util: move declarations out of qemu-common.h
[qemu/ar7.git] / block / io.c
blobc2611e53c86b38ceb64928424c9d19d7ee16472b
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/blockjob.h"
29 #include "block/block_int.h"
30 #include "block/throttle-groups.h"
31 #include "qemu/cutils.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
35 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
37 static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
38 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
39 BlockCompletionFunc *cb, void *opaque);
40 static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
41 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
42 BlockCompletionFunc *cb, void *opaque);
43 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
44 int64_t sector_num, int nb_sectors,
45 QEMUIOVector *iov);
46 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
47 int64_t sector_num, int nb_sectors,
48 QEMUIOVector *iov);
49 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
50 int64_t sector_num,
51 QEMUIOVector *qiov,
52 int nb_sectors,
53 BdrvRequestFlags flags,
54 BlockCompletionFunc *cb,
55 void *opaque,
56 bool is_write);
57 static void coroutine_fn bdrv_co_do_rw(void *opaque);
58 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
59 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags);
61 /* throttling disk I/O limits */
62 void bdrv_set_io_limits(BlockDriverState *bs,
63 ThrottleConfig *cfg)
65 int i;
67 throttle_group_config(bs, cfg);
69 for (i = 0; i < 2; i++) {
70 qemu_co_enter_next(&bs->throttled_reqs[i]);
74 /* this function drain all the throttled IOs */
75 static bool bdrv_start_throttled_reqs(BlockDriverState *bs)
77 bool drained = false;
78 bool enabled = bs->io_limits_enabled;
79 int i;
81 bs->io_limits_enabled = false;
83 for (i = 0; i < 2; i++) {
84 while (qemu_co_enter_next(&bs->throttled_reqs[i])) {
85 drained = true;
89 bs->io_limits_enabled = enabled;
91 return drained;
94 void bdrv_io_limits_disable(BlockDriverState *bs)
96 bs->io_limits_enabled = false;
97 bdrv_start_throttled_reqs(bs);
98 throttle_group_unregister_bs(bs);
101 /* should be called before bdrv_set_io_limits if a limit is set */
102 void bdrv_io_limits_enable(BlockDriverState *bs, const char *group)
104 assert(!bs->io_limits_enabled);
105 throttle_group_register_bs(bs, group);
106 bs->io_limits_enabled = true;
109 void bdrv_io_limits_update_group(BlockDriverState *bs, const char *group)
111 /* this bs is not part of any group */
112 if (!bs->throttle_state) {
113 return;
116 /* this bs is a part of the same group than the one we want */
117 if (!g_strcmp0(throttle_group_get_name(bs), group)) {
118 return;
121 /* need to change the group this bs belong to */
122 bdrv_io_limits_disable(bs);
123 bdrv_io_limits_enable(bs, group);
126 void bdrv_setup_io_funcs(BlockDriver *bdrv)
128 /* Block drivers without coroutine functions need emulation */
129 if (!bdrv->bdrv_co_readv) {
130 bdrv->bdrv_co_readv = bdrv_co_readv_em;
131 bdrv->bdrv_co_writev = bdrv_co_writev_em;
133 /* bdrv_co_readv_em()/brdv_co_writev_em() work in terms of aio, so if
134 * the block driver lacks aio we need to emulate that too.
136 if (!bdrv->bdrv_aio_readv) {
137 /* add AIO emulation layer */
138 bdrv->bdrv_aio_readv = bdrv_aio_readv_em;
139 bdrv->bdrv_aio_writev = bdrv_aio_writev_em;
144 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
146 BlockDriver *drv = bs->drv;
147 Error *local_err = NULL;
149 memset(&bs->bl, 0, sizeof(bs->bl));
151 if (!drv) {
152 return;
155 /* Take some limits from the children as a default */
156 if (bs->file) {
157 bdrv_refresh_limits(bs->file->bs, &local_err);
158 if (local_err) {
159 error_propagate(errp, local_err);
160 return;
162 bs->bl.opt_transfer_length = bs->file->bs->bl.opt_transfer_length;
163 bs->bl.max_transfer_length = bs->file->bs->bl.max_transfer_length;
164 bs->bl.min_mem_alignment = bs->file->bs->bl.min_mem_alignment;
165 bs->bl.opt_mem_alignment = bs->file->bs->bl.opt_mem_alignment;
166 bs->bl.max_iov = bs->file->bs->bl.max_iov;
167 } else {
168 bs->bl.min_mem_alignment = 512;
169 bs->bl.opt_mem_alignment = getpagesize();
171 /* Safe default since most protocols use readv()/writev()/etc */
172 bs->bl.max_iov = IOV_MAX;
175 if (bs->backing) {
176 bdrv_refresh_limits(bs->backing->bs, &local_err);
177 if (local_err) {
178 error_propagate(errp, local_err);
179 return;
181 bs->bl.opt_transfer_length =
182 MAX(bs->bl.opt_transfer_length,
183 bs->backing->bs->bl.opt_transfer_length);
184 bs->bl.max_transfer_length =
185 MIN_NON_ZERO(bs->bl.max_transfer_length,
186 bs->backing->bs->bl.max_transfer_length);
187 bs->bl.opt_mem_alignment =
188 MAX(bs->bl.opt_mem_alignment,
189 bs->backing->bs->bl.opt_mem_alignment);
190 bs->bl.min_mem_alignment =
191 MAX(bs->bl.min_mem_alignment,
192 bs->backing->bs->bl.min_mem_alignment);
193 bs->bl.max_iov =
194 MIN(bs->bl.max_iov,
195 bs->backing->bs->bl.max_iov);
198 /* Then let the driver override it */
199 if (drv->bdrv_refresh_limits) {
200 drv->bdrv_refresh_limits(bs, errp);
205 * The copy-on-read flag is actually a reference count so multiple users may
206 * use the feature without worrying about clobbering its previous state.
207 * Copy-on-read stays enabled until all users have called to disable it.
209 void bdrv_enable_copy_on_read(BlockDriverState *bs)
211 bs->copy_on_read++;
214 void bdrv_disable_copy_on_read(BlockDriverState *bs)
216 assert(bs->copy_on_read > 0);
217 bs->copy_on_read--;
220 /* Check if any requests are in-flight (including throttled requests) */
221 bool bdrv_requests_pending(BlockDriverState *bs)
223 BdrvChild *child;
225 if (!QLIST_EMPTY(&bs->tracked_requests)) {
226 return true;
228 if (!qemu_co_queue_empty(&bs->throttled_reqs[0])) {
229 return true;
231 if (!qemu_co_queue_empty(&bs->throttled_reqs[1])) {
232 return true;
235 QLIST_FOREACH(child, &bs->children, next) {
236 if (bdrv_requests_pending(child->bs)) {
237 return true;
241 return false;
244 static void bdrv_drain_recurse(BlockDriverState *bs)
246 BdrvChild *child;
248 if (bs->drv && bs->drv->bdrv_drain) {
249 bs->drv->bdrv_drain(bs);
251 QLIST_FOREACH(child, &bs->children, next) {
252 bdrv_drain_recurse(child->bs);
257 * Wait for pending requests to complete on a single BlockDriverState subtree,
258 * and suspend block driver's internal I/O until next request arrives.
260 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
261 * AioContext.
263 * Only this BlockDriverState's AioContext is run, so in-flight requests must
264 * not depend on events in other AioContexts. In that case, use
265 * bdrv_drain_all() instead.
267 void bdrv_drain(BlockDriverState *bs)
269 bool busy = true;
271 bdrv_drain_recurse(bs);
272 while (busy) {
273 /* Keep iterating */
274 bdrv_flush_io_queue(bs);
275 busy = bdrv_requests_pending(bs);
276 busy |= aio_poll(bdrv_get_aio_context(bs), busy);
281 * Wait for pending requests to complete across all BlockDriverStates
283 * This function does not flush data to disk, use bdrv_flush_all() for that
284 * after calling this function.
286 void bdrv_drain_all(void)
288 /* Always run first iteration so any pending completion BHs run */
289 bool busy = true;
290 BlockDriverState *bs = NULL;
291 GSList *aio_ctxs = NULL, *ctx;
293 while ((bs = bdrv_next(bs))) {
294 AioContext *aio_context = bdrv_get_aio_context(bs);
296 aio_context_acquire(aio_context);
297 if (bs->job) {
298 block_job_pause(bs->job);
300 bdrv_drain_recurse(bs);
301 aio_context_release(aio_context);
303 if (!g_slist_find(aio_ctxs, aio_context)) {
304 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
308 /* Note that completion of an asynchronous I/O operation can trigger any
309 * number of other I/O operations on other devices---for example a
310 * coroutine can submit an I/O request to another device in response to
311 * request completion. Therefore we must keep looping until there was no
312 * more activity rather than simply draining each device independently.
314 while (busy) {
315 busy = false;
317 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
318 AioContext *aio_context = ctx->data;
319 bs = NULL;
321 aio_context_acquire(aio_context);
322 while ((bs = bdrv_next(bs))) {
323 if (aio_context == bdrv_get_aio_context(bs)) {
324 bdrv_flush_io_queue(bs);
325 if (bdrv_requests_pending(bs)) {
326 busy = true;
327 aio_poll(aio_context, busy);
331 busy |= aio_poll(aio_context, false);
332 aio_context_release(aio_context);
336 bs = NULL;
337 while ((bs = bdrv_next(bs))) {
338 AioContext *aio_context = bdrv_get_aio_context(bs);
340 aio_context_acquire(aio_context);
341 if (bs->job) {
342 block_job_resume(bs->job);
344 aio_context_release(aio_context);
346 g_slist_free(aio_ctxs);
350 * Remove an active request from the tracked requests list
352 * This function should be called when a tracked request is completing.
354 static void tracked_request_end(BdrvTrackedRequest *req)
356 if (req->serialising) {
357 req->bs->serialising_in_flight--;
360 QLIST_REMOVE(req, list);
361 qemu_co_queue_restart_all(&req->wait_queue);
365 * Add an active request to the tracked requests list
367 static void tracked_request_begin(BdrvTrackedRequest *req,
368 BlockDriverState *bs,
369 int64_t offset,
370 unsigned int bytes,
371 enum BdrvTrackedRequestType type)
373 *req = (BdrvTrackedRequest){
374 .bs = bs,
375 .offset = offset,
376 .bytes = bytes,
377 .type = type,
378 .co = qemu_coroutine_self(),
379 .serialising = false,
380 .overlap_offset = offset,
381 .overlap_bytes = bytes,
384 qemu_co_queue_init(&req->wait_queue);
386 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
389 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
391 int64_t overlap_offset = req->offset & ~(align - 1);
392 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
393 - overlap_offset;
395 if (!req->serialising) {
396 req->bs->serialising_in_flight++;
397 req->serialising = true;
400 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
401 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
405 * Round a region to cluster boundaries
407 void bdrv_round_to_clusters(BlockDriverState *bs,
408 int64_t sector_num, int nb_sectors,
409 int64_t *cluster_sector_num,
410 int *cluster_nb_sectors)
412 BlockDriverInfo bdi;
414 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
415 *cluster_sector_num = sector_num;
416 *cluster_nb_sectors = nb_sectors;
417 } else {
418 int64_t c = bdi.cluster_size / BDRV_SECTOR_SIZE;
419 *cluster_sector_num = QEMU_ALIGN_DOWN(sector_num, c);
420 *cluster_nb_sectors = QEMU_ALIGN_UP(sector_num - *cluster_sector_num +
421 nb_sectors, c);
425 static int bdrv_get_cluster_size(BlockDriverState *bs)
427 BlockDriverInfo bdi;
428 int ret;
430 ret = bdrv_get_info(bs, &bdi);
431 if (ret < 0 || bdi.cluster_size == 0) {
432 return bs->request_alignment;
433 } else {
434 return bdi.cluster_size;
438 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
439 int64_t offset, unsigned int bytes)
441 /* aaaa bbbb */
442 if (offset >= req->overlap_offset + req->overlap_bytes) {
443 return false;
445 /* bbbb aaaa */
446 if (req->overlap_offset >= offset + bytes) {
447 return false;
449 return true;
452 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
454 BlockDriverState *bs = self->bs;
455 BdrvTrackedRequest *req;
456 bool retry;
457 bool waited = false;
459 if (!bs->serialising_in_flight) {
460 return false;
463 do {
464 retry = false;
465 QLIST_FOREACH(req, &bs->tracked_requests, list) {
466 if (req == self || (!req->serialising && !self->serialising)) {
467 continue;
469 if (tracked_request_overlaps(req, self->overlap_offset,
470 self->overlap_bytes))
472 /* Hitting this means there was a reentrant request, for
473 * example, a block driver issuing nested requests. This must
474 * never happen since it means deadlock.
476 assert(qemu_coroutine_self() != req->co);
478 /* If the request is already (indirectly) waiting for us, or
479 * will wait for us as soon as it wakes up, then just go on
480 * (instead of producing a deadlock in the former case). */
481 if (!req->waiting_for) {
482 self->waiting_for = req;
483 qemu_co_queue_wait(&req->wait_queue);
484 self->waiting_for = NULL;
485 retry = true;
486 waited = true;
487 break;
491 } while (retry);
493 return waited;
496 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
497 size_t size)
499 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
500 return -EIO;
503 if (!bdrv_is_inserted(bs)) {
504 return -ENOMEDIUM;
507 if (offset < 0) {
508 return -EIO;
511 return 0;
514 static int bdrv_check_request(BlockDriverState *bs, int64_t sector_num,
515 int nb_sectors)
517 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
518 return -EIO;
521 return bdrv_check_byte_request(bs, sector_num * BDRV_SECTOR_SIZE,
522 nb_sectors * BDRV_SECTOR_SIZE);
525 typedef struct RwCo {
526 BlockDriverState *bs;
527 int64_t offset;
528 QEMUIOVector *qiov;
529 bool is_write;
530 int ret;
531 BdrvRequestFlags flags;
532 } RwCo;
534 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
536 RwCo *rwco = opaque;
538 if (!rwco->is_write) {
539 rwco->ret = bdrv_co_do_preadv(rwco->bs, rwco->offset,
540 rwco->qiov->size, rwco->qiov,
541 rwco->flags);
542 } else {
543 rwco->ret = bdrv_co_do_pwritev(rwco->bs, rwco->offset,
544 rwco->qiov->size, rwco->qiov,
545 rwco->flags);
550 * Process a vectored synchronous request using coroutines
552 static int bdrv_prwv_co(BlockDriverState *bs, int64_t offset,
553 QEMUIOVector *qiov, bool is_write,
554 BdrvRequestFlags flags)
556 Coroutine *co;
557 RwCo rwco = {
558 .bs = bs,
559 .offset = offset,
560 .qiov = qiov,
561 .is_write = is_write,
562 .ret = NOT_DONE,
563 .flags = flags,
567 * In sync call context, when the vcpu is blocked, this throttling timer
568 * will not fire; so the I/O throttling function has to be disabled here
569 * if it has been enabled.
571 if (bs->io_limits_enabled) {
572 fprintf(stderr, "Disabling I/O throttling on '%s' due "
573 "to synchronous I/O.\n", bdrv_get_device_name(bs));
574 bdrv_io_limits_disable(bs);
577 if (qemu_in_coroutine()) {
578 /* Fast-path if already in coroutine context */
579 bdrv_rw_co_entry(&rwco);
580 } else {
581 AioContext *aio_context = bdrv_get_aio_context(bs);
583 co = qemu_coroutine_create(bdrv_rw_co_entry);
584 qemu_coroutine_enter(co, &rwco);
585 while (rwco.ret == NOT_DONE) {
586 aio_poll(aio_context, true);
589 return rwco.ret;
593 * Process a synchronous request using coroutines
595 static int bdrv_rw_co(BlockDriverState *bs, int64_t sector_num, uint8_t *buf,
596 int nb_sectors, bool is_write, BdrvRequestFlags flags)
598 QEMUIOVector qiov;
599 struct iovec iov = {
600 .iov_base = (void *)buf,
601 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
604 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
605 return -EINVAL;
608 qemu_iovec_init_external(&qiov, &iov, 1);
609 return bdrv_prwv_co(bs, sector_num << BDRV_SECTOR_BITS,
610 &qiov, is_write, flags);
613 /* return < 0 if error. See bdrv_write() for the return codes */
614 int bdrv_read(BlockDriverState *bs, int64_t sector_num,
615 uint8_t *buf, int nb_sectors)
617 return bdrv_rw_co(bs, sector_num, buf, nb_sectors, false, 0);
620 /* Return < 0 if error. Important errors are:
621 -EIO generic I/O error (may happen for all errors)
622 -ENOMEDIUM No media inserted.
623 -EINVAL Invalid sector number or nb_sectors
624 -EACCES Trying to write a read-only device
626 int bdrv_write(BlockDriverState *bs, int64_t sector_num,
627 const uint8_t *buf, int nb_sectors)
629 return bdrv_rw_co(bs, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
632 int bdrv_write_zeroes(BlockDriverState *bs, int64_t sector_num,
633 int nb_sectors, BdrvRequestFlags flags)
635 return bdrv_rw_co(bs, sector_num, NULL, nb_sectors, true,
636 BDRV_REQ_ZERO_WRITE | flags);
640 * Completely zero out a block device with the help of bdrv_write_zeroes.
641 * The operation is sped up by checking the block status and only writing
642 * zeroes to the device if they currently do not return zeroes. Optional
643 * flags are passed through to bdrv_write_zeroes (e.g. BDRV_REQ_MAY_UNMAP).
645 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
647 int bdrv_make_zero(BlockDriverState *bs, BdrvRequestFlags flags)
649 int64_t target_sectors, ret, nb_sectors, sector_num = 0;
650 BlockDriverState *file;
651 int n;
653 target_sectors = bdrv_nb_sectors(bs);
654 if (target_sectors < 0) {
655 return target_sectors;
658 for (;;) {
659 nb_sectors = MIN(target_sectors - sector_num, BDRV_REQUEST_MAX_SECTORS);
660 if (nb_sectors <= 0) {
661 return 0;
663 ret = bdrv_get_block_status(bs, sector_num, nb_sectors, &n, &file);
664 if (ret < 0) {
665 error_report("error getting block status at sector %" PRId64 ": %s",
666 sector_num, strerror(-ret));
667 return ret;
669 if (ret & BDRV_BLOCK_ZERO) {
670 sector_num += n;
671 continue;
673 ret = bdrv_write_zeroes(bs, sector_num, n, flags);
674 if (ret < 0) {
675 error_report("error writing zeroes at sector %" PRId64 ": %s",
676 sector_num, strerror(-ret));
677 return ret;
679 sector_num += n;
683 int bdrv_pread(BlockDriverState *bs, int64_t offset, void *buf, int bytes)
685 QEMUIOVector qiov;
686 struct iovec iov = {
687 .iov_base = (void *)buf,
688 .iov_len = bytes,
690 int ret;
692 if (bytes < 0) {
693 return -EINVAL;
696 qemu_iovec_init_external(&qiov, &iov, 1);
697 ret = bdrv_prwv_co(bs, offset, &qiov, false, 0);
698 if (ret < 0) {
699 return ret;
702 return bytes;
705 int bdrv_pwritev(BlockDriverState *bs, int64_t offset, QEMUIOVector *qiov)
707 int ret;
709 ret = bdrv_prwv_co(bs, offset, qiov, true, 0);
710 if (ret < 0) {
711 return ret;
714 return qiov->size;
717 int bdrv_pwrite(BlockDriverState *bs, int64_t offset,
718 const void *buf, int bytes)
720 QEMUIOVector qiov;
721 struct iovec iov = {
722 .iov_base = (void *) buf,
723 .iov_len = bytes,
726 if (bytes < 0) {
727 return -EINVAL;
730 qemu_iovec_init_external(&qiov, &iov, 1);
731 return bdrv_pwritev(bs, offset, &qiov);
735 * Writes to the file and ensures that no writes are reordered across this
736 * request (acts as a barrier)
738 * Returns 0 on success, -errno in error cases.
740 int bdrv_pwrite_sync(BlockDriverState *bs, int64_t offset,
741 const void *buf, int count)
743 int ret;
745 ret = bdrv_pwrite(bs, offset, buf, count);
746 if (ret < 0) {
747 return ret;
750 /* No flush needed for cache modes that already do it */
751 if (bs->enable_write_cache) {
752 bdrv_flush(bs);
755 return 0;
758 static int coroutine_fn bdrv_co_do_copy_on_readv(BlockDriverState *bs,
759 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
761 /* Perform I/O through a temporary buffer so that users who scribble over
762 * their read buffer while the operation is in progress do not end up
763 * modifying the image file. This is critical for zero-copy guest I/O
764 * where anything might happen inside guest memory.
766 void *bounce_buffer;
768 BlockDriver *drv = bs->drv;
769 struct iovec iov;
770 QEMUIOVector bounce_qiov;
771 int64_t cluster_sector_num;
772 int cluster_nb_sectors;
773 size_t skip_bytes;
774 int ret;
776 /* Cover entire cluster so no additional backing file I/O is required when
777 * allocating cluster in the image file.
779 bdrv_round_to_clusters(bs, sector_num, nb_sectors,
780 &cluster_sector_num, &cluster_nb_sectors);
782 trace_bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors,
783 cluster_sector_num, cluster_nb_sectors);
785 iov.iov_len = cluster_nb_sectors * BDRV_SECTOR_SIZE;
786 iov.iov_base = bounce_buffer = qemu_try_blockalign(bs, iov.iov_len);
787 if (bounce_buffer == NULL) {
788 ret = -ENOMEM;
789 goto err;
792 qemu_iovec_init_external(&bounce_qiov, &iov, 1);
794 ret = drv->bdrv_co_readv(bs, cluster_sector_num, cluster_nb_sectors,
795 &bounce_qiov);
796 if (ret < 0) {
797 goto err;
800 if (drv->bdrv_co_write_zeroes &&
801 buffer_is_zero(bounce_buffer, iov.iov_len)) {
802 ret = bdrv_co_do_write_zeroes(bs, cluster_sector_num,
803 cluster_nb_sectors, 0);
804 } else {
805 /* This does not change the data on the disk, it is not necessary
806 * to flush even in cache=writethrough mode.
808 ret = drv->bdrv_co_writev(bs, cluster_sector_num, cluster_nb_sectors,
809 &bounce_qiov);
812 if (ret < 0) {
813 /* It might be okay to ignore write errors for guest requests. If this
814 * is a deliberate copy-on-read then we don't want to ignore the error.
815 * Simply report it in all cases.
817 goto err;
820 skip_bytes = (sector_num - cluster_sector_num) * BDRV_SECTOR_SIZE;
821 qemu_iovec_from_buf(qiov, 0, bounce_buffer + skip_bytes,
822 nb_sectors * BDRV_SECTOR_SIZE);
824 err:
825 qemu_vfree(bounce_buffer);
826 return ret;
830 * Forwards an already correctly aligned request to the BlockDriver. This
831 * handles copy on read and zeroing after EOF; any other features must be
832 * implemented by the caller.
834 static int coroutine_fn bdrv_aligned_preadv(BlockDriverState *bs,
835 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
836 int64_t align, QEMUIOVector *qiov, int flags)
838 BlockDriver *drv = bs->drv;
839 int ret;
841 int64_t sector_num = offset >> BDRV_SECTOR_BITS;
842 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
844 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
845 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
846 assert(!qiov || bytes == qiov->size);
848 /* Handle Copy on Read and associated serialisation */
849 if (flags & BDRV_REQ_COPY_ON_READ) {
850 /* If we touch the same cluster it counts as an overlap. This
851 * guarantees that allocating writes will be serialized and not race
852 * with each other for the same cluster. For example, in copy-on-read
853 * it ensures that the CoR read and write operations are atomic and
854 * guest writes cannot interleave between them. */
855 mark_request_serialising(req, bdrv_get_cluster_size(bs));
858 if (!(flags & BDRV_REQ_NO_SERIALISING)) {
859 wait_serialising_requests(req);
862 if (flags & BDRV_REQ_COPY_ON_READ) {
863 int pnum;
865 ret = bdrv_is_allocated(bs, sector_num, nb_sectors, &pnum);
866 if (ret < 0) {
867 goto out;
870 if (!ret || pnum != nb_sectors) {
871 ret = bdrv_co_do_copy_on_readv(bs, sector_num, nb_sectors, qiov);
872 goto out;
876 /* Forward the request to the BlockDriver */
877 if (!bs->zero_beyond_eof) {
878 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
879 } else {
880 /* Read zeros after EOF */
881 int64_t total_sectors, max_nb_sectors;
883 total_sectors = bdrv_nb_sectors(bs);
884 if (total_sectors < 0) {
885 ret = total_sectors;
886 goto out;
889 max_nb_sectors = ROUND_UP(MAX(0, total_sectors - sector_num),
890 align >> BDRV_SECTOR_BITS);
891 if (nb_sectors < max_nb_sectors) {
892 ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
893 } else if (max_nb_sectors > 0) {
894 QEMUIOVector local_qiov;
896 qemu_iovec_init(&local_qiov, qiov->niov);
897 qemu_iovec_concat(&local_qiov, qiov, 0,
898 max_nb_sectors * BDRV_SECTOR_SIZE);
900 ret = drv->bdrv_co_readv(bs, sector_num, max_nb_sectors,
901 &local_qiov);
903 qemu_iovec_destroy(&local_qiov);
904 } else {
905 ret = 0;
908 /* Reading beyond end of file is supposed to produce zeroes */
909 if (ret == 0 && total_sectors < sector_num + nb_sectors) {
910 uint64_t offset = MAX(0, total_sectors - sector_num);
911 uint64_t bytes = (sector_num + nb_sectors - offset) *
912 BDRV_SECTOR_SIZE;
913 qemu_iovec_memset(qiov, offset * BDRV_SECTOR_SIZE, 0, bytes);
917 out:
918 return ret;
922 * Handle a read request in coroutine context
924 int coroutine_fn bdrv_co_do_preadv(BlockDriverState *bs,
925 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
926 BdrvRequestFlags flags)
928 BlockDriver *drv = bs->drv;
929 BdrvTrackedRequest req;
931 /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
932 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
933 uint8_t *head_buf = NULL;
934 uint8_t *tail_buf = NULL;
935 QEMUIOVector local_qiov;
936 bool use_local_qiov = false;
937 int ret;
939 if (!drv) {
940 return -ENOMEDIUM;
943 ret = bdrv_check_byte_request(bs, offset, bytes);
944 if (ret < 0) {
945 return ret;
948 /* Don't do copy-on-read if we read data before write operation */
949 if (bs->copy_on_read && !(flags & BDRV_REQ_NO_SERIALISING)) {
950 flags |= BDRV_REQ_COPY_ON_READ;
953 /* throttling disk I/O */
954 if (bs->io_limits_enabled) {
955 throttle_group_co_io_limits_intercept(bs, bytes, false);
958 /* Align read if necessary by padding qiov */
959 if (offset & (align - 1)) {
960 head_buf = qemu_blockalign(bs, align);
961 qemu_iovec_init(&local_qiov, qiov->niov + 2);
962 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
963 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
964 use_local_qiov = true;
966 bytes += offset & (align - 1);
967 offset = offset & ~(align - 1);
970 if ((offset + bytes) & (align - 1)) {
971 if (!use_local_qiov) {
972 qemu_iovec_init(&local_qiov, qiov->niov + 1);
973 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
974 use_local_qiov = true;
976 tail_buf = qemu_blockalign(bs, align);
977 qemu_iovec_add(&local_qiov, tail_buf,
978 align - ((offset + bytes) & (align - 1)));
980 bytes = ROUND_UP(bytes, align);
983 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
984 ret = bdrv_aligned_preadv(bs, &req, offset, bytes, align,
985 use_local_qiov ? &local_qiov : qiov,
986 flags);
987 tracked_request_end(&req);
989 if (use_local_qiov) {
990 qemu_iovec_destroy(&local_qiov);
991 qemu_vfree(head_buf);
992 qemu_vfree(tail_buf);
995 return ret;
998 static int coroutine_fn bdrv_co_do_readv(BlockDriverState *bs,
999 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1000 BdrvRequestFlags flags)
1002 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1003 return -EINVAL;
1006 return bdrv_co_do_preadv(bs, sector_num << BDRV_SECTOR_BITS,
1007 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1010 int coroutine_fn bdrv_co_readv(BlockDriverState *bs, int64_t sector_num,
1011 int nb_sectors, QEMUIOVector *qiov)
1013 trace_bdrv_co_readv(bs, sector_num, nb_sectors);
1015 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov, 0);
1018 int coroutine_fn bdrv_co_readv_no_serialising(BlockDriverState *bs,
1019 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1021 trace_bdrv_co_readv_no_serialising(bs, sector_num, nb_sectors);
1023 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1024 BDRV_REQ_NO_SERIALISING);
1027 int coroutine_fn bdrv_co_copy_on_readv(BlockDriverState *bs,
1028 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov)
1030 trace_bdrv_co_copy_on_readv(bs, sector_num, nb_sectors);
1032 return bdrv_co_do_readv(bs, sector_num, nb_sectors, qiov,
1033 BDRV_REQ_COPY_ON_READ);
1036 #define MAX_WRITE_ZEROES_BOUNCE_BUFFER 32768
1038 static int coroutine_fn bdrv_co_do_write_zeroes(BlockDriverState *bs,
1039 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags)
1041 BlockDriver *drv = bs->drv;
1042 QEMUIOVector qiov;
1043 struct iovec iov = {0};
1044 int ret = 0;
1046 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_write_zeroes,
1047 BDRV_REQUEST_MAX_SECTORS);
1049 while (nb_sectors > 0 && !ret) {
1050 int num = nb_sectors;
1052 /* Align request. Block drivers can expect the "bulk" of the request
1053 * to be aligned.
1055 if (bs->bl.write_zeroes_alignment
1056 && num > bs->bl.write_zeroes_alignment) {
1057 if (sector_num % bs->bl.write_zeroes_alignment != 0) {
1058 /* Make a small request up to the first aligned sector. */
1059 num = bs->bl.write_zeroes_alignment;
1060 num -= sector_num % bs->bl.write_zeroes_alignment;
1061 } else if ((sector_num + num) % bs->bl.write_zeroes_alignment != 0) {
1062 /* Shorten the request to the last aligned sector. num cannot
1063 * underflow because num > bs->bl.write_zeroes_alignment.
1065 num -= (sector_num + num) % bs->bl.write_zeroes_alignment;
1069 /* limit request size */
1070 if (num > max_write_zeroes) {
1071 num = max_write_zeroes;
1074 ret = -ENOTSUP;
1075 /* First try the efficient write zeroes operation */
1076 if (drv->bdrv_co_write_zeroes) {
1077 ret = drv->bdrv_co_write_zeroes(bs, sector_num, num, flags);
1080 if (ret == -ENOTSUP) {
1081 /* Fall back to bounce buffer if write zeroes is unsupported */
1082 int max_xfer_len = MIN_NON_ZERO(bs->bl.max_transfer_length,
1083 MAX_WRITE_ZEROES_BOUNCE_BUFFER);
1084 num = MIN(num, max_xfer_len);
1085 iov.iov_len = num * BDRV_SECTOR_SIZE;
1086 if (iov.iov_base == NULL) {
1087 iov.iov_base = qemu_try_blockalign(bs, num * BDRV_SECTOR_SIZE);
1088 if (iov.iov_base == NULL) {
1089 ret = -ENOMEM;
1090 goto fail;
1092 memset(iov.iov_base, 0, num * BDRV_SECTOR_SIZE);
1094 qemu_iovec_init_external(&qiov, &iov, 1);
1096 ret = drv->bdrv_co_writev(bs, sector_num, num, &qiov);
1098 /* Keep bounce buffer around if it is big enough for all
1099 * all future requests.
1101 if (num < max_xfer_len) {
1102 qemu_vfree(iov.iov_base);
1103 iov.iov_base = NULL;
1107 sector_num += num;
1108 nb_sectors -= num;
1111 fail:
1112 qemu_vfree(iov.iov_base);
1113 return ret;
1117 * Forwards an already correctly aligned write request to the BlockDriver.
1119 static int coroutine_fn bdrv_aligned_pwritev(BlockDriverState *bs,
1120 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1121 QEMUIOVector *qiov, int flags)
1123 BlockDriver *drv = bs->drv;
1124 bool waited;
1125 int ret;
1127 int64_t sector_num = offset >> BDRV_SECTOR_BITS;
1128 unsigned int nb_sectors = bytes >> BDRV_SECTOR_BITS;
1130 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
1131 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
1132 assert(!qiov || bytes == qiov->size);
1134 waited = wait_serialising_requests(req);
1135 assert(!waited || !req->serialising);
1136 assert(req->overlap_offset <= offset);
1137 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1139 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1141 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1142 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_write_zeroes &&
1143 qemu_iovec_is_zero(qiov)) {
1144 flags |= BDRV_REQ_ZERO_WRITE;
1145 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1146 flags |= BDRV_REQ_MAY_UNMAP;
1150 if (ret < 0) {
1151 /* Do nothing, write notifier decided to fail this request */
1152 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1153 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1154 ret = bdrv_co_do_write_zeroes(bs, sector_num, nb_sectors, flags);
1155 } else {
1156 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1157 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
1159 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1161 if (ret == 0 && !bs->enable_write_cache) {
1162 ret = bdrv_co_flush(bs);
1165 bdrv_set_dirty(bs, sector_num, nb_sectors);
1167 if (bs->wr_highest_offset < offset + bytes) {
1168 bs->wr_highest_offset = offset + bytes;
1171 if (ret >= 0) {
1172 bs->total_sectors = MAX(bs->total_sectors, sector_num + nb_sectors);
1175 return ret;
1178 static int coroutine_fn bdrv_co_do_zero_pwritev(BlockDriverState *bs,
1179 int64_t offset,
1180 unsigned int bytes,
1181 BdrvRequestFlags flags,
1182 BdrvTrackedRequest *req)
1184 uint8_t *buf = NULL;
1185 QEMUIOVector local_qiov;
1186 struct iovec iov;
1187 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
1188 unsigned int head_padding_bytes, tail_padding_bytes;
1189 int ret = 0;
1191 head_padding_bytes = offset & (align - 1);
1192 tail_padding_bytes = align - ((offset + bytes) & (align - 1));
1195 assert(flags & BDRV_REQ_ZERO_WRITE);
1196 if (head_padding_bytes || tail_padding_bytes) {
1197 buf = qemu_blockalign(bs, align);
1198 iov = (struct iovec) {
1199 .iov_base = buf,
1200 .iov_len = align,
1202 qemu_iovec_init_external(&local_qiov, &iov, 1);
1204 if (head_padding_bytes) {
1205 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1207 /* RMW the unaligned part before head. */
1208 mark_request_serialising(req, align);
1209 wait_serialising_requests(req);
1210 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1211 ret = bdrv_aligned_preadv(bs, req, offset & ~(align - 1), align,
1212 align, &local_qiov, 0);
1213 if (ret < 0) {
1214 goto fail;
1216 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1218 memset(buf + head_padding_bytes, 0, zero_bytes);
1219 ret = bdrv_aligned_pwritev(bs, req, offset & ~(align - 1), align,
1220 &local_qiov,
1221 flags & ~BDRV_REQ_ZERO_WRITE);
1222 if (ret < 0) {
1223 goto fail;
1225 offset += zero_bytes;
1226 bytes -= zero_bytes;
1229 assert(!bytes || (offset & (align - 1)) == 0);
1230 if (bytes >= align) {
1231 /* Write the aligned part in the middle. */
1232 uint64_t aligned_bytes = bytes & ~(align - 1);
1233 ret = bdrv_aligned_pwritev(bs, req, offset, aligned_bytes,
1234 NULL, flags);
1235 if (ret < 0) {
1236 goto fail;
1238 bytes -= aligned_bytes;
1239 offset += aligned_bytes;
1242 assert(!bytes || (offset & (align - 1)) == 0);
1243 if (bytes) {
1244 assert(align == tail_padding_bytes + bytes);
1245 /* RMW the unaligned part after tail. */
1246 mark_request_serialising(req, align);
1247 wait_serialising_requests(req);
1248 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1249 ret = bdrv_aligned_preadv(bs, req, offset, align,
1250 align, &local_qiov, 0);
1251 if (ret < 0) {
1252 goto fail;
1254 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1256 memset(buf, 0, bytes);
1257 ret = bdrv_aligned_pwritev(bs, req, offset, align,
1258 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1260 fail:
1261 qemu_vfree(buf);
1262 return ret;
1267 * Handle a write request in coroutine context
1269 int coroutine_fn bdrv_co_do_pwritev(BlockDriverState *bs,
1270 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1271 BdrvRequestFlags flags)
1273 BdrvTrackedRequest req;
1274 /* TODO Lift BDRV_SECTOR_SIZE restriction in BlockDriver interface */
1275 uint64_t align = MAX(BDRV_SECTOR_SIZE, bs->request_alignment);
1276 uint8_t *head_buf = NULL;
1277 uint8_t *tail_buf = NULL;
1278 QEMUIOVector local_qiov;
1279 bool use_local_qiov = false;
1280 int ret;
1282 if (!bs->drv) {
1283 return -ENOMEDIUM;
1285 if (bs->read_only) {
1286 return -EPERM;
1288 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1290 ret = bdrv_check_byte_request(bs, offset, bytes);
1291 if (ret < 0) {
1292 return ret;
1295 /* throttling disk I/O */
1296 if (bs->io_limits_enabled) {
1297 throttle_group_co_io_limits_intercept(bs, bytes, true);
1301 * Align write if necessary by performing a read-modify-write cycle.
1302 * Pad qiov with the read parts and be sure to have a tracked request not
1303 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1305 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1307 if (!qiov) {
1308 ret = bdrv_co_do_zero_pwritev(bs, offset, bytes, flags, &req);
1309 goto out;
1312 if (offset & (align - 1)) {
1313 QEMUIOVector head_qiov;
1314 struct iovec head_iov;
1316 mark_request_serialising(&req, align);
1317 wait_serialising_requests(&req);
1319 head_buf = qemu_blockalign(bs, align);
1320 head_iov = (struct iovec) {
1321 .iov_base = head_buf,
1322 .iov_len = align,
1324 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1326 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1327 ret = bdrv_aligned_preadv(bs, &req, offset & ~(align - 1), align,
1328 align, &head_qiov, 0);
1329 if (ret < 0) {
1330 goto fail;
1332 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1334 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1335 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1336 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1337 use_local_qiov = true;
1339 bytes += offset & (align - 1);
1340 offset = offset & ~(align - 1);
1343 if ((offset + bytes) & (align - 1)) {
1344 QEMUIOVector tail_qiov;
1345 struct iovec tail_iov;
1346 size_t tail_bytes;
1347 bool waited;
1349 mark_request_serialising(&req, align);
1350 waited = wait_serialising_requests(&req);
1351 assert(!waited || !use_local_qiov);
1353 tail_buf = qemu_blockalign(bs, align);
1354 tail_iov = (struct iovec) {
1355 .iov_base = tail_buf,
1356 .iov_len = align,
1358 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1360 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1361 ret = bdrv_aligned_preadv(bs, &req, (offset + bytes) & ~(align - 1), align,
1362 align, &tail_qiov, 0);
1363 if (ret < 0) {
1364 goto fail;
1366 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1368 if (!use_local_qiov) {
1369 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1370 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1371 use_local_qiov = true;
1374 tail_bytes = (offset + bytes) & (align - 1);
1375 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1377 bytes = ROUND_UP(bytes, align);
1380 ret = bdrv_aligned_pwritev(bs, &req, offset, bytes,
1381 use_local_qiov ? &local_qiov : qiov,
1382 flags);
1384 fail:
1386 if (use_local_qiov) {
1387 qemu_iovec_destroy(&local_qiov);
1389 qemu_vfree(head_buf);
1390 qemu_vfree(tail_buf);
1391 out:
1392 tracked_request_end(&req);
1393 return ret;
1396 static int coroutine_fn bdrv_co_do_writev(BlockDriverState *bs,
1397 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1398 BdrvRequestFlags flags)
1400 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1401 return -EINVAL;
1404 return bdrv_co_do_pwritev(bs, sector_num << BDRV_SECTOR_BITS,
1405 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1408 int coroutine_fn bdrv_co_writev(BlockDriverState *bs, int64_t sector_num,
1409 int nb_sectors, QEMUIOVector *qiov)
1411 trace_bdrv_co_writev(bs, sector_num, nb_sectors);
1413 return bdrv_co_do_writev(bs, sector_num, nb_sectors, qiov, 0);
1416 int coroutine_fn bdrv_co_write_zeroes(BlockDriverState *bs,
1417 int64_t sector_num, int nb_sectors,
1418 BdrvRequestFlags flags)
1420 trace_bdrv_co_write_zeroes(bs, sector_num, nb_sectors, flags);
1422 if (!(bs->open_flags & BDRV_O_UNMAP)) {
1423 flags &= ~BDRV_REQ_MAY_UNMAP;
1426 return bdrv_co_do_writev(bs, sector_num, nb_sectors, NULL,
1427 BDRV_REQ_ZERO_WRITE | flags);
1430 typedef struct BdrvCoGetBlockStatusData {
1431 BlockDriverState *bs;
1432 BlockDriverState *base;
1433 BlockDriverState **file;
1434 int64_t sector_num;
1435 int nb_sectors;
1436 int *pnum;
1437 int64_t ret;
1438 bool done;
1439 } BdrvCoGetBlockStatusData;
1442 * Returns the allocation status of the specified sectors.
1443 * Drivers not implementing the functionality are assumed to not support
1444 * backing files, hence all their sectors are reported as allocated.
1446 * If 'sector_num' is beyond the end of the disk image the return value is 0
1447 * and 'pnum' is set to 0.
1449 * 'pnum' is set to the number of sectors (including and immediately following
1450 * the specified sector) that are known to be in the same
1451 * allocated/unallocated state.
1453 * 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
1454 * beyond the end of the disk image it will be clamped.
1456 * If returned value is positive and BDRV_BLOCK_OFFSET_VALID bit is set, 'file'
1457 * points to the BDS which the sector range is allocated in.
1459 static int64_t coroutine_fn bdrv_co_get_block_status(BlockDriverState *bs,
1460 int64_t sector_num,
1461 int nb_sectors, int *pnum,
1462 BlockDriverState **file)
1464 int64_t total_sectors;
1465 int64_t n;
1466 int64_t ret, ret2;
1468 total_sectors = bdrv_nb_sectors(bs);
1469 if (total_sectors < 0) {
1470 return total_sectors;
1473 if (sector_num >= total_sectors) {
1474 *pnum = 0;
1475 return 0;
1478 n = total_sectors - sector_num;
1479 if (n < nb_sectors) {
1480 nb_sectors = n;
1483 if (!bs->drv->bdrv_co_get_block_status) {
1484 *pnum = nb_sectors;
1485 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1486 if (bs->drv->protocol_name) {
1487 ret |= BDRV_BLOCK_OFFSET_VALID | (sector_num * BDRV_SECTOR_SIZE);
1489 return ret;
1492 *file = NULL;
1493 ret = bs->drv->bdrv_co_get_block_status(bs, sector_num, nb_sectors, pnum,
1494 file);
1495 if (ret < 0) {
1496 *pnum = 0;
1497 return ret;
1500 if (ret & BDRV_BLOCK_RAW) {
1501 assert(ret & BDRV_BLOCK_OFFSET_VALID);
1502 return bdrv_get_block_status(bs->file->bs, ret >> BDRV_SECTOR_BITS,
1503 *pnum, pnum, file);
1506 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
1507 ret |= BDRV_BLOCK_ALLOCATED;
1508 } else {
1509 if (bdrv_unallocated_blocks_are_zero(bs)) {
1510 ret |= BDRV_BLOCK_ZERO;
1511 } else if (bs->backing) {
1512 BlockDriverState *bs2 = bs->backing->bs;
1513 int64_t nb_sectors2 = bdrv_nb_sectors(bs2);
1514 if (nb_sectors2 >= 0 && sector_num >= nb_sectors2) {
1515 ret |= BDRV_BLOCK_ZERO;
1520 if (*file && *file != bs &&
1521 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
1522 (ret & BDRV_BLOCK_OFFSET_VALID)) {
1523 BlockDriverState *file2;
1524 int file_pnum;
1526 ret2 = bdrv_co_get_block_status(*file, ret >> BDRV_SECTOR_BITS,
1527 *pnum, &file_pnum, &file2);
1528 if (ret2 >= 0) {
1529 /* Ignore errors. This is just providing extra information, it
1530 * is useful but not necessary.
1532 if (!file_pnum) {
1533 /* !file_pnum indicates an offset at or beyond the EOF; it is
1534 * perfectly valid for the format block driver to point to such
1535 * offsets, so catch it and mark everything as zero */
1536 ret |= BDRV_BLOCK_ZERO;
1537 } else {
1538 /* Limit request to the range reported by the protocol driver */
1539 *pnum = file_pnum;
1540 ret |= (ret2 & BDRV_BLOCK_ZERO);
1545 return ret;
1548 static int64_t coroutine_fn bdrv_co_get_block_status_above(BlockDriverState *bs,
1549 BlockDriverState *base,
1550 int64_t sector_num,
1551 int nb_sectors,
1552 int *pnum,
1553 BlockDriverState **file)
1555 BlockDriverState *p;
1556 int64_t ret = 0;
1558 assert(bs != base);
1559 for (p = bs; p != base; p = backing_bs(p)) {
1560 ret = bdrv_co_get_block_status(p, sector_num, nb_sectors, pnum, file);
1561 if (ret < 0 || ret & BDRV_BLOCK_ALLOCATED) {
1562 break;
1564 /* [sector_num, pnum] unallocated on this layer, which could be only
1565 * the first part of [sector_num, nb_sectors]. */
1566 nb_sectors = MIN(nb_sectors, *pnum);
1568 return ret;
1571 /* Coroutine wrapper for bdrv_get_block_status_above() */
1572 static void coroutine_fn bdrv_get_block_status_above_co_entry(void *opaque)
1574 BdrvCoGetBlockStatusData *data = opaque;
1576 data->ret = bdrv_co_get_block_status_above(data->bs, data->base,
1577 data->sector_num,
1578 data->nb_sectors,
1579 data->pnum,
1580 data->file);
1581 data->done = true;
1585 * Synchronous wrapper around bdrv_co_get_block_status_above().
1587 * See bdrv_co_get_block_status_above() for details.
1589 int64_t bdrv_get_block_status_above(BlockDriverState *bs,
1590 BlockDriverState *base,
1591 int64_t sector_num,
1592 int nb_sectors, int *pnum,
1593 BlockDriverState **file)
1595 Coroutine *co;
1596 BdrvCoGetBlockStatusData data = {
1597 .bs = bs,
1598 .base = base,
1599 .file = file,
1600 .sector_num = sector_num,
1601 .nb_sectors = nb_sectors,
1602 .pnum = pnum,
1603 .done = false,
1606 if (qemu_in_coroutine()) {
1607 /* Fast-path if already in coroutine context */
1608 bdrv_get_block_status_above_co_entry(&data);
1609 } else {
1610 AioContext *aio_context = bdrv_get_aio_context(bs);
1612 co = qemu_coroutine_create(bdrv_get_block_status_above_co_entry);
1613 qemu_coroutine_enter(co, &data);
1614 while (!data.done) {
1615 aio_poll(aio_context, true);
1618 return data.ret;
1621 int64_t bdrv_get_block_status(BlockDriverState *bs,
1622 int64_t sector_num,
1623 int nb_sectors, int *pnum,
1624 BlockDriverState **file)
1626 return bdrv_get_block_status_above(bs, backing_bs(bs),
1627 sector_num, nb_sectors, pnum, file);
1630 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t sector_num,
1631 int nb_sectors, int *pnum)
1633 BlockDriverState *file;
1634 int64_t ret = bdrv_get_block_status(bs, sector_num, nb_sectors, pnum,
1635 &file);
1636 if (ret < 0) {
1637 return ret;
1639 return !!(ret & BDRV_BLOCK_ALLOCATED);
1643 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
1645 * Return true if the given sector is allocated in any image between
1646 * BASE and TOP (inclusive). BASE can be NULL to check if the given
1647 * sector is allocated in any image of the chain. Return false otherwise.
1649 * 'pnum' is set to the number of sectors (including and immediately following
1650 * the specified sector) that are known to be in the same
1651 * allocated/unallocated state.
1654 int bdrv_is_allocated_above(BlockDriverState *top,
1655 BlockDriverState *base,
1656 int64_t sector_num,
1657 int nb_sectors, int *pnum)
1659 BlockDriverState *intermediate;
1660 int ret, n = nb_sectors;
1662 intermediate = top;
1663 while (intermediate && intermediate != base) {
1664 int pnum_inter;
1665 ret = bdrv_is_allocated(intermediate, sector_num, nb_sectors,
1666 &pnum_inter);
1667 if (ret < 0) {
1668 return ret;
1669 } else if (ret) {
1670 *pnum = pnum_inter;
1671 return 1;
1675 * [sector_num, nb_sectors] is unallocated on top but intermediate
1676 * might have
1678 * [sector_num+x, nr_sectors] allocated.
1680 if (n > pnum_inter &&
1681 (intermediate == top ||
1682 sector_num + pnum_inter < intermediate->total_sectors)) {
1683 n = pnum_inter;
1686 intermediate = backing_bs(intermediate);
1689 *pnum = n;
1690 return 0;
1693 int bdrv_write_compressed(BlockDriverState *bs, int64_t sector_num,
1694 const uint8_t *buf, int nb_sectors)
1696 BlockDriver *drv = bs->drv;
1697 int ret;
1699 if (!drv) {
1700 return -ENOMEDIUM;
1702 if (!drv->bdrv_write_compressed) {
1703 return -ENOTSUP;
1705 ret = bdrv_check_request(bs, sector_num, nb_sectors);
1706 if (ret < 0) {
1707 return ret;
1710 assert(QLIST_EMPTY(&bs->dirty_bitmaps));
1712 return drv->bdrv_write_compressed(bs, sector_num, buf, nb_sectors);
1715 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
1716 int64_t pos, int size)
1718 QEMUIOVector qiov;
1719 struct iovec iov = {
1720 .iov_base = (void *) buf,
1721 .iov_len = size,
1724 qemu_iovec_init_external(&qiov, &iov, 1);
1725 return bdrv_writev_vmstate(bs, &qiov, pos);
1728 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
1730 BlockDriver *drv = bs->drv;
1732 if (!drv) {
1733 return -ENOMEDIUM;
1734 } else if (drv->bdrv_save_vmstate) {
1735 return drv->bdrv_save_vmstate(bs, qiov, pos);
1736 } else if (bs->file) {
1737 return bdrv_writev_vmstate(bs->file->bs, qiov, pos);
1740 return -ENOTSUP;
1743 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
1744 int64_t pos, int size)
1746 BlockDriver *drv = bs->drv;
1747 if (!drv)
1748 return -ENOMEDIUM;
1749 if (drv->bdrv_load_vmstate)
1750 return drv->bdrv_load_vmstate(bs, buf, pos, size);
1751 if (bs->file)
1752 return bdrv_load_vmstate(bs->file->bs, buf, pos, size);
1753 return -ENOTSUP;
1756 /**************************************************************/
1757 /* async I/Os */
1759 BlockAIOCB *bdrv_aio_readv(BlockDriverState *bs, int64_t sector_num,
1760 QEMUIOVector *qiov, int nb_sectors,
1761 BlockCompletionFunc *cb, void *opaque)
1763 trace_bdrv_aio_readv(bs, sector_num, nb_sectors, opaque);
1765 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1766 cb, opaque, false);
1769 BlockAIOCB *bdrv_aio_writev(BlockDriverState *bs, int64_t sector_num,
1770 QEMUIOVector *qiov, int nb_sectors,
1771 BlockCompletionFunc *cb, void *opaque)
1773 trace_bdrv_aio_writev(bs, sector_num, nb_sectors, opaque);
1775 return bdrv_co_aio_rw_vector(bs, sector_num, qiov, nb_sectors, 0,
1776 cb, opaque, true);
1779 BlockAIOCB *bdrv_aio_write_zeroes(BlockDriverState *bs,
1780 int64_t sector_num, int nb_sectors, BdrvRequestFlags flags,
1781 BlockCompletionFunc *cb, void *opaque)
1783 trace_bdrv_aio_write_zeroes(bs, sector_num, nb_sectors, flags, opaque);
1785 return bdrv_co_aio_rw_vector(bs, sector_num, NULL, nb_sectors,
1786 BDRV_REQ_ZERO_WRITE | flags,
1787 cb, opaque, true);
1791 typedef struct MultiwriteCB {
1792 int error;
1793 int num_requests;
1794 int num_callbacks;
1795 struct {
1796 BlockCompletionFunc *cb;
1797 void *opaque;
1798 QEMUIOVector *free_qiov;
1799 } callbacks[];
1800 } MultiwriteCB;
1802 static void multiwrite_user_cb(MultiwriteCB *mcb)
1804 int i;
1806 for (i = 0; i < mcb->num_callbacks; i++) {
1807 mcb->callbacks[i].cb(mcb->callbacks[i].opaque, mcb->error);
1808 if (mcb->callbacks[i].free_qiov) {
1809 qemu_iovec_destroy(mcb->callbacks[i].free_qiov);
1811 g_free(mcb->callbacks[i].free_qiov);
1815 static void multiwrite_cb(void *opaque, int ret)
1817 MultiwriteCB *mcb = opaque;
1819 trace_multiwrite_cb(mcb, ret);
1821 if (ret < 0 && !mcb->error) {
1822 mcb->error = ret;
1825 mcb->num_requests--;
1826 if (mcb->num_requests == 0) {
1827 multiwrite_user_cb(mcb);
1828 g_free(mcb);
1832 static int multiwrite_req_compare(const void *a, const void *b)
1834 const BlockRequest *req1 = a, *req2 = b;
1837 * Note that we can't simply subtract req2->sector from req1->sector
1838 * here as that could overflow the return value.
1840 if (req1->sector > req2->sector) {
1841 return 1;
1842 } else if (req1->sector < req2->sector) {
1843 return -1;
1844 } else {
1845 return 0;
1850 * Takes a bunch of requests and tries to merge them. Returns the number of
1851 * requests that remain after merging.
1853 static int multiwrite_merge(BlockDriverState *bs, BlockRequest *reqs,
1854 int num_reqs, MultiwriteCB *mcb)
1856 int i, outidx;
1858 // Sort requests by start sector
1859 qsort(reqs, num_reqs, sizeof(*reqs), &multiwrite_req_compare);
1861 // Check if adjacent requests touch the same clusters. If so, combine them,
1862 // filling up gaps with zero sectors.
1863 outidx = 0;
1864 for (i = 1; i < num_reqs; i++) {
1865 int merge = 0;
1866 int64_t oldreq_last = reqs[outidx].sector + reqs[outidx].nb_sectors;
1868 // Handle exactly sequential writes and overlapping writes.
1869 if (reqs[i].sector <= oldreq_last) {
1870 merge = 1;
1873 if (reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1 >
1874 bs->bl.max_iov) {
1875 merge = 0;
1878 if (bs->bl.max_transfer_length && reqs[outidx].nb_sectors +
1879 reqs[i].nb_sectors > bs->bl.max_transfer_length) {
1880 merge = 0;
1883 if (merge) {
1884 size_t size;
1885 QEMUIOVector *qiov = g_malloc0(sizeof(*qiov));
1886 qemu_iovec_init(qiov,
1887 reqs[outidx].qiov->niov + reqs[i].qiov->niov + 1);
1889 // Add the first request to the merged one. If the requests are
1890 // overlapping, drop the last sectors of the first request.
1891 size = (reqs[i].sector - reqs[outidx].sector) << 9;
1892 qemu_iovec_concat(qiov, reqs[outidx].qiov, 0, size);
1894 // We should need to add any zeros between the two requests
1895 assert (reqs[i].sector <= oldreq_last);
1897 // Add the second request
1898 qemu_iovec_concat(qiov, reqs[i].qiov, 0, reqs[i].qiov->size);
1900 // Add tail of first request, if necessary
1901 if (qiov->size < reqs[outidx].qiov->size) {
1902 qemu_iovec_concat(qiov, reqs[outidx].qiov, qiov->size,
1903 reqs[outidx].qiov->size - qiov->size);
1906 reqs[outidx].nb_sectors = qiov->size >> 9;
1907 reqs[outidx].qiov = qiov;
1909 mcb->callbacks[i].free_qiov = reqs[outidx].qiov;
1910 } else {
1911 outidx++;
1912 reqs[outidx].sector = reqs[i].sector;
1913 reqs[outidx].nb_sectors = reqs[i].nb_sectors;
1914 reqs[outidx].qiov = reqs[i].qiov;
1918 if (bs->blk) {
1919 block_acct_merge_done(blk_get_stats(bs->blk), BLOCK_ACCT_WRITE,
1920 num_reqs - outidx - 1);
1923 return outidx + 1;
1927 * Submit multiple AIO write requests at once.
1929 * On success, the function returns 0 and all requests in the reqs array have
1930 * been submitted. In error case this function returns -1, and any of the
1931 * requests may or may not be submitted yet. In particular, this means that the
1932 * callback will be called for some of the requests, for others it won't. The
1933 * caller must check the error field of the BlockRequest to wait for the right
1934 * callbacks (if error != 0, no callback will be called).
1936 * The implementation may modify the contents of the reqs array, e.g. to merge
1937 * requests. However, the fields opaque and error are left unmodified as they
1938 * are used to signal failure for a single request to the caller.
1940 int bdrv_aio_multiwrite(BlockDriverState *bs, BlockRequest *reqs, int num_reqs)
1942 MultiwriteCB *mcb;
1943 int i;
1945 /* don't submit writes if we don't have a medium */
1946 if (bs->drv == NULL) {
1947 for (i = 0; i < num_reqs; i++) {
1948 reqs[i].error = -ENOMEDIUM;
1950 return -1;
1953 if (num_reqs == 0) {
1954 return 0;
1957 // Create MultiwriteCB structure
1958 mcb = g_malloc0(sizeof(*mcb) + num_reqs * sizeof(*mcb->callbacks));
1959 mcb->num_requests = 0;
1960 mcb->num_callbacks = num_reqs;
1962 for (i = 0; i < num_reqs; i++) {
1963 mcb->callbacks[i].cb = reqs[i].cb;
1964 mcb->callbacks[i].opaque = reqs[i].opaque;
1967 // Check for mergable requests
1968 num_reqs = multiwrite_merge(bs, reqs, num_reqs, mcb);
1970 trace_bdrv_aio_multiwrite(mcb, mcb->num_callbacks, num_reqs);
1972 /* Run the aio requests. */
1973 mcb->num_requests = num_reqs;
1974 for (i = 0; i < num_reqs; i++) {
1975 bdrv_co_aio_rw_vector(bs, reqs[i].sector, reqs[i].qiov,
1976 reqs[i].nb_sectors, reqs[i].flags,
1977 multiwrite_cb, mcb,
1978 true);
1981 return 0;
1984 void bdrv_aio_cancel(BlockAIOCB *acb)
1986 qemu_aio_ref(acb);
1987 bdrv_aio_cancel_async(acb);
1988 while (acb->refcnt > 1) {
1989 if (acb->aiocb_info->get_aio_context) {
1990 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
1991 } else if (acb->bs) {
1992 aio_poll(bdrv_get_aio_context(acb->bs), true);
1993 } else {
1994 abort();
1997 qemu_aio_unref(acb);
2000 /* Async version of aio cancel. The caller is not blocked if the acb implements
2001 * cancel_async, otherwise we do nothing and let the request normally complete.
2002 * In either case the completion callback must be called. */
2003 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2005 if (acb->aiocb_info->cancel_async) {
2006 acb->aiocb_info->cancel_async(acb);
2010 /**************************************************************/
2011 /* async block device emulation */
2013 typedef struct BlockAIOCBSync {
2014 BlockAIOCB common;
2015 QEMUBH *bh;
2016 int ret;
2017 /* vector translation state */
2018 QEMUIOVector *qiov;
2019 uint8_t *bounce;
2020 int is_write;
2021 } BlockAIOCBSync;
2023 static const AIOCBInfo bdrv_em_aiocb_info = {
2024 .aiocb_size = sizeof(BlockAIOCBSync),
2027 static void bdrv_aio_bh_cb(void *opaque)
2029 BlockAIOCBSync *acb = opaque;
2031 if (!acb->is_write && acb->ret >= 0) {
2032 qemu_iovec_from_buf(acb->qiov, 0, acb->bounce, acb->qiov->size);
2034 qemu_vfree(acb->bounce);
2035 acb->common.cb(acb->common.opaque, acb->ret);
2036 qemu_bh_delete(acb->bh);
2037 acb->bh = NULL;
2038 qemu_aio_unref(acb);
2041 static BlockAIOCB *bdrv_aio_rw_vector(BlockDriverState *bs,
2042 int64_t sector_num,
2043 QEMUIOVector *qiov,
2044 int nb_sectors,
2045 BlockCompletionFunc *cb,
2046 void *opaque,
2047 int is_write)
2050 BlockAIOCBSync *acb;
2052 acb = qemu_aio_get(&bdrv_em_aiocb_info, bs, cb, opaque);
2053 acb->is_write = is_write;
2054 acb->qiov = qiov;
2055 acb->bounce = qemu_try_blockalign(bs, qiov->size);
2056 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_aio_bh_cb, acb);
2058 if (acb->bounce == NULL) {
2059 acb->ret = -ENOMEM;
2060 } else if (is_write) {
2061 qemu_iovec_to_buf(acb->qiov, 0, acb->bounce, qiov->size);
2062 acb->ret = bs->drv->bdrv_write(bs, sector_num, acb->bounce, nb_sectors);
2063 } else {
2064 acb->ret = bs->drv->bdrv_read(bs, sector_num, acb->bounce, nb_sectors);
2067 qemu_bh_schedule(acb->bh);
2069 return &acb->common;
2072 static BlockAIOCB *bdrv_aio_readv_em(BlockDriverState *bs,
2073 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
2074 BlockCompletionFunc *cb, void *opaque)
2076 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
2079 static BlockAIOCB *bdrv_aio_writev_em(BlockDriverState *bs,
2080 int64_t sector_num, QEMUIOVector *qiov, int nb_sectors,
2081 BlockCompletionFunc *cb, void *opaque)
2083 return bdrv_aio_rw_vector(bs, sector_num, qiov, nb_sectors, cb, opaque, 1);
2087 typedef struct BlockAIOCBCoroutine {
2088 BlockAIOCB common;
2089 BlockRequest req;
2090 bool is_write;
2091 bool need_bh;
2092 bool *done;
2093 QEMUBH* bh;
2094 } BlockAIOCBCoroutine;
2096 static const AIOCBInfo bdrv_em_co_aiocb_info = {
2097 .aiocb_size = sizeof(BlockAIOCBCoroutine),
2100 static void bdrv_co_complete(BlockAIOCBCoroutine *acb)
2102 if (!acb->need_bh) {
2103 acb->common.cb(acb->common.opaque, acb->req.error);
2104 qemu_aio_unref(acb);
2108 static void bdrv_co_em_bh(void *opaque)
2110 BlockAIOCBCoroutine *acb = opaque;
2112 assert(!acb->need_bh);
2113 qemu_bh_delete(acb->bh);
2114 bdrv_co_complete(acb);
2117 static void bdrv_co_maybe_schedule_bh(BlockAIOCBCoroutine *acb)
2119 acb->need_bh = false;
2120 if (acb->req.error != -EINPROGRESS) {
2121 BlockDriverState *bs = acb->common.bs;
2123 acb->bh = aio_bh_new(bdrv_get_aio_context(bs), bdrv_co_em_bh, acb);
2124 qemu_bh_schedule(acb->bh);
2128 /* Invoke bdrv_co_do_readv/bdrv_co_do_writev */
2129 static void coroutine_fn bdrv_co_do_rw(void *opaque)
2131 BlockAIOCBCoroutine *acb = opaque;
2132 BlockDriverState *bs = acb->common.bs;
2134 if (!acb->is_write) {
2135 acb->req.error = bdrv_co_do_readv(bs, acb->req.sector,
2136 acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2137 } else {
2138 acb->req.error = bdrv_co_do_writev(bs, acb->req.sector,
2139 acb->req.nb_sectors, acb->req.qiov, acb->req.flags);
2142 bdrv_co_complete(acb);
2145 static BlockAIOCB *bdrv_co_aio_rw_vector(BlockDriverState *bs,
2146 int64_t sector_num,
2147 QEMUIOVector *qiov,
2148 int nb_sectors,
2149 BdrvRequestFlags flags,
2150 BlockCompletionFunc *cb,
2151 void *opaque,
2152 bool is_write)
2154 Coroutine *co;
2155 BlockAIOCBCoroutine *acb;
2157 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2158 acb->need_bh = true;
2159 acb->req.error = -EINPROGRESS;
2160 acb->req.sector = sector_num;
2161 acb->req.nb_sectors = nb_sectors;
2162 acb->req.qiov = qiov;
2163 acb->req.flags = flags;
2164 acb->is_write = is_write;
2166 co = qemu_coroutine_create(bdrv_co_do_rw);
2167 qemu_coroutine_enter(co, acb);
2169 bdrv_co_maybe_schedule_bh(acb);
2170 return &acb->common;
2173 static void coroutine_fn bdrv_aio_flush_co_entry(void *opaque)
2175 BlockAIOCBCoroutine *acb = opaque;
2176 BlockDriverState *bs = acb->common.bs;
2178 acb->req.error = bdrv_co_flush(bs);
2179 bdrv_co_complete(acb);
2182 BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs,
2183 BlockCompletionFunc *cb, void *opaque)
2185 trace_bdrv_aio_flush(bs, opaque);
2187 Coroutine *co;
2188 BlockAIOCBCoroutine *acb;
2190 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2191 acb->need_bh = true;
2192 acb->req.error = -EINPROGRESS;
2194 co = qemu_coroutine_create(bdrv_aio_flush_co_entry);
2195 qemu_coroutine_enter(co, acb);
2197 bdrv_co_maybe_schedule_bh(acb);
2198 return &acb->common;
2201 static void coroutine_fn bdrv_aio_discard_co_entry(void *opaque)
2203 BlockAIOCBCoroutine *acb = opaque;
2204 BlockDriverState *bs = acb->common.bs;
2206 acb->req.error = bdrv_co_discard(bs, acb->req.sector, acb->req.nb_sectors);
2207 bdrv_co_complete(acb);
2210 BlockAIOCB *bdrv_aio_discard(BlockDriverState *bs,
2211 int64_t sector_num, int nb_sectors,
2212 BlockCompletionFunc *cb, void *opaque)
2214 Coroutine *co;
2215 BlockAIOCBCoroutine *acb;
2217 trace_bdrv_aio_discard(bs, sector_num, nb_sectors, opaque);
2219 acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque);
2220 acb->need_bh = true;
2221 acb->req.error = -EINPROGRESS;
2222 acb->req.sector = sector_num;
2223 acb->req.nb_sectors = nb_sectors;
2224 co = qemu_coroutine_create(bdrv_aio_discard_co_entry);
2225 qemu_coroutine_enter(co, acb);
2227 bdrv_co_maybe_schedule_bh(acb);
2228 return &acb->common;
2231 void *qemu_aio_get(const AIOCBInfo *aiocb_info, BlockDriverState *bs,
2232 BlockCompletionFunc *cb, void *opaque)
2234 BlockAIOCB *acb;
2236 acb = g_malloc(aiocb_info->aiocb_size);
2237 acb->aiocb_info = aiocb_info;
2238 acb->bs = bs;
2239 acb->cb = cb;
2240 acb->opaque = opaque;
2241 acb->refcnt = 1;
2242 return acb;
2245 void qemu_aio_ref(void *p)
2247 BlockAIOCB *acb = p;
2248 acb->refcnt++;
2251 void qemu_aio_unref(void *p)
2253 BlockAIOCB *acb = p;
2254 assert(acb->refcnt > 0);
2255 if (--acb->refcnt == 0) {
2256 g_free(acb);
2260 /**************************************************************/
2261 /* Coroutine block device emulation */
2263 typedef struct CoroutineIOCompletion {
2264 Coroutine *coroutine;
2265 int ret;
2266 } CoroutineIOCompletion;
2268 static void bdrv_co_io_em_complete(void *opaque, int ret)
2270 CoroutineIOCompletion *co = opaque;
2272 co->ret = ret;
2273 qemu_coroutine_enter(co->coroutine, NULL);
2276 static int coroutine_fn bdrv_co_io_em(BlockDriverState *bs, int64_t sector_num,
2277 int nb_sectors, QEMUIOVector *iov,
2278 bool is_write)
2280 CoroutineIOCompletion co = {
2281 .coroutine = qemu_coroutine_self(),
2283 BlockAIOCB *acb;
2285 if (is_write) {
2286 acb = bs->drv->bdrv_aio_writev(bs, sector_num, iov, nb_sectors,
2287 bdrv_co_io_em_complete, &co);
2288 } else {
2289 acb = bs->drv->bdrv_aio_readv(bs, sector_num, iov, nb_sectors,
2290 bdrv_co_io_em_complete, &co);
2293 trace_bdrv_co_io_em(bs, sector_num, nb_sectors, is_write, acb);
2294 if (!acb) {
2295 return -EIO;
2297 qemu_coroutine_yield();
2299 return co.ret;
2302 static int coroutine_fn bdrv_co_readv_em(BlockDriverState *bs,
2303 int64_t sector_num, int nb_sectors,
2304 QEMUIOVector *iov)
2306 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, false);
2309 static int coroutine_fn bdrv_co_writev_em(BlockDriverState *bs,
2310 int64_t sector_num, int nb_sectors,
2311 QEMUIOVector *iov)
2313 return bdrv_co_io_em(bs, sector_num, nb_sectors, iov, true);
2316 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2318 RwCo *rwco = opaque;
2320 rwco->ret = bdrv_co_flush(rwco->bs);
2323 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2325 int ret;
2326 BdrvTrackedRequest req;
2328 if (!bs || !bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2329 bdrv_is_sg(bs)) {
2330 return 0;
2333 tracked_request_begin(&req, bs, 0, 0, BDRV_TRACKED_FLUSH);
2334 /* Write back cached data to the OS even with cache=unsafe */
2335 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2336 if (bs->drv->bdrv_co_flush_to_os) {
2337 ret = bs->drv->bdrv_co_flush_to_os(bs);
2338 if (ret < 0) {
2339 goto out;
2343 /* But don't actually force it to the disk with cache=unsafe */
2344 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2345 goto flush_parent;
2348 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2349 if (bs->drv->bdrv_co_flush_to_disk) {
2350 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2351 } else if (bs->drv->bdrv_aio_flush) {
2352 BlockAIOCB *acb;
2353 CoroutineIOCompletion co = {
2354 .coroutine = qemu_coroutine_self(),
2357 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2358 if (acb == NULL) {
2359 ret = -EIO;
2360 } else {
2361 qemu_coroutine_yield();
2362 ret = co.ret;
2364 } else {
2366 * Some block drivers always operate in either writethrough or unsafe
2367 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2368 * know how the server works (because the behaviour is hardcoded or
2369 * depends on server-side configuration), so we can't ensure that
2370 * everything is safe on disk. Returning an error doesn't work because
2371 * that would break guests even if the server operates in writethrough
2372 * mode.
2374 * Let's hope the user knows what he's doing.
2376 ret = 0;
2378 if (ret < 0) {
2379 goto out;
2382 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2383 * in the case of cache=unsafe, so there are no useless flushes.
2385 flush_parent:
2386 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2387 out:
2388 tracked_request_end(&req);
2389 return ret;
2392 int bdrv_flush(BlockDriverState *bs)
2394 Coroutine *co;
2395 RwCo rwco = {
2396 .bs = bs,
2397 .ret = NOT_DONE,
2400 if (qemu_in_coroutine()) {
2401 /* Fast-path if already in coroutine context */
2402 bdrv_flush_co_entry(&rwco);
2403 } else {
2404 AioContext *aio_context = bdrv_get_aio_context(bs);
2406 co = qemu_coroutine_create(bdrv_flush_co_entry);
2407 qemu_coroutine_enter(co, &rwco);
2408 while (rwco.ret == NOT_DONE) {
2409 aio_poll(aio_context, true);
2413 return rwco.ret;
2416 typedef struct DiscardCo {
2417 BlockDriverState *bs;
2418 int64_t sector_num;
2419 int nb_sectors;
2420 int ret;
2421 } DiscardCo;
2422 static void coroutine_fn bdrv_discard_co_entry(void *opaque)
2424 DiscardCo *rwco = opaque;
2426 rwco->ret = bdrv_co_discard(rwco->bs, rwco->sector_num, rwco->nb_sectors);
2429 int coroutine_fn bdrv_co_discard(BlockDriverState *bs, int64_t sector_num,
2430 int nb_sectors)
2432 BdrvTrackedRequest req;
2433 int max_discard, ret;
2435 if (!bs->drv) {
2436 return -ENOMEDIUM;
2439 ret = bdrv_check_request(bs, sector_num, nb_sectors);
2440 if (ret < 0) {
2441 return ret;
2442 } else if (bs->read_only) {
2443 return -EPERM;
2445 assert(!(bs->open_flags & BDRV_O_INACTIVE));
2447 /* Do nothing if disabled. */
2448 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2449 return 0;
2452 if (!bs->drv->bdrv_co_discard && !bs->drv->bdrv_aio_discard) {
2453 return 0;
2456 tracked_request_begin(&req, bs, sector_num, nb_sectors,
2457 BDRV_TRACKED_DISCARD);
2458 bdrv_set_dirty(bs, sector_num, nb_sectors);
2460 max_discard = MIN_NON_ZERO(bs->bl.max_discard, BDRV_REQUEST_MAX_SECTORS);
2461 while (nb_sectors > 0) {
2462 int ret;
2463 int num = nb_sectors;
2465 /* align request */
2466 if (bs->bl.discard_alignment &&
2467 num >= bs->bl.discard_alignment &&
2468 sector_num % bs->bl.discard_alignment) {
2469 if (num > bs->bl.discard_alignment) {
2470 num = bs->bl.discard_alignment;
2472 num -= sector_num % bs->bl.discard_alignment;
2475 /* limit request size */
2476 if (num > max_discard) {
2477 num = max_discard;
2480 if (bs->drv->bdrv_co_discard) {
2481 ret = bs->drv->bdrv_co_discard(bs, sector_num, num);
2482 } else {
2483 BlockAIOCB *acb;
2484 CoroutineIOCompletion co = {
2485 .coroutine = qemu_coroutine_self(),
2488 acb = bs->drv->bdrv_aio_discard(bs, sector_num, nb_sectors,
2489 bdrv_co_io_em_complete, &co);
2490 if (acb == NULL) {
2491 ret = -EIO;
2492 goto out;
2493 } else {
2494 qemu_coroutine_yield();
2495 ret = co.ret;
2498 if (ret && ret != -ENOTSUP) {
2499 goto out;
2502 sector_num += num;
2503 nb_sectors -= num;
2505 ret = 0;
2506 out:
2507 tracked_request_end(&req);
2508 return ret;
2511 int bdrv_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors)
2513 Coroutine *co;
2514 DiscardCo rwco = {
2515 .bs = bs,
2516 .sector_num = sector_num,
2517 .nb_sectors = nb_sectors,
2518 .ret = NOT_DONE,
2521 if (qemu_in_coroutine()) {
2522 /* Fast-path if already in coroutine context */
2523 bdrv_discard_co_entry(&rwco);
2524 } else {
2525 AioContext *aio_context = bdrv_get_aio_context(bs);
2527 co = qemu_coroutine_create(bdrv_discard_co_entry);
2528 qemu_coroutine_enter(co, &rwco);
2529 while (rwco.ret == NOT_DONE) {
2530 aio_poll(aio_context, true);
2534 return rwco.ret;
2537 typedef struct {
2538 CoroutineIOCompletion *co;
2539 QEMUBH *bh;
2540 } BdrvIoctlCompletionData;
2542 static void bdrv_ioctl_bh_cb(void *opaque)
2544 BdrvIoctlCompletionData *data = opaque;
2546 bdrv_co_io_em_complete(data->co, -ENOTSUP);
2547 qemu_bh_delete(data->bh);
2550 static int bdrv_co_do_ioctl(BlockDriverState *bs, int req, void *buf)
2552 BlockDriver *drv = bs->drv;
2553 BdrvTrackedRequest tracked_req;
2554 CoroutineIOCompletion co = {
2555 .coroutine = qemu_coroutine_self(),
2557 BlockAIOCB *acb;
2559 tracked_request_begin(&tracked_req, bs, 0, 0, BDRV_TRACKED_IOCTL);
2560 if (!drv || !drv->bdrv_aio_ioctl) {
2561 co.ret = -ENOTSUP;
2562 goto out;
2565 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2566 if (!acb) {
2567 BdrvIoctlCompletionData *data = g_new(BdrvIoctlCompletionData, 1);
2568 data->bh = aio_bh_new(bdrv_get_aio_context(bs),
2569 bdrv_ioctl_bh_cb, data);
2570 data->co = &co;
2571 qemu_bh_schedule(data->bh);
2573 qemu_coroutine_yield();
2574 out:
2575 tracked_request_end(&tracked_req);
2576 return co.ret;
2579 typedef struct {
2580 BlockDriverState *bs;
2581 int req;
2582 void *buf;
2583 int ret;
2584 } BdrvIoctlCoData;
2586 static void coroutine_fn bdrv_co_ioctl_entry(void *opaque)
2588 BdrvIoctlCoData *data = opaque;
2589 data->ret = bdrv_co_do_ioctl(data->bs, data->req, data->buf);
2592 /* needed for generic scsi interface */
2593 int bdrv_ioctl(BlockDriverState *bs, unsigned long int req, void *buf)
2595 BdrvIoctlCoData data = {
2596 .bs = bs,
2597 .req = req,
2598 .buf = buf,
2599 .ret = -EINPROGRESS,
2602 if (qemu_in_coroutine()) {
2603 /* Fast-path if already in coroutine context */
2604 bdrv_co_ioctl_entry(&data);
2605 } else {
2606 Coroutine *co = qemu_coroutine_create(bdrv_co_ioctl_entry);
2608 qemu_coroutine_enter(co, &data);
2609 while (data.ret == -EINPROGRESS) {
2610 aio_poll(bdrv_get_aio_context(bs), true);
2613 return data.ret;
2616 static void coroutine_fn bdrv_co_aio_ioctl_entry(void *opaque)
2618 BlockAIOCBCoroutine *acb = opaque;
2619 acb->req.error = bdrv_co_do_ioctl(acb->common.bs,
2620 acb->req.req, acb->req.buf);
2621 bdrv_co_complete(acb);
2624 BlockAIOCB *bdrv_aio_ioctl(BlockDriverState *bs,
2625 unsigned long int req, void *buf,
2626 BlockCompletionFunc *cb, void *opaque)
2628 BlockAIOCBCoroutine *acb = qemu_aio_get(&bdrv_em_co_aiocb_info,
2629 bs, cb, opaque);
2630 Coroutine *co;
2632 acb->need_bh = true;
2633 acb->req.error = -EINPROGRESS;
2634 acb->req.req = req;
2635 acb->req.buf = buf;
2636 co = qemu_coroutine_create(bdrv_co_aio_ioctl_entry);
2637 qemu_coroutine_enter(co, acb);
2639 bdrv_co_maybe_schedule_bh(acb);
2640 return &acb->common;
2643 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2645 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2648 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2650 return memset(qemu_blockalign(bs, size), 0, size);
2653 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2655 size_t align = bdrv_opt_mem_align(bs);
2657 /* Ensure that NULL is never returned on success */
2658 assert(align > 0);
2659 if (size == 0) {
2660 size = align;
2663 return qemu_try_memalign(align, size);
2666 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2668 void *mem = qemu_try_blockalign(bs, size);
2670 if (mem) {
2671 memset(mem, 0, size);
2674 return mem;
2678 * Check if all memory in this vector is sector aligned.
2680 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2682 int i;
2683 size_t alignment = bdrv_min_mem_align(bs);
2685 for (i = 0; i < qiov->niov; i++) {
2686 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2687 return false;
2689 if (qiov->iov[i].iov_len % alignment) {
2690 return false;
2694 return true;
2697 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2698 NotifierWithReturn *notifier)
2700 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2703 void bdrv_io_plug(BlockDriverState *bs)
2705 BlockDriver *drv = bs->drv;
2706 if (drv && drv->bdrv_io_plug) {
2707 drv->bdrv_io_plug(bs);
2708 } else if (bs->file) {
2709 bdrv_io_plug(bs->file->bs);
2713 void bdrv_io_unplug(BlockDriverState *bs)
2715 BlockDriver *drv = bs->drv;
2716 if (drv && drv->bdrv_io_unplug) {
2717 drv->bdrv_io_unplug(bs);
2718 } else if (bs->file) {
2719 bdrv_io_unplug(bs->file->bs);
2723 void bdrv_flush_io_queue(BlockDriverState *bs)
2725 BlockDriver *drv = bs->drv;
2726 if (drv && drv->bdrv_flush_io_queue) {
2727 drv->bdrv_flush_io_queue(bs);
2728 } else if (bs->file) {
2729 bdrv_flush_io_queue(bs->file->bs);
2731 bdrv_start_throttled_reqs(bs);
2734 void bdrv_drained_begin(BlockDriverState *bs)
2736 if (!bs->quiesce_counter++) {
2737 aio_disable_external(bdrv_get_aio_context(bs));
2739 bdrv_drain(bs);
2742 void bdrv_drained_end(BlockDriverState *bs)
2744 assert(bs->quiesce_counter > 0);
2745 if (--bs->quiesce_counter > 0) {
2746 return;
2748 aio_enable_external(bdrv_get_aio_context(bs));