2 * Physical memory management
4 * Copyright 2011 Red Hat, Inc. and/or its affiliates
7 * Avi Kivity <avi@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2. See
10 * the COPYING file in the top-level directory.
12 * Contributions after 2012-01-13 are licensed under the terms of the
13 * GNU GPL, version 2 or (at your option) any later version.
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
19 #include "exec/memory.h"
20 #include "exec/address-spaces.h"
21 #include "qapi/visitor.h"
22 #include "qemu/bitops.h"
23 #include "qemu/error-report.h"
24 #include "qemu/main-loop.h"
25 #include "qemu/qemu-print.h"
26 #include "qom/object.h"
27 #include "trace-root.h"
29 #include "exec/memory-internal.h"
30 #include "exec/ram_addr.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/runstate.h"
33 #include "sysemu/tcg.h"
34 #include "sysemu/accel.h"
35 #include "hw/boards.h"
36 #include "migration/vmstate.h"
38 //#define DEBUG_UNASSIGNED
40 static unsigned memory_region_transaction_depth
;
41 static bool memory_region_update_pending
;
42 static bool ioeventfd_update_pending
;
43 bool global_dirty_log
;
45 static QTAILQ_HEAD(, MemoryListener
) memory_listeners
46 = QTAILQ_HEAD_INITIALIZER(memory_listeners
);
48 static QTAILQ_HEAD(, AddressSpace
) address_spaces
49 = QTAILQ_HEAD_INITIALIZER(address_spaces
);
51 static GHashTable
*flat_views
;
53 typedef struct AddrRange AddrRange
;
56 * Note that signed integers are needed for negative offsetting in aliases
57 * (large MemoryRegion::alias_offset).
64 static AddrRange
addrrange_make(Int128 start
, Int128 size
)
66 return (AddrRange
) { start
, size
};
69 static bool addrrange_equal(AddrRange r1
, AddrRange r2
)
71 return int128_eq(r1
.start
, r2
.start
) && int128_eq(r1
.size
, r2
.size
);
74 static Int128
addrrange_end(AddrRange r
)
76 return int128_add(r
.start
, r
.size
);
79 static AddrRange
addrrange_shift(AddrRange range
, Int128 delta
)
81 int128_addto(&range
.start
, delta
);
85 static bool addrrange_contains(AddrRange range
, Int128 addr
)
87 return int128_ge(addr
, range
.start
)
88 && int128_lt(addr
, addrrange_end(range
));
91 static bool addrrange_intersects(AddrRange r1
, AddrRange r2
)
93 return addrrange_contains(r1
, r2
.start
)
94 || addrrange_contains(r2
, r1
.start
);
97 static AddrRange
addrrange_intersection(AddrRange r1
, AddrRange r2
)
99 Int128 start
= int128_max(r1
.start
, r2
.start
);
100 Int128 end
= int128_min(addrrange_end(r1
), addrrange_end(r2
));
101 return addrrange_make(start
, int128_sub(end
, start
));
104 enum ListenerDirection
{ Forward
, Reverse
};
106 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...) \
108 MemoryListener *_listener; \
110 switch (_direction) { \
112 QTAILQ_FOREACH(_listener, &memory_listeners, link) { \
113 if (_listener->_callback) { \
114 _listener->_callback(_listener, ##_args); \
119 QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners, link) { \
120 if (_listener->_callback) { \
121 _listener->_callback(_listener, ##_args); \
130 #define MEMORY_LISTENER_CALL(_as, _callback, _direction, _section, _args...) \
132 MemoryListener *_listener; \
134 switch (_direction) { \
136 QTAILQ_FOREACH(_listener, &(_as)->listeners, link_as) { \
137 if (_listener->_callback) { \
138 _listener->_callback(_listener, _section, ##_args); \
143 QTAILQ_FOREACH_REVERSE(_listener, &(_as)->listeners, link_as) { \
144 if (_listener->_callback) { \
145 _listener->_callback(_listener, _section, ##_args); \
154 /* No need to ref/unref .mr, the FlatRange keeps it alive. */
155 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...) \
157 MemoryRegionSection mrs = section_from_flat_range(fr, \
158 address_space_to_flatview(as)); \
159 MEMORY_LISTENER_CALL(as, callback, dir, &mrs, ##_args); \
162 struct CoalescedMemoryRange
{
164 QTAILQ_ENTRY(CoalescedMemoryRange
) link
;
167 struct MemoryRegionIoeventfd
{
174 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd
*a
,
175 MemoryRegionIoeventfd
*b
)
177 if (int128_lt(a
->addr
.start
, b
->addr
.start
)) {
179 } else if (int128_gt(a
->addr
.start
, b
->addr
.start
)) {
181 } else if (int128_lt(a
->addr
.size
, b
->addr
.size
)) {
183 } else if (int128_gt(a
->addr
.size
, b
->addr
.size
)) {
185 } else if (a
->match_data
< b
->match_data
) {
187 } else if (a
->match_data
> b
->match_data
) {
189 } else if (a
->match_data
) {
190 if (a
->data
< b
->data
) {
192 } else if (a
->data
> b
->data
) {
198 } else if (a
->e
> b
->e
) {
204 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd
*a
,
205 MemoryRegionIoeventfd
*b
)
207 return !memory_region_ioeventfd_before(a
, b
)
208 && !memory_region_ioeventfd_before(b
, a
);
211 /* Range of memory in the global map. Addresses are absolute. */
214 hwaddr offset_in_region
;
216 uint8_t dirty_log_mask
;
222 #define FOR_EACH_FLAT_RANGE(var, view) \
223 for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
225 static inline MemoryRegionSection
226 section_from_flat_range(FlatRange
*fr
, FlatView
*fv
)
228 return (MemoryRegionSection
) {
231 .offset_within_region
= fr
->offset_in_region
,
232 .size
= fr
->addr
.size
,
233 .offset_within_address_space
= int128_get64(fr
->addr
.start
),
234 .readonly
= fr
->readonly
,
235 .nonvolatile
= fr
->nonvolatile
,
239 static bool flatrange_equal(FlatRange
*a
, FlatRange
*b
)
241 return a
->mr
== b
->mr
242 && addrrange_equal(a
->addr
, b
->addr
)
243 && a
->offset_in_region
== b
->offset_in_region
244 && a
->romd_mode
== b
->romd_mode
245 && a
->readonly
== b
->readonly
246 && a
->nonvolatile
== b
->nonvolatile
;
249 static FlatView
*flatview_new(MemoryRegion
*mr_root
)
253 view
= g_new0(FlatView
, 1);
255 view
->root
= mr_root
;
256 memory_region_ref(mr_root
);
257 trace_flatview_new(view
, mr_root
);
262 /* Insert a range into a given position. Caller is responsible for maintaining
265 static void flatview_insert(FlatView
*view
, unsigned pos
, FlatRange
*range
)
267 if (view
->nr
== view
->nr_allocated
) {
268 view
->nr_allocated
= MAX(2 * view
->nr
, 10);
269 view
->ranges
= g_realloc(view
->ranges
,
270 view
->nr_allocated
* sizeof(*view
->ranges
));
272 memmove(view
->ranges
+ pos
+ 1, view
->ranges
+ pos
,
273 (view
->nr
- pos
) * sizeof(FlatRange
));
274 view
->ranges
[pos
] = *range
;
275 memory_region_ref(range
->mr
);
279 static void flatview_destroy(FlatView
*view
)
283 trace_flatview_destroy(view
, view
->root
);
284 if (view
->dispatch
) {
285 address_space_dispatch_free(view
->dispatch
);
287 for (i
= 0; i
< view
->nr
; i
++) {
288 memory_region_unref(view
->ranges
[i
].mr
);
290 g_free(view
->ranges
);
291 memory_region_unref(view
->root
);
295 static bool flatview_ref(FlatView
*view
)
297 return atomic_fetch_inc_nonzero(&view
->ref
) > 0;
300 void flatview_unref(FlatView
*view
)
302 if (atomic_fetch_dec(&view
->ref
) == 1) {
303 trace_flatview_destroy_rcu(view
, view
->root
);
305 call_rcu(view
, flatview_destroy
, rcu
);
309 static bool can_merge(FlatRange
*r1
, FlatRange
*r2
)
311 return int128_eq(addrrange_end(r1
->addr
), r2
->addr
.start
)
313 && int128_eq(int128_add(int128_make64(r1
->offset_in_region
),
315 int128_make64(r2
->offset_in_region
))
316 && r1
->dirty_log_mask
== r2
->dirty_log_mask
317 && r1
->romd_mode
== r2
->romd_mode
318 && r1
->readonly
== r2
->readonly
319 && r1
->nonvolatile
== r2
->nonvolatile
;
322 /* Attempt to simplify a view by merging adjacent ranges */
323 static void flatview_simplify(FlatView
*view
)
328 while (i
< view
->nr
) {
331 && can_merge(&view
->ranges
[j
-1], &view
->ranges
[j
])) {
332 int128_addto(&view
->ranges
[i
].addr
.size
, view
->ranges
[j
].addr
.size
);
336 for (k
= i
; k
< j
; k
++) {
337 memory_region_unref(view
->ranges
[k
].mr
);
339 memmove(&view
->ranges
[i
], &view
->ranges
[j
],
340 (view
->nr
- j
) * sizeof(view
->ranges
[j
]));
345 static bool memory_region_big_endian(MemoryRegion
*mr
)
347 #ifdef TARGET_WORDS_BIGENDIAN
348 return mr
->ops
->endianness
!= DEVICE_LITTLE_ENDIAN
;
350 return mr
->ops
->endianness
== DEVICE_BIG_ENDIAN
;
354 static void adjust_endianness(MemoryRegion
*mr
, uint64_t *data
, MemOp op
)
356 if ((op
& MO_BSWAP
) != devend_memop(mr
->ops
->endianness
)) {
357 switch (op
& MO_SIZE
) {
361 *data
= bswap16(*data
);
364 *data
= bswap32(*data
);
367 *data
= bswap64(*data
);
370 g_assert_not_reached();
375 static inline void memory_region_shift_read_access(uint64_t *value
,
381 *value
|= (tmp
& mask
) << shift
;
383 *value
|= (tmp
& mask
) >> -shift
;
387 static inline uint64_t memory_region_shift_write_access(uint64_t *value
,
394 tmp
= (*value
>> shift
) & mask
;
396 tmp
= (*value
<< -shift
) & mask
;
402 static hwaddr
memory_region_to_absolute_addr(MemoryRegion
*mr
, hwaddr offset
)
405 hwaddr abs_addr
= offset
;
407 abs_addr
+= mr
->addr
;
408 for (root
= mr
; root
->container
; ) {
409 root
= root
->container
;
410 abs_addr
+= root
->addr
;
416 static int get_cpu_index(void)
419 return current_cpu
->cpu_index
;
424 static MemTxResult
memory_region_read_accessor(MemoryRegion
*mr
,
434 tmp
= mr
->ops
->read(mr
->opaque
, addr
, size
);
436 trace_memory_region_subpage_read(get_cpu_index(), mr
, addr
, tmp
, size
);
437 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ
)) {
438 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
439 trace_memory_region_ops_read(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
441 memory_region_shift_read_access(value
, shift
, mask
, tmp
);
445 static MemTxResult
memory_region_read_with_attrs_accessor(MemoryRegion
*mr
,
456 r
= mr
->ops
->read_with_attrs(mr
->opaque
, addr
, &tmp
, size
, attrs
);
458 trace_memory_region_subpage_read(get_cpu_index(), mr
, addr
, tmp
, size
);
459 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_READ
)) {
460 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
461 trace_memory_region_ops_read(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
463 memory_region_shift_read_access(value
, shift
, mask
, tmp
);
467 static MemTxResult
memory_region_write_accessor(MemoryRegion
*mr
,
475 uint64_t tmp
= memory_region_shift_write_access(value
, shift
, mask
);
478 trace_memory_region_subpage_write(get_cpu_index(), mr
, addr
, tmp
, size
);
479 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE
)) {
480 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
481 trace_memory_region_ops_write(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
483 mr
->ops
->write(mr
->opaque
, addr
, tmp
, size
);
487 static MemTxResult
memory_region_write_with_attrs_accessor(MemoryRegion
*mr
,
495 uint64_t tmp
= memory_region_shift_write_access(value
, shift
, mask
);
498 trace_memory_region_subpage_write(get_cpu_index(), mr
, addr
, tmp
, size
);
499 } else if (trace_event_get_state_backends(TRACE_MEMORY_REGION_OPS_WRITE
)) {
500 hwaddr abs_addr
= memory_region_to_absolute_addr(mr
, addr
);
501 trace_memory_region_ops_write(get_cpu_index(), mr
, abs_addr
, tmp
, size
);
503 return mr
->ops
->write_with_attrs(mr
->opaque
, addr
, tmp
, size
, attrs
);
506 static MemTxResult
access_with_adjusted_size(hwaddr addr
,
509 unsigned access_size_min
,
510 unsigned access_size_max
,
511 MemTxResult (*access_fn
)
522 uint64_t access_mask
;
523 unsigned access_size
;
525 MemTxResult r
= MEMTX_OK
;
527 if (!access_size_min
) {
530 if (!access_size_max
) {
534 /* FIXME: support unaligned access? */
535 access_size
= MAX(MIN(size
, access_size_max
), access_size_min
);
536 access_mask
= MAKE_64BIT_MASK(0, access_size
* 8);
537 if (memory_region_big_endian(mr
)) {
538 for (i
= 0; i
< size
; i
+= access_size
) {
539 r
|= access_fn(mr
, addr
+ i
, value
, access_size
,
540 (size
- access_size
- i
) * 8, access_mask
, attrs
);
543 for (i
= 0; i
< size
; i
+= access_size
) {
544 r
|= access_fn(mr
, addr
+ i
, value
, access_size
, i
* 8,
551 static AddressSpace
*memory_region_to_address_space(MemoryRegion
*mr
)
555 while (mr
->container
) {
558 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
559 if (mr
== as
->root
) {
566 /* Render a memory region into the global view. Ranges in @view obscure
569 static void render_memory_region(FlatView
*view
,
576 MemoryRegion
*subregion
;
578 hwaddr offset_in_region
;
588 int128_addto(&base
, int128_make64(mr
->addr
));
589 readonly
|= mr
->readonly
;
590 nonvolatile
|= mr
->nonvolatile
;
592 tmp
= addrrange_make(base
, mr
->size
);
594 if (!addrrange_intersects(tmp
, clip
)) {
598 clip
= addrrange_intersection(tmp
, clip
);
601 int128_subfrom(&base
, int128_make64(mr
->alias
->addr
));
602 int128_subfrom(&base
, int128_make64(mr
->alias_offset
));
603 render_memory_region(view
, mr
->alias
, base
, clip
,
604 readonly
, nonvolatile
);
608 /* Render subregions in priority order. */
609 QTAILQ_FOREACH(subregion
, &mr
->subregions
, subregions_link
) {
610 render_memory_region(view
, subregion
, base
, clip
,
611 readonly
, nonvolatile
);
614 if (!mr
->terminates
) {
618 offset_in_region
= int128_get64(int128_sub(clip
.start
, base
));
623 fr
.dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
624 fr
.romd_mode
= mr
->romd_mode
;
625 fr
.readonly
= readonly
;
626 fr
.nonvolatile
= nonvolatile
;
628 /* Render the region itself into any gaps left by the current view. */
629 for (i
= 0; i
< view
->nr
&& int128_nz(remain
); ++i
) {
630 if (int128_ge(base
, addrrange_end(view
->ranges
[i
].addr
))) {
633 if (int128_lt(base
, view
->ranges
[i
].addr
.start
)) {
634 now
= int128_min(remain
,
635 int128_sub(view
->ranges
[i
].addr
.start
, base
));
636 fr
.offset_in_region
= offset_in_region
;
637 fr
.addr
= addrrange_make(base
, now
);
638 flatview_insert(view
, i
, &fr
);
640 int128_addto(&base
, now
);
641 offset_in_region
+= int128_get64(now
);
642 int128_subfrom(&remain
, now
);
644 now
= int128_sub(int128_min(int128_add(base
, remain
),
645 addrrange_end(view
->ranges
[i
].addr
)),
647 int128_addto(&base
, now
);
648 offset_in_region
+= int128_get64(now
);
649 int128_subfrom(&remain
, now
);
651 if (int128_nz(remain
)) {
652 fr
.offset_in_region
= offset_in_region
;
653 fr
.addr
= addrrange_make(base
, remain
);
654 flatview_insert(view
, i
, &fr
);
658 static MemoryRegion
*memory_region_get_flatview_root(MemoryRegion
*mr
)
660 while (mr
->enabled
) {
662 if (!mr
->alias_offset
&& int128_ge(mr
->size
, mr
->alias
->size
)) {
663 /* The alias is included in its entirety. Use it as
664 * the "real" root, so that we can share more FlatViews.
669 } else if (!mr
->terminates
) {
670 unsigned int found
= 0;
671 MemoryRegion
*child
, *next
= NULL
;
672 QTAILQ_FOREACH(child
, &mr
->subregions
, subregions_link
) {
673 if (child
->enabled
) {
678 if (!child
->addr
&& int128_ge(mr
->size
, child
->size
)) {
679 /* A child is included in its entirety. If it's the only
680 * enabled one, use it in the hope of finding an alias down the
681 * way. This will also let us share FlatViews.
702 /* Render a memory topology into a list of disjoint absolute ranges. */
703 static FlatView
*generate_memory_topology(MemoryRegion
*mr
)
708 view
= flatview_new(mr
);
711 render_memory_region(view
, mr
, int128_zero(),
712 addrrange_make(int128_zero(), int128_2_64()),
715 flatview_simplify(view
);
717 view
->dispatch
= address_space_dispatch_new(view
);
718 for (i
= 0; i
< view
->nr
; i
++) {
719 MemoryRegionSection mrs
=
720 section_from_flat_range(&view
->ranges
[i
], view
);
721 flatview_add_to_dispatch(view
, &mrs
);
723 address_space_dispatch_compact(view
->dispatch
);
724 g_hash_table_replace(flat_views
, mr
, view
);
729 static void address_space_add_del_ioeventfds(AddressSpace
*as
,
730 MemoryRegionIoeventfd
*fds_new
,
732 MemoryRegionIoeventfd
*fds_old
,
736 MemoryRegionIoeventfd
*fd
;
737 MemoryRegionSection section
;
739 /* Generate a symmetric difference of the old and new fd sets, adding
740 * and deleting as necessary.
744 while (iold
< fds_old_nb
|| inew
< fds_new_nb
) {
745 if (iold
< fds_old_nb
746 && (inew
== fds_new_nb
747 || memory_region_ioeventfd_before(&fds_old
[iold
],
750 section
= (MemoryRegionSection
) {
751 .fv
= address_space_to_flatview(as
),
752 .offset_within_address_space
= int128_get64(fd
->addr
.start
),
753 .size
= fd
->addr
.size
,
755 MEMORY_LISTENER_CALL(as
, eventfd_del
, Forward
, §ion
,
756 fd
->match_data
, fd
->data
, fd
->e
);
758 } else if (inew
< fds_new_nb
759 && (iold
== fds_old_nb
760 || memory_region_ioeventfd_before(&fds_new
[inew
],
763 section
= (MemoryRegionSection
) {
764 .fv
= address_space_to_flatview(as
),
765 .offset_within_address_space
= int128_get64(fd
->addr
.start
),
766 .size
= fd
->addr
.size
,
768 MEMORY_LISTENER_CALL(as
, eventfd_add
, Reverse
, §ion
,
769 fd
->match_data
, fd
->data
, fd
->e
);
778 FlatView
*address_space_get_flatview(AddressSpace
*as
)
782 RCU_READ_LOCK_GUARD();
784 view
= address_space_to_flatview(as
);
785 /* If somebody has replaced as->current_map concurrently,
786 * flatview_ref returns false.
788 } while (!flatview_ref(view
));
792 static void address_space_update_ioeventfds(AddressSpace
*as
)
796 unsigned ioeventfd_nb
= 0;
797 MemoryRegionIoeventfd
*ioeventfds
= NULL
;
801 view
= address_space_get_flatview(as
);
802 FOR_EACH_FLAT_RANGE(fr
, view
) {
803 for (i
= 0; i
< fr
->mr
->ioeventfd_nb
; ++i
) {
804 tmp
= addrrange_shift(fr
->mr
->ioeventfds
[i
].addr
,
805 int128_sub(fr
->addr
.start
,
806 int128_make64(fr
->offset_in_region
)));
807 if (addrrange_intersects(fr
->addr
, tmp
)) {
809 ioeventfds
= g_realloc(ioeventfds
,
810 ioeventfd_nb
* sizeof(*ioeventfds
));
811 ioeventfds
[ioeventfd_nb
-1] = fr
->mr
->ioeventfds
[i
];
812 ioeventfds
[ioeventfd_nb
-1].addr
= tmp
;
817 address_space_add_del_ioeventfds(as
, ioeventfds
, ioeventfd_nb
,
818 as
->ioeventfds
, as
->ioeventfd_nb
);
820 g_free(as
->ioeventfds
);
821 as
->ioeventfds
= ioeventfds
;
822 as
->ioeventfd_nb
= ioeventfd_nb
;
823 flatview_unref(view
);
827 * Notify the memory listeners about the coalesced IO change events of
828 * range `cmr'. Only the part that has intersection of the specified
829 * FlatRange will be sent.
831 static void flat_range_coalesced_io_notify(FlatRange
*fr
, AddressSpace
*as
,
832 CoalescedMemoryRange
*cmr
, bool add
)
836 tmp
= addrrange_shift(cmr
->addr
,
837 int128_sub(fr
->addr
.start
,
838 int128_make64(fr
->offset_in_region
)));
839 if (!addrrange_intersects(tmp
, fr
->addr
)) {
842 tmp
= addrrange_intersection(tmp
, fr
->addr
);
845 MEMORY_LISTENER_UPDATE_REGION(fr
, as
, Forward
, coalesced_io_add
,
846 int128_get64(tmp
.start
),
847 int128_get64(tmp
.size
));
849 MEMORY_LISTENER_UPDATE_REGION(fr
, as
, Reverse
, coalesced_io_del
,
850 int128_get64(tmp
.start
),
851 int128_get64(tmp
.size
));
855 static void flat_range_coalesced_io_del(FlatRange
*fr
, AddressSpace
*as
)
857 CoalescedMemoryRange
*cmr
;
859 QTAILQ_FOREACH(cmr
, &fr
->mr
->coalesced
, link
) {
860 flat_range_coalesced_io_notify(fr
, as
, cmr
, false);
864 static void flat_range_coalesced_io_add(FlatRange
*fr
, AddressSpace
*as
)
866 MemoryRegion
*mr
= fr
->mr
;
867 CoalescedMemoryRange
*cmr
;
869 if (QTAILQ_EMPTY(&mr
->coalesced
)) {
873 QTAILQ_FOREACH(cmr
, &mr
->coalesced
, link
) {
874 flat_range_coalesced_io_notify(fr
, as
, cmr
, true);
878 static void address_space_update_topology_pass(AddressSpace
*as
,
879 const FlatView
*old_view
,
880 const FlatView
*new_view
,
884 FlatRange
*frold
, *frnew
;
886 /* Generate a symmetric difference of the old and new memory maps.
887 * Kill ranges in the old map, and instantiate ranges in the new map.
890 while (iold
< old_view
->nr
|| inew
< new_view
->nr
) {
891 if (iold
< old_view
->nr
) {
892 frold
= &old_view
->ranges
[iold
];
896 if (inew
< new_view
->nr
) {
897 frnew
= &new_view
->ranges
[inew
];
904 || int128_lt(frold
->addr
.start
, frnew
->addr
.start
)
905 || (int128_eq(frold
->addr
.start
, frnew
->addr
.start
)
906 && !flatrange_equal(frold
, frnew
)))) {
907 /* In old but not in new, or in both but attributes changed. */
910 flat_range_coalesced_io_del(frold
, as
);
911 MEMORY_LISTENER_UPDATE_REGION(frold
, as
, Reverse
, region_del
);
915 } else if (frold
&& frnew
&& flatrange_equal(frold
, frnew
)) {
916 /* In both and unchanged (except logging may have changed) */
919 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, region_nop
);
920 if (frnew
->dirty_log_mask
& ~frold
->dirty_log_mask
) {
921 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, log_start
,
922 frold
->dirty_log_mask
,
923 frnew
->dirty_log_mask
);
925 if (frold
->dirty_log_mask
& ~frnew
->dirty_log_mask
) {
926 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Reverse
, log_stop
,
927 frold
->dirty_log_mask
,
928 frnew
->dirty_log_mask
);
938 MEMORY_LISTENER_UPDATE_REGION(frnew
, as
, Forward
, region_add
);
939 flat_range_coalesced_io_add(frnew
, as
);
947 static void flatviews_init(void)
949 static FlatView
*empty_view
;
955 flat_views
= g_hash_table_new_full(g_direct_hash
, g_direct_equal
, NULL
,
956 (GDestroyNotify
) flatview_unref
);
958 empty_view
= generate_memory_topology(NULL
);
959 /* We keep it alive forever in the global variable. */
960 flatview_ref(empty_view
);
962 g_hash_table_replace(flat_views
, NULL
, empty_view
);
963 flatview_ref(empty_view
);
967 static void flatviews_reset(void)
972 g_hash_table_unref(flat_views
);
977 /* Render unique FVs */
978 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
979 MemoryRegion
*physmr
= memory_region_get_flatview_root(as
->root
);
981 if (g_hash_table_lookup(flat_views
, physmr
)) {
985 generate_memory_topology(physmr
);
989 static void address_space_set_flatview(AddressSpace
*as
)
991 FlatView
*old_view
= address_space_to_flatview(as
);
992 MemoryRegion
*physmr
= memory_region_get_flatview_root(as
->root
);
993 FlatView
*new_view
= g_hash_table_lookup(flat_views
, physmr
);
997 if (old_view
== new_view
) {
1002 flatview_ref(old_view
);
1005 flatview_ref(new_view
);
1007 if (!QTAILQ_EMPTY(&as
->listeners
)) {
1008 FlatView tmpview
= { .nr
= 0 }, *old_view2
= old_view
;
1011 old_view2
= &tmpview
;
1013 address_space_update_topology_pass(as
, old_view2
, new_view
, false);
1014 address_space_update_topology_pass(as
, old_view2
, new_view
, true);
1017 /* Writes are protected by the BQL. */
1018 atomic_rcu_set(&as
->current_map
, new_view
);
1020 flatview_unref(old_view
);
1023 /* Note that all the old MemoryRegions are still alive up to this
1024 * point. This relieves most MemoryListeners from the need to
1025 * ref/unref the MemoryRegions they get---unless they use them
1026 * outside the iothread mutex, in which case precise reference
1027 * counting is necessary.
1030 flatview_unref(old_view
);
1034 static void address_space_update_topology(AddressSpace
*as
)
1036 MemoryRegion
*physmr
= memory_region_get_flatview_root(as
->root
);
1039 if (!g_hash_table_lookup(flat_views
, physmr
)) {
1040 generate_memory_topology(physmr
);
1042 address_space_set_flatview(as
);
1045 void memory_region_transaction_begin(void)
1047 qemu_flush_coalesced_mmio_buffer();
1048 ++memory_region_transaction_depth
;
1051 void memory_region_transaction_commit(void)
1055 assert(memory_region_transaction_depth
);
1056 assert(qemu_mutex_iothread_locked());
1058 --memory_region_transaction_depth
;
1059 if (!memory_region_transaction_depth
) {
1060 if (memory_region_update_pending
) {
1063 MEMORY_LISTENER_CALL_GLOBAL(begin
, Forward
);
1065 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
1066 address_space_set_flatview(as
);
1067 address_space_update_ioeventfds(as
);
1069 memory_region_update_pending
= false;
1070 ioeventfd_update_pending
= false;
1071 MEMORY_LISTENER_CALL_GLOBAL(commit
, Forward
);
1072 } else if (ioeventfd_update_pending
) {
1073 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
1074 address_space_update_ioeventfds(as
);
1076 ioeventfd_update_pending
= false;
1081 static void memory_region_destructor_none(MemoryRegion
*mr
)
1085 static void memory_region_destructor_ram(MemoryRegion
*mr
)
1087 qemu_ram_free(mr
->ram_block
);
1090 static bool memory_region_need_escape(char c
)
1092 return c
== '/' || c
== '[' || c
== '\\' || c
== ']';
1095 static char *memory_region_escape_name(const char *name
)
1102 for (p
= name
; *p
; p
++) {
1103 bytes
+= memory_region_need_escape(*p
) ? 4 : 1;
1105 if (bytes
== p
- name
) {
1106 return g_memdup(name
, bytes
+ 1);
1109 escaped
= g_malloc(bytes
+ 1);
1110 for (p
= name
, q
= escaped
; *p
; p
++) {
1112 if (unlikely(memory_region_need_escape(c
))) {
1115 *q
++ = "0123456789abcdef"[c
>> 4];
1116 c
= "0123456789abcdef"[c
& 15];
1124 static void memory_region_do_init(MemoryRegion
*mr
,
1129 mr
->size
= int128_make64(size
);
1130 if (size
== UINT64_MAX
) {
1131 mr
->size
= int128_2_64();
1133 mr
->name
= g_strdup(name
);
1135 mr
->ram_block
= NULL
;
1138 char *escaped_name
= memory_region_escape_name(name
);
1139 char *name_array
= g_strdup_printf("%s[*]", escaped_name
);
1142 owner
= container_get(qdev_get_machine(), "/unattached");
1145 object_property_add_child(owner
, name_array
, OBJECT(mr
), &error_abort
);
1146 object_unref(OBJECT(mr
));
1148 g_free(escaped_name
);
1152 void memory_region_init(MemoryRegion
*mr
,
1157 object_initialize(mr
, sizeof(*mr
), TYPE_MEMORY_REGION
);
1158 memory_region_do_init(mr
, owner
, name
, size
);
1161 static void memory_region_get_addr(Object
*obj
, Visitor
*v
, const char *name
,
1162 void *opaque
, Error
**errp
)
1164 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1165 uint64_t value
= mr
->addr
;
1167 visit_type_uint64(v
, name
, &value
, errp
);
1170 static void memory_region_get_container(Object
*obj
, Visitor
*v
,
1171 const char *name
, void *opaque
,
1174 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1175 gchar
*path
= (gchar
*)"";
1177 if (mr
->container
) {
1178 path
= object_get_canonical_path(OBJECT(mr
->container
));
1180 visit_type_str(v
, name
, &path
, errp
);
1181 if (mr
->container
) {
1186 static Object
*memory_region_resolve_container(Object
*obj
, void *opaque
,
1189 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1191 return OBJECT(mr
->container
);
1194 static void memory_region_get_priority(Object
*obj
, Visitor
*v
,
1195 const char *name
, void *opaque
,
1198 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1199 int32_t value
= mr
->priority
;
1201 visit_type_int32(v
, name
, &value
, errp
);
1204 static void memory_region_get_size(Object
*obj
, Visitor
*v
, const char *name
,
1205 void *opaque
, Error
**errp
)
1207 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1208 uint64_t value
= memory_region_size(mr
);
1210 visit_type_uint64(v
, name
, &value
, errp
);
1213 static void memory_region_initfn(Object
*obj
)
1215 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1218 mr
->ops
= &unassigned_mem_ops
;
1220 mr
->romd_mode
= true;
1221 mr
->global_locking
= true;
1222 mr
->destructor
= memory_region_destructor_none
;
1223 QTAILQ_INIT(&mr
->subregions
);
1224 QTAILQ_INIT(&mr
->coalesced
);
1226 op
= object_property_add(OBJECT(mr
), "container",
1227 "link<" TYPE_MEMORY_REGION
">",
1228 memory_region_get_container
,
1229 NULL
, /* memory_region_set_container */
1230 NULL
, NULL
, &error_abort
);
1231 op
->resolve
= memory_region_resolve_container
;
1233 object_property_add(OBJECT(mr
), "addr", "uint64",
1234 memory_region_get_addr
,
1235 NULL
, /* memory_region_set_addr */
1236 NULL
, NULL
, &error_abort
);
1237 object_property_add(OBJECT(mr
), "priority", "uint32",
1238 memory_region_get_priority
,
1239 NULL
, /* memory_region_set_priority */
1240 NULL
, NULL
, &error_abort
);
1241 object_property_add(OBJECT(mr
), "size", "uint64",
1242 memory_region_get_size
,
1243 NULL
, /* memory_region_set_size, */
1244 NULL
, NULL
, &error_abort
);
1247 static void iommu_memory_region_initfn(Object
*obj
)
1249 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1251 mr
->is_iommu
= true;
1254 static uint64_t unassigned_mem_read(void *opaque
, hwaddr addr
,
1257 #ifdef DEBUG_UNASSIGNED
1258 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
1263 static void unassigned_mem_write(void *opaque
, hwaddr addr
,
1264 uint64_t val
, unsigned size
)
1266 #ifdef DEBUG_UNASSIGNED
1267 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%"PRIx64
"\n", addr
, val
);
1271 static bool unassigned_mem_accepts(void *opaque
, hwaddr addr
,
1272 unsigned size
, bool is_write
,
1278 const MemoryRegionOps unassigned_mem_ops
= {
1279 .valid
.accepts
= unassigned_mem_accepts
,
1280 .endianness
= DEVICE_NATIVE_ENDIAN
,
1283 static uint64_t memory_region_ram_device_read(void *opaque
,
1284 hwaddr addr
, unsigned size
)
1286 MemoryRegion
*mr
= opaque
;
1287 uint64_t data
= (uint64_t)~0;
1291 data
= *(uint8_t *)(mr
->ram_block
->host
+ addr
);
1294 data
= *(uint16_t *)(mr
->ram_block
->host
+ addr
);
1297 data
= *(uint32_t *)(mr
->ram_block
->host
+ addr
);
1300 data
= *(uint64_t *)(mr
->ram_block
->host
+ addr
);
1304 trace_memory_region_ram_device_read(get_cpu_index(), mr
, addr
, data
, size
);
1309 static void memory_region_ram_device_write(void *opaque
, hwaddr addr
,
1310 uint64_t data
, unsigned size
)
1312 MemoryRegion
*mr
= opaque
;
1314 trace_memory_region_ram_device_write(get_cpu_index(), mr
, addr
, data
, size
);
1318 *(uint8_t *)(mr
->ram_block
->host
+ addr
) = (uint8_t)data
;
1321 *(uint16_t *)(mr
->ram_block
->host
+ addr
) = (uint16_t)data
;
1324 *(uint32_t *)(mr
->ram_block
->host
+ addr
) = (uint32_t)data
;
1327 *(uint64_t *)(mr
->ram_block
->host
+ addr
) = data
;
1332 static const MemoryRegionOps ram_device_mem_ops
= {
1333 .read
= memory_region_ram_device_read
,
1334 .write
= memory_region_ram_device_write
,
1335 .endianness
= DEVICE_HOST_ENDIAN
,
1337 .min_access_size
= 1,
1338 .max_access_size
= 8,
1342 .min_access_size
= 1,
1343 .max_access_size
= 8,
1348 bool memory_region_access_valid(MemoryRegion
*mr
,
1354 int access_size_min
, access_size_max
;
1357 if (!mr
->ops
->valid
.unaligned
&& (addr
& (size
- 1))) {
1361 if (!mr
->ops
->valid
.accepts
) {
1365 access_size_min
= mr
->ops
->valid
.min_access_size
;
1366 if (!mr
->ops
->valid
.min_access_size
) {
1367 access_size_min
= 1;
1370 access_size_max
= mr
->ops
->valid
.max_access_size
;
1371 if (!mr
->ops
->valid
.max_access_size
) {
1372 access_size_max
= 4;
1375 access_size
= MAX(MIN(size
, access_size_max
), access_size_min
);
1376 for (i
= 0; i
< size
; i
+= access_size
) {
1377 if (!mr
->ops
->valid
.accepts(mr
->opaque
, addr
+ i
, access_size
,
1386 static MemTxResult
memory_region_dispatch_read1(MemoryRegion
*mr
,
1394 if (mr
->ops
->read
) {
1395 return access_with_adjusted_size(addr
, pval
, size
,
1396 mr
->ops
->impl
.min_access_size
,
1397 mr
->ops
->impl
.max_access_size
,
1398 memory_region_read_accessor
,
1401 return access_with_adjusted_size(addr
, pval
, size
,
1402 mr
->ops
->impl
.min_access_size
,
1403 mr
->ops
->impl
.max_access_size
,
1404 memory_region_read_with_attrs_accessor
,
1409 MemTxResult
memory_region_dispatch_read(MemoryRegion
*mr
,
1415 unsigned size
= memop_size(op
);
1418 if (!memory_region_access_valid(mr
, addr
, size
, false, attrs
)) {
1419 *pval
= unassigned_mem_read(mr
, addr
, size
);
1420 return MEMTX_DECODE_ERROR
;
1423 r
= memory_region_dispatch_read1(mr
, addr
, pval
, size
, attrs
);
1424 adjust_endianness(mr
, pval
, op
);
1428 /* Return true if an eventfd was signalled */
1429 static bool memory_region_dispatch_write_eventfds(MemoryRegion
*mr
,
1435 MemoryRegionIoeventfd ioeventfd
= {
1436 .addr
= addrrange_make(int128_make64(addr
), int128_make64(size
)),
1441 for (i
= 0; i
< mr
->ioeventfd_nb
; i
++) {
1442 ioeventfd
.match_data
= mr
->ioeventfds
[i
].match_data
;
1443 ioeventfd
.e
= mr
->ioeventfds
[i
].e
;
1445 if (memory_region_ioeventfd_equal(&ioeventfd
, &mr
->ioeventfds
[i
])) {
1446 event_notifier_set(ioeventfd
.e
);
1454 MemTxResult
memory_region_dispatch_write(MemoryRegion
*mr
,
1460 unsigned size
= memop_size(op
);
1462 if (!memory_region_access_valid(mr
, addr
, size
, true, attrs
)) {
1463 unassigned_mem_write(mr
, addr
, data
, size
);
1464 return MEMTX_DECODE_ERROR
;
1467 adjust_endianness(mr
, &data
, op
);
1469 if ((!kvm_eventfds_enabled()) &&
1470 memory_region_dispatch_write_eventfds(mr
, addr
, data
, size
, attrs
)) {
1474 if (mr
->ops
->write
) {
1475 return access_with_adjusted_size(addr
, &data
, size
,
1476 mr
->ops
->impl
.min_access_size
,
1477 mr
->ops
->impl
.max_access_size
,
1478 memory_region_write_accessor
, mr
,
1482 access_with_adjusted_size(addr
, &data
, size
,
1483 mr
->ops
->impl
.min_access_size
,
1484 mr
->ops
->impl
.max_access_size
,
1485 memory_region_write_with_attrs_accessor
,
1490 void memory_region_init_io(MemoryRegion
*mr
,
1492 const MemoryRegionOps
*ops
,
1497 memory_region_init(mr
, owner
, name
, size
);
1498 mr
->ops
= ops
? ops
: &unassigned_mem_ops
;
1499 mr
->opaque
= opaque
;
1500 mr
->terminates
= true;
1503 void memory_region_init_ram_nomigrate(MemoryRegion
*mr
,
1509 memory_region_init_ram_shared_nomigrate(mr
, owner
, name
, size
, false, errp
);
1512 void memory_region_init_ram_shared_nomigrate(MemoryRegion
*mr
,
1520 memory_region_init(mr
, owner
, name
, size
);
1522 mr
->terminates
= true;
1523 mr
->destructor
= memory_region_destructor_ram
;
1524 mr
->ram_block
= qemu_ram_alloc(size
, share
, mr
, &err
);
1525 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1527 mr
->size
= int128_zero();
1528 object_unparent(OBJECT(mr
));
1529 error_propagate(errp
, err
);
1533 void memory_region_init_resizeable_ram(MemoryRegion
*mr
,
1538 void (*resized
)(const char*,
1544 memory_region_init(mr
, owner
, name
, size
);
1546 mr
->terminates
= true;
1547 mr
->destructor
= memory_region_destructor_ram
;
1548 mr
->ram_block
= qemu_ram_alloc_resizeable(size
, max_size
, resized
,
1550 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1552 mr
->size
= int128_zero();
1553 object_unparent(OBJECT(mr
));
1554 error_propagate(errp
, err
);
1559 void memory_region_init_ram_from_file(MemoryRegion
*mr
,
1560 struct Object
*owner
,
1569 memory_region_init(mr
, owner
, name
, size
);
1571 mr
->terminates
= true;
1572 mr
->destructor
= memory_region_destructor_ram
;
1574 mr
->ram_block
= qemu_ram_alloc_from_file(size
, mr
, ram_flags
, path
, &err
);
1575 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1577 mr
->size
= int128_zero();
1578 object_unparent(OBJECT(mr
));
1579 error_propagate(errp
, err
);
1583 void memory_region_init_ram_from_fd(MemoryRegion
*mr
,
1584 struct Object
*owner
,
1592 memory_region_init(mr
, owner
, name
, size
);
1594 mr
->terminates
= true;
1595 mr
->destructor
= memory_region_destructor_ram
;
1596 mr
->ram_block
= qemu_ram_alloc_from_fd(size
, mr
,
1597 share
? RAM_SHARED
: 0,
1599 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1601 mr
->size
= int128_zero();
1602 object_unparent(OBJECT(mr
));
1603 error_propagate(errp
, err
);
1608 void memory_region_init_ram_ptr(MemoryRegion
*mr
,
1614 memory_region_init(mr
, owner
, name
, size
);
1616 mr
->terminates
= true;
1617 mr
->destructor
= memory_region_destructor_ram
;
1618 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1620 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1621 assert(ptr
!= NULL
);
1622 mr
->ram_block
= qemu_ram_alloc_from_ptr(size
, ptr
, mr
, &error_fatal
);
1625 void memory_region_init_ram_device_ptr(MemoryRegion
*mr
,
1631 memory_region_init(mr
, owner
, name
, size
);
1633 mr
->terminates
= true;
1634 mr
->ram_device
= true;
1635 mr
->ops
= &ram_device_mem_ops
;
1637 mr
->destructor
= memory_region_destructor_ram
;
1638 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1639 /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL. */
1640 assert(ptr
!= NULL
);
1641 mr
->ram_block
= qemu_ram_alloc_from_ptr(size
, ptr
, mr
, &error_fatal
);
1644 void memory_region_init_alias(MemoryRegion
*mr
,
1651 memory_region_init(mr
, owner
, name
, size
);
1653 mr
->alias_offset
= offset
;
1656 void memory_region_init_rom_nomigrate(MemoryRegion
*mr
,
1657 struct Object
*owner
,
1663 memory_region_init(mr
, owner
, name
, size
);
1665 mr
->readonly
= true;
1666 mr
->terminates
= true;
1667 mr
->destructor
= memory_region_destructor_ram
;
1668 mr
->ram_block
= qemu_ram_alloc(size
, false, mr
, &err
);
1669 mr
->dirty_log_mask
= tcg_enabled() ? (1 << DIRTY_MEMORY_CODE
) : 0;
1671 mr
->size
= int128_zero();
1672 object_unparent(OBJECT(mr
));
1673 error_propagate(errp
, err
);
1677 void memory_region_init_rom_device_nomigrate(MemoryRegion
*mr
,
1679 const MemoryRegionOps
*ops
,
1687 memory_region_init(mr
, owner
, name
, size
);
1689 mr
->opaque
= opaque
;
1690 mr
->terminates
= true;
1691 mr
->rom_device
= true;
1692 mr
->destructor
= memory_region_destructor_ram
;
1693 mr
->ram_block
= qemu_ram_alloc(size
, false, mr
, &err
);
1695 mr
->size
= int128_zero();
1696 object_unparent(OBJECT(mr
));
1697 error_propagate(errp
, err
);
1701 void memory_region_init_iommu(void *_iommu_mr
,
1702 size_t instance_size
,
1703 const char *mrtypename
,
1708 struct IOMMUMemoryRegion
*iommu_mr
;
1709 struct MemoryRegion
*mr
;
1711 object_initialize(_iommu_mr
, instance_size
, mrtypename
);
1712 mr
= MEMORY_REGION(_iommu_mr
);
1713 memory_region_do_init(mr
, owner
, name
, size
);
1714 iommu_mr
= IOMMU_MEMORY_REGION(mr
);
1715 mr
->terminates
= true; /* then re-forwards */
1716 QLIST_INIT(&iommu_mr
->iommu_notify
);
1717 iommu_mr
->iommu_notify_flags
= IOMMU_NOTIFIER_NONE
;
1720 static void memory_region_finalize(Object
*obj
)
1722 MemoryRegion
*mr
= MEMORY_REGION(obj
);
1724 assert(!mr
->container
);
1726 /* We know the region is not visible in any address space (it
1727 * does not have a container and cannot be a root either because
1728 * it has no references, so we can blindly clear mr->enabled.
1729 * memory_region_set_enabled instead could trigger a transaction
1730 * and cause an infinite loop.
1732 mr
->enabled
= false;
1733 memory_region_transaction_begin();
1734 while (!QTAILQ_EMPTY(&mr
->subregions
)) {
1735 MemoryRegion
*subregion
= QTAILQ_FIRST(&mr
->subregions
);
1736 memory_region_del_subregion(mr
, subregion
);
1738 memory_region_transaction_commit();
1741 memory_region_clear_coalescing(mr
);
1742 g_free((char *)mr
->name
);
1743 g_free(mr
->ioeventfds
);
1746 Object
*memory_region_owner(MemoryRegion
*mr
)
1748 Object
*obj
= OBJECT(mr
);
1752 void memory_region_ref(MemoryRegion
*mr
)
1754 /* MMIO callbacks most likely will access data that belongs
1755 * to the owner, hence the need to ref/unref the owner whenever
1756 * the memory region is in use.
1758 * The memory region is a child of its owner. As long as the
1759 * owner doesn't call unparent itself on the memory region,
1760 * ref-ing the owner will also keep the memory region alive.
1761 * Memory regions without an owner are supposed to never go away;
1762 * we do not ref/unref them because it slows down DMA sensibly.
1764 if (mr
&& mr
->owner
) {
1765 object_ref(mr
->owner
);
1769 void memory_region_unref(MemoryRegion
*mr
)
1771 if (mr
&& mr
->owner
) {
1772 object_unref(mr
->owner
);
1776 uint64_t memory_region_size(MemoryRegion
*mr
)
1778 if (int128_eq(mr
->size
, int128_2_64())) {
1781 return int128_get64(mr
->size
);
1784 const char *memory_region_name(const MemoryRegion
*mr
)
1787 ((MemoryRegion
*)mr
)->name
=
1788 object_get_canonical_path_component(OBJECT(mr
));
1793 bool memory_region_is_ram_device(MemoryRegion
*mr
)
1795 return mr
->ram_device
;
1798 uint8_t memory_region_get_dirty_log_mask(MemoryRegion
*mr
)
1800 uint8_t mask
= mr
->dirty_log_mask
;
1801 if (global_dirty_log
&& mr
->ram_block
) {
1802 mask
|= (1 << DIRTY_MEMORY_MIGRATION
);
1807 bool memory_region_is_logging(MemoryRegion
*mr
, uint8_t client
)
1809 return memory_region_get_dirty_log_mask(mr
) & (1 << client
);
1812 static int memory_region_update_iommu_notify_flags(IOMMUMemoryRegion
*iommu_mr
,
1815 IOMMUNotifierFlag flags
= IOMMU_NOTIFIER_NONE
;
1816 IOMMUNotifier
*iommu_notifier
;
1817 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1820 IOMMU_NOTIFIER_FOREACH(iommu_notifier
, iommu_mr
) {
1821 flags
|= iommu_notifier
->notifier_flags
;
1824 if (flags
!= iommu_mr
->iommu_notify_flags
&& imrc
->notify_flag_changed
) {
1825 ret
= imrc
->notify_flag_changed(iommu_mr
,
1826 iommu_mr
->iommu_notify_flags
,
1831 iommu_mr
->iommu_notify_flags
= flags
;
1836 int memory_region_register_iommu_notifier(MemoryRegion
*mr
,
1837 IOMMUNotifier
*n
, Error
**errp
)
1839 IOMMUMemoryRegion
*iommu_mr
;
1843 return memory_region_register_iommu_notifier(mr
->alias
, n
, errp
);
1846 /* We need to register for at least one bitfield */
1847 iommu_mr
= IOMMU_MEMORY_REGION(mr
);
1848 assert(n
->notifier_flags
!= IOMMU_NOTIFIER_NONE
);
1849 assert(n
->start
<= n
->end
);
1850 assert(n
->iommu_idx
>= 0 &&
1851 n
->iommu_idx
< memory_region_iommu_num_indexes(iommu_mr
));
1853 QLIST_INSERT_HEAD(&iommu_mr
->iommu_notify
, n
, node
);
1854 ret
= memory_region_update_iommu_notify_flags(iommu_mr
, errp
);
1856 QLIST_REMOVE(n
, node
);
1861 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion
*iommu_mr
)
1863 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1865 if (imrc
->get_min_page_size
) {
1866 return imrc
->get_min_page_size(iommu_mr
);
1868 return TARGET_PAGE_SIZE
;
1871 void memory_region_iommu_replay(IOMMUMemoryRegion
*iommu_mr
, IOMMUNotifier
*n
)
1873 MemoryRegion
*mr
= MEMORY_REGION(iommu_mr
);
1874 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1875 hwaddr addr
, granularity
;
1876 IOMMUTLBEntry iotlb
;
1878 /* If the IOMMU has its own replay callback, override */
1880 imrc
->replay(iommu_mr
, n
);
1884 granularity
= memory_region_iommu_get_min_page_size(iommu_mr
);
1886 for (addr
= 0; addr
< memory_region_size(mr
); addr
+= granularity
) {
1887 iotlb
= imrc
->translate(iommu_mr
, addr
, IOMMU_NONE
, n
->iommu_idx
);
1888 if (iotlb
.perm
!= IOMMU_NONE
) {
1889 n
->notify(n
, &iotlb
);
1892 /* if (2^64 - MR size) < granularity, it's possible to get an
1893 * infinite loop here. This should catch such a wraparound */
1894 if ((addr
+ granularity
) < addr
) {
1900 void memory_region_unregister_iommu_notifier(MemoryRegion
*mr
,
1903 IOMMUMemoryRegion
*iommu_mr
;
1906 memory_region_unregister_iommu_notifier(mr
->alias
, n
);
1909 QLIST_REMOVE(n
, node
);
1910 iommu_mr
= IOMMU_MEMORY_REGION(mr
);
1911 memory_region_update_iommu_notify_flags(iommu_mr
, NULL
);
1914 void memory_region_notify_one(IOMMUNotifier
*notifier
,
1915 IOMMUTLBEntry
*entry
)
1917 IOMMUNotifierFlag request_flags
;
1918 hwaddr entry_end
= entry
->iova
+ entry
->addr_mask
;
1921 * Skip the notification if the notification does not overlap
1922 * with registered range.
1924 if (notifier
->start
> entry_end
|| notifier
->end
< entry
->iova
) {
1928 assert(entry
->iova
>= notifier
->start
&& entry_end
<= notifier
->end
);
1930 if (entry
->perm
& IOMMU_RW
) {
1931 request_flags
= IOMMU_NOTIFIER_MAP
;
1933 request_flags
= IOMMU_NOTIFIER_UNMAP
;
1936 if (notifier
->notifier_flags
& request_flags
) {
1937 notifier
->notify(notifier
, entry
);
1941 void memory_region_notify_iommu(IOMMUMemoryRegion
*iommu_mr
,
1943 IOMMUTLBEntry entry
)
1945 IOMMUNotifier
*iommu_notifier
;
1947 assert(memory_region_is_iommu(MEMORY_REGION(iommu_mr
)));
1949 IOMMU_NOTIFIER_FOREACH(iommu_notifier
, iommu_mr
) {
1950 if (iommu_notifier
->iommu_idx
== iommu_idx
) {
1951 memory_region_notify_one(iommu_notifier
, &entry
);
1956 int memory_region_iommu_get_attr(IOMMUMemoryRegion
*iommu_mr
,
1957 enum IOMMUMemoryRegionAttr attr
,
1960 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1962 if (!imrc
->get_attr
) {
1966 return imrc
->get_attr(iommu_mr
, attr
, data
);
1969 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion
*iommu_mr
,
1972 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1974 if (!imrc
->attrs_to_index
) {
1978 return imrc
->attrs_to_index(iommu_mr
, attrs
);
1981 int memory_region_iommu_num_indexes(IOMMUMemoryRegion
*iommu_mr
)
1983 IOMMUMemoryRegionClass
*imrc
= IOMMU_MEMORY_REGION_GET_CLASS(iommu_mr
);
1985 if (!imrc
->num_indexes
) {
1989 return imrc
->num_indexes(iommu_mr
);
1992 void memory_region_set_log(MemoryRegion
*mr
, bool log
, unsigned client
)
1994 uint8_t mask
= 1 << client
;
1995 uint8_t old_logging
;
1997 assert(client
== DIRTY_MEMORY_VGA
);
1998 old_logging
= mr
->vga_logging_count
;
1999 mr
->vga_logging_count
+= log
? 1 : -1;
2000 if (!!old_logging
== !!mr
->vga_logging_count
) {
2004 memory_region_transaction_begin();
2005 mr
->dirty_log_mask
= (mr
->dirty_log_mask
& ~mask
) | (log
* mask
);
2006 memory_region_update_pending
|= mr
->enabled
;
2007 memory_region_transaction_commit();
2010 void memory_region_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
2013 assert(mr
->ram_block
);
2014 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr
) + addr
,
2016 memory_region_get_dirty_log_mask(mr
));
2019 static void memory_region_sync_dirty_bitmap(MemoryRegion
*mr
)
2021 MemoryListener
*listener
;
2026 /* If the same address space has multiple log_sync listeners, we
2027 * visit that address space's FlatView multiple times. But because
2028 * log_sync listeners are rare, it's still cheaper than walking each
2029 * address space once.
2031 QTAILQ_FOREACH(listener
, &memory_listeners
, link
) {
2032 if (!listener
->log_sync
) {
2035 as
= listener
->address_space
;
2036 view
= address_space_get_flatview(as
);
2037 FOR_EACH_FLAT_RANGE(fr
, view
) {
2038 if (fr
->dirty_log_mask
&& (!mr
|| fr
->mr
== mr
)) {
2039 MemoryRegionSection mrs
= section_from_flat_range(fr
, view
);
2040 listener
->log_sync(listener
, &mrs
);
2043 flatview_unref(view
);
2047 void memory_region_clear_dirty_bitmap(MemoryRegion
*mr
, hwaddr start
,
2050 MemoryRegionSection mrs
;
2051 MemoryListener
*listener
;
2055 hwaddr sec_start
, sec_end
, sec_size
;
2057 QTAILQ_FOREACH(listener
, &memory_listeners
, link
) {
2058 if (!listener
->log_clear
) {
2061 as
= listener
->address_space
;
2062 view
= address_space_get_flatview(as
);
2063 FOR_EACH_FLAT_RANGE(fr
, view
) {
2064 if (!fr
->dirty_log_mask
|| fr
->mr
!= mr
) {
2066 * Clear dirty bitmap operation only applies to those
2067 * regions whose dirty logging is at least enabled
2072 mrs
= section_from_flat_range(fr
, view
);
2074 sec_start
= MAX(mrs
.offset_within_region
, start
);
2075 sec_end
= mrs
.offset_within_region
+ int128_get64(mrs
.size
);
2076 sec_end
= MIN(sec_end
, start
+ len
);
2078 if (sec_start
>= sec_end
) {
2080 * If this memory region section has no intersection
2081 * with the requested range, skip.
2086 /* Valid case; shrink the section if needed */
2087 mrs
.offset_within_address_space
+=
2088 sec_start
- mrs
.offset_within_region
;
2089 mrs
.offset_within_region
= sec_start
;
2090 sec_size
= sec_end
- sec_start
;
2091 mrs
.size
= int128_make64(sec_size
);
2092 listener
->log_clear(listener
, &mrs
);
2094 flatview_unref(view
);
2098 DirtyBitmapSnapshot
*memory_region_snapshot_and_clear_dirty(MemoryRegion
*mr
,
2103 DirtyBitmapSnapshot
*snapshot
;
2104 assert(mr
->ram_block
);
2105 memory_region_sync_dirty_bitmap(mr
);
2106 snapshot
= cpu_physical_memory_snapshot_and_clear_dirty(mr
, addr
, size
, client
);
2107 memory_global_after_dirty_log_sync();
2111 bool memory_region_snapshot_get_dirty(MemoryRegion
*mr
, DirtyBitmapSnapshot
*snap
,
2112 hwaddr addr
, hwaddr size
)
2114 assert(mr
->ram_block
);
2115 return cpu_physical_memory_snapshot_get_dirty(snap
,
2116 memory_region_get_ram_addr(mr
) + addr
, size
);
2119 void memory_region_set_readonly(MemoryRegion
*mr
, bool readonly
)
2121 if (mr
->readonly
!= readonly
) {
2122 memory_region_transaction_begin();
2123 mr
->readonly
= readonly
;
2124 memory_region_update_pending
|= mr
->enabled
;
2125 memory_region_transaction_commit();
2129 void memory_region_set_nonvolatile(MemoryRegion
*mr
, bool nonvolatile
)
2131 if (mr
->nonvolatile
!= nonvolatile
) {
2132 memory_region_transaction_begin();
2133 mr
->nonvolatile
= nonvolatile
;
2134 memory_region_update_pending
|= mr
->enabled
;
2135 memory_region_transaction_commit();
2139 void memory_region_rom_device_set_romd(MemoryRegion
*mr
, bool romd_mode
)
2141 if (mr
->romd_mode
!= romd_mode
) {
2142 memory_region_transaction_begin();
2143 mr
->romd_mode
= romd_mode
;
2144 memory_region_update_pending
|= mr
->enabled
;
2145 memory_region_transaction_commit();
2149 void memory_region_reset_dirty(MemoryRegion
*mr
, hwaddr addr
,
2150 hwaddr size
, unsigned client
)
2152 assert(mr
->ram_block
);
2153 cpu_physical_memory_test_and_clear_dirty(
2154 memory_region_get_ram_addr(mr
) + addr
, size
, client
);
2157 int memory_region_get_fd(MemoryRegion
*mr
)
2161 RCU_READ_LOCK_GUARD();
2165 fd
= mr
->ram_block
->fd
;
2170 void *memory_region_get_ram_ptr(MemoryRegion
*mr
)
2173 uint64_t offset
= 0;
2175 RCU_READ_LOCK_GUARD();
2177 offset
+= mr
->alias_offset
;
2180 assert(mr
->ram_block
);
2181 ptr
= qemu_map_ram_ptr(mr
->ram_block
, offset
);
2186 MemoryRegion
*memory_region_from_host(void *ptr
, ram_addr_t
*offset
)
2190 block
= qemu_ram_block_from_host(ptr
, false, offset
);
2198 ram_addr_t
memory_region_get_ram_addr(MemoryRegion
*mr
)
2200 return mr
->ram_block
? mr
->ram_block
->offset
: RAM_ADDR_INVALID
;
2203 void memory_region_ram_resize(MemoryRegion
*mr
, ram_addr_t newsize
, Error
**errp
)
2205 assert(mr
->ram_block
);
2207 qemu_ram_resize(mr
->ram_block
, newsize
, errp
);
2211 void memory_region_do_writeback(MemoryRegion
*mr
, hwaddr addr
, hwaddr size
)
2214 * Might be extended case needed to cover
2215 * different types of memory regions
2217 if (mr
->ram_block
&& mr
->dirty_log_mask
) {
2218 qemu_ram_writeback(mr
->ram_block
, addr
, size
);
2223 * Call proper memory listeners about the change on the newly
2224 * added/removed CoalescedMemoryRange.
2226 static void memory_region_update_coalesced_range(MemoryRegion
*mr
,
2227 CoalescedMemoryRange
*cmr
,
2234 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
2235 view
= address_space_get_flatview(as
);
2236 FOR_EACH_FLAT_RANGE(fr
, view
) {
2238 flat_range_coalesced_io_notify(fr
, as
, cmr
, add
);
2241 flatview_unref(view
);
2245 void memory_region_set_coalescing(MemoryRegion
*mr
)
2247 memory_region_clear_coalescing(mr
);
2248 memory_region_add_coalescing(mr
, 0, int128_get64(mr
->size
));
2251 void memory_region_add_coalescing(MemoryRegion
*mr
,
2255 CoalescedMemoryRange
*cmr
= g_malloc(sizeof(*cmr
));
2257 cmr
->addr
= addrrange_make(int128_make64(offset
), int128_make64(size
));
2258 QTAILQ_INSERT_TAIL(&mr
->coalesced
, cmr
, link
);
2259 memory_region_update_coalesced_range(mr
, cmr
, true);
2260 memory_region_set_flush_coalesced(mr
);
2263 void memory_region_clear_coalescing(MemoryRegion
*mr
)
2265 CoalescedMemoryRange
*cmr
;
2267 if (QTAILQ_EMPTY(&mr
->coalesced
)) {
2271 qemu_flush_coalesced_mmio_buffer();
2272 mr
->flush_coalesced_mmio
= false;
2274 while (!QTAILQ_EMPTY(&mr
->coalesced
)) {
2275 cmr
= QTAILQ_FIRST(&mr
->coalesced
);
2276 QTAILQ_REMOVE(&mr
->coalesced
, cmr
, link
);
2277 memory_region_update_coalesced_range(mr
, cmr
, false);
2282 void memory_region_set_flush_coalesced(MemoryRegion
*mr
)
2284 mr
->flush_coalesced_mmio
= true;
2287 void memory_region_clear_flush_coalesced(MemoryRegion
*mr
)
2289 qemu_flush_coalesced_mmio_buffer();
2290 if (QTAILQ_EMPTY(&mr
->coalesced
)) {
2291 mr
->flush_coalesced_mmio
= false;
2295 void memory_region_clear_global_locking(MemoryRegion
*mr
)
2297 mr
->global_locking
= false;
2300 static bool userspace_eventfd_warning
;
2302 void memory_region_add_eventfd(MemoryRegion
*mr
,
2309 MemoryRegionIoeventfd mrfd
= {
2310 .addr
.start
= int128_make64(addr
),
2311 .addr
.size
= int128_make64(size
),
2312 .match_data
= match_data
,
2318 if (kvm_enabled() && (!(kvm_eventfds_enabled() ||
2319 userspace_eventfd_warning
))) {
2320 userspace_eventfd_warning
= true;
2321 error_report("Using eventfd without MMIO binding in KVM. "
2322 "Suboptimal performance expected");
2326 adjust_endianness(mr
, &mrfd
.data
, size_memop(size
) | MO_TE
);
2328 memory_region_transaction_begin();
2329 for (i
= 0; i
< mr
->ioeventfd_nb
; ++i
) {
2330 if (memory_region_ioeventfd_before(&mrfd
, &mr
->ioeventfds
[i
])) {
2335 mr
->ioeventfds
= g_realloc(mr
->ioeventfds
,
2336 sizeof(*mr
->ioeventfds
) * mr
->ioeventfd_nb
);
2337 memmove(&mr
->ioeventfds
[i
+1], &mr
->ioeventfds
[i
],
2338 sizeof(*mr
->ioeventfds
) * (mr
->ioeventfd_nb
-1 - i
));
2339 mr
->ioeventfds
[i
] = mrfd
;
2340 ioeventfd_update_pending
|= mr
->enabled
;
2341 memory_region_transaction_commit();
2344 void memory_region_del_eventfd(MemoryRegion
*mr
,
2351 MemoryRegionIoeventfd mrfd
= {
2352 .addr
.start
= int128_make64(addr
),
2353 .addr
.size
= int128_make64(size
),
2354 .match_data
= match_data
,
2361 adjust_endianness(mr
, &mrfd
.data
, size_memop(size
) | MO_TE
);
2363 memory_region_transaction_begin();
2364 for (i
= 0; i
< mr
->ioeventfd_nb
; ++i
) {
2365 if (memory_region_ioeventfd_equal(&mrfd
, &mr
->ioeventfds
[i
])) {
2369 assert(i
!= mr
->ioeventfd_nb
);
2370 memmove(&mr
->ioeventfds
[i
], &mr
->ioeventfds
[i
+1],
2371 sizeof(*mr
->ioeventfds
) * (mr
->ioeventfd_nb
- (i
+1)));
2373 mr
->ioeventfds
= g_realloc(mr
->ioeventfds
,
2374 sizeof(*mr
->ioeventfds
)*mr
->ioeventfd_nb
+ 1);
2375 ioeventfd_update_pending
|= mr
->enabled
;
2376 memory_region_transaction_commit();
2379 static void memory_region_update_container_subregions(MemoryRegion
*subregion
)
2381 MemoryRegion
*mr
= subregion
->container
;
2382 MemoryRegion
*other
;
2384 memory_region_transaction_begin();
2386 memory_region_ref(subregion
);
2387 QTAILQ_FOREACH(other
, &mr
->subregions
, subregions_link
) {
2388 if (subregion
->priority
>= other
->priority
) {
2389 QTAILQ_INSERT_BEFORE(other
, subregion
, subregions_link
);
2393 QTAILQ_INSERT_TAIL(&mr
->subregions
, subregion
, subregions_link
);
2395 memory_region_update_pending
|= mr
->enabled
&& subregion
->enabled
;
2396 memory_region_transaction_commit();
2399 static void memory_region_add_subregion_common(MemoryRegion
*mr
,
2401 MemoryRegion
*subregion
)
2403 assert(!subregion
->container
);
2404 subregion
->container
= mr
;
2405 subregion
->addr
= offset
;
2406 memory_region_update_container_subregions(subregion
);
2409 void memory_region_add_subregion(MemoryRegion
*mr
,
2411 MemoryRegion
*subregion
)
2413 subregion
->priority
= 0;
2414 memory_region_add_subregion_common(mr
, offset
, subregion
);
2417 void memory_region_add_subregion_overlap(MemoryRegion
*mr
,
2419 MemoryRegion
*subregion
,
2422 subregion
->priority
= priority
;
2423 memory_region_add_subregion_common(mr
, offset
, subregion
);
2426 void memory_region_del_subregion(MemoryRegion
*mr
,
2427 MemoryRegion
*subregion
)
2429 memory_region_transaction_begin();
2430 assert(subregion
->container
== mr
);
2431 subregion
->container
= NULL
;
2432 QTAILQ_REMOVE(&mr
->subregions
, subregion
, subregions_link
);
2433 memory_region_unref(subregion
);
2434 memory_region_update_pending
|= mr
->enabled
&& subregion
->enabled
;
2435 memory_region_transaction_commit();
2438 void memory_region_set_enabled(MemoryRegion
*mr
, bool enabled
)
2440 if (enabled
== mr
->enabled
) {
2443 memory_region_transaction_begin();
2444 mr
->enabled
= enabled
;
2445 memory_region_update_pending
= true;
2446 memory_region_transaction_commit();
2449 void memory_region_set_size(MemoryRegion
*mr
, uint64_t size
)
2451 Int128 s
= int128_make64(size
);
2453 if (size
== UINT64_MAX
) {
2456 if (int128_eq(s
, mr
->size
)) {
2459 memory_region_transaction_begin();
2461 memory_region_update_pending
= true;
2462 memory_region_transaction_commit();
2465 static void memory_region_readd_subregion(MemoryRegion
*mr
)
2467 MemoryRegion
*container
= mr
->container
;
2470 memory_region_transaction_begin();
2471 memory_region_ref(mr
);
2472 memory_region_del_subregion(container
, mr
);
2473 mr
->container
= container
;
2474 memory_region_update_container_subregions(mr
);
2475 memory_region_unref(mr
);
2476 memory_region_transaction_commit();
2480 void memory_region_set_address(MemoryRegion
*mr
, hwaddr addr
)
2482 if (addr
!= mr
->addr
) {
2484 memory_region_readd_subregion(mr
);
2488 void memory_region_set_alias_offset(MemoryRegion
*mr
, hwaddr offset
)
2492 if (offset
== mr
->alias_offset
) {
2496 memory_region_transaction_begin();
2497 mr
->alias_offset
= offset
;
2498 memory_region_update_pending
|= mr
->enabled
;
2499 memory_region_transaction_commit();
2502 uint64_t memory_region_get_alignment(const MemoryRegion
*mr
)
2507 static int cmp_flatrange_addr(const void *addr_
, const void *fr_
)
2509 const AddrRange
*addr
= addr_
;
2510 const FlatRange
*fr
= fr_
;
2512 if (int128_le(addrrange_end(*addr
), fr
->addr
.start
)) {
2514 } else if (int128_ge(addr
->start
, addrrange_end(fr
->addr
))) {
2520 static FlatRange
*flatview_lookup(FlatView
*view
, AddrRange addr
)
2522 return bsearch(&addr
, view
->ranges
, view
->nr
,
2523 sizeof(FlatRange
), cmp_flatrange_addr
);
2526 bool memory_region_is_mapped(MemoryRegion
*mr
)
2528 return mr
->container
? true : false;
2531 /* Same as memory_region_find, but it does not add a reference to the
2532 * returned region. It must be called from an RCU critical section.
2534 static MemoryRegionSection
memory_region_find_rcu(MemoryRegion
*mr
,
2535 hwaddr addr
, uint64_t size
)
2537 MemoryRegionSection ret
= { .mr
= NULL
};
2545 for (root
= mr
; root
->container
; ) {
2546 root
= root
->container
;
2550 as
= memory_region_to_address_space(root
);
2554 range
= addrrange_make(int128_make64(addr
), int128_make64(size
));
2556 view
= address_space_to_flatview(as
);
2557 fr
= flatview_lookup(view
, range
);
2562 while (fr
> view
->ranges
&& addrrange_intersects(fr
[-1].addr
, range
)) {
2568 range
= addrrange_intersection(range
, fr
->addr
);
2569 ret
.offset_within_region
= fr
->offset_in_region
;
2570 ret
.offset_within_region
+= int128_get64(int128_sub(range
.start
,
2572 ret
.size
= range
.size
;
2573 ret
.offset_within_address_space
= int128_get64(range
.start
);
2574 ret
.readonly
= fr
->readonly
;
2575 ret
.nonvolatile
= fr
->nonvolatile
;
2579 MemoryRegionSection
memory_region_find(MemoryRegion
*mr
,
2580 hwaddr addr
, uint64_t size
)
2582 MemoryRegionSection ret
;
2583 RCU_READ_LOCK_GUARD();
2584 ret
= memory_region_find_rcu(mr
, addr
, size
);
2586 memory_region_ref(ret
.mr
);
2591 bool memory_region_present(MemoryRegion
*container
, hwaddr addr
)
2595 RCU_READ_LOCK_GUARD();
2596 mr
= memory_region_find_rcu(container
, addr
, 1).mr
;
2597 return mr
&& mr
!= container
;
2600 void memory_global_dirty_log_sync(void)
2602 memory_region_sync_dirty_bitmap(NULL
);
2605 void memory_global_after_dirty_log_sync(void)
2607 MEMORY_LISTENER_CALL_GLOBAL(log_global_after_sync
, Forward
);
2610 static VMChangeStateEntry
*vmstate_change
;
2612 void memory_global_dirty_log_start(void)
2614 if (vmstate_change
) {
2615 qemu_del_vm_change_state_handler(vmstate_change
);
2616 vmstate_change
= NULL
;
2619 global_dirty_log
= true;
2621 MEMORY_LISTENER_CALL_GLOBAL(log_global_start
, Forward
);
2623 /* Refresh DIRTY_MEMORY_MIGRATION bit. */
2624 memory_region_transaction_begin();
2625 memory_region_update_pending
= true;
2626 memory_region_transaction_commit();
2629 static void memory_global_dirty_log_do_stop(void)
2631 global_dirty_log
= false;
2633 /* Refresh DIRTY_MEMORY_MIGRATION bit. */
2634 memory_region_transaction_begin();
2635 memory_region_update_pending
= true;
2636 memory_region_transaction_commit();
2638 MEMORY_LISTENER_CALL_GLOBAL(log_global_stop
, Reverse
);
2641 static void memory_vm_change_state_handler(void *opaque
, int running
,
2645 memory_global_dirty_log_do_stop();
2647 if (vmstate_change
) {
2648 qemu_del_vm_change_state_handler(vmstate_change
);
2649 vmstate_change
= NULL
;
2654 void memory_global_dirty_log_stop(void)
2656 if (!runstate_is_running()) {
2657 if (vmstate_change
) {
2660 vmstate_change
= qemu_add_vm_change_state_handler(
2661 memory_vm_change_state_handler
, NULL
);
2665 memory_global_dirty_log_do_stop();
2668 static void listener_add_address_space(MemoryListener
*listener
,
2674 if (listener
->begin
) {
2675 listener
->begin(listener
);
2677 if (global_dirty_log
) {
2678 if (listener
->log_global_start
) {
2679 listener
->log_global_start(listener
);
2683 view
= address_space_get_flatview(as
);
2684 FOR_EACH_FLAT_RANGE(fr
, view
) {
2685 MemoryRegionSection section
= section_from_flat_range(fr
, view
);
2687 if (listener
->region_add
) {
2688 listener
->region_add(listener
, §ion
);
2690 if (fr
->dirty_log_mask
&& listener
->log_start
) {
2691 listener
->log_start(listener
, §ion
, 0, fr
->dirty_log_mask
);
2694 if (listener
->commit
) {
2695 listener
->commit(listener
);
2697 flatview_unref(view
);
2700 static void listener_del_address_space(MemoryListener
*listener
,
2706 if (listener
->begin
) {
2707 listener
->begin(listener
);
2709 view
= address_space_get_flatview(as
);
2710 FOR_EACH_FLAT_RANGE(fr
, view
) {
2711 MemoryRegionSection section
= section_from_flat_range(fr
, view
);
2713 if (fr
->dirty_log_mask
&& listener
->log_stop
) {
2714 listener
->log_stop(listener
, §ion
, fr
->dirty_log_mask
, 0);
2716 if (listener
->region_del
) {
2717 listener
->region_del(listener
, §ion
);
2720 if (listener
->commit
) {
2721 listener
->commit(listener
);
2723 flatview_unref(view
);
2726 void memory_listener_register(MemoryListener
*listener
, AddressSpace
*as
)
2728 MemoryListener
*other
= NULL
;
2730 listener
->address_space
= as
;
2731 if (QTAILQ_EMPTY(&memory_listeners
)
2732 || listener
->priority
>= QTAILQ_LAST(&memory_listeners
)->priority
) {
2733 QTAILQ_INSERT_TAIL(&memory_listeners
, listener
, link
);
2735 QTAILQ_FOREACH(other
, &memory_listeners
, link
) {
2736 if (listener
->priority
< other
->priority
) {
2740 QTAILQ_INSERT_BEFORE(other
, listener
, link
);
2743 if (QTAILQ_EMPTY(&as
->listeners
)
2744 || listener
->priority
>= QTAILQ_LAST(&as
->listeners
)->priority
) {
2745 QTAILQ_INSERT_TAIL(&as
->listeners
, listener
, link_as
);
2747 QTAILQ_FOREACH(other
, &as
->listeners
, link_as
) {
2748 if (listener
->priority
< other
->priority
) {
2752 QTAILQ_INSERT_BEFORE(other
, listener
, link_as
);
2755 listener_add_address_space(listener
, as
);
2758 void memory_listener_unregister(MemoryListener
*listener
)
2760 if (!listener
->address_space
) {
2764 listener_del_address_space(listener
, listener
->address_space
);
2765 QTAILQ_REMOVE(&memory_listeners
, listener
, link
);
2766 QTAILQ_REMOVE(&listener
->address_space
->listeners
, listener
, link_as
);
2767 listener
->address_space
= NULL
;
2770 void address_space_remove_listeners(AddressSpace
*as
)
2772 while (!QTAILQ_EMPTY(&as
->listeners
)) {
2773 memory_listener_unregister(QTAILQ_FIRST(&as
->listeners
));
2777 void address_space_init(AddressSpace
*as
, MemoryRegion
*root
, const char *name
)
2779 memory_region_ref(root
);
2781 as
->current_map
= NULL
;
2782 as
->ioeventfd_nb
= 0;
2783 as
->ioeventfds
= NULL
;
2784 QTAILQ_INIT(&as
->listeners
);
2785 QTAILQ_INSERT_TAIL(&address_spaces
, as
, address_spaces_link
);
2786 as
->name
= g_strdup(name
? name
: "anonymous");
2787 address_space_update_topology(as
);
2788 address_space_update_ioeventfds(as
);
2791 static void do_address_space_destroy(AddressSpace
*as
)
2793 assert(QTAILQ_EMPTY(&as
->listeners
));
2795 flatview_unref(as
->current_map
);
2797 g_free(as
->ioeventfds
);
2798 memory_region_unref(as
->root
);
2801 void address_space_destroy(AddressSpace
*as
)
2803 MemoryRegion
*root
= as
->root
;
2805 /* Flush out anything from MemoryListeners listening in on this */
2806 memory_region_transaction_begin();
2808 memory_region_transaction_commit();
2809 QTAILQ_REMOVE(&address_spaces
, as
, address_spaces_link
);
2811 /* At this point, as->dispatch and as->current_map are dummy
2812 * entries that the guest should never use. Wait for the old
2813 * values to expire before freeing the data.
2816 call_rcu(as
, do_address_space_destroy
, rcu
);
2819 static const char *memory_region_type(MemoryRegion
*mr
)
2821 if (memory_region_is_ram_device(mr
)) {
2823 } else if (memory_region_is_romd(mr
)) {
2825 } else if (memory_region_is_rom(mr
)) {
2827 } else if (memory_region_is_ram(mr
)) {
2834 typedef struct MemoryRegionList MemoryRegionList
;
2836 struct MemoryRegionList
{
2837 const MemoryRegion
*mr
;
2838 QTAILQ_ENTRY(MemoryRegionList
) mrqueue
;
2841 typedef QTAILQ_HEAD(, MemoryRegionList
) MemoryRegionListHead
;
2843 #define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
2844 int128_sub((size), int128_one())) : 0)
2845 #define MTREE_INDENT " "
2847 static void mtree_expand_owner(const char *label
, Object
*obj
)
2849 DeviceState
*dev
= (DeviceState
*) object_dynamic_cast(obj
, TYPE_DEVICE
);
2851 qemu_printf(" %s:{%s", label
, dev
? "dev" : "obj");
2852 if (dev
&& dev
->id
) {
2853 qemu_printf(" id=%s", dev
->id
);
2855 gchar
*canonical_path
= object_get_canonical_path(obj
);
2856 if (canonical_path
) {
2857 qemu_printf(" path=%s", canonical_path
);
2858 g_free(canonical_path
);
2860 qemu_printf(" type=%s", object_get_typename(obj
));
2866 static void mtree_print_mr_owner(const MemoryRegion
*mr
)
2868 Object
*owner
= mr
->owner
;
2869 Object
*parent
= memory_region_owner((MemoryRegion
*)mr
);
2871 if (!owner
&& !parent
) {
2872 qemu_printf(" orphan");
2876 mtree_expand_owner("owner", owner
);
2878 if (parent
&& parent
!= owner
) {
2879 mtree_expand_owner("parent", parent
);
2883 static void mtree_print_mr(const MemoryRegion
*mr
, unsigned int level
,
2885 MemoryRegionListHead
*alias_print_queue
,
2888 MemoryRegionList
*new_ml
, *ml
, *next_ml
;
2889 MemoryRegionListHead submr_print_queue
;
2890 const MemoryRegion
*submr
;
2892 hwaddr cur_start
, cur_end
;
2898 for (i
= 0; i
< level
; i
++) {
2899 qemu_printf(MTREE_INDENT
);
2902 cur_start
= base
+ mr
->addr
;
2903 cur_end
= cur_start
+ MR_SIZE(mr
->size
);
2906 * Try to detect overflow of memory region. This should never
2907 * happen normally. When it happens, we dump something to warn the
2908 * user who is observing this.
2910 if (cur_start
< base
|| cur_end
< cur_start
) {
2911 qemu_printf("[DETECTED OVERFLOW!] ");
2915 MemoryRegionList
*ml
;
2918 /* check if the alias is already in the queue */
2919 QTAILQ_FOREACH(ml
, alias_print_queue
, mrqueue
) {
2920 if (ml
->mr
== mr
->alias
) {
2926 ml
= g_new(MemoryRegionList
, 1);
2928 QTAILQ_INSERT_TAIL(alias_print_queue
, ml
, mrqueue
);
2930 qemu_printf(TARGET_FMT_plx
"-" TARGET_FMT_plx
2931 " (prio %d, %s%s): alias %s @%s " TARGET_FMT_plx
2932 "-" TARGET_FMT_plx
"%s",
2935 mr
->nonvolatile
? "nv-" : "",
2936 memory_region_type((MemoryRegion
*)mr
),
2937 memory_region_name(mr
),
2938 memory_region_name(mr
->alias
),
2940 mr
->alias_offset
+ MR_SIZE(mr
->size
),
2941 mr
->enabled
? "" : " [disabled]");
2943 mtree_print_mr_owner(mr
);
2946 qemu_printf(TARGET_FMT_plx
"-" TARGET_FMT_plx
2947 " (prio %d, %s%s): %s%s",
2950 mr
->nonvolatile
? "nv-" : "",
2951 memory_region_type((MemoryRegion
*)mr
),
2952 memory_region_name(mr
),
2953 mr
->enabled
? "" : " [disabled]");
2955 mtree_print_mr_owner(mr
);
2960 QTAILQ_INIT(&submr_print_queue
);
2962 QTAILQ_FOREACH(submr
, &mr
->subregions
, subregions_link
) {
2963 new_ml
= g_new(MemoryRegionList
, 1);
2965 QTAILQ_FOREACH(ml
, &submr_print_queue
, mrqueue
) {
2966 if (new_ml
->mr
->addr
< ml
->mr
->addr
||
2967 (new_ml
->mr
->addr
== ml
->mr
->addr
&&
2968 new_ml
->mr
->priority
> ml
->mr
->priority
)) {
2969 QTAILQ_INSERT_BEFORE(ml
, new_ml
, mrqueue
);
2975 QTAILQ_INSERT_TAIL(&submr_print_queue
, new_ml
, mrqueue
);
2979 QTAILQ_FOREACH(ml
, &submr_print_queue
, mrqueue
) {
2980 mtree_print_mr(ml
->mr
, level
+ 1, cur_start
,
2981 alias_print_queue
, owner
);
2984 QTAILQ_FOREACH_SAFE(ml
, &submr_print_queue
, mrqueue
, next_ml
) {
2989 struct FlatViewInfo
{
2996 static void mtree_print_flatview(gpointer key
, gpointer value
,
2999 FlatView
*view
= key
;
3000 GArray
*fv_address_spaces
= value
;
3001 struct FlatViewInfo
*fvi
= user_data
;
3002 FlatRange
*range
= &view
->ranges
[0];
3008 qemu_printf("FlatView #%d\n", fvi
->counter
);
3011 for (i
= 0; i
< fv_address_spaces
->len
; ++i
) {
3012 as
= g_array_index(fv_address_spaces
, AddressSpace
*, i
);
3013 qemu_printf(" AS \"%s\", root: %s",
3014 as
->name
, memory_region_name(as
->root
));
3015 if (as
->root
->alias
) {
3016 qemu_printf(", alias %s", memory_region_name(as
->root
->alias
));
3021 qemu_printf(" Root memory region: %s\n",
3022 view
->root
? memory_region_name(view
->root
) : "(none)");
3025 qemu_printf(MTREE_INDENT
"No rendered FlatView\n\n");
3031 if (range
->offset_in_region
) {
3032 qemu_printf(MTREE_INDENT TARGET_FMT_plx
"-" TARGET_FMT_plx
3033 " (prio %d, %s%s): %s @" TARGET_FMT_plx
,
3034 int128_get64(range
->addr
.start
),
3035 int128_get64(range
->addr
.start
)
3036 + MR_SIZE(range
->addr
.size
),
3038 range
->nonvolatile
? "nv-" : "",
3039 range
->readonly
? "rom" : memory_region_type(mr
),
3040 memory_region_name(mr
),
3041 range
->offset_in_region
);
3043 qemu_printf(MTREE_INDENT TARGET_FMT_plx
"-" TARGET_FMT_plx
3044 " (prio %d, %s%s): %s",
3045 int128_get64(range
->addr
.start
),
3046 int128_get64(range
->addr
.start
)
3047 + MR_SIZE(range
->addr
.size
),
3049 range
->nonvolatile
? "nv-" : "",
3050 range
->readonly
? "rom" : memory_region_type(mr
),
3051 memory_region_name(mr
));
3054 mtree_print_mr_owner(mr
);
3058 for (i
= 0; i
< fv_address_spaces
->len
; ++i
) {
3059 as
= g_array_index(fv_address_spaces
, AddressSpace
*, i
);
3060 if (fvi
->ac
->has_memory(current_machine
, as
,
3061 int128_get64(range
->addr
.start
),
3062 MR_SIZE(range
->addr
.size
) + 1)) {
3063 qemu_printf(" %s", fvi
->ac
->name
);
3071 #if !defined(CONFIG_USER_ONLY)
3072 if (fvi
->dispatch_tree
&& view
->root
) {
3073 mtree_print_dispatch(view
->dispatch
, view
->root
);
3080 static gboolean
mtree_info_flatview_free(gpointer key
, gpointer value
,
3083 FlatView
*view
= key
;
3084 GArray
*fv_address_spaces
= value
;
3086 g_array_unref(fv_address_spaces
);
3087 flatview_unref(view
);
3092 void mtree_info(bool flatview
, bool dispatch_tree
, bool owner
)
3094 MemoryRegionListHead ml_head
;
3095 MemoryRegionList
*ml
, *ml2
;
3100 struct FlatViewInfo fvi
= {
3102 .dispatch_tree
= dispatch_tree
,
3105 GArray
*fv_address_spaces
;
3106 GHashTable
*views
= g_hash_table_new(g_direct_hash
, g_direct_equal
);
3107 AccelClass
*ac
= ACCEL_GET_CLASS(current_accel());
3109 if (ac
->has_memory
) {
3113 /* Gather all FVs in one table */
3114 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
3115 view
= address_space_get_flatview(as
);
3117 fv_address_spaces
= g_hash_table_lookup(views
, view
);
3118 if (!fv_address_spaces
) {
3119 fv_address_spaces
= g_array_new(false, false, sizeof(as
));
3120 g_hash_table_insert(views
, view
, fv_address_spaces
);
3123 g_array_append_val(fv_address_spaces
, as
);
3127 g_hash_table_foreach(views
, mtree_print_flatview
, &fvi
);
3130 g_hash_table_foreach_remove(views
, mtree_info_flatview_free
, 0);
3131 g_hash_table_unref(views
);
3136 QTAILQ_INIT(&ml_head
);
3138 QTAILQ_FOREACH(as
, &address_spaces
, address_spaces_link
) {
3139 qemu_printf("address-space: %s\n", as
->name
);
3140 mtree_print_mr(as
->root
, 1, 0, &ml_head
, owner
);
3144 /* print aliased regions */
3145 QTAILQ_FOREACH(ml
, &ml_head
, mrqueue
) {
3146 qemu_printf("memory-region: %s\n", memory_region_name(ml
->mr
));
3147 mtree_print_mr(ml
->mr
, 1, 0, &ml_head
, owner
);
3151 QTAILQ_FOREACH_SAFE(ml
, &ml_head
, mrqueue
, ml2
) {
3156 void memory_region_init_ram(MemoryRegion
*mr
,
3157 struct Object
*owner
,
3162 DeviceState
*owner_dev
;
3165 memory_region_init_ram_nomigrate(mr
, owner
, name
, size
, &err
);
3167 error_propagate(errp
, err
);
3170 /* This will assert if owner is neither NULL nor a DeviceState.
3171 * We only want the owner here for the purposes of defining a
3172 * unique name for migration. TODO: Ideally we should implement
3173 * a naming scheme for Objects which are not DeviceStates, in
3174 * which case we can relax this restriction.
3176 owner_dev
= DEVICE(owner
);
3177 vmstate_register_ram(mr
, owner_dev
);
3180 void memory_region_init_rom(MemoryRegion
*mr
,
3181 struct Object
*owner
,
3186 DeviceState
*owner_dev
;
3189 memory_region_init_rom_nomigrate(mr
, owner
, name
, size
, &err
);
3191 error_propagate(errp
, err
);
3194 /* This will assert if owner is neither NULL nor a DeviceState.
3195 * We only want the owner here for the purposes of defining a
3196 * unique name for migration. TODO: Ideally we should implement
3197 * a naming scheme for Objects which are not DeviceStates, in
3198 * which case we can relax this restriction.
3200 owner_dev
= DEVICE(owner
);
3201 vmstate_register_ram(mr
, owner_dev
);
3204 void memory_region_init_rom_device(MemoryRegion
*mr
,
3205 struct Object
*owner
,
3206 const MemoryRegionOps
*ops
,
3212 DeviceState
*owner_dev
;
3215 memory_region_init_rom_device_nomigrate(mr
, owner
, ops
, opaque
,
3218 error_propagate(errp
, err
);
3221 /* This will assert if owner is neither NULL nor a DeviceState.
3222 * We only want the owner here for the purposes of defining a
3223 * unique name for migration. TODO: Ideally we should implement
3224 * a naming scheme for Objects which are not DeviceStates, in
3225 * which case we can relax this restriction.
3227 owner_dev
= DEVICE(owner
);
3228 vmstate_register_ram(mr
, owner_dev
);
3231 static const TypeInfo memory_region_info
= {
3232 .parent
= TYPE_OBJECT
,
3233 .name
= TYPE_MEMORY_REGION
,
3234 .class_size
= sizeof(MemoryRegionClass
),
3235 .instance_size
= sizeof(MemoryRegion
),
3236 .instance_init
= memory_region_initfn
,
3237 .instance_finalize
= memory_region_finalize
,
3240 static const TypeInfo iommu_memory_region_info
= {
3241 .parent
= TYPE_MEMORY_REGION
,
3242 .name
= TYPE_IOMMU_MEMORY_REGION
,
3243 .class_size
= sizeof(IOMMUMemoryRegionClass
),
3244 .instance_size
= sizeof(IOMMUMemoryRegion
),
3245 .instance_init
= iommu_memory_region_initfn
,
3249 static void memory_register_types(void)
3251 type_register_static(&memory_region_info
);
3252 type_register_static(&iommu_memory_region_info
);
3255 type_init(memory_register_types
)