Move vlynq.* into char subdirectory
[qemu/ar7.git] / exec.c
blobe751e0008efea13acff895208af04d22debf603d
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
22 #include "qemu/cutils.h"
23 #include "cpu.h"
24 #include "exec/exec-all.h"
25 #include "exec/target_page.h"
26 #include "tcg.h"
27 #include "hw/qdev-core.h"
28 #include "hw/qdev-properties.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
32 #endif
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
39 #include "qemu.h"
40 #else /* !CONFIG_USER_ONLY */
41 #include "hw/hw.h"
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "sysemu/numa.h"
46 #include "sysemu/hw_accel.h"
47 #include "exec/address-spaces.h"
48 #include "sysemu/xen-mapcache.h"
49 #include "trace-root.h"
51 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
52 #include <linux/falloc.h>
53 #endif
55 #endif
56 #include "qemu/rcu_queue.h"
57 #include "qemu/main-loop.h"
58 #include "translate-all.h"
59 #include "sysemu/replay.h"
61 #include "exec/memory-internal.h"
62 #include "exec/ram_addr.h"
63 #include "exec/log.h"
65 #include "migration/vmstate.h"
67 #include "qemu/range.h"
68 #ifndef _WIN32
69 #include "qemu/mmap-alloc.h"
70 #endif
72 #include "monitor/monitor.h"
74 //#define DEBUG_SUBPAGE
76 #if !defined(CONFIG_USER_ONLY)
77 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
80 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
82 static MemoryRegion *system_memory;
83 static MemoryRegion *system_io;
85 AddressSpace address_space_io;
86 AddressSpace address_space_memory;
88 MemoryRegion io_mem_rom, io_mem_notdirty;
89 static MemoryRegion io_mem_unassigned;
90 #endif
92 #ifdef TARGET_PAGE_BITS_VARY
93 int target_page_bits;
94 bool target_page_bits_decided;
95 #endif
97 CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
99 /* current CPU in the current thread. It is only valid inside
100 cpu_exec() */
101 __thread CPUState *current_cpu;
102 /* 0 = Do not count executed instructions.
103 1 = Precise instruction counting.
104 2 = Adaptive rate instruction counting. */
105 int use_icount;
107 uintptr_t qemu_host_page_size;
108 intptr_t qemu_host_page_mask;
110 bool set_preferred_target_page_bits(int bits)
112 /* The target page size is the lowest common denominator for all
113 * the CPUs in the system, so we can only make it smaller, never
114 * larger. And we can't make it smaller once we've committed to
115 * a particular size.
117 #ifdef TARGET_PAGE_BITS_VARY
118 assert(bits >= TARGET_PAGE_BITS_MIN);
119 if (target_page_bits == 0 || target_page_bits > bits) {
120 if (target_page_bits_decided) {
121 return false;
123 target_page_bits = bits;
125 #endif
126 return true;
129 #if !defined(CONFIG_USER_ONLY)
131 static void finalize_target_page_bits(void)
133 #ifdef TARGET_PAGE_BITS_VARY
134 if (target_page_bits == 0) {
135 target_page_bits = TARGET_PAGE_BITS_MIN;
137 target_page_bits_decided = true;
138 #endif
141 typedef struct PhysPageEntry PhysPageEntry;
143 struct PhysPageEntry {
144 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
145 uint32_t skip : 6;
146 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
147 uint32_t ptr : 26;
150 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
152 /* Size of the L2 (and L3, etc) page tables. */
153 #define ADDR_SPACE_BITS 64
155 #define P_L2_BITS 9
156 #define P_L2_SIZE (1 << P_L2_BITS)
158 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
160 typedef PhysPageEntry Node[P_L2_SIZE];
162 typedef struct PhysPageMap {
163 struct rcu_head rcu;
165 unsigned sections_nb;
166 unsigned sections_nb_alloc;
167 unsigned nodes_nb;
168 unsigned nodes_nb_alloc;
169 Node *nodes;
170 MemoryRegionSection *sections;
171 } PhysPageMap;
173 struct AddressSpaceDispatch {
174 MemoryRegionSection *mru_section;
175 /* This is a multi-level map on the physical address space.
176 * The bottom level has pointers to MemoryRegionSections.
178 PhysPageEntry phys_map;
179 PhysPageMap map;
182 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
183 typedef struct subpage_t {
184 MemoryRegion iomem;
185 FlatView *fv;
186 hwaddr base;
187 uint16_t sub_section[];
188 } subpage_t;
190 #define PHYS_SECTION_UNASSIGNED 0
191 #define PHYS_SECTION_NOTDIRTY 1
192 #define PHYS_SECTION_ROM 2
193 #define PHYS_SECTION_WATCH 3
195 static void io_mem_init(void);
196 static void memory_map_init(void);
197 static void tcg_commit(MemoryListener *listener);
199 static MemoryRegion io_mem_watch;
202 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
203 * @cpu: the CPU whose AddressSpace this is
204 * @as: the AddressSpace itself
205 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
206 * @tcg_as_listener: listener for tracking changes to the AddressSpace
208 struct CPUAddressSpace {
209 CPUState *cpu;
210 AddressSpace *as;
211 struct AddressSpaceDispatch *memory_dispatch;
212 MemoryListener tcg_as_listener;
215 struct DirtyBitmapSnapshot {
216 ram_addr_t start;
217 ram_addr_t end;
218 unsigned long dirty[];
221 #endif
223 #if !defined(CONFIG_USER_ONLY)
225 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
227 static unsigned alloc_hint = 16;
228 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
229 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
230 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
231 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
232 alloc_hint = map->nodes_nb_alloc;
236 static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
238 unsigned i;
239 uint32_t ret;
240 PhysPageEntry e;
241 PhysPageEntry *p;
243 ret = map->nodes_nb++;
244 p = map->nodes[ret];
245 assert(ret != PHYS_MAP_NODE_NIL);
246 assert(ret != map->nodes_nb_alloc);
248 e.skip = leaf ? 0 : 1;
249 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
250 for (i = 0; i < P_L2_SIZE; ++i) {
251 memcpy(&p[i], &e, sizeof(e));
253 return ret;
256 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
257 hwaddr *index, hwaddr *nb, uint16_t leaf,
258 int level)
260 PhysPageEntry *p;
261 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
263 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
264 lp->ptr = phys_map_node_alloc(map, level == 0);
266 p = map->nodes[lp->ptr];
267 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
269 while (*nb && lp < &p[P_L2_SIZE]) {
270 if ((*index & (step - 1)) == 0 && *nb >= step) {
271 lp->skip = 0;
272 lp->ptr = leaf;
273 *index += step;
274 *nb -= step;
275 } else {
276 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
278 ++lp;
282 static void phys_page_set(AddressSpaceDispatch *d,
283 hwaddr index, hwaddr nb,
284 uint16_t leaf)
286 /* Wildly overreserve - it doesn't matter much. */
287 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
289 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
292 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
293 * and update our entry so we can skip it and go directly to the destination.
295 static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
297 unsigned valid_ptr = P_L2_SIZE;
298 int valid = 0;
299 PhysPageEntry *p;
300 int i;
302 if (lp->ptr == PHYS_MAP_NODE_NIL) {
303 return;
306 p = nodes[lp->ptr];
307 for (i = 0; i < P_L2_SIZE; i++) {
308 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
309 continue;
312 valid_ptr = i;
313 valid++;
314 if (p[i].skip) {
315 phys_page_compact(&p[i], nodes);
319 /* We can only compress if there's only one child. */
320 if (valid != 1) {
321 return;
324 assert(valid_ptr < P_L2_SIZE);
326 /* Don't compress if it won't fit in the # of bits we have. */
327 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
328 return;
331 lp->ptr = p[valid_ptr].ptr;
332 if (!p[valid_ptr].skip) {
333 /* If our only child is a leaf, make this a leaf. */
334 /* By design, we should have made this node a leaf to begin with so we
335 * should never reach here.
336 * But since it's so simple to handle this, let's do it just in case we
337 * change this rule.
339 lp->skip = 0;
340 } else {
341 lp->skip += p[valid_ptr].skip;
345 void address_space_dispatch_compact(AddressSpaceDispatch *d)
347 if (d->phys_map.skip) {
348 phys_page_compact(&d->phys_map, d->map.nodes);
352 static inline bool section_covers_addr(const MemoryRegionSection *section,
353 hwaddr addr)
355 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
356 * the section must cover the entire address space.
358 return int128_gethi(section->size) ||
359 range_covers_byte(section->offset_within_address_space,
360 int128_getlo(section->size), addr);
363 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
365 PhysPageEntry lp = d->phys_map, *p;
366 Node *nodes = d->map.nodes;
367 MemoryRegionSection *sections = d->map.sections;
368 hwaddr index = addr >> TARGET_PAGE_BITS;
369 int i;
371 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
372 if (lp.ptr == PHYS_MAP_NODE_NIL) {
373 return &sections[PHYS_SECTION_UNASSIGNED];
375 p = nodes[lp.ptr];
376 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
379 if (section_covers_addr(&sections[lp.ptr], addr)) {
380 return &sections[lp.ptr];
381 } else {
382 return &sections[PHYS_SECTION_UNASSIGNED];
386 /* Called from RCU critical section */
387 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
388 hwaddr addr,
389 bool resolve_subpage)
391 MemoryRegionSection *section = atomic_read(&d->mru_section);
392 subpage_t *subpage;
394 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
395 !section_covers_addr(section, addr)) {
396 section = phys_page_find(d, addr);
397 atomic_set(&d->mru_section, section);
399 if (resolve_subpage && section->mr->subpage) {
400 subpage = container_of(section->mr, subpage_t, iomem);
401 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
403 return section;
406 /* Called from RCU critical section */
407 static MemoryRegionSection *
408 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
409 hwaddr *plen, bool resolve_subpage)
411 MemoryRegionSection *section;
412 MemoryRegion *mr;
413 Int128 diff;
415 section = address_space_lookup_region(d, addr, resolve_subpage);
416 /* Compute offset within MemoryRegionSection */
417 addr -= section->offset_within_address_space;
419 /* Compute offset within MemoryRegion */
420 *xlat = addr + section->offset_within_region;
422 mr = section->mr;
424 /* MMIO registers can be expected to perform full-width accesses based only
425 * on their address, without considering adjacent registers that could
426 * decode to completely different MemoryRegions. When such registers
427 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
428 * regions overlap wildly. For this reason we cannot clamp the accesses
429 * here.
431 * If the length is small (as is the case for address_space_ldl/stl),
432 * everything works fine. If the incoming length is large, however,
433 * the caller really has to do the clamping through memory_access_size.
435 if (memory_region_is_ram(mr)) {
436 diff = int128_sub(section->size, int128_make64(addr));
437 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
439 return section;
443 * address_space_translate_iommu - translate an address through an IOMMU
444 * memory region and then through the target address space.
446 * @iommu_mr: the IOMMU memory region that we start the translation from
447 * @addr: the address to be translated through the MMU
448 * @xlat: the translated address offset within the destination memory region.
449 * It cannot be %NULL.
450 * @plen_out: valid read/write length of the translated address. It
451 * cannot be %NULL.
452 * @page_mask_out: page mask for the translated address. This
453 * should only be meaningful for IOMMU translated
454 * addresses, since there may be huge pages that this bit
455 * would tell. It can be %NULL if we don't care about it.
456 * @is_write: whether the translation operation is for write
457 * @is_mmio: whether this can be MMIO, set true if it can
458 * @target_as: the address space targeted by the IOMMU
459 * @attrs: transaction attributes
461 * This function is called from RCU critical section. It is the common
462 * part of flatview_do_translate and address_space_translate_cached.
464 static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
465 hwaddr *xlat,
466 hwaddr *plen_out,
467 hwaddr *page_mask_out,
468 bool is_write,
469 bool is_mmio,
470 AddressSpace **target_as,
471 MemTxAttrs attrs)
473 MemoryRegionSection *section;
474 hwaddr page_mask = (hwaddr)-1;
476 do {
477 hwaddr addr = *xlat;
478 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
479 int iommu_idx = 0;
480 IOMMUTLBEntry iotlb;
482 if (imrc->attrs_to_index) {
483 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
486 iotlb = imrc->translate(iommu_mr, addr, is_write ?
487 IOMMU_WO : IOMMU_RO, iommu_idx);
489 if (!(iotlb.perm & (1 << is_write))) {
490 goto unassigned;
493 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
494 | (addr & iotlb.addr_mask));
495 page_mask &= iotlb.addr_mask;
496 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
497 *target_as = iotlb.target_as;
499 section = address_space_translate_internal(
500 address_space_to_dispatch(iotlb.target_as), addr, xlat,
501 plen_out, is_mmio);
503 iommu_mr = memory_region_get_iommu(section->mr);
504 } while (unlikely(iommu_mr));
506 if (page_mask_out) {
507 *page_mask_out = page_mask;
509 return *section;
511 unassigned:
512 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
516 * flatview_do_translate - translate an address in FlatView
518 * @fv: the flat view that we want to translate on
519 * @addr: the address to be translated in above address space
520 * @xlat: the translated address offset within memory region. It
521 * cannot be @NULL.
522 * @plen_out: valid read/write length of the translated address. It
523 * can be @NULL when we don't care about it.
524 * @page_mask_out: page mask for the translated address. This
525 * should only be meaningful for IOMMU translated
526 * addresses, since there may be huge pages that this bit
527 * would tell. It can be @NULL if we don't care about it.
528 * @is_write: whether the translation operation is for write
529 * @is_mmio: whether this can be MMIO, set true if it can
530 * @target_as: the address space targeted by the IOMMU
531 * @attrs: memory transaction attributes
533 * This function is called from RCU critical section
535 static MemoryRegionSection flatview_do_translate(FlatView *fv,
536 hwaddr addr,
537 hwaddr *xlat,
538 hwaddr *plen_out,
539 hwaddr *page_mask_out,
540 bool is_write,
541 bool is_mmio,
542 AddressSpace **target_as,
543 MemTxAttrs attrs)
545 MemoryRegionSection *section;
546 IOMMUMemoryRegion *iommu_mr;
547 hwaddr plen = (hwaddr)(-1);
549 if (!plen_out) {
550 plen_out = &plen;
553 section = address_space_translate_internal(
554 flatview_to_dispatch(fv), addr, xlat,
555 plen_out, is_mmio);
557 iommu_mr = memory_region_get_iommu(section->mr);
558 if (unlikely(iommu_mr)) {
559 return address_space_translate_iommu(iommu_mr, xlat,
560 plen_out, page_mask_out,
561 is_write, is_mmio,
562 target_as, attrs);
564 if (page_mask_out) {
565 /* Not behind an IOMMU, use default page size. */
566 *page_mask_out = ~TARGET_PAGE_MASK;
569 return *section;
572 /* Called from RCU critical section */
573 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
574 bool is_write, MemTxAttrs attrs)
576 MemoryRegionSection section;
577 hwaddr xlat, page_mask;
580 * This can never be MMIO, and we don't really care about plen,
581 * but page mask.
583 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
584 NULL, &page_mask, is_write, false, &as,
585 attrs);
587 /* Illegal translation */
588 if (section.mr == &io_mem_unassigned) {
589 goto iotlb_fail;
592 /* Convert memory region offset into address space offset */
593 xlat += section.offset_within_address_space -
594 section.offset_within_region;
596 return (IOMMUTLBEntry) {
597 .target_as = as,
598 .iova = addr & ~page_mask,
599 .translated_addr = xlat & ~page_mask,
600 .addr_mask = page_mask,
601 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
602 .perm = IOMMU_RW,
605 iotlb_fail:
606 return (IOMMUTLBEntry) {0};
609 /* Called from RCU critical section */
610 MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
611 hwaddr *plen, bool is_write,
612 MemTxAttrs attrs)
614 MemoryRegion *mr;
615 MemoryRegionSection section;
616 AddressSpace *as = NULL;
618 /* This can be MMIO, so setup MMIO bit. */
619 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
620 is_write, true, &as, attrs);
621 mr = section.mr;
623 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
624 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
625 *plen = MIN(page, *plen);
628 return mr;
631 typedef struct TCGIOMMUNotifier {
632 IOMMUNotifier n;
633 MemoryRegion *mr;
634 CPUState *cpu;
635 int iommu_idx;
636 bool active;
637 } TCGIOMMUNotifier;
639 static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
641 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
643 if (!notifier->active) {
644 return;
646 tlb_flush(notifier->cpu);
647 notifier->active = false;
648 /* We leave the notifier struct on the list to avoid reallocating it later.
649 * Generally the number of IOMMUs a CPU deals with will be small.
650 * In any case we can't unregister the iommu notifier from a notify
651 * callback.
655 static void tcg_register_iommu_notifier(CPUState *cpu,
656 IOMMUMemoryRegion *iommu_mr,
657 int iommu_idx)
659 /* Make sure this CPU has an IOMMU notifier registered for this
660 * IOMMU/IOMMU index combination, so that we can flush its TLB
661 * when the IOMMU tells us the mappings we've cached have changed.
663 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
664 TCGIOMMUNotifier *notifier;
665 int i;
667 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
668 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
669 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
670 break;
673 if (i == cpu->iommu_notifiers->len) {
674 /* Not found, add a new entry at the end of the array */
675 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
676 notifier = g_new0(TCGIOMMUNotifier, 1);
677 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
679 notifier->mr = mr;
680 notifier->iommu_idx = iommu_idx;
681 notifier->cpu = cpu;
682 /* Rather than trying to register interest in the specific part
683 * of the iommu's address space that we've accessed and then
684 * expand it later as subsequent accesses touch more of it, we
685 * just register interest in the whole thing, on the assumption
686 * that iommu reconfiguration will be rare.
688 iommu_notifier_init(&notifier->n,
689 tcg_iommu_unmap_notify,
690 IOMMU_NOTIFIER_UNMAP,
692 HWADDR_MAX,
693 iommu_idx);
694 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
697 if (!notifier->active) {
698 notifier->active = true;
702 static void tcg_iommu_free_notifier_list(CPUState *cpu)
704 /* Destroy the CPU's notifier list */
705 int i;
706 TCGIOMMUNotifier *notifier;
708 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
709 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
710 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
711 g_free(notifier);
713 g_array_free(cpu->iommu_notifiers, true);
716 /* Called from RCU critical section */
717 MemoryRegionSection *
718 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
719 hwaddr *xlat, hwaddr *plen,
720 MemTxAttrs attrs, int *prot)
722 MemoryRegionSection *section;
723 IOMMUMemoryRegion *iommu_mr;
724 IOMMUMemoryRegionClass *imrc;
725 IOMMUTLBEntry iotlb;
726 int iommu_idx;
727 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
729 for (;;) {
730 section = address_space_translate_internal(d, addr, &addr, plen, false);
732 iommu_mr = memory_region_get_iommu(section->mr);
733 if (!iommu_mr) {
734 break;
737 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
739 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
740 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
741 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
742 * doesn't short-cut its translation table walk.
744 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
745 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
746 | (addr & iotlb.addr_mask));
747 /* Update the caller's prot bits to remove permissions the IOMMU
748 * is giving us a failure response for. If we get down to no
749 * permissions left at all we can give up now.
751 if (!(iotlb.perm & IOMMU_RO)) {
752 *prot &= ~(PAGE_READ | PAGE_EXEC);
754 if (!(iotlb.perm & IOMMU_WO)) {
755 *prot &= ~PAGE_WRITE;
758 if (!*prot) {
759 goto translate_fail;
762 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
765 assert(!memory_region_is_iommu(section->mr));
766 *xlat = addr;
767 return section;
769 translate_fail:
770 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
772 #endif
774 #if !defined(CONFIG_USER_ONLY)
776 static int cpu_common_post_load(void *opaque, int version_id)
778 CPUState *cpu = opaque;
780 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
781 version_id is increased. */
782 cpu->interrupt_request &= ~0x01;
783 tlb_flush(cpu);
785 /* loadvm has just updated the content of RAM, bypassing the
786 * usual mechanisms that ensure we flush TBs for writes to
787 * memory we've translated code from. So we must flush all TBs,
788 * which will now be stale.
790 tb_flush(cpu);
792 return 0;
795 static int cpu_common_pre_load(void *opaque)
797 CPUState *cpu = opaque;
799 cpu->exception_index = -1;
801 return 0;
804 static bool cpu_common_exception_index_needed(void *opaque)
806 CPUState *cpu = opaque;
808 return tcg_enabled() && cpu->exception_index != -1;
811 static const VMStateDescription vmstate_cpu_common_exception_index = {
812 .name = "cpu_common/exception_index",
813 .version_id = 1,
814 .minimum_version_id = 1,
815 .needed = cpu_common_exception_index_needed,
816 .fields = (VMStateField[]) {
817 VMSTATE_INT32(exception_index, CPUState),
818 VMSTATE_END_OF_LIST()
822 static bool cpu_common_crash_occurred_needed(void *opaque)
824 CPUState *cpu = opaque;
826 return cpu->crash_occurred;
829 static const VMStateDescription vmstate_cpu_common_crash_occurred = {
830 .name = "cpu_common/crash_occurred",
831 .version_id = 1,
832 .minimum_version_id = 1,
833 .needed = cpu_common_crash_occurred_needed,
834 .fields = (VMStateField[]) {
835 VMSTATE_BOOL(crash_occurred, CPUState),
836 VMSTATE_END_OF_LIST()
840 const VMStateDescription vmstate_cpu_common = {
841 .name = "cpu_common",
842 .version_id = 1,
843 .minimum_version_id = 1,
844 .pre_load = cpu_common_pre_load,
845 .post_load = cpu_common_post_load,
846 .fields = (VMStateField[]) {
847 VMSTATE_UINT32(halted, CPUState),
848 VMSTATE_UINT32(interrupt_request, CPUState),
849 VMSTATE_END_OF_LIST()
851 .subsections = (const VMStateDescription*[]) {
852 &vmstate_cpu_common_exception_index,
853 &vmstate_cpu_common_crash_occurred,
854 NULL
858 #endif
860 CPUState *qemu_get_cpu(int index)
862 CPUState *cpu;
864 CPU_FOREACH(cpu) {
865 if (cpu->cpu_index == index) {
866 return cpu;
870 return NULL;
873 #if !defined(CONFIG_USER_ONLY)
874 void cpu_address_space_init(CPUState *cpu, int asidx,
875 const char *prefix, MemoryRegion *mr)
877 CPUAddressSpace *newas;
878 AddressSpace *as = g_new0(AddressSpace, 1);
879 char *as_name;
881 assert(mr);
882 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
883 address_space_init(as, mr, as_name);
884 g_free(as_name);
886 /* Target code should have set num_ases before calling us */
887 assert(asidx < cpu->num_ases);
889 if (asidx == 0) {
890 /* address space 0 gets the convenience alias */
891 cpu->as = as;
894 /* KVM cannot currently support multiple address spaces. */
895 assert(asidx == 0 || !kvm_enabled());
897 if (!cpu->cpu_ases) {
898 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
901 newas = &cpu->cpu_ases[asidx];
902 newas->cpu = cpu;
903 newas->as = as;
904 if (tcg_enabled()) {
905 newas->tcg_as_listener.commit = tcg_commit;
906 memory_listener_register(&newas->tcg_as_listener, as);
910 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
912 /* Return the AddressSpace corresponding to the specified index */
913 return cpu->cpu_ases[asidx].as;
915 #endif
917 void cpu_exec_unrealizefn(CPUState *cpu)
919 CPUClass *cc = CPU_GET_CLASS(cpu);
921 cpu_list_remove(cpu);
923 if (cc->vmsd != NULL) {
924 vmstate_unregister(NULL, cc->vmsd, cpu);
926 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
927 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
929 #ifndef CONFIG_USER_ONLY
930 tcg_iommu_free_notifier_list(cpu);
931 #endif
934 Property cpu_common_props[] = {
935 #ifndef CONFIG_USER_ONLY
936 /* Create a memory property for softmmu CPU object,
937 * so users can wire up its memory. (This can't go in qom/cpu.c
938 * because that file is compiled only once for both user-mode
939 * and system builds.) The default if no link is set up is to use
940 * the system address space.
942 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
943 MemoryRegion *),
944 #endif
945 DEFINE_PROP_END_OF_LIST(),
948 void cpu_exec_initfn(CPUState *cpu)
950 #ifdef TARGET_WORDS_BIGENDIAN
951 cpu->bigendian = true;
952 #else
953 cpu->bigendian = false;
954 #endif
955 cpu->as = NULL;
956 cpu->num_ases = 0;
958 #ifndef CONFIG_USER_ONLY
959 cpu->thread_id = qemu_get_thread_id();
960 cpu->memory = system_memory;
961 object_ref(OBJECT(cpu->memory));
962 #endif
965 void cpu_exec_realizefn(CPUState *cpu, Error **errp)
967 CPUClass *cc = CPU_GET_CLASS(cpu);
968 static bool tcg_target_initialized;
970 cpu_list_add(cpu);
972 if (tcg_enabled() && !tcg_target_initialized) {
973 tcg_target_initialized = true;
974 cc->tcg_initialize();
976 tlb_init(cpu);
978 #ifndef CONFIG_USER_ONLY
979 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
980 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
982 if (cc->vmsd != NULL) {
983 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
986 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
987 #endif
990 const char *parse_cpu_model(const char *cpu_model)
992 ObjectClass *oc;
993 CPUClass *cc;
994 gchar **model_pieces;
995 const char *cpu_type;
997 model_pieces = g_strsplit(cpu_model, ",", 2);
999 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
1000 if (oc == NULL) {
1001 error_report("unable to find CPU model '%s'", model_pieces[0]);
1002 g_strfreev(model_pieces);
1003 exit(EXIT_FAILURE);
1006 cpu_type = object_class_get_name(oc);
1007 cc = CPU_CLASS(oc);
1008 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1009 g_strfreev(model_pieces);
1010 return cpu_type;
1013 #if defined(CONFIG_USER_ONLY)
1014 void tb_invalidate_phys_addr(target_ulong addr)
1016 mmap_lock();
1017 tb_invalidate_phys_page_range(addr, addr + 1, 0);
1018 mmap_unlock();
1021 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1023 tb_invalidate_phys_addr(pc);
1025 #else
1026 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1028 ram_addr_t ram_addr;
1029 MemoryRegion *mr;
1030 hwaddr l = 1;
1032 if (!tcg_enabled()) {
1033 return;
1036 rcu_read_lock();
1037 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1038 if (!(memory_region_is_ram(mr)
1039 || memory_region_is_romd(mr))) {
1040 rcu_read_unlock();
1041 return;
1043 ram_addr = memory_region_get_ram_addr(mr) + addr;
1044 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1045 rcu_read_unlock();
1048 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1050 MemTxAttrs attrs;
1051 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1052 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1053 if (phys != -1) {
1054 /* Locks grabbed by tb_invalidate_phys_addr */
1055 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
1056 phys | (pc & ~TARGET_PAGE_MASK), attrs);
1059 #endif
1061 #if defined(CONFIG_USER_ONLY)
1062 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1067 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1068 int flags)
1070 return -ENOSYS;
1073 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1077 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1078 int flags, CPUWatchpoint **watchpoint)
1080 return -ENOSYS;
1082 #else
1083 /* Add a watchpoint. */
1084 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1085 int flags, CPUWatchpoint **watchpoint)
1087 CPUWatchpoint *wp;
1089 /* forbid ranges which are empty or run off the end of the address space */
1090 if (len == 0 || (addr + len - 1) < addr) {
1091 error_report("tried to set invalid watchpoint at %"
1092 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
1093 return -EINVAL;
1095 wp = g_malloc(sizeof(*wp));
1097 wp->vaddr = addr;
1098 wp->len = len;
1099 wp->flags = flags;
1101 /* keep all GDB-injected watchpoints in front */
1102 if (flags & BP_GDB) {
1103 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1104 } else {
1105 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1108 tlb_flush_page(cpu, addr);
1110 if (watchpoint)
1111 *watchpoint = wp;
1112 return 0;
1115 /* Remove a specific watchpoint. */
1116 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1117 int flags)
1119 CPUWatchpoint *wp;
1121 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1122 if (addr == wp->vaddr && len == wp->len
1123 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1124 cpu_watchpoint_remove_by_ref(cpu, wp);
1125 return 0;
1128 return -ENOENT;
1131 /* Remove a specific watchpoint by reference. */
1132 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1134 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
1136 tlb_flush_page(cpu, watchpoint->vaddr);
1138 g_free(watchpoint);
1141 /* Remove all matching watchpoints. */
1142 void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1144 CPUWatchpoint *wp, *next;
1146 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
1147 if (wp->flags & mask) {
1148 cpu_watchpoint_remove_by_ref(cpu, wp);
1153 /* Return true if this watchpoint address matches the specified
1154 * access (ie the address range covered by the watchpoint overlaps
1155 * partially or completely with the address range covered by the
1156 * access).
1158 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1159 vaddr addr,
1160 vaddr len)
1162 /* We know the lengths are non-zero, but a little caution is
1163 * required to avoid errors in the case where the range ends
1164 * exactly at the top of the address space and so addr + len
1165 * wraps round to zero.
1167 vaddr wpend = wp->vaddr + wp->len - 1;
1168 vaddr addrend = addr + len - 1;
1170 return !(addr > wpend || wp->vaddr > addrend);
1173 #endif
1175 /* Add a breakpoint. */
1176 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1177 CPUBreakpoint **breakpoint)
1179 CPUBreakpoint *bp;
1181 bp = g_malloc(sizeof(*bp));
1183 bp->pc = pc;
1184 bp->flags = flags;
1186 /* keep all GDB-injected breakpoints in front */
1187 if (flags & BP_GDB) {
1188 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
1189 } else {
1190 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
1193 breakpoint_invalidate(cpu, pc);
1195 if (breakpoint) {
1196 *breakpoint = bp;
1198 return 0;
1201 /* Remove a specific breakpoint. */
1202 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
1204 CPUBreakpoint *bp;
1206 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1207 if (bp->pc == pc && bp->flags == flags) {
1208 cpu_breakpoint_remove_by_ref(cpu, bp);
1209 return 0;
1212 return -ENOENT;
1215 /* Remove a specific breakpoint by reference. */
1216 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
1218 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1220 breakpoint_invalidate(cpu, breakpoint->pc);
1222 g_free(breakpoint);
1225 /* Remove all matching breakpoints. */
1226 void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
1228 CPUBreakpoint *bp, *next;
1230 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
1231 if (bp->flags & mask) {
1232 cpu_breakpoint_remove_by_ref(cpu, bp);
1237 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1238 CPU loop after each instruction */
1239 void cpu_single_step(CPUState *cpu, int enabled)
1241 if (cpu->singlestep_enabled != enabled) {
1242 cpu->singlestep_enabled = enabled;
1243 if (kvm_enabled()) {
1244 kvm_update_guest_debug(cpu, 0);
1245 } else {
1246 /* must flush all the translated code to avoid inconsistencies */
1247 /* XXX: only flush what is necessary */
1248 tb_flush(cpu);
1253 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
1255 va_list ap;
1256 va_list ap2;
1258 va_start(ap, fmt);
1259 va_copy(ap2, ap);
1260 fprintf(stderr, "qemu: fatal: ");
1261 vfprintf(stderr, fmt, ap);
1262 fprintf(stderr, "\n");
1263 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1264 if (qemu_log_separate()) {
1265 qemu_log_lock();
1266 qemu_log("qemu: fatal: ");
1267 qemu_log_vprintf(fmt, ap2);
1268 qemu_log("\n");
1269 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
1270 qemu_log_flush();
1271 qemu_log_unlock();
1272 qemu_log_close();
1274 va_end(ap2);
1275 va_end(ap);
1276 replay_finish();
1277 #if defined(CONFIG_USER_ONLY)
1279 struct sigaction act;
1280 sigfillset(&act.sa_mask);
1281 act.sa_handler = SIG_DFL;
1282 act.sa_flags = 0;
1283 sigaction(SIGABRT, &act, NULL);
1285 #endif
1286 abort();
1289 #if !defined(CONFIG_USER_ONLY)
1290 /* Called from RCU critical section */
1291 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1293 RAMBlock *block;
1295 block = atomic_rcu_read(&ram_list.mru_block);
1296 if (block && addr - block->offset < block->max_length) {
1297 return block;
1299 RAMBLOCK_FOREACH(block) {
1300 if (addr - block->offset < block->max_length) {
1301 goto found;
1305 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1306 abort();
1308 found:
1309 /* It is safe to write mru_block outside the iothread lock. This
1310 * is what happens:
1312 * mru_block = xxx
1313 * rcu_read_unlock()
1314 * xxx removed from list
1315 * rcu_read_lock()
1316 * read mru_block
1317 * mru_block = NULL;
1318 * call_rcu(reclaim_ramblock, xxx);
1319 * rcu_read_unlock()
1321 * atomic_rcu_set is not needed here. The block was already published
1322 * when it was placed into the list. Here we're just making an extra
1323 * copy of the pointer.
1325 ram_list.mru_block = block;
1326 return block;
1329 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
1331 CPUState *cpu;
1332 ram_addr_t start1;
1333 RAMBlock *block;
1334 ram_addr_t end;
1336 assert(tcg_enabled());
1337 end = TARGET_PAGE_ALIGN(start + length);
1338 start &= TARGET_PAGE_MASK;
1340 rcu_read_lock();
1341 block = qemu_get_ram_block(start);
1342 assert(block == qemu_get_ram_block(end - 1));
1343 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
1344 CPU_FOREACH(cpu) {
1345 tlb_reset_dirty(cpu, start1, length);
1347 rcu_read_unlock();
1350 /* Note: start and end must be within the same ram block. */
1351 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1352 ram_addr_t length,
1353 unsigned client)
1355 DirtyMemoryBlocks *blocks;
1356 unsigned long end, page;
1357 bool dirty = false;
1359 if (length == 0) {
1360 return false;
1363 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1364 page = start >> TARGET_PAGE_BITS;
1366 rcu_read_lock();
1368 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1370 while (page < end) {
1371 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1372 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1373 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1375 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1376 offset, num);
1377 page += num;
1380 rcu_read_unlock();
1382 if (dirty && tcg_enabled()) {
1383 tlb_reset_dirty_range_all(start, length);
1386 return dirty;
1389 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1390 (ram_addr_t start, ram_addr_t length, unsigned client)
1392 DirtyMemoryBlocks *blocks;
1393 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1394 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1395 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1396 DirtyBitmapSnapshot *snap;
1397 unsigned long page, end, dest;
1399 snap = g_malloc0(sizeof(*snap) +
1400 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1401 snap->start = first;
1402 snap->end = last;
1404 page = first >> TARGET_PAGE_BITS;
1405 end = last >> TARGET_PAGE_BITS;
1406 dest = 0;
1408 rcu_read_lock();
1410 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1412 while (page < end) {
1413 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1414 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1415 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1417 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1418 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1419 offset >>= BITS_PER_LEVEL;
1421 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1422 blocks->blocks[idx] + offset,
1423 num);
1424 page += num;
1425 dest += num >> BITS_PER_LEVEL;
1428 rcu_read_unlock();
1430 if (tcg_enabled()) {
1431 tlb_reset_dirty_range_all(start, length);
1434 return snap;
1437 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1438 ram_addr_t start,
1439 ram_addr_t length)
1441 unsigned long page, end;
1443 assert(start >= snap->start);
1444 assert(start + length <= snap->end);
1446 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1447 page = (start - snap->start) >> TARGET_PAGE_BITS;
1449 while (page < end) {
1450 if (test_bit(page, snap->dirty)) {
1451 return true;
1453 page++;
1455 return false;
1458 /* Called from RCU critical section */
1459 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
1460 MemoryRegionSection *section,
1461 target_ulong vaddr,
1462 hwaddr paddr, hwaddr xlat,
1463 int prot,
1464 target_ulong *address)
1466 hwaddr iotlb;
1467 CPUWatchpoint *wp;
1469 if (memory_region_is_ram(section->mr)) {
1470 /* Normal RAM. */
1471 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1472 if (!section->readonly) {
1473 iotlb |= PHYS_SECTION_NOTDIRTY;
1474 } else {
1475 iotlb |= PHYS_SECTION_ROM;
1477 } else {
1478 AddressSpaceDispatch *d;
1480 d = flatview_to_dispatch(section->fv);
1481 iotlb = section - d->map.sections;
1482 iotlb += xlat;
1485 /* Make accesses to pages with watchpoints go via the
1486 watchpoint trap routines. */
1487 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1488 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
1489 /* Avoid trapping reads of pages with a write breakpoint. */
1490 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1491 iotlb = PHYS_SECTION_WATCH + paddr;
1492 *address |= TLB_MMIO;
1493 break;
1498 return iotlb;
1500 #endif /* defined(CONFIG_USER_ONLY) */
1502 #if !defined(CONFIG_USER_ONLY)
1504 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1505 uint16_t section);
1506 static subpage_t *subpage_init(FlatView *fv, hwaddr base);
1508 static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
1509 qemu_anon_ram_alloc;
1512 * Set a custom physical guest memory alloator.
1513 * Accelerators with unusual needs may need this. Hopefully, we can
1514 * get rid of it eventually.
1516 void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
1518 phys_mem_alloc = alloc;
1521 static uint16_t phys_section_add(PhysPageMap *map,
1522 MemoryRegionSection *section)
1524 /* The physical section number is ORed with a page-aligned
1525 * pointer to produce the iotlb entries. Thus it should
1526 * never overflow into the page-aligned value.
1528 assert(map->sections_nb < TARGET_PAGE_SIZE);
1530 if (map->sections_nb == map->sections_nb_alloc) {
1531 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1532 map->sections = g_renew(MemoryRegionSection, map->sections,
1533 map->sections_nb_alloc);
1535 map->sections[map->sections_nb] = *section;
1536 memory_region_ref(section->mr);
1537 return map->sections_nb++;
1540 static void phys_section_destroy(MemoryRegion *mr)
1542 bool have_sub_page = mr->subpage;
1544 memory_region_unref(mr);
1546 if (have_sub_page) {
1547 subpage_t *subpage = container_of(mr, subpage_t, iomem);
1548 object_unref(OBJECT(&subpage->iomem));
1549 g_free(subpage);
1553 static void phys_sections_free(PhysPageMap *map)
1555 while (map->sections_nb > 0) {
1556 MemoryRegionSection *section = &map->sections[--map->sections_nb];
1557 phys_section_destroy(section->mr);
1559 g_free(map->sections);
1560 g_free(map->nodes);
1563 static void register_subpage(FlatView *fv, MemoryRegionSection *section)
1565 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1566 subpage_t *subpage;
1567 hwaddr base = section->offset_within_address_space
1568 & TARGET_PAGE_MASK;
1569 MemoryRegionSection *existing = phys_page_find(d, base);
1570 MemoryRegionSection subsection = {
1571 .offset_within_address_space = base,
1572 .size = int128_make64(TARGET_PAGE_SIZE),
1574 hwaddr start, end;
1576 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
1578 if (!(existing->mr->subpage)) {
1579 subpage = subpage_init(fv, base);
1580 subsection.fv = fv;
1581 subsection.mr = &subpage->iomem;
1582 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
1583 phys_section_add(&d->map, &subsection));
1584 } else {
1585 subpage = container_of(existing->mr, subpage_t, iomem);
1587 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
1588 end = start + int128_get64(section->size) - 1;
1589 subpage_register(subpage, start, end,
1590 phys_section_add(&d->map, section));
1594 static void register_multipage(FlatView *fv,
1595 MemoryRegionSection *section)
1597 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
1598 hwaddr start_addr = section->offset_within_address_space;
1599 uint16_t section_index = phys_section_add(&d->map, section);
1600 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1601 TARGET_PAGE_BITS));
1603 assert(num_pages);
1604 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
1608 * The range in *section* may look like this:
1610 * |s|PPPPPPP|s|
1612 * where s stands for subpage and P for page.
1614 void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
1616 MemoryRegionSection remain = *section;
1617 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
1619 /* register first subpage */
1620 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1621 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1622 - remain.offset_within_address_space;
1624 MemoryRegionSection now = remain;
1625 now.size = int128_min(int128_make64(left), now.size);
1626 register_subpage(fv, &now);
1627 if (int128_eq(remain.size, now.size)) {
1628 return;
1630 remain.size = int128_sub(remain.size, now.size);
1631 remain.offset_within_address_space += int128_get64(now.size);
1632 remain.offset_within_region += int128_get64(now.size);
1635 /* register whole pages */
1636 if (int128_ge(remain.size, page_size)) {
1637 MemoryRegionSection now = remain;
1638 now.size = int128_and(now.size, int128_neg(page_size));
1639 register_multipage(fv, &now);
1640 if (int128_eq(remain.size, now.size)) {
1641 return;
1643 remain.size = int128_sub(remain.size, now.size);
1644 remain.offset_within_address_space += int128_get64(now.size);
1645 remain.offset_within_region += int128_get64(now.size);
1648 /* register last subpage */
1649 register_subpage(fv, &remain);
1652 void qemu_flush_coalesced_mmio_buffer(void)
1654 if (kvm_enabled())
1655 kvm_flush_coalesced_mmio_buffer();
1658 void qemu_mutex_lock_ramlist(void)
1660 qemu_mutex_lock(&ram_list.mutex);
1663 void qemu_mutex_unlock_ramlist(void)
1665 qemu_mutex_unlock(&ram_list.mutex);
1668 void ram_block_dump(Monitor *mon)
1670 RAMBlock *block;
1671 char *psize;
1673 rcu_read_lock();
1674 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1675 "Block Name", "PSize", "Offset", "Used", "Total");
1676 RAMBLOCK_FOREACH(block) {
1677 psize = size_to_str(block->page_size);
1678 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1679 " 0x%016" PRIx64 "\n", block->idstr, psize,
1680 (uint64_t)block->offset,
1681 (uint64_t)block->used_length,
1682 (uint64_t)block->max_length);
1683 g_free(psize);
1685 rcu_read_unlock();
1688 #ifdef __linux__
1690 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1691 * may or may not name the same files / on the same filesystem now as
1692 * when we actually open and map them. Iterate over the file
1693 * descriptors instead, and use qemu_fd_getpagesize().
1695 static int find_max_supported_pagesize(Object *obj, void *opaque)
1697 long *hpsize_min = opaque;
1699 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1700 long hpsize = host_memory_backend_pagesize(MEMORY_BACKEND(obj));
1702 if (hpsize < *hpsize_min) {
1703 *hpsize_min = hpsize;
1707 return 0;
1710 long qemu_getrampagesize(void)
1712 long hpsize = LONG_MAX;
1713 long mainrampagesize;
1714 Object *memdev_root;
1716 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1718 /* it's possible we have memory-backend objects with
1719 * hugepage-backed RAM. these may get mapped into system
1720 * address space via -numa parameters or memory hotplug
1721 * hooks. we want to take these into account, but we
1722 * also want to make sure these supported hugepage
1723 * sizes are applicable across the entire range of memory
1724 * we may boot from, so we take the min across all
1725 * backends, and assume normal pages in cases where a
1726 * backend isn't backed by hugepages.
1728 memdev_root = object_resolve_path("/objects", NULL);
1729 if (memdev_root) {
1730 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1732 if (hpsize == LONG_MAX) {
1733 /* No additional memory regions found ==> Report main RAM page size */
1734 return mainrampagesize;
1737 /* If NUMA is disabled or the NUMA nodes are not backed with a
1738 * memory-backend, then there is at least one node using "normal" RAM,
1739 * so if its page size is smaller we have got to report that size instead.
1741 if (hpsize > mainrampagesize &&
1742 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1743 static bool warned;
1744 if (!warned) {
1745 error_report("Huge page support disabled (n/a for main memory).");
1746 warned = true;
1748 return mainrampagesize;
1751 return hpsize;
1753 #else
1754 long qemu_getrampagesize(void)
1756 return getpagesize();
1758 #endif
1760 #ifdef CONFIG_POSIX
1761 static int64_t get_file_size(int fd)
1763 int64_t size = lseek(fd, 0, SEEK_END);
1764 if (size < 0) {
1765 return -errno;
1767 return size;
1770 static int file_ram_open(const char *path,
1771 const char *region_name,
1772 bool *created,
1773 Error **errp)
1775 char *filename;
1776 char *sanitized_name;
1777 char *c;
1778 int fd = -1;
1780 *created = false;
1781 for (;;) {
1782 fd = open(path, O_RDWR);
1783 if (fd >= 0) {
1784 /* @path names an existing file, use it */
1785 break;
1787 if (errno == ENOENT) {
1788 /* @path names a file that doesn't exist, create it */
1789 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1790 if (fd >= 0) {
1791 *created = true;
1792 break;
1794 } else if (errno == EISDIR) {
1795 /* @path names a directory, create a file there */
1796 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1797 sanitized_name = g_strdup(region_name);
1798 for (c = sanitized_name; *c != '\0'; c++) {
1799 if (*c == '/') {
1800 *c = '_';
1804 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1805 sanitized_name);
1806 g_free(sanitized_name);
1808 fd = mkstemp(filename);
1809 if (fd >= 0) {
1810 unlink(filename);
1811 g_free(filename);
1812 break;
1814 g_free(filename);
1816 if (errno != EEXIST && errno != EINTR) {
1817 error_setg_errno(errp, errno,
1818 "can't open backing store %s for guest RAM",
1819 path);
1820 return -1;
1823 * Try again on EINTR and EEXIST. The latter happens when
1824 * something else creates the file between our two open().
1828 return fd;
1831 static void *file_ram_alloc(RAMBlock *block,
1832 ram_addr_t memory,
1833 int fd,
1834 bool truncate,
1835 Error **errp)
1837 void *area;
1839 block->page_size = qemu_fd_getpagesize(fd);
1840 if (block->mr->align % block->page_size) {
1841 error_setg(errp, "alignment 0x%" PRIx64
1842 " must be multiples of page size 0x%zx",
1843 block->mr->align, block->page_size);
1844 return NULL;
1845 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1846 error_setg(errp, "alignment 0x%" PRIx64
1847 " must be a power of two", block->mr->align);
1848 return NULL;
1850 block->mr->align = MAX(block->page_size, block->mr->align);
1851 #if defined(__s390x__)
1852 if (kvm_enabled()) {
1853 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1855 #endif
1857 if (memory < block->page_size) {
1858 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1859 "or larger than page size 0x%zx",
1860 memory, block->page_size);
1861 return NULL;
1864 memory = ROUND_UP(memory, block->page_size);
1867 * ftruncate is not supported by hugetlbfs in older
1868 * hosts, so don't bother bailing out on errors.
1869 * If anything goes wrong with it under other filesystems,
1870 * mmap will fail.
1872 * Do not truncate the non-empty backend file to avoid corrupting
1873 * the existing data in the file. Disabling shrinking is not
1874 * enough. For example, the current vNVDIMM implementation stores
1875 * the guest NVDIMM labels at the end of the backend file. If the
1876 * backend file is later extended, QEMU will not be able to find
1877 * those labels. Therefore, extending the non-empty backend file
1878 * is disabled as well.
1880 if (truncate && ftruncate(fd, memory)) {
1881 perror("ftruncate");
1884 area = qemu_ram_mmap(fd, memory, block->mr->align,
1885 block->flags & RAM_SHARED);
1886 if (area == MAP_FAILED) {
1887 error_setg_errno(errp, errno,
1888 "unable to map backing store for guest RAM");
1889 return NULL;
1892 if (mem_prealloc) {
1893 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
1894 if (errp && *errp) {
1895 qemu_ram_munmap(fd, area, memory);
1896 return NULL;
1900 block->fd = fd;
1901 return area;
1903 #endif
1905 /* Allocate space within the ram_addr_t space that governs the
1906 * dirty bitmaps.
1907 * Called with the ramlist lock held.
1909 static ram_addr_t find_ram_offset(ram_addr_t size)
1911 RAMBlock *block, *next_block;
1912 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1914 assert(size != 0); /* it would hand out same offset multiple times */
1916 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
1917 return 0;
1920 RAMBLOCK_FOREACH(block) {
1921 ram_addr_t candidate, next = RAM_ADDR_MAX;
1923 /* Align blocks to start on a 'long' in the bitmap
1924 * which makes the bitmap sync'ing take the fast path.
1926 candidate = block->offset + block->max_length;
1927 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
1929 /* Search for the closest following block
1930 * and find the gap.
1932 RAMBLOCK_FOREACH(next_block) {
1933 if (next_block->offset >= candidate) {
1934 next = MIN(next, next_block->offset);
1938 /* If it fits remember our place and remember the size
1939 * of gap, but keep going so that we might find a smaller
1940 * gap to fill so avoiding fragmentation.
1942 if (next - candidate >= size && next - candidate < mingap) {
1943 offset = candidate;
1944 mingap = next - candidate;
1947 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
1950 if (offset == RAM_ADDR_MAX) {
1951 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1952 (uint64_t)size);
1953 abort();
1956 trace_find_ram_offset(size, offset);
1958 return offset;
1961 static unsigned long last_ram_page(void)
1963 RAMBlock *block;
1964 ram_addr_t last = 0;
1966 rcu_read_lock();
1967 RAMBLOCK_FOREACH(block) {
1968 last = MAX(last, block->offset + block->max_length);
1970 rcu_read_unlock();
1971 return last >> TARGET_PAGE_BITS;
1974 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1976 int ret;
1978 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1979 if (!machine_dump_guest_core(current_machine)) {
1980 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1981 if (ret) {
1982 perror("qemu_madvise");
1983 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1984 "but dump_guest_core=off specified\n");
1989 const char *qemu_ram_get_idstr(RAMBlock *rb)
1991 return rb->idstr;
1994 void *qemu_ram_get_host_addr(RAMBlock *rb)
1996 return rb->host;
1999 ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
2001 return rb->offset;
2004 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
2006 return rb->used_length;
2009 bool qemu_ram_is_shared(RAMBlock *rb)
2011 return rb->flags & RAM_SHARED;
2014 /* Note: Only set at the start of postcopy */
2015 bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2017 return rb->flags & RAM_UF_ZEROPAGE;
2020 void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2022 rb->flags |= RAM_UF_ZEROPAGE;
2025 bool qemu_ram_is_migratable(RAMBlock *rb)
2027 return rb->flags & RAM_MIGRATABLE;
2030 void qemu_ram_set_migratable(RAMBlock *rb)
2032 rb->flags |= RAM_MIGRATABLE;
2035 void qemu_ram_unset_migratable(RAMBlock *rb)
2037 rb->flags &= ~RAM_MIGRATABLE;
2040 /* Called with iothread lock held. */
2041 void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
2043 RAMBlock *block;
2045 assert(new_block);
2046 assert(!new_block->idstr[0]);
2048 if (dev) {
2049 char *id = qdev_get_dev_path(dev);
2050 if (id) {
2051 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2052 g_free(id);
2055 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2057 rcu_read_lock();
2058 RAMBLOCK_FOREACH(block) {
2059 if (block != new_block &&
2060 !strcmp(block->idstr, new_block->idstr)) {
2061 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2062 new_block->idstr);
2063 abort();
2066 rcu_read_unlock();
2069 /* Called with iothread lock held. */
2070 void qemu_ram_unset_idstr(RAMBlock *block)
2072 /* FIXME: arch_init.c assumes that this is not called throughout
2073 * migration. Ignore the problem since hot-unplug during migration
2074 * does not work anyway.
2076 if (block) {
2077 memset(block->idstr, 0, sizeof(block->idstr));
2081 size_t qemu_ram_pagesize(RAMBlock *rb)
2083 return rb->page_size;
2086 /* Returns the largest size of page in use */
2087 size_t qemu_ram_pagesize_largest(void)
2089 RAMBlock *block;
2090 size_t largest = 0;
2092 RAMBLOCK_FOREACH(block) {
2093 largest = MAX(largest, qemu_ram_pagesize(block));
2096 return largest;
2099 static int memory_try_enable_merging(void *addr, size_t len)
2101 if (!machine_mem_merge(current_machine)) {
2102 /* disabled by the user */
2103 return 0;
2106 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2109 /* Only legal before guest might have detected the memory size: e.g. on
2110 * incoming migration, or right after reset.
2112 * As memory core doesn't know how is memory accessed, it is up to
2113 * resize callback to update device state and/or add assertions to detect
2114 * misuse, if necessary.
2116 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
2118 assert(block);
2120 newsize = HOST_PAGE_ALIGN(newsize);
2122 if (block->used_length == newsize) {
2123 return 0;
2126 if (!(block->flags & RAM_RESIZEABLE)) {
2127 error_setg_errno(errp, EINVAL,
2128 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2129 " in != 0x" RAM_ADDR_FMT, block->idstr,
2130 newsize, block->used_length);
2131 return -EINVAL;
2134 if (block->max_length < newsize) {
2135 error_setg_errno(errp, EINVAL,
2136 "Length too large: %s: 0x" RAM_ADDR_FMT
2137 " > 0x" RAM_ADDR_FMT, block->idstr,
2138 newsize, block->max_length);
2139 return -EINVAL;
2142 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2143 block->used_length = newsize;
2144 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2145 DIRTY_CLIENTS_ALL);
2146 memory_region_set_size(block->mr, newsize);
2147 if (block->resized) {
2148 block->resized(block->idstr, newsize, block->host);
2150 return 0;
2153 /* Called with ram_list.mutex held */
2154 static void dirty_memory_extend(ram_addr_t old_ram_size,
2155 ram_addr_t new_ram_size)
2157 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2158 DIRTY_MEMORY_BLOCK_SIZE);
2159 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2160 DIRTY_MEMORY_BLOCK_SIZE);
2161 int i;
2163 /* Only need to extend if block count increased */
2164 if (new_num_blocks <= old_num_blocks) {
2165 return;
2168 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2169 DirtyMemoryBlocks *old_blocks;
2170 DirtyMemoryBlocks *new_blocks;
2171 int j;
2173 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2174 new_blocks = g_malloc(sizeof(*new_blocks) +
2175 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2177 if (old_num_blocks) {
2178 memcpy(new_blocks->blocks, old_blocks->blocks,
2179 old_num_blocks * sizeof(old_blocks->blocks[0]));
2182 for (j = old_num_blocks; j < new_num_blocks; j++) {
2183 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2186 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2188 if (old_blocks) {
2189 g_free_rcu(old_blocks, rcu);
2194 static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
2196 RAMBlock *block;
2197 RAMBlock *last_block = NULL;
2198 ram_addr_t old_ram_size, new_ram_size;
2199 Error *err = NULL;
2201 old_ram_size = last_ram_page();
2203 qemu_mutex_lock_ramlist();
2204 new_block->offset = find_ram_offset(new_block->max_length);
2206 if (!new_block->host) {
2207 if (xen_enabled()) {
2208 xen_ram_alloc(new_block->offset, new_block->max_length,
2209 new_block->mr, &err);
2210 if (err) {
2211 error_propagate(errp, err);
2212 qemu_mutex_unlock_ramlist();
2213 return;
2215 } else {
2216 new_block->host = phys_mem_alloc(new_block->max_length,
2217 &new_block->mr->align, shared);
2218 if (!new_block->host) {
2219 error_setg_errno(errp, errno,
2220 "cannot set up guest memory '%s'",
2221 memory_region_name(new_block->mr));
2222 qemu_mutex_unlock_ramlist();
2223 return;
2225 memory_try_enable_merging(new_block->host, new_block->max_length);
2229 new_ram_size = MAX(old_ram_size,
2230 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2231 if (new_ram_size > old_ram_size) {
2232 dirty_memory_extend(old_ram_size, new_ram_size);
2234 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2235 * QLIST (which has an RCU-friendly variant) does not have insertion at
2236 * tail, so save the last element in last_block.
2238 RAMBLOCK_FOREACH(block) {
2239 last_block = block;
2240 if (block->max_length < new_block->max_length) {
2241 break;
2244 if (block) {
2245 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
2246 } else if (last_block) {
2247 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
2248 } else { /* list is empty */
2249 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
2251 ram_list.mru_block = NULL;
2253 /* Write list before version */
2254 smp_wmb();
2255 ram_list.version++;
2256 qemu_mutex_unlock_ramlist();
2258 cpu_physical_memory_set_dirty_range(new_block->offset,
2259 new_block->used_length,
2260 DIRTY_CLIENTS_ALL);
2262 if (new_block->host) {
2263 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2264 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
2265 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
2266 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
2267 ram_block_notify_add(new_block->host, new_block->max_length);
2271 #ifdef CONFIG_POSIX
2272 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
2273 uint32_t ram_flags, int fd,
2274 Error **errp)
2276 RAMBlock *new_block;
2277 Error *local_err = NULL;
2278 int64_t file_size;
2280 /* Just support these ram flags by now. */
2281 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2283 if (xen_enabled()) {
2284 error_setg(errp, "-mem-path not supported with Xen");
2285 return NULL;
2288 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2289 error_setg(errp,
2290 "host lacks kvm mmu notifiers, -mem-path unsupported");
2291 return NULL;
2294 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2296 * file_ram_alloc() needs to allocate just like
2297 * phys_mem_alloc, but we haven't bothered to provide
2298 * a hook there.
2300 error_setg(errp,
2301 "-mem-path not supported with this accelerator");
2302 return NULL;
2305 size = HOST_PAGE_ALIGN(size);
2306 file_size = get_file_size(fd);
2307 if (file_size > 0 && file_size < size) {
2308 error_setg(errp, "backing store %s size 0x%" PRIx64
2309 " does not match 'size' option 0x" RAM_ADDR_FMT,
2310 mem_path, file_size, size);
2311 return NULL;
2314 new_block = g_malloc0(sizeof(*new_block));
2315 new_block->mr = mr;
2316 new_block->used_length = size;
2317 new_block->max_length = size;
2318 new_block->flags = ram_flags;
2319 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
2320 if (!new_block->host) {
2321 g_free(new_block);
2322 return NULL;
2325 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
2326 if (local_err) {
2327 g_free(new_block);
2328 error_propagate(errp, local_err);
2329 return NULL;
2331 return new_block;
2336 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2337 uint32_t ram_flags, const char *mem_path,
2338 Error **errp)
2340 int fd;
2341 bool created;
2342 RAMBlock *block;
2344 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2345 if (fd < 0) {
2346 return NULL;
2349 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
2350 if (!block) {
2351 if (created) {
2352 unlink(mem_path);
2354 close(fd);
2355 return NULL;
2358 return block;
2360 #endif
2362 static
2363 RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2364 void (*resized)(const char*,
2365 uint64_t length,
2366 void *host),
2367 void *host, bool resizeable, bool share,
2368 MemoryRegion *mr, Error **errp)
2370 RAMBlock *new_block;
2371 Error *local_err = NULL;
2373 size = HOST_PAGE_ALIGN(size);
2374 max_size = HOST_PAGE_ALIGN(max_size);
2375 new_block = g_malloc0(sizeof(*new_block));
2376 new_block->mr = mr;
2377 new_block->resized = resized;
2378 new_block->used_length = size;
2379 new_block->max_length = max_size;
2380 assert(max_size >= size);
2381 new_block->fd = -1;
2382 new_block->page_size = getpagesize();
2383 new_block->host = host;
2384 if (host) {
2385 new_block->flags |= RAM_PREALLOC;
2387 if (resizeable) {
2388 new_block->flags |= RAM_RESIZEABLE;
2390 ram_block_add(new_block, &local_err, share);
2391 if (local_err) {
2392 g_free(new_block);
2393 error_propagate(errp, local_err);
2394 return NULL;
2396 return new_block;
2399 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2400 MemoryRegion *mr, Error **errp)
2402 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2403 false, mr, errp);
2406 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2407 MemoryRegion *mr, Error **errp)
2409 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2410 share, mr, errp);
2413 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
2414 void (*resized)(const char*,
2415 uint64_t length,
2416 void *host),
2417 MemoryRegion *mr, Error **errp)
2419 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2420 false, mr, errp);
2423 static void reclaim_ramblock(RAMBlock *block)
2425 if (block->flags & RAM_PREALLOC) {
2427 } else if (xen_enabled()) {
2428 xen_invalidate_map_cache_entry(block->host);
2429 #ifndef _WIN32
2430 } else if (block->fd >= 0) {
2431 qemu_ram_munmap(block->fd, block->host, block->max_length);
2432 close(block->fd);
2433 #endif
2434 } else {
2435 qemu_anon_ram_free(block->host, block->max_length);
2437 g_free(block);
2440 void qemu_ram_free(RAMBlock *block)
2442 if (!block) {
2443 return;
2446 if (block->host) {
2447 ram_block_notify_remove(block->host, block->max_length);
2450 qemu_mutex_lock_ramlist();
2451 QLIST_REMOVE_RCU(block, next);
2452 ram_list.mru_block = NULL;
2453 /* Write list before version */
2454 smp_wmb();
2455 ram_list.version++;
2456 call_rcu(block, reclaim_ramblock, rcu);
2457 qemu_mutex_unlock_ramlist();
2460 #ifndef _WIN32
2461 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2463 RAMBlock *block;
2464 ram_addr_t offset;
2465 int flags;
2466 void *area, *vaddr;
2468 RAMBLOCK_FOREACH(block) {
2469 offset = addr - block->offset;
2470 if (offset < block->max_length) {
2471 vaddr = ramblock_ptr(block, offset);
2472 if (block->flags & RAM_PREALLOC) {
2474 } else if (xen_enabled()) {
2475 abort();
2476 } else {
2477 flags = MAP_FIXED;
2478 if (block->fd >= 0) {
2479 flags |= (block->flags & RAM_SHARED ?
2480 MAP_SHARED : MAP_PRIVATE);
2481 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2482 flags, block->fd, offset);
2483 } else {
2485 * Remap needs to match alloc. Accelerators that
2486 * set phys_mem_alloc never remap. If they did,
2487 * we'd need a remap hook here.
2489 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2491 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2492 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2493 flags, -1, 0);
2495 if (area != vaddr) {
2496 error_report("Could not remap addr: "
2497 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2498 length, addr);
2499 exit(1);
2501 memory_try_enable_merging(vaddr, length);
2502 qemu_ram_setup_dump(vaddr, length);
2507 #endif /* !_WIN32 */
2509 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2510 * This should not be used for general purpose DMA. Use address_space_map
2511 * or address_space_rw instead. For local memory (e.g. video ram) that the
2512 * device owns, use memory_region_get_ram_ptr.
2514 * Called within RCU critical section.
2516 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
2518 RAMBlock *block = ram_block;
2520 if (block == NULL) {
2521 block = qemu_get_ram_block(addr);
2522 addr -= block->offset;
2525 if (xen_enabled() && block->host == NULL) {
2526 /* We need to check if the requested address is in the RAM
2527 * because we don't want to map the entire memory in QEMU.
2528 * In that case just map until the end of the page.
2530 if (block->offset == 0) {
2531 return xen_map_cache(addr, 0, 0, false);
2534 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
2536 return ramblock_ptr(block, addr);
2539 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
2540 * but takes a size argument.
2542 * Called within RCU critical section.
2544 static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
2545 hwaddr *size, bool lock)
2547 RAMBlock *block = ram_block;
2548 if (*size == 0) {
2549 return NULL;
2552 if (block == NULL) {
2553 block = qemu_get_ram_block(addr);
2554 addr -= block->offset;
2556 *size = MIN(*size, block->max_length - addr);
2558 if (xen_enabled() && block->host == NULL) {
2559 /* We need to check if the requested address is in the RAM
2560 * because we don't want to map the entire memory in QEMU.
2561 * In that case just map the requested area.
2563 if (block->offset == 0) {
2564 return xen_map_cache(addr, *size, lock, lock);
2567 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
2570 return ramblock_ptr(block, addr);
2573 /* Return the offset of a hostpointer within a ramblock */
2574 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2576 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2577 assert((uintptr_t)host >= (uintptr_t)rb->host);
2578 assert(res < rb->max_length);
2580 return res;
2584 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2585 * in that RAMBlock.
2587 * ptr: Host pointer to look up
2588 * round_offset: If true round the result offset down to a page boundary
2589 * *ram_addr: set to result ram_addr
2590 * *offset: set to result offset within the RAMBlock
2592 * Returns: RAMBlock (or NULL if not found)
2594 * By the time this function returns, the returned pointer is not protected
2595 * by RCU anymore. If the caller is not within an RCU critical section and
2596 * does not hold the iothread lock, it must have other means of protecting the
2597 * pointer, such as a reference to the region that includes the incoming
2598 * ram_addr_t.
2600 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
2601 ram_addr_t *offset)
2603 RAMBlock *block;
2604 uint8_t *host = ptr;
2606 if (xen_enabled()) {
2607 ram_addr_t ram_addr;
2608 rcu_read_lock();
2609 ram_addr = xen_ram_addr_from_mapcache(ptr);
2610 block = qemu_get_ram_block(ram_addr);
2611 if (block) {
2612 *offset = ram_addr - block->offset;
2614 rcu_read_unlock();
2615 return block;
2618 rcu_read_lock();
2619 block = atomic_rcu_read(&ram_list.mru_block);
2620 if (block && block->host && host - block->host < block->max_length) {
2621 goto found;
2624 RAMBLOCK_FOREACH(block) {
2625 /* This case append when the block is not mapped. */
2626 if (block->host == NULL) {
2627 continue;
2629 if (host - block->host < block->max_length) {
2630 goto found;
2634 rcu_read_unlock();
2635 return NULL;
2637 found:
2638 *offset = (host - block->host);
2639 if (round_offset) {
2640 *offset &= TARGET_PAGE_MASK;
2642 rcu_read_unlock();
2643 return block;
2647 * Finds the named RAMBlock
2649 * name: The name of RAMBlock to find
2651 * Returns: RAMBlock (or NULL if not found)
2653 RAMBlock *qemu_ram_block_by_name(const char *name)
2655 RAMBlock *block;
2657 RAMBLOCK_FOREACH(block) {
2658 if (!strcmp(name, block->idstr)) {
2659 return block;
2663 return NULL;
2666 /* Some of the softmmu routines need to translate from a host pointer
2667 (typically a TLB entry) back to a ram offset. */
2668 ram_addr_t qemu_ram_addr_from_host(void *ptr)
2670 RAMBlock *block;
2671 ram_addr_t offset;
2673 block = qemu_ram_block_from_host(ptr, false, &offset);
2674 if (!block) {
2675 return RAM_ADDR_INVALID;
2678 return block->offset + offset;
2681 /* Called within RCU critical section. */
2682 void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2683 CPUState *cpu,
2684 vaddr mem_vaddr,
2685 ram_addr_t ram_addr,
2686 unsigned size)
2688 ndi->cpu = cpu;
2689 ndi->ram_addr = ram_addr;
2690 ndi->mem_vaddr = mem_vaddr;
2691 ndi->size = size;
2692 ndi->pages = NULL;
2694 assert(tcg_enabled());
2695 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
2696 ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2697 tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
2701 /* Called within RCU critical section. */
2702 void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2704 if (ndi->pages) {
2705 assert(tcg_enabled());
2706 page_collection_unlock(ndi->pages);
2707 ndi->pages = NULL;
2710 /* Set both VGA and migration bits for simplicity and to remove
2711 * the notdirty callback faster.
2713 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2714 DIRTY_CLIENTS_NOCODE);
2715 /* we remove the notdirty callback only if the code has been
2716 flushed */
2717 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2718 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2722 /* Called within RCU critical section. */
2723 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2724 uint64_t val, unsigned size)
2726 NotDirtyInfo ndi;
2728 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2729 ram_addr, size);
2731 stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
2732 memory_notdirty_write_complete(&ndi);
2735 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2736 unsigned size, bool is_write,
2737 MemTxAttrs attrs)
2739 return is_write;
2742 static const MemoryRegionOps notdirty_mem_ops = {
2743 .write = notdirty_mem_write,
2744 .valid.accepts = notdirty_mem_accepts,
2745 .endianness = DEVICE_NATIVE_ENDIAN,
2746 .valid = {
2747 .min_access_size = 1,
2748 .max_access_size = 8,
2749 .unaligned = false,
2751 .impl = {
2752 .min_access_size = 1,
2753 .max_access_size = 8,
2754 .unaligned = false,
2758 /* Generate a debug exception if a watchpoint has been hit. */
2759 static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
2761 CPUState *cpu = current_cpu;
2762 CPUClass *cc = CPU_GET_CLASS(cpu);
2763 target_ulong vaddr;
2764 CPUWatchpoint *wp;
2766 assert(tcg_enabled());
2767 if (cpu->watchpoint_hit) {
2768 /* We re-entered the check after replacing the TB. Now raise
2769 * the debug interrupt so that is will trigger after the
2770 * current instruction. */
2771 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
2772 return;
2774 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2775 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
2776 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
2777 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2778 && (wp->flags & flags)) {
2779 if (flags == BP_MEM_READ) {
2780 wp->flags |= BP_WATCHPOINT_HIT_READ;
2781 } else {
2782 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2784 wp->hitaddr = vaddr;
2785 wp->hitattrs = attrs;
2786 if (!cpu->watchpoint_hit) {
2787 if (wp->flags & BP_CPU &&
2788 !cc->debug_check_watchpoint(cpu, wp)) {
2789 wp->flags &= ~BP_WATCHPOINT_HIT;
2790 continue;
2792 cpu->watchpoint_hit = wp;
2794 mmap_lock();
2795 tb_check_watchpoint(cpu);
2796 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2797 cpu->exception_index = EXCP_DEBUG;
2798 mmap_unlock();
2799 cpu_loop_exit(cpu);
2800 } else {
2801 /* Force execution of one insn next time. */
2802 cpu->cflags_next_tb = 1 | curr_cflags();
2803 mmap_unlock();
2804 cpu_loop_exit_noexc(cpu);
2807 } else {
2808 wp->flags &= ~BP_WATCHPOINT_HIT;
2813 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2814 so these check for a hit then pass through to the normal out-of-line
2815 phys routines. */
2816 static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2817 unsigned size, MemTxAttrs attrs)
2819 MemTxResult res;
2820 uint64_t data;
2821 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2822 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2824 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
2825 switch (size) {
2826 case 1:
2827 data = address_space_ldub(as, addr, attrs, &res);
2828 break;
2829 case 2:
2830 data = address_space_lduw(as, addr, attrs, &res);
2831 break;
2832 case 4:
2833 data = address_space_ldl(as, addr, attrs, &res);
2834 break;
2835 case 8:
2836 data = address_space_ldq(as, addr, attrs, &res);
2837 break;
2838 default: abort();
2840 *pdata = data;
2841 return res;
2844 static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2845 uint64_t val, unsigned size,
2846 MemTxAttrs attrs)
2848 MemTxResult res;
2849 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2850 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
2852 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
2853 switch (size) {
2854 case 1:
2855 address_space_stb(as, addr, val, attrs, &res);
2856 break;
2857 case 2:
2858 address_space_stw(as, addr, val, attrs, &res);
2859 break;
2860 case 4:
2861 address_space_stl(as, addr, val, attrs, &res);
2862 break;
2863 case 8:
2864 address_space_stq(as, addr, val, attrs, &res);
2865 break;
2866 default: abort();
2868 return res;
2871 static const MemoryRegionOps watch_mem_ops = {
2872 .read_with_attrs = watch_mem_read,
2873 .write_with_attrs = watch_mem_write,
2874 .endianness = DEVICE_NATIVE_ENDIAN,
2875 .valid = {
2876 .min_access_size = 1,
2877 .max_access_size = 8,
2878 .unaligned = false,
2880 .impl = {
2881 .min_access_size = 1,
2882 .max_access_size = 8,
2883 .unaligned = false,
2887 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
2888 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
2889 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2890 const uint8_t *buf, hwaddr len);
2891 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
2892 bool is_write, MemTxAttrs attrs);
2894 static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2895 unsigned len, MemTxAttrs attrs)
2897 subpage_t *subpage = opaque;
2898 uint8_t buf[8];
2899 MemTxResult res;
2901 #if defined(DEBUG_SUBPAGE)
2902 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
2903 subpage, len, addr);
2904 #endif
2905 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
2906 if (res) {
2907 return res;
2909 *data = ldn_p(buf, len);
2910 return MEMTX_OK;
2913 static MemTxResult subpage_write(void *opaque, hwaddr addr,
2914 uint64_t value, unsigned len, MemTxAttrs attrs)
2916 subpage_t *subpage = opaque;
2917 uint8_t buf[8];
2919 #if defined(DEBUG_SUBPAGE)
2920 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2921 " value %"PRIx64"\n",
2922 __func__, subpage, len, addr, value);
2923 #endif
2924 stn_p(buf, len, value);
2925 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
2928 static bool subpage_accepts(void *opaque, hwaddr addr,
2929 unsigned len, bool is_write,
2930 MemTxAttrs attrs)
2932 subpage_t *subpage = opaque;
2933 #if defined(DEBUG_SUBPAGE)
2934 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
2935 __func__, subpage, is_write ? 'w' : 'r', len, addr);
2936 #endif
2938 return flatview_access_valid(subpage->fv, addr + subpage->base,
2939 len, is_write, attrs);
2942 static const MemoryRegionOps subpage_ops = {
2943 .read_with_attrs = subpage_read,
2944 .write_with_attrs = subpage_write,
2945 .impl.min_access_size = 1,
2946 .impl.max_access_size = 8,
2947 .valid.min_access_size = 1,
2948 .valid.max_access_size = 8,
2949 .valid.accepts = subpage_accepts,
2950 .endianness = DEVICE_NATIVE_ENDIAN,
2953 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2954 uint16_t section)
2956 int idx, eidx;
2958 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2959 return -1;
2960 idx = SUBPAGE_IDX(start);
2961 eidx = SUBPAGE_IDX(end);
2962 #if defined(DEBUG_SUBPAGE)
2963 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2964 __func__, mmio, start, end, idx, eidx, section);
2965 #endif
2966 for (; idx <= eidx; idx++) {
2967 mmio->sub_section[idx] = section;
2970 return 0;
2973 static subpage_t *subpage_init(FlatView *fv, hwaddr base)
2975 subpage_t *mmio;
2977 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
2978 mmio->fv = fv;
2979 mmio->base = base;
2980 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
2981 NULL, TARGET_PAGE_SIZE);
2982 mmio->iomem.subpage = true;
2983 #if defined(DEBUG_SUBPAGE)
2984 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2985 mmio, base, TARGET_PAGE_SIZE);
2986 #endif
2987 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
2989 return mmio;
2992 static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
2994 assert(fv);
2995 MemoryRegionSection section = {
2996 .fv = fv,
2997 .mr = mr,
2998 .offset_within_address_space = 0,
2999 .offset_within_region = 0,
3000 .size = int128_2_64(),
3003 return phys_section_add(map, &section);
3006 static void readonly_mem_write(void *opaque, hwaddr addr,
3007 uint64_t val, unsigned size)
3009 /* Ignore any write to ROM. */
3012 static bool readonly_mem_accepts(void *opaque, hwaddr addr,
3013 unsigned size, bool is_write,
3014 MemTxAttrs attrs)
3016 return is_write;
3019 /* This will only be used for writes, because reads are special cased
3020 * to directly access the underlying host ram.
3022 static const MemoryRegionOps readonly_mem_ops = {
3023 .write = readonly_mem_write,
3024 .valid.accepts = readonly_mem_accepts,
3025 .endianness = DEVICE_NATIVE_ENDIAN,
3026 .valid = {
3027 .min_access_size = 1,
3028 .max_access_size = 8,
3029 .unaligned = false,
3031 .impl = {
3032 .min_access_size = 1,
3033 .max_access_size = 8,
3034 .unaligned = false,
3038 MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3039 hwaddr index, MemTxAttrs attrs)
3041 int asidx = cpu_asidx_from_attrs(cpu, attrs);
3042 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
3043 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
3044 MemoryRegionSection *sections = d->map.sections;
3046 return &sections[index & ~TARGET_PAGE_MASK];
3049 static void io_mem_init(void)
3051 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3052 NULL, NULL, UINT64_MAX);
3053 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
3054 NULL, UINT64_MAX);
3056 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3057 * which can be called without the iothread mutex.
3059 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
3060 NULL, UINT64_MAX);
3061 memory_region_clear_global_locking(&io_mem_notdirty);
3063 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
3064 NULL, UINT64_MAX);
3067 AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
3069 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3070 uint16_t n;
3072 n = dummy_section(&d->map, fv, &io_mem_unassigned);
3073 assert(n == PHYS_SECTION_UNASSIGNED);
3074 n = dummy_section(&d->map, fv, &io_mem_notdirty);
3075 assert(n == PHYS_SECTION_NOTDIRTY);
3076 n = dummy_section(&d->map, fv, &io_mem_rom);
3077 assert(n == PHYS_SECTION_ROM);
3078 n = dummy_section(&d->map, fv, &io_mem_watch);
3079 assert(n == PHYS_SECTION_WATCH);
3081 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
3083 return d;
3086 void address_space_dispatch_free(AddressSpaceDispatch *d)
3088 phys_sections_free(&d->map);
3089 g_free(d);
3092 static void tcg_commit(MemoryListener *listener)
3094 CPUAddressSpace *cpuas;
3095 AddressSpaceDispatch *d;
3097 assert(tcg_enabled());
3098 /* since each CPU stores ram addresses in its TLB cache, we must
3099 reset the modified entries */
3100 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3101 cpu_reloading_memory_map();
3102 /* The CPU and TLB are protected by the iothread lock.
3103 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3104 * may have split the RCU critical section.
3106 d = address_space_to_dispatch(cpuas->as);
3107 atomic_rcu_set(&cpuas->memory_dispatch, d);
3108 tlb_flush(cpuas->cpu);
3111 static void memory_map_init(void)
3113 system_memory = g_malloc(sizeof(*system_memory));
3115 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
3116 address_space_init(&address_space_memory, system_memory, "memory");
3118 system_io = g_malloc(sizeof(*system_io));
3119 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3120 65536);
3121 address_space_init(&address_space_io, system_io, "I/O");
3124 MemoryRegion *get_system_memory(void)
3126 return system_memory;
3129 MemoryRegion *get_system_io(void)
3131 return system_io;
3134 #endif /* !defined(CONFIG_USER_ONLY) */
3136 /* physical memory access (slow version, mainly for debug) */
3137 #if defined(CONFIG_USER_ONLY)
3138 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3139 uint8_t *buf, target_ulong len, int is_write)
3141 int flags;
3142 target_ulong l, page;
3143 void * p;
3145 while (len > 0) {
3146 page = addr & TARGET_PAGE_MASK;
3147 l = (page + TARGET_PAGE_SIZE) - addr;
3148 if (l > len)
3149 l = len;
3150 flags = page_get_flags(page);
3151 if (!(flags & PAGE_VALID))
3152 return -1;
3153 if (is_write) {
3154 if (!(flags & PAGE_WRITE))
3155 return -1;
3156 /* XXX: this code should not depend on lock_user */
3157 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3158 return -1;
3159 memcpy(p, buf, l);
3160 unlock_user(p, addr, l);
3161 } else {
3162 if (!(flags & PAGE_READ))
3163 return -1;
3164 /* XXX: this code should not depend on lock_user */
3165 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3166 return -1;
3167 memcpy(buf, p, l);
3168 unlock_user(p, addr, 0);
3170 len -= l;
3171 buf += l;
3172 addr += l;
3174 return 0;
3177 #else
3179 static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
3180 hwaddr length)
3182 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3183 addr += memory_region_get_ram_addr(mr);
3185 /* No early return if dirty_log_mask is or becomes 0, because
3186 * cpu_physical_memory_set_dirty_range will still call
3187 * xen_modified_memory.
3189 if (dirty_log_mask) {
3190 dirty_log_mask =
3191 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3193 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
3194 assert(tcg_enabled());
3195 tb_invalidate_phys_range(addr, addr + length);
3196 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
3198 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
3201 void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3204 * In principle this function would work on other memory region types too,
3205 * but the ROM device use case is the only one where this operation is
3206 * necessary. Other memory regions should use the
3207 * address_space_read/write() APIs.
3209 assert(memory_region_is_romd(mr));
3211 invalidate_and_set_dirty(mr, addr, size);
3214 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
3216 unsigned access_size_max = mr->ops->valid.max_access_size;
3218 /* Regions are assumed to support 1-4 byte accesses unless
3219 otherwise specified. */
3220 if (access_size_max == 0) {
3221 access_size_max = 4;
3224 /* Bound the maximum access by the alignment of the address. */
3225 if (!mr->ops->impl.unaligned) {
3226 unsigned align_size_max = addr & -addr;
3227 if (align_size_max != 0 && align_size_max < access_size_max) {
3228 access_size_max = align_size_max;
3232 /* Don't attempt accesses larger than the maximum. */
3233 if (l > access_size_max) {
3234 l = access_size_max;
3236 l = pow2floor(l);
3238 return l;
3241 static bool prepare_mmio_access(MemoryRegion *mr)
3243 bool unlocked = !qemu_mutex_iothread_locked();
3244 bool release_lock = false;
3246 if (unlocked && mr->global_locking) {
3247 qemu_mutex_lock_iothread();
3248 unlocked = false;
3249 release_lock = true;
3251 if (mr->flush_coalesced_mmio) {
3252 if (unlocked) {
3253 qemu_mutex_lock_iothread();
3255 qemu_flush_coalesced_mmio_buffer();
3256 if (unlocked) {
3257 qemu_mutex_unlock_iothread();
3261 return release_lock;
3264 /* Called within RCU critical section. */
3265 static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3266 MemTxAttrs attrs,
3267 const uint8_t *buf,
3268 hwaddr len, hwaddr addr1,
3269 hwaddr l, MemoryRegion *mr)
3271 uint8_t *ptr;
3272 uint64_t val;
3273 MemTxResult result = MEMTX_OK;
3274 bool release_lock = false;
3276 for (;;) {
3277 if (!memory_access_is_direct(mr, true)) {
3278 release_lock |= prepare_mmio_access(mr);
3279 l = memory_access_size(mr, l, addr1);
3280 /* XXX: could force current_cpu to NULL to avoid
3281 potential bugs */
3282 val = ldn_p(buf, l);
3283 result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
3284 } else {
3285 /* RAM case */
3286 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3287 memcpy(ptr, buf, l);
3288 invalidate_and_set_dirty(mr, addr1, l);
3291 if (release_lock) {
3292 qemu_mutex_unlock_iothread();
3293 release_lock = false;
3296 len -= l;
3297 buf += l;
3298 addr += l;
3300 if (!len) {
3301 break;
3304 l = len;
3305 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3308 return result;
3311 /* Called from RCU critical section. */
3312 static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3313 const uint8_t *buf, hwaddr len)
3315 hwaddr l;
3316 hwaddr addr1;
3317 MemoryRegion *mr;
3318 MemTxResult result = MEMTX_OK;
3320 l = len;
3321 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
3322 result = flatview_write_continue(fv, addr, attrs, buf, len,
3323 addr1, l, mr);
3325 return result;
3328 /* Called within RCU critical section. */
3329 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3330 MemTxAttrs attrs, uint8_t *buf,
3331 hwaddr len, hwaddr addr1, hwaddr l,
3332 MemoryRegion *mr)
3334 uint8_t *ptr;
3335 uint64_t val;
3336 MemTxResult result = MEMTX_OK;
3337 bool release_lock = false;
3339 for (;;) {
3340 if (!memory_access_is_direct(mr, false)) {
3341 /* I/O case */
3342 release_lock |= prepare_mmio_access(mr);
3343 l = memory_access_size(mr, l, addr1);
3344 result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
3345 stn_p(buf, l, val);
3346 } else {
3347 /* RAM case */
3348 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
3349 memcpy(buf, ptr, l);
3352 if (release_lock) {
3353 qemu_mutex_unlock_iothread();
3354 release_lock = false;
3357 len -= l;
3358 buf += l;
3359 addr += l;
3361 if (!len) {
3362 break;
3365 l = len;
3366 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3369 return result;
3372 /* Called from RCU critical section. */
3373 static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
3374 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3376 hwaddr l;
3377 hwaddr addr1;
3378 MemoryRegion *mr;
3380 l = len;
3381 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
3382 return flatview_read_continue(fv, addr, attrs, buf, len,
3383 addr1, l, mr);
3386 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
3387 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
3389 MemTxResult result = MEMTX_OK;
3390 FlatView *fv;
3392 if (len > 0) {
3393 rcu_read_lock();
3394 fv = address_space_to_flatview(as);
3395 result = flatview_read(fv, addr, attrs, buf, len);
3396 rcu_read_unlock();
3399 return result;
3402 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3403 MemTxAttrs attrs,
3404 const uint8_t *buf, hwaddr len)
3406 MemTxResult result = MEMTX_OK;
3407 FlatView *fv;
3409 if (len > 0) {
3410 rcu_read_lock();
3411 fv = address_space_to_flatview(as);
3412 result = flatview_write(fv, addr, attrs, buf, len);
3413 rcu_read_unlock();
3416 return result;
3419 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
3420 uint8_t *buf, hwaddr len, bool is_write)
3422 if (is_write) {
3423 return address_space_write(as, addr, attrs, buf, len);
3424 } else {
3425 return address_space_read_full(as, addr, attrs, buf, len);
3429 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
3430 hwaddr len, int is_write)
3432 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3433 buf, len, is_write);
3436 enum write_rom_type {
3437 WRITE_DATA,
3438 FLUSH_CACHE,
3441 static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3442 hwaddr addr,
3443 MemTxAttrs attrs,
3444 const uint8_t *buf,
3445 hwaddr len,
3446 enum write_rom_type type)
3448 hwaddr l;
3449 uint8_t *ptr;
3450 hwaddr addr1;
3451 MemoryRegion *mr;
3453 rcu_read_lock();
3454 while (len > 0) {
3455 l = len;
3456 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3458 if (!(memory_region_is_ram(mr) ||
3459 memory_region_is_romd(mr))) {
3460 l = memory_access_size(mr, l, addr1);
3461 } else {
3462 /* ROM/RAM case */
3463 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
3464 switch (type) {
3465 case WRITE_DATA:
3466 memcpy(ptr, buf, l);
3467 invalidate_and_set_dirty(mr, addr1, l);
3468 break;
3469 case FLUSH_CACHE:
3470 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3471 break;
3474 len -= l;
3475 buf += l;
3476 addr += l;
3478 rcu_read_unlock();
3479 return MEMTX_OK;
3482 /* used for ROM loading : can write in RAM and ROM */
3483 MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3484 MemTxAttrs attrs,
3485 const uint8_t *buf, hwaddr len)
3487 return address_space_write_rom_internal(as, addr, attrs,
3488 buf, len, WRITE_DATA);
3491 void cpu_flush_icache_range(hwaddr start, hwaddr len)
3494 * This function should do the same thing as an icache flush that was
3495 * triggered from within the guest. For TCG we are always cache coherent,
3496 * so there is no need to flush anything. For KVM / Xen we need to flush
3497 * the host's instruction cache at least.
3499 if (tcg_enabled()) {
3500 return;
3503 address_space_write_rom_internal(&address_space_memory,
3504 start, MEMTXATTRS_UNSPECIFIED,
3505 NULL, len, FLUSH_CACHE);
3508 typedef struct {
3509 MemoryRegion *mr;
3510 void *buffer;
3511 hwaddr addr;
3512 hwaddr len;
3513 bool in_use;
3514 } BounceBuffer;
3516 static BounceBuffer bounce;
3518 typedef struct MapClient {
3519 QEMUBH *bh;
3520 QLIST_ENTRY(MapClient) link;
3521 } MapClient;
3523 QemuMutex map_client_list_lock;
3524 static QLIST_HEAD(, MapClient) map_client_list
3525 = QLIST_HEAD_INITIALIZER(map_client_list);
3527 static void cpu_unregister_map_client_do(MapClient *client)
3529 QLIST_REMOVE(client, link);
3530 g_free(client);
3533 static void cpu_notify_map_clients_locked(void)
3535 MapClient *client;
3537 while (!QLIST_EMPTY(&map_client_list)) {
3538 client = QLIST_FIRST(&map_client_list);
3539 qemu_bh_schedule(client->bh);
3540 cpu_unregister_map_client_do(client);
3544 void cpu_register_map_client(QEMUBH *bh)
3546 MapClient *client = g_malloc(sizeof(*client));
3548 qemu_mutex_lock(&map_client_list_lock);
3549 client->bh = bh;
3550 QLIST_INSERT_HEAD(&map_client_list, client, link);
3551 if (!atomic_read(&bounce.in_use)) {
3552 cpu_notify_map_clients_locked();
3554 qemu_mutex_unlock(&map_client_list_lock);
3557 void cpu_exec_init_all(void)
3559 qemu_mutex_init(&ram_list.mutex);
3560 /* The data structures we set up here depend on knowing the page size,
3561 * so no more changes can be made after this point.
3562 * In an ideal world, nothing we did before we had finished the
3563 * machine setup would care about the target page size, and we could
3564 * do this much later, rather than requiring board models to state
3565 * up front what their requirements are.
3567 finalize_target_page_bits();
3568 io_mem_init();
3569 memory_map_init();
3570 qemu_mutex_init(&map_client_list_lock);
3573 void cpu_unregister_map_client(QEMUBH *bh)
3575 MapClient *client;
3577 qemu_mutex_lock(&map_client_list_lock);
3578 QLIST_FOREACH(client, &map_client_list, link) {
3579 if (client->bh == bh) {
3580 cpu_unregister_map_client_do(client);
3581 break;
3584 qemu_mutex_unlock(&map_client_list_lock);
3587 static void cpu_notify_map_clients(void)
3589 qemu_mutex_lock(&map_client_list_lock);
3590 cpu_notify_map_clients_locked();
3591 qemu_mutex_unlock(&map_client_list_lock);
3594 static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
3595 bool is_write, MemTxAttrs attrs)
3597 MemoryRegion *mr;
3598 hwaddr l, xlat;
3600 while (len > 0) {
3601 l = len;
3602 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3603 if (!memory_access_is_direct(mr, is_write)) {
3604 l = memory_access_size(mr, l, addr);
3605 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
3606 return false;
3610 len -= l;
3611 addr += l;
3613 return true;
3616 bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3617 hwaddr len, bool is_write,
3618 MemTxAttrs attrs)
3620 FlatView *fv;
3621 bool result;
3623 rcu_read_lock();
3624 fv = address_space_to_flatview(as);
3625 result = flatview_access_valid(fv, addr, len, is_write, attrs);
3626 rcu_read_unlock();
3627 return result;
3630 static hwaddr
3631 flatview_extend_translation(FlatView *fv, hwaddr addr,
3632 hwaddr target_len,
3633 MemoryRegion *mr, hwaddr base, hwaddr len,
3634 bool is_write, MemTxAttrs attrs)
3636 hwaddr done = 0;
3637 hwaddr xlat;
3638 MemoryRegion *this_mr;
3640 for (;;) {
3641 target_len -= len;
3642 addr += len;
3643 done += len;
3644 if (target_len == 0) {
3645 return done;
3648 len = target_len;
3649 this_mr = flatview_translate(fv, addr, &xlat,
3650 &len, is_write, attrs);
3651 if (this_mr != mr || xlat != base + done) {
3652 return done;
3657 /* Map a physical memory region into a host virtual address.
3658 * May map a subset of the requested range, given by and returned in *plen.
3659 * May return NULL if resources needed to perform the mapping are exhausted.
3660 * Use only for reads OR writes - not for read-modify-write operations.
3661 * Use cpu_register_map_client() to know when retrying the map operation is
3662 * likely to succeed.
3664 void *address_space_map(AddressSpace *as,
3665 hwaddr addr,
3666 hwaddr *plen,
3667 bool is_write,
3668 MemTxAttrs attrs)
3670 hwaddr len = *plen;
3671 hwaddr l, xlat;
3672 MemoryRegion *mr;
3673 void *ptr;
3674 FlatView *fv;
3676 if (len == 0) {
3677 return NULL;
3680 l = len;
3681 rcu_read_lock();
3682 fv = address_space_to_flatview(as);
3683 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
3685 if (!memory_access_is_direct(mr, is_write)) {
3686 if (atomic_xchg(&bounce.in_use, true)) {
3687 rcu_read_unlock();
3688 return NULL;
3690 /* Avoid unbounded allocations */
3691 l = MIN(l, TARGET_PAGE_SIZE);
3692 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
3693 bounce.addr = addr;
3694 bounce.len = l;
3696 memory_region_ref(mr);
3697 bounce.mr = mr;
3698 if (!is_write) {
3699 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
3700 bounce.buffer, l);
3703 rcu_read_unlock();
3704 *plen = l;
3705 return bounce.buffer;
3709 memory_region_ref(mr);
3710 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3711 l, is_write, attrs);
3712 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
3713 rcu_read_unlock();
3715 return ptr;
3718 /* Unmaps a memory region previously mapped by address_space_map().
3719 * Will also mark the memory as dirty if is_write == 1. access_len gives
3720 * the amount of memory that was actually read or written by the caller.
3722 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3723 int is_write, hwaddr access_len)
3725 if (buffer != bounce.buffer) {
3726 MemoryRegion *mr;
3727 ram_addr_t addr1;
3729 mr = memory_region_from_host(buffer, &addr1);
3730 assert(mr != NULL);
3731 if (is_write) {
3732 invalidate_and_set_dirty(mr, addr1, access_len);
3734 if (xen_enabled()) {
3735 xen_invalidate_map_cache_entry(buffer);
3737 memory_region_unref(mr);
3738 return;
3740 if (is_write) {
3741 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3742 bounce.buffer, access_len);
3744 qemu_vfree(bounce.buffer);
3745 bounce.buffer = NULL;
3746 memory_region_unref(bounce.mr);
3747 atomic_mb_set(&bounce.in_use, false);
3748 cpu_notify_map_clients();
3751 void *cpu_physical_memory_map(hwaddr addr,
3752 hwaddr *plen,
3753 int is_write)
3755 return address_space_map(&address_space_memory, addr, plen, is_write,
3756 MEMTXATTRS_UNSPECIFIED);
3759 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3760 int is_write, hwaddr access_len)
3762 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3765 #define ARG1_DECL AddressSpace *as
3766 #define ARG1 as
3767 #define SUFFIX
3768 #define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3769 #define RCU_READ_LOCK(...) rcu_read_lock()
3770 #define RCU_READ_UNLOCK(...) rcu_read_unlock()
3771 #include "memory_ldst.inc.c"
3773 int64_t address_space_cache_init(MemoryRegionCache *cache,
3774 AddressSpace *as,
3775 hwaddr addr,
3776 hwaddr len,
3777 bool is_write)
3779 AddressSpaceDispatch *d;
3780 hwaddr l;
3781 MemoryRegion *mr;
3783 assert(len > 0);
3785 l = len;
3786 cache->fv = address_space_get_flatview(as);
3787 d = flatview_to_dispatch(cache->fv);
3788 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3790 mr = cache->mrs.mr;
3791 memory_region_ref(mr);
3792 if (memory_access_is_direct(mr, is_write)) {
3793 /* We don't care about the memory attributes here as we're only
3794 * doing this if we found actual RAM, which behaves the same
3795 * regardless of attributes; so UNSPECIFIED is fine.
3797 l = flatview_extend_translation(cache->fv, addr, len, mr,
3798 cache->xlat, l, is_write,
3799 MEMTXATTRS_UNSPECIFIED);
3800 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3801 } else {
3802 cache->ptr = NULL;
3805 cache->len = l;
3806 cache->is_write = is_write;
3807 return l;
3810 void address_space_cache_invalidate(MemoryRegionCache *cache,
3811 hwaddr addr,
3812 hwaddr access_len)
3814 assert(cache->is_write);
3815 if (likely(cache->ptr)) {
3816 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3820 void address_space_cache_destroy(MemoryRegionCache *cache)
3822 if (!cache->mrs.mr) {
3823 return;
3826 if (xen_enabled()) {
3827 xen_invalidate_map_cache_entry(cache->ptr);
3829 memory_region_unref(cache->mrs.mr);
3830 flatview_unref(cache->fv);
3831 cache->mrs.mr = NULL;
3832 cache->fv = NULL;
3835 /* Called from RCU critical section. This function has the same
3836 * semantics as address_space_translate, but it only works on a
3837 * predefined range of a MemoryRegion that was mapped with
3838 * address_space_cache_init.
3840 static inline MemoryRegion *address_space_translate_cached(
3841 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
3842 hwaddr *plen, bool is_write, MemTxAttrs attrs)
3844 MemoryRegionSection section;
3845 MemoryRegion *mr;
3846 IOMMUMemoryRegion *iommu_mr;
3847 AddressSpace *target_as;
3849 assert(!cache->ptr);
3850 *xlat = addr + cache->xlat;
3852 mr = cache->mrs.mr;
3853 iommu_mr = memory_region_get_iommu(mr);
3854 if (!iommu_mr) {
3855 /* MMIO region. */
3856 return mr;
3859 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3860 NULL, is_write, true,
3861 &target_as, attrs);
3862 return section.mr;
3865 /* Called from RCU critical section. address_space_read_cached uses this
3866 * out of line function when the target is an MMIO or IOMMU region.
3868 void
3869 address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3870 void *buf, hwaddr len)
3872 hwaddr addr1, l;
3873 MemoryRegion *mr;
3875 l = len;
3876 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3877 MEMTXATTRS_UNSPECIFIED);
3878 flatview_read_continue(cache->fv,
3879 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3880 addr1, l, mr);
3883 /* Called from RCU critical section. address_space_write_cached uses this
3884 * out of line function when the target is an MMIO or IOMMU region.
3886 void
3887 address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
3888 const void *buf, hwaddr len)
3890 hwaddr addr1, l;
3891 MemoryRegion *mr;
3893 l = len;
3894 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3895 MEMTXATTRS_UNSPECIFIED);
3896 flatview_write_continue(cache->fv,
3897 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3898 addr1, l, mr);
3901 #define ARG1_DECL MemoryRegionCache *cache
3902 #define ARG1 cache
3903 #define SUFFIX _cached_slow
3904 #define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
3905 #define RCU_READ_LOCK() ((void)0)
3906 #define RCU_READ_UNLOCK() ((void)0)
3907 #include "memory_ldst.inc.c"
3909 /* virtual memory access for debug (includes writing to ROM) */
3910 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
3911 uint8_t *buf, target_ulong len, int is_write)
3913 hwaddr phys_addr;
3914 target_ulong l, page;
3916 cpu_synchronize_state(cpu);
3917 while (len > 0) {
3918 int asidx;
3919 MemTxAttrs attrs;
3921 page = addr & TARGET_PAGE_MASK;
3922 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3923 asidx = cpu_asidx_from_attrs(cpu, attrs);
3924 /* if no physical page mapped, return an error */
3925 if (phys_addr == -1)
3926 return -1;
3927 l = (page + TARGET_PAGE_SIZE) - addr;
3928 if (l > len)
3929 l = len;
3930 phys_addr += (addr & ~TARGET_PAGE_MASK);
3931 if (is_write) {
3932 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
3933 attrs, buf, l);
3934 } else {
3935 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3936 attrs, buf, l, 0);
3938 len -= l;
3939 buf += l;
3940 addr += l;
3942 return 0;
3946 * Allows code that needs to deal with migration bitmaps etc to still be built
3947 * target independent.
3949 size_t qemu_target_page_size(void)
3951 return TARGET_PAGE_SIZE;
3954 int qemu_target_page_bits(void)
3956 return TARGET_PAGE_BITS;
3959 int qemu_target_page_bits_min(void)
3961 return TARGET_PAGE_BITS_MIN;
3963 #endif
3965 bool target_words_bigendian(void)
3967 #if defined(TARGET_WORDS_BIGENDIAN)
3968 return true;
3969 #else
3970 return false;
3971 #endif
3974 #ifndef CONFIG_USER_ONLY
3975 bool cpu_physical_memory_is_io(hwaddr phys_addr)
3977 MemoryRegion*mr;
3978 hwaddr l = 1;
3979 bool res;
3981 rcu_read_lock();
3982 mr = address_space_translate(&address_space_memory,
3983 phys_addr, &phys_addr, &l, false,
3984 MEMTXATTRS_UNSPECIFIED);
3986 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3987 rcu_read_unlock();
3988 return res;
3991 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
3993 RAMBlock *block;
3994 int ret = 0;
3996 rcu_read_lock();
3997 RAMBLOCK_FOREACH(block) {
3998 ret = func(block, opaque);
3999 if (ret) {
4000 break;
4003 rcu_read_unlock();
4004 return ret;
4008 * Unmap pages of memory from start to start+length such that
4009 * they a) read as 0, b) Trigger whatever fault mechanism
4010 * the OS provides for postcopy.
4011 * The pages must be unmapped by the end of the function.
4012 * Returns: 0 on success, none-0 on failure
4015 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
4017 int ret = -1;
4019 uint8_t *host_startaddr = rb->host + start;
4021 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
4022 error_report("ram_block_discard_range: Unaligned start address: %p",
4023 host_startaddr);
4024 goto err;
4027 if ((start + length) <= rb->used_length) {
4028 bool need_madvise, need_fallocate;
4029 uint8_t *host_endaddr = host_startaddr + length;
4030 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
4031 error_report("ram_block_discard_range: Unaligned end address: %p",
4032 host_endaddr);
4033 goto err;
4036 errno = ENOTSUP; /* If we are missing MADVISE etc */
4038 /* The logic here is messy;
4039 * madvise DONTNEED fails for hugepages
4040 * fallocate works on hugepages and shmem
4042 need_madvise = (rb->page_size == qemu_host_page_size);
4043 need_fallocate = rb->fd != -1;
4044 if (need_fallocate) {
4045 /* For a file, this causes the area of the file to be zero'd
4046 * if read, and for hugetlbfs also causes it to be unmapped
4047 * so a userfault will trigger.
4049 #ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4050 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4051 start, length);
4052 if (ret) {
4053 ret = -errno;
4054 error_report("ram_block_discard_range: Failed to fallocate "
4055 "%s:%" PRIx64 " +%zx (%d)",
4056 rb->idstr, start, length, ret);
4057 goto err;
4059 #else
4060 ret = -ENOSYS;
4061 error_report("ram_block_discard_range: fallocate not available/file"
4062 "%s:%" PRIx64 " +%zx (%d)",
4063 rb->idstr, start, length, ret);
4064 goto err;
4065 #endif
4067 if (need_madvise) {
4068 /* For normal RAM this causes it to be unmapped,
4069 * for shared memory it causes the local mapping to disappear
4070 * and to fall back on the file contents (which we just
4071 * fallocate'd away).
4073 #if defined(CONFIG_MADVISE)
4074 ret = madvise(host_startaddr, length, MADV_DONTNEED);
4075 if (ret) {
4076 ret = -errno;
4077 error_report("ram_block_discard_range: Failed to discard range "
4078 "%s:%" PRIx64 " +%zx (%d)",
4079 rb->idstr, start, length, ret);
4080 goto err;
4082 #else
4083 ret = -ENOSYS;
4084 error_report("ram_block_discard_range: MADVISE not available"
4085 "%s:%" PRIx64 " +%zx (%d)",
4086 rb->idstr, start, length, ret);
4087 goto err;
4088 #endif
4090 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4091 need_madvise, need_fallocate, ret);
4092 } else {
4093 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4094 "/%zx/" RAM_ADDR_FMT")",
4095 rb->idstr, start, length, rb->used_length);
4098 err:
4099 return ret;
4102 bool ramblock_is_pmem(RAMBlock *rb)
4104 return rb->flags & RAM_PMEM;
4107 #endif
4109 void page_size_init(void)
4111 /* NOTE: we can always suppose that qemu_host_page_size >=
4112 TARGET_PAGE_SIZE */
4113 if (qemu_host_page_size == 0) {
4114 qemu_host_page_size = qemu_real_host_page_size;
4116 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4117 qemu_host_page_size = TARGET_PAGE_SIZE;
4119 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4122 #if !defined(CONFIG_USER_ONLY)
4124 static void mtree_print_phys_entries(fprintf_function mon, void *f,
4125 int start, int end, int skip, int ptr)
4127 if (start == end - 1) {
4128 mon(f, "\t%3d ", start);
4129 } else {
4130 mon(f, "\t%3d..%-3d ", start, end - 1);
4132 mon(f, " skip=%d ", skip);
4133 if (ptr == PHYS_MAP_NODE_NIL) {
4134 mon(f, " ptr=NIL");
4135 } else if (!skip) {
4136 mon(f, " ptr=#%d", ptr);
4137 } else {
4138 mon(f, " ptr=[%d]", ptr);
4140 mon(f, "\n");
4143 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4144 int128_sub((size), int128_one())) : 0)
4146 void mtree_print_dispatch(fprintf_function mon, void *f,
4147 AddressSpaceDispatch *d, MemoryRegion *root)
4149 int i;
4151 mon(f, " Dispatch\n");
4152 mon(f, " Physical sections\n");
4154 for (i = 0; i < d->map.sections_nb; ++i) {
4155 MemoryRegionSection *s = d->map.sections + i;
4156 const char *names[] = { " [unassigned]", " [not dirty]",
4157 " [ROM]", " [watch]" };
4159 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
4161 s->offset_within_address_space,
4162 s->offset_within_address_space + MR_SIZE(s->mr->size),
4163 s->mr->name ? s->mr->name : "(noname)",
4164 i < ARRAY_SIZE(names) ? names[i] : "",
4165 s->mr == root ? " [ROOT]" : "",
4166 s == d->mru_section ? " [MRU]" : "",
4167 s->mr->is_iommu ? " [iommu]" : "");
4169 if (s->mr->alias) {
4170 mon(f, " alias=%s", s->mr->alias->name ?
4171 s->mr->alias->name : "noname");
4173 mon(f, "\n");
4176 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4177 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4178 for (i = 0; i < d->map.nodes_nb; ++i) {
4179 int j, jprev;
4180 PhysPageEntry prev;
4181 Node *n = d->map.nodes + i;
4183 mon(f, " [%d]\n", i);
4185 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4186 PhysPageEntry *pe = *n + j;
4188 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4189 continue;
4192 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4194 jprev = j;
4195 prev = *pe;
4198 if (jprev != ARRAY_SIZE(*n)) {
4199 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4204 #endif