);
3332 void cpu_flush_icache_range(hwaddr start
, int len
)
3335 * This function should do the same thing as an icache flush that was
3336 * triggered from within the guest. For TCG we are always cache coherent,
3337 * so there is no need to flush anything. For KVM / Xen we need to flush
3338 * the host's instruction cache at least.
3340 if (tcg_enabled()) {
3344 cpu_physical_memory_write_rom_internal(&address_space_memory
,
3345 start
, NULL
, len
, FLUSH_CACHE
);
3356 static BounceBuffer bounce
;
3358 typedef struct MapClient
{
3360 QLIST_ENTRY(MapClient
) link
;
3363 QemuMutex map_client_list_lock
;
3364 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
3365 = QLIST_HEAD_INITIALIZER(map_client_list
);
3367 static void cpu_unregister_map_client_do(MapClient
*client
)
3369 QLIST_REMOVE(client
, link
);
3373 static void cpu_notify_map_clients_locked(void)
3377 while (!QLIST_EMPTY(&map_client_list
)) {
3378 client
= QLIST_FIRST(&map_client_list
);
3379 qemu_bh_schedule(client
->bh
);
3380 cpu_unregister_map_client_do(client
);
3384 void cpu_register_map_client(QEMUBH
*bh
)
3386 MapClient
*client
= g_malloc(sizeof(*client
));
3388 qemu_mutex_lock(&map_client_list_lock
);
3390 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
3391 if (!atomic_read(&bounce
.in_use
)) {
3392 cpu_notify_map_clients_locked();
3394 qemu_mutex_unlock(&map_client_list_lock
);
3397 void cpu_exec_init_all(void)
3399 qemu_mutex_init(&ram_list
.mutex
);
3400 /* The data structures we set up here depend on knowing the page size,
3401 * so no more changes can be made after this point.
3402 * In an ideal world, nothing we did before we had finished the
3403 * machine setup would care about the target page size, and we could
3404 * do this much later, rather than requiring board models to state
3405 * up front what their requirements are.
3407 finalize_target_page_bits();
3410 qemu_mutex_init(&map_client_list_lock
);
3413 void cpu_unregister_map_client(QEMUBH
*bh
)
3417 qemu_mutex_lock(&map_client_list_lock
);
3418 QLIST_FOREACH(client
, &map_client_list
, link
) {
3419 if (client
->bh
== bh
) {
3420 cpu_unregister_map_client_do(client
);
3424 qemu_mutex_unlock(&map_client_list_lock
);
3427 static void cpu_notify_map_clients(void)
3429 qemu_mutex_lock(&map_client_list_lock
);
3430 cpu_notify_map_clients_locked();
3431 qemu_mutex_unlock(&map_client_list_lock
);
3434 static bool flatview_access_valid(FlatView
*fv
, hwaddr addr
, int len
,
3442 mr
= flatview_translate(fv
, addr
, &xlat
, &l
, is_write
);
3443 if (!memory_access_is_direct(mr
, is_write
)) {
3444 l
= memory_access_size(mr
, l
, addr
);
3445 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
3456 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
,
3457 int len
, bool is_write
)
3463 fv
= address_space_to_flatview(as
);
3464 result
= flatview_access_valid(fv
, addr
, len
, is_write
);
3470 flatview_extend_translation(FlatView
*fv
, hwaddr addr
,
3472 MemoryRegion
*mr
, hwaddr base
, hwaddr len
,
3477 MemoryRegion
*this_mr
;
3483 if (target_len
== 0) {
3488 this_mr
= flatview_translate(fv
, addr
, &xlat
,
3490 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
3496 /* Map a physical memory region into a host virtual address.
3497 * May map a subset of the requested range, given by and returned in *plen.
3498 * May return NULL if resources needed to perform the mapping are exhausted.
3499 * Use only for reads OR writes - not for read-modify-write operations.
3500 * Use cpu_register_map_client() to know when retrying the map operation is
3501 * likely to succeed.
3503 void *address_space_map(AddressSpace
*as
,
3520 fv
= address_space_to_flatview(as
);
3521 mr
= flatview_translate(fv
, addr
, &xlat
, &l
, is_write
);
3523 if (!memory_access_is_direct(mr
, is_write
)) {
3524 if (atomic_xchg(&bounce
.in_use
, true)) {
3528 /* Avoid unbounded allocations */
3529 l
= MIN(l
, TARGET_PAGE_SIZE
);
3530 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
3534 memory_region_ref(mr
);
3537 flatview_read(fv
, addr
, MEMTXATTRS_UNSPECIFIED
,
3543 return bounce
.buffer
;
3547 memory_region_ref(mr
);
3548 *plen
= flatview_extend_translation(fv
, addr
, len
, mr
, xlat
,
3550 ptr
= qemu_ram_ptr_length(mr
->ram_block
, xlat
, plen
, true);
3556 /* Unmaps a memory region previously mapped by address_space_map().
3557 * Will also mark the memory as dirty if is_write == 1. access_len gives
3558 * the amount of memory that was actually read or written by the caller.
3560 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
3561 int is_write
, hwaddr access_len
)
3563 if (buffer
!= bounce
.buffer
) {
3567 mr
= memory_region_from_host(buffer
, &addr1
);
3570 invalidate_and_set_dirty(mr
, addr1
, access_len
);
3572 if (xen_enabled()) {
3573 xen_invalidate_map_cache_entry(buffer
);
3575 memory_region_unref(mr
);
3579 address_space_write(as
, bounce
.addr
, MEMTXATTRS_UNSPECIFIED
,
3580 bounce
.buffer
, access_len
);
3582 qemu_vfree(bounce
.buffer
);
3583 bounce
.buffer
= NULL
;
3584 memory_region_unref(bounce
.mr
);
3585 atomic_mb_set(&bounce
.in_use
, false);
3586 cpu_notify_map_clients();
3589 void *cpu_physical_memory_map(hwaddr addr
,
3593 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
3596 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
3597 int is_write
, hwaddr access_len
)
3599 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
3602 #define ARG1_DECL AddressSpace *as
3605 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3606 #define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3607 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3608 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3609 #define RCU_READ_LOCK(...) rcu_read_lock()
3610 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3611 #include "memory_ldst.inc.c"
3613 int64_t address_space_cache_init(MemoryRegionCache
*cache
,
3625 void address_space_cache_invalidate(MemoryRegionCache
*cache
,
3631 void address_space_cache_destroy(MemoryRegionCache
*cache
)
3636 #define ARG1_DECL MemoryRegionCache *cache
3638 #define SUFFIX _cached
3639 #define TRANSLATE(addr, ...) \
3640 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
3641 #define IS_DIRECT(mr, is_write) true
3642 #define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3643 #define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3644 #define RCU_READ_LOCK() rcu_read_lock()
3645 #define RCU_READ_UNLOCK() rcu_read_unlock()
3646 #include "memory_ldst.inc.c"
3648 /* virtual memory access for debug (includes writing to ROM) */
3649 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3650 uint8_t *buf
, int len
, int is_write
)
3656 cpu_synchronize_state(cpu
);
3661 page
= addr
& TARGET_PAGE_MASK
;
3662 phys_addr
= cpu_get_phys_page_attrs_debug(cpu
, page
, &attrs
);
3663 asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
3664 /* if no physical page mapped, return an error */
3665 if (phys_addr
== -1)
3667 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3670 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3672 cpu_physical_memory_write_rom(cpu
->cpu_ases
[asidx
].as
,
3675 address_space_rw(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3676 MEMTXATTRS_UNSPECIFIED
,
3687 * Allows code that needs to deal with migration bitmaps etc to still be built
3688 * target independent.
3690 size_t qemu_target_page_size(void)
3692 return TARGET_PAGE_SIZE
;
3695 int qemu_target_page_bits(void)
3697 return TARGET_PAGE_BITS
;
3700 int qemu_target_page_bits_min(void)
3702 return TARGET_PAGE_BITS_MIN
;
3707 * A helper function for the _utterly broken_ virtio device model to find out if
3708 * it's running on a big endian machine. Don't do this at home kids!
3710 bool target_words_bigendian(void);
3711 bool target_words_bigendian(void)
3713 #if defined(TARGET_WORDS_BIGENDIAN)
3720 #ifndef CONFIG_USER_ONLY
3721 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
3728 mr
= address_space_translate(&address_space_memory
,
3729 phys_addr
, &phys_addr
, &l
, false);
3731 res
= !(memory_region_is_ram(mr
) || memory_region_is_romd(mr
));
3736 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
3742 RAMBLOCK_FOREACH(block
) {
3743 ret
= func(block
->idstr
, block
->host
, block
->offset
,
3744 block
->used_length
, opaque
);
3754 * Unmap pages of memory from start to start+length such that
3755 * they a) read as 0, b) Trigger whatever fault mechanism
3756 * the OS provides for postcopy.
3757 * The pages must be unmapped by the end of the function.
3758 * Returns: 0 on success, none-0 on failure
3761 int ram_block_discard_range(RAMBlock
*rb
, uint64_t start
, size_t length
)
3765 uint8_t *host_startaddr
= rb
->host
+ start
;
3767 if ((uintptr_t)host_startaddr
& (rb
->page_size
- 1)) {
3768 error_report("ram_block_discard_range: Unaligned start address: %p",
3773 if ((start
+ length
) <= rb
->used_length
) {
3774 bool need_madvise
, need_fallocate
;
3775 uint8_t *host_endaddr
= host_startaddr
+ length
;
3776 if ((uintptr_t)host_endaddr
& (rb
->page_size
- 1)) {
3777 error_report("ram_block_discard_range: Unaligned end address: %p",
3782 errno
= ENOTSUP
; /* If we are missing MADVISE etc */
3784 /* The logic here is messy;
3785 * madvise DONTNEED fails for hugepages
3786 * fallocate works on hugepages and shmem
3788 need_madvise
= (rb
->page_size
== qemu_host_page_size
);
3789 need_fallocate
= rb
->fd
!= -1;
3790 if (need_fallocate
) {
3791 /* For a file, this causes the area of the file to be zero'd
3792 * if read, and for hugetlbfs also causes it to be unmapped
3793 * so a userfault will trigger.
3795 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3796 ret
= fallocate(rb
->fd
, FALLOC_FL_PUNCH_HOLE
| FALLOC_FL_KEEP_SIZE
,
3800 error_report("ram_block_discard_range: Failed to fallocate "
3801 "%s:%" PRIx64
" +%zx (%d)",
3802 rb
->idstr
, start
, length
, ret
);
3807 error_report("ram_block_discard_range: fallocate not available/file"
3808 "%s:%" PRIx64
" +%zx (%d)",
3809 rb
->idstr
, start
, length
, ret
);
3814 /* For normal RAM this causes it to be unmapped,
3815 * for shared memory it causes the local mapping to disappear
3816 * and to fall back on the file contents (which we just
3817 * fallocate'd away).
3819 #if defined(CONFIG_MADVISE)
3820 ret
= madvise(host_startaddr
, length
, MADV_DONTNEED
);
3823 error_report("ram_block_discard_range: Failed to discard range "
3824 "%s:%" PRIx64
" +%zx (%d)",
3825 rb
->idstr
, start
, length
, ret
);
3830 error_report("ram_block_discard_range: MADVISE not available"
3831 "%s:%" PRIx64
" +%zx (%d)",
3832 rb
->idstr
, start
, length
, ret
);
3836 trace_ram_block_discard_range(rb
->idstr
, host_startaddr
, length
,
3837 need_madvise
, need_fallocate
, ret
);
3839 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3840 "/%zx/" RAM_ADDR_FMT
")",
3841 rb
->idstr
, start
, length
, rb
->used_length
);
3850 void page_size_init(void)
3852 /* NOTE: we can always suppose that qemu_host_page_size >=
3854 if (qemu_host_page_size
== 0) {
3855 qemu_host_page_size
= qemu_real_host_page_size
;
3857 if (qemu_host_page_size
< TARGET_PAGE_SIZE
) {
3858 qemu_host_page_size
= TARGET_PAGE_SIZE
;
3860 qemu_host_page_mask
= -(intptr_t)qemu_host_page_size
;
3863 #if !defined(CONFIG_USER_ONLY)
3865 static void mtree_print_phys_entries(fprintf_function mon
, void *f
,
3866 int start
, int end
, int skip
, int ptr
)
3868 if (start
== end
- 1) {
3869 mon(f
, "\t%3d ", start
);
3871 mon(f
, "\t%3d..%-3d ", start
, end
- 1);
3873 mon(f
, " skip=%d ", skip
);
3874 if (ptr
== PHYS_MAP_NODE_NIL
) {
3877 mon(f
, " ptr=#%d", ptr
);
3879 mon(f
, " ptr=[%d]", ptr
);
3884 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3885 int128_sub((size), int128_one())) : 0)
3887 void mtree_print_dispatch(fprintf_function mon
, void *f
,
3888 AddressSpaceDispatch
*d
, MemoryRegion
*root
)
3892 mon(f
, " Dispatch\n");
3893 mon(f
, " Physical sections\n");
3895 for (i
= 0; i
< d
->map
.sections_nb
; ++i
) {
3896 MemoryRegionSection
*s
= d
->map
.sections
+ i
;
3897 const char *names
[] = { " [unassigned]", " [not dirty]",
3898 " [ROM]", " [watch]" };
3900 mon(f
, " #%d @" TARGET_FMT_plx
".." TARGET_FMT_plx
" %s%s%s%s%s",
3902 s
->offset_within_address_space
,
3903 s
->offset_within_address_space
+ MR_SIZE(s
->mr
->size
),
3904 s
->mr
->name
? s
->mr
->name
: "(noname)",
3905 i
< ARRAY_SIZE(names
) ? names
[i
] : "",
3906 s
->mr
== root
? " [ROOT]" : "",
3907 s
== d
->mru_section
? " [MRU]" : "",
3908 s
->mr
->is_iommu
? " [iommu]" : "");
3911 mon(f
, " alias=%s", s
->mr
->alias
->name
?
3912 s
->mr
->alias
->name
: "noname");
3917 mon(f
, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3918 P_L2_BITS
, P_L2_LEVELS
, d
->phys_map
.ptr
, d
->phys_map
.skip
);
3919 for (i
= 0; i
< d
->map
.nodes_nb
; ++i
) {
3922 Node
*n
= d
->map
.nodes
+ i
;
3924 mon(f
, " [%d]\n", i
);
3926 for (j
= 0, jprev
= 0, prev
= *n
[0]; j
< ARRAY_SIZE(*n
); ++j
) {
3927 PhysPageEntry
*pe
= *n
+ j
;
3929 if (pe
->ptr
== prev
.ptr
&& pe
->skip
== prev
.skip
) {
3933 mtree_print_phys_entries(mon
, f
, jprev
, j
, prev
.skip
, prev
.ptr
);
3939 if (jprev
!= ARRAY_SIZE(*n
)) {
3940 mtree_print_phys_entries(mon
, f
, jprev
, j
, prev
.skip
, prev
.ptr
);