tcg: Clean up direct block chaining data fields
[qemu/ar7.git] / translate-all.c
blobc6613d13c980c93981b4bf0bf0e8420886fc0c6f
1 /*
2 * Host code generation
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #ifdef _WIN32
20 #include <windows.h>
21 #else
22 #include <sys/mman.h>
23 #endif
24 #include "qemu/osdep.h"
27 #include "qemu-common.h"
28 #define NO_CPU_IO_DEFS
29 #include "cpu.h"
30 #include "trace.h"
31 #include "disas/disas.h"
32 #include "tcg.h"
33 #if defined(CONFIG_USER_ONLY)
34 #include "qemu.h"
35 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
36 #include <sys/param.h>
37 #if __FreeBSD_version >= 700104
38 #define HAVE_KINFO_GETVMMAP
39 #define sigqueue sigqueue_freebsd /* avoid redefinition */
40 #include <sys/proc.h>
41 #include <machine/profile.h>
42 #define _KERNEL
43 #include <sys/user.h>
44 #undef _KERNEL
45 #undef sigqueue
46 #include <libutil.h>
47 #endif
48 #endif
49 #else
50 #include "exec/address-spaces.h"
51 #endif
53 #include "exec/cputlb.h"
54 #include "exec/tb-hash.h"
55 #include "translate-all.h"
56 #include "qemu/bitmap.h"
57 #include "qemu/timer.h"
58 #include "exec/log.h"
60 //#define DEBUG_TB_INVALIDATE
61 //#define DEBUG_FLUSH
62 /* make various TB consistency checks */
63 //#define DEBUG_TB_CHECK
65 #if !defined(CONFIG_USER_ONLY)
66 /* TB consistency checks only implemented for usermode emulation. */
67 #undef DEBUG_TB_CHECK
68 #endif
70 #define SMC_BITMAP_USE_THRESHOLD 10
72 typedef struct PageDesc {
73 /* list of TBs intersecting this ram page */
74 TranslationBlock *first_tb;
75 /* in order to optimize self modifying code, we count the number
76 of lookups we do to a given page to use a bitmap */
77 unsigned int code_write_count;
78 unsigned long *code_bitmap;
79 #if defined(CONFIG_USER_ONLY)
80 unsigned long flags;
81 #endif
82 } PageDesc;
84 /* In system mode we want L1_MAP to be based on ram offsets,
85 while in user mode we want it to be based on virtual addresses. */
86 #if !defined(CONFIG_USER_ONLY)
87 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
88 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
89 #else
90 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
91 #endif
92 #else
93 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
94 #endif
96 /* Size of the L2 (and L3, etc) page tables. */
97 #define V_L2_BITS 10
98 #define V_L2_SIZE (1 << V_L2_BITS)
100 /* The bits remaining after N lower levels of page tables. */
101 #define V_L1_BITS_REM \
102 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
104 #if V_L1_BITS_REM < 4
105 #define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
106 #else
107 #define V_L1_BITS V_L1_BITS_REM
108 #endif
110 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
112 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
114 uintptr_t qemu_host_page_size;
115 intptr_t qemu_host_page_mask;
117 /* The bottom level has pointers to PageDesc */
118 static void *l1_map[V_L1_SIZE];
120 /* code generation context */
121 TCGContext tcg_ctx;
123 /* translation block context */
124 #ifdef CONFIG_USER_ONLY
125 __thread int have_tb_lock;
126 #endif
128 void tb_lock(void)
130 #ifdef CONFIG_USER_ONLY
131 assert(!have_tb_lock);
132 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
133 have_tb_lock++;
134 #endif
137 void tb_unlock(void)
139 #ifdef CONFIG_USER_ONLY
140 assert(have_tb_lock);
141 have_tb_lock--;
142 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
143 #endif
146 void tb_lock_reset(void)
148 #ifdef CONFIG_USER_ONLY
149 if (have_tb_lock) {
150 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
151 have_tb_lock = 0;
153 #endif
156 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
157 tb_page_addr_t phys_page2);
158 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
160 void cpu_gen_init(void)
162 tcg_context_init(&tcg_ctx);
165 /* Encode VAL as a signed leb128 sequence at P.
166 Return P incremented past the encoded value. */
167 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
169 int more, byte;
171 do {
172 byte = val & 0x7f;
173 val >>= 7;
174 more = !((val == 0 && (byte & 0x40) == 0)
175 || (val == -1 && (byte & 0x40) != 0));
176 if (more) {
177 byte |= 0x80;
179 *p++ = byte;
180 } while (more);
182 return p;
185 /* Decode a signed leb128 sequence at *PP; increment *PP past the
186 decoded value. Return the decoded value. */
187 static target_long decode_sleb128(uint8_t **pp)
189 uint8_t *p = *pp;
190 target_long val = 0;
191 int byte, shift = 0;
193 do {
194 byte = *p++;
195 val |= (target_ulong)(byte & 0x7f) << shift;
196 shift += 7;
197 } while (byte & 0x80);
198 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
199 val |= -(target_ulong)1 << shift;
202 *pp = p;
203 return val;
206 /* Encode the data collected about the instructions while compiling TB.
207 Place the data at BLOCK, and return the number of bytes consumed.
209 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
210 which come from the target's insn_start data, followed by a uintptr_t
211 which comes from the host pc of the end of the code implementing the insn.
213 Each line of the table is encoded as sleb128 deltas from the previous
214 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
215 That is, the first column is seeded with the guest pc, the last column
216 with the host pc, and the middle columns with zeros. */
218 static int encode_search(TranslationBlock *tb, uint8_t *block)
220 uint8_t *highwater = tcg_ctx.code_gen_highwater;
221 uint8_t *p = block;
222 int i, j, n;
224 tb->tc_search = block;
226 for (i = 0, n = tb->icount; i < n; ++i) {
227 target_ulong prev;
229 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
230 if (i == 0) {
231 prev = (j == 0 ? tb->pc : 0);
232 } else {
233 prev = tcg_ctx.gen_insn_data[i - 1][j];
235 p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
237 prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
238 p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
240 /* Test for (pending) buffer overflow. The assumption is that any
241 one row beginning below the high water mark cannot overrun
242 the buffer completely. Thus we can test for overflow after
243 encoding a row without having to check during encoding. */
244 if (unlikely(p > highwater)) {
245 return -1;
249 return p - block;
252 /* The cpu state corresponding to 'searched_pc' is restored. */
253 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
254 uintptr_t searched_pc)
256 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
257 uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
258 CPUArchState *env = cpu->env_ptr;
259 uint8_t *p = tb->tc_search;
260 int i, j, num_insns = tb->icount;
261 #ifdef CONFIG_PROFILER
262 int64_t ti = profile_getclock();
263 #endif
265 if (searched_pc < host_pc) {
266 return -1;
269 /* Reconstruct the stored insn data while looking for the point at
270 which the end of the insn exceeds the searched_pc. */
271 for (i = 0; i < num_insns; ++i) {
272 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
273 data[j] += decode_sleb128(&p);
275 host_pc += decode_sleb128(&p);
276 if (host_pc > searched_pc) {
277 goto found;
280 return -1;
282 found:
283 if (tb->cflags & CF_USE_ICOUNT) {
284 assert(use_icount);
285 /* Reset the cycle counter to the start of the block. */
286 cpu->icount_decr.u16.low += num_insns;
287 /* Clear the IO flag. */
288 cpu->can_do_io = 0;
290 cpu->icount_decr.u16.low -= i;
291 restore_state_to_opc(env, tb, data);
293 #ifdef CONFIG_PROFILER
294 tcg_ctx.restore_time += profile_getclock() - ti;
295 tcg_ctx.restore_count++;
296 #endif
297 return 0;
300 bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
302 TranslationBlock *tb;
304 tb = tb_find_pc(retaddr);
305 if (tb) {
306 cpu_restore_state_from_tb(cpu, tb, retaddr);
307 if (tb->cflags & CF_NOCACHE) {
308 /* one-shot translation, invalidate it immediately */
309 cpu->current_tb = NULL;
310 tb_phys_invalidate(tb, -1);
311 tb_free(tb);
313 return true;
315 return false;
318 void page_size_init(void)
320 /* NOTE: we can always suppose that qemu_host_page_size >=
321 TARGET_PAGE_SIZE */
322 qemu_real_host_page_size = getpagesize();
323 qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
324 if (qemu_host_page_size == 0) {
325 qemu_host_page_size = qemu_real_host_page_size;
327 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
328 qemu_host_page_size = TARGET_PAGE_SIZE;
330 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
333 static void page_init(void)
335 page_size_init();
336 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
338 #ifdef HAVE_KINFO_GETVMMAP
339 struct kinfo_vmentry *freep;
340 int i, cnt;
342 freep = kinfo_getvmmap(getpid(), &cnt);
343 if (freep) {
344 mmap_lock();
345 for (i = 0; i < cnt; i++) {
346 unsigned long startaddr, endaddr;
348 startaddr = freep[i].kve_start;
349 endaddr = freep[i].kve_end;
350 if (h2g_valid(startaddr)) {
351 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
353 if (h2g_valid(endaddr)) {
354 endaddr = h2g(endaddr);
355 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
356 } else {
357 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
358 endaddr = ~0ul;
359 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
360 #endif
364 free(freep);
365 mmap_unlock();
367 #else
368 FILE *f;
370 last_brk = (unsigned long)sbrk(0);
372 f = fopen("/compat/linux/proc/self/maps", "r");
373 if (f) {
374 mmap_lock();
376 do {
377 unsigned long startaddr, endaddr;
378 int n;
380 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
382 if (n == 2 && h2g_valid(startaddr)) {
383 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
385 if (h2g_valid(endaddr)) {
386 endaddr = h2g(endaddr);
387 } else {
388 endaddr = ~0ul;
390 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
392 } while (!feof(f));
394 fclose(f);
395 mmap_unlock();
397 #endif
399 #endif
402 /* If alloc=1:
403 * Called with mmap_lock held for user-mode emulation.
405 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
407 PageDesc *pd;
408 void **lp;
409 int i;
411 /* Level 1. Always allocated. */
412 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
414 /* Level 2..N-1. */
415 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
416 void **p = atomic_rcu_read(lp);
418 if (p == NULL) {
419 if (!alloc) {
420 return NULL;
422 p = g_new0(void *, V_L2_SIZE);
423 atomic_rcu_set(lp, p);
426 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
429 pd = atomic_rcu_read(lp);
430 if (pd == NULL) {
431 if (!alloc) {
432 return NULL;
434 pd = g_new0(PageDesc, V_L2_SIZE);
435 atomic_rcu_set(lp, pd);
438 return pd + (index & (V_L2_SIZE - 1));
441 static inline PageDesc *page_find(tb_page_addr_t index)
443 return page_find_alloc(index, 0);
446 #if defined(CONFIG_USER_ONLY)
447 /* Currently it is not recommended to allocate big chunks of data in
448 user mode. It will change when a dedicated libc will be used. */
449 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
450 region in which the guest needs to run. Revisit this. */
451 #define USE_STATIC_CODE_GEN_BUFFER
452 #endif
454 /* Minimum size of the code gen buffer. This number is randomly chosen,
455 but not so small that we can't have a fair number of TB's live. */
456 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
458 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
459 indicated, this is constrained by the range of direct branches on the
460 host cpu, as used by the TCG implementation of goto_tb. */
461 #if defined(__x86_64__)
462 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
463 #elif defined(__sparc__)
464 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
465 #elif defined(__powerpc64__)
466 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
467 #elif defined(__powerpc__)
468 # define MAX_CODE_GEN_BUFFER_SIZE (32u * 1024 * 1024)
469 #elif defined(__aarch64__)
470 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
471 #elif defined(__arm__)
472 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
473 #elif defined(__s390x__)
474 /* We have a +- 4GB range on the branches; leave some slop. */
475 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
476 #elif defined(__mips__)
477 /* We have a 256MB branch region, but leave room to make sure the
478 main executable is also within that region. */
479 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
480 #else
481 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
482 #endif
484 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
486 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
487 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
488 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
490 static inline size_t size_code_gen_buffer(size_t tb_size)
492 /* Size the buffer. */
493 if (tb_size == 0) {
494 #ifdef USE_STATIC_CODE_GEN_BUFFER
495 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
496 #else
497 /* ??? Needs adjustments. */
498 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
499 static buffer, we could size this on RESERVED_VA, on the text
500 segment size of the executable, or continue to use the default. */
501 tb_size = (unsigned long)(ram_size / 4);
502 #endif
504 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
505 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
507 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
508 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
510 return tb_size;
513 #ifdef __mips__
514 /* In order to use J and JAL within the code_gen_buffer, we require
515 that the buffer not cross a 256MB boundary. */
516 static inline bool cross_256mb(void *addr, size_t size)
518 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
521 /* We weren't able to allocate a buffer without crossing that boundary,
522 so make do with the larger portion of the buffer that doesn't cross.
523 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
524 static inline void *split_cross_256mb(void *buf1, size_t size1)
526 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
527 size_t size2 = buf1 + size1 - buf2;
529 size1 = buf2 - buf1;
530 if (size1 < size2) {
531 size1 = size2;
532 buf1 = buf2;
535 tcg_ctx.code_gen_buffer_size = size1;
536 return buf1;
538 #endif
540 #ifdef USE_STATIC_CODE_GEN_BUFFER
541 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
542 __attribute__((aligned(CODE_GEN_ALIGN)));
544 # ifdef _WIN32
545 static inline void do_protect(void *addr, long size, int prot)
547 DWORD old_protect;
548 VirtualProtect(addr, size, prot, &old_protect);
551 static inline void map_exec(void *addr, long size)
553 do_protect(addr, size, PAGE_EXECUTE_READWRITE);
556 static inline void map_none(void *addr, long size)
558 do_protect(addr, size, PAGE_NOACCESS);
560 # else
561 static inline void do_protect(void *addr, long size, int prot)
563 uintptr_t start, end;
565 start = (uintptr_t)addr;
566 start &= qemu_real_host_page_mask;
568 end = (uintptr_t)addr + size;
569 end = ROUND_UP(end, qemu_real_host_page_size);
571 mprotect((void *)start, end - start, prot);
574 static inline void map_exec(void *addr, long size)
576 do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
579 static inline void map_none(void *addr, long size)
581 do_protect(addr, size, PROT_NONE);
583 # endif /* WIN32 */
585 static inline void *alloc_code_gen_buffer(void)
587 void *buf = static_code_gen_buffer;
588 size_t full_size, size;
590 /* The size of the buffer, rounded down to end on a page boundary. */
591 full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
592 & qemu_real_host_page_mask) - (uintptr_t)buf;
594 /* Reserve a guard page. */
595 size = full_size - qemu_real_host_page_size;
597 /* Honor a command-line option limiting the size of the buffer. */
598 if (size > tcg_ctx.code_gen_buffer_size) {
599 size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
600 & qemu_real_host_page_mask) - (uintptr_t)buf;
602 tcg_ctx.code_gen_buffer_size = size;
604 #ifdef __mips__
605 if (cross_256mb(buf, size)) {
606 buf = split_cross_256mb(buf, size);
607 size = tcg_ctx.code_gen_buffer_size;
609 #endif
611 map_exec(buf, size);
612 map_none(buf + size, qemu_real_host_page_size);
613 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
615 return buf;
617 #elif defined(_WIN32)
618 static inline void *alloc_code_gen_buffer(void)
620 size_t size = tcg_ctx.code_gen_buffer_size;
621 void *buf1, *buf2;
623 /* Perform the allocation in two steps, so that the guard page
624 is reserved but uncommitted. */
625 buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
626 MEM_RESERVE, PAGE_NOACCESS);
627 if (buf1 != NULL) {
628 buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
629 assert(buf1 == buf2);
632 return buf1;
634 #else
635 static inline void *alloc_code_gen_buffer(void)
637 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
638 uintptr_t start = 0;
639 size_t size = tcg_ctx.code_gen_buffer_size;
640 void *buf;
642 /* Constrain the position of the buffer based on the host cpu.
643 Note that these addresses are chosen in concert with the
644 addresses assigned in the relevant linker script file. */
645 # if defined(__PIE__) || defined(__PIC__)
646 /* Don't bother setting a preferred location if we're building
647 a position-independent executable. We're more likely to get
648 an address near the main executable if we let the kernel
649 choose the address. */
650 # elif defined(__x86_64__) && defined(MAP_32BIT)
651 /* Force the memory down into low memory with the executable.
652 Leave the choice of exact location with the kernel. */
653 flags |= MAP_32BIT;
654 /* Cannot expect to map more than 800MB in low memory. */
655 if (size > 800u * 1024 * 1024) {
656 tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
658 # elif defined(__sparc__)
659 start = 0x40000000ul;
660 # elif defined(__s390x__)
661 start = 0x90000000ul;
662 # elif defined(__mips__)
663 # if _MIPS_SIM == _ABI64
664 start = 0x128000000ul;
665 # else
666 start = 0x08000000ul;
667 # endif
668 # endif
670 buf = mmap((void *)start, size + qemu_real_host_page_size,
671 PROT_NONE, flags, -1, 0);
672 if (buf == MAP_FAILED) {
673 return NULL;
676 #ifdef __mips__
677 if (cross_256mb(buf, size)) {
678 /* Try again, with the original still mapped, to avoid re-acquiring
679 that 256mb crossing. This time don't specify an address. */
680 size_t size2;
681 void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
682 PROT_NONE, flags, -1, 0);
683 switch (buf2 != MAP_FAILED) {
684 case 1:
685 if (!cross_256mb(buf2, size)) {
686 /* Success! Use the new buffer. */
687 munmap(buf, size + qemu_real_host_page_size);
688 break;
690 /* Failure. Work with what we had. */
691 munmap(buf2, size + qemu_real_host_page_size);
692 /* fallthru */
693 default:
694 /* Split the original buffer. Free the smaller half. */
695 buf2 = split_cross_256mb(buf, size);
696 size2 = tcg_ctx.code_gen_buffer_size;
697 if (buf == buf2) {
698 munmap(buf + size2 + qemu_real_host_page_size, size - size2);
699 } else {
700 munmap(buf, size - size2);
702 size = size2;
703 break;
705 buf = buf2;
707 #endif
709 /* Make the final buffer accessible. The guard page at the end
710 will remain inaccessible with PROT_NONE. */
711 mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
713 /* Request large pages for the buffer. */
714 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
716 return buf;
718 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
720 static inline void code_gen_alloc(size_t tb_size)
722 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
723 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
724 if (tcg_ctx.code_gen_buffer == NULL) {
725 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
726 exit(1);
729 /* Estimate a good size for the number of TBs we can support. We
730 still haven't deducted the prologue from the buffer size here,
731 but that's minimal and won't affect the estimate much. */
732 tcg_ctx.code_gen_max_blocks
733 = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
734 tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);
736 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
739 /* Must be called before using the QEMU cpus. 'tb_size' is the size
740 (in bytes) allocated to the translation buffer. Zero means default
741 size. */
742 void tcg_exec_init(unsigned long tb_size)
744 cpu_gen_init();
745 page_init();
746 code_gen_alloc(tb_size);
747 #if defined(CONFIG_SOFTMMU)
748 /* There's no guest base to take into account, so go ahead and
749 initialize the prologue now. */
750 tcg_prologue_init(&tcg_ctx);
751 #endif
754 bool tcg_enabled(void)
756 return tcg_ctx.code_gen_buffer != NULL;
759 /* Allocate a new translation block. Flush the translation buffer if
760 too many translation blocks or too much generated code. */
761 static TranslationBlock *tb_alloc(target_ulong pc)
763 TranslationBlock *tb;
765 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
766 return NULL;
768 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
769 tb->pc = pc;
770 tb->cflags = 0;
771 return tb;
774 void tb_free(TranslationBlock *tb)
776 /* In practice this is mostly used for single use temporary TB
777 Ignore the hard cases and just back up if this TB happens to
778 be the last one generated. */
779 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
780 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
781 tcg_ctx.code_gen_ptr = tb->tc_ptr;
782 tcg_ctx.tb_ctx.nb_tbs--;
786 static inline void invalidate_page_bitmap(PageDesc *p)
788 g_free(p->code_bitmap);
789 p->code_bitmap = NULL;
790 p->code_write_count = 0;
793 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
794 static void page_flush_tb_1(int level, void **lp)
796 int i;
798 if (*lp == NULL) {
799 return;
801 if (level == 0) {
802 PageDesc *pd = *lp;
804 for (i = 0; i < V_L2_SIZE; ++i) {
805 pd[i].first_tb = NULL;
806 invalidate_page_bitmap(pd + i);
808 } else {
809 void **pp = *lp;
811 for (i = 0; i < V_L2_SIZE; ++i) {
812 page_flush_tb_1(level - 1, pp + i);
817 static void page_flush_tb(void)
819 int i;
821 for (i = 0; i < V_L1_SIZE; i++) {
822 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
826 /* flush all the translation blocks */
827 /* XXX: tb_flush is currently not thread safe */
828 void tb_flush(CPUState *cpu)
830 #if defined(DEBUG_FLUSH)
831 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
832 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
833 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
834 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
835 tcg_ctx.tb_ctx.nb_tbs : 0);
836 #endif
837 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
838 > tcg_ctx.code_gen_buffer_size) {
839 cpu_abort(cpu, "Internal error: code buffer overflow\n");
841 tcg_ctx.tb_ctx.nb_tbs = 0;
843 CPU_FOREACH(cpu) {
844 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
847 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
848 page_flush_tb();
850 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
851 /* XXX: flush processor icache at this point if cache flush is
852 expensive */
853 tcg_ctx.tb_ctx.tb_flush_count++;
856 #ifdef DEBUG_TB_CHECK
858 static void tb_invalidate_check(target_ulong address)
860 TranslationBlock *tb;
861 int i;
863 address &= TARGET_PAGE_MASK;
864 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
865 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
866 tb = tb->phys_hash_next) {
867 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
868 address >= tb->pc + tb->size)) {
869 printf("ERROR invalidate: address=" TARGET_FMT_lx
870 " PC=%08lx size=%04x\n",
871 address, (long)tb->pc, tb->size);
877 /* verify that all the pages have correct rights for code */
878 static void tb_page_check(void)
880 TranslationBlock *tb;
881 int i, flags1, flags2;
883 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
884 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
885 tb = tb->phys_hash_next) {
886 flags1 = page_get_flags(tb->pc);
887 flags2 = page_get_flags(tb->pc + tb->size - 1);
888 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
889 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
890 (long)tb->pc, tb->size, flags1, flags2);
896 #endif
898 static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
900 TranslationBlock *tb1;
902 for (;;) {
903 tb1 = *ptb;
904 if (tb1 == tb) {
905 *ptb = tb1->phys_hash_next;
906 break;
908 ptb = &tb1->phys_hash_next;
912 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
914 TranslationBlock *tb1;
915 unsigned int n1;
917 for (;;) {
918 tb1 = *ptb;
919 n1 = (uintptr_t)tb1 & 3;
920 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
921 if (tb1 == tb) {
922 *ptb = tb1->page_next[n1];
923 break;
925 ptb = &tb1->page_next[n1];
929 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
931 TranslationBlock *tb1, **ptb;
932 unsigned int n1;
934 ptb = &tb->jmp_list_next[n];
935 tb1 = *ptb;
936 if (tb1) {
937 /* find tb(n) in circular list */
938 for (;;) {
939 tb1 = *ptb;
940 n1 = (uintptr_t)tb1 & 3;
941 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
942 if (n1 == n && tb1 == tb) {
943 break;
945 if (n1 == 2) {
946 ptb = &tb1->jmp_list_first;
947 } else {
948 ptb = &tb1->jmp_list_next[n1];
951 /* now we can suppress tb(n) from the list */
952 *ptb = tb->jmp_list_next[n];
954 tb->jmp_list_next[n] = NULL;
958 /* reset the jump entry 'n' of a TB so that it is not chained to
959 another TB */
960 static inline void tb_reset_jump(TranslationBlock *tb, int n)
962 uintptr_t addr = (uintptr_t)(tb->tc_ptr + tb->jmp_reset_offset[n]);
963 tb_set_jmp_target(tb, n, addr);
966 /* invalidate one TB */
967 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
969 CPUState *cpu;
970 PageDesc *p;
971 unsigned int h, n1;
972 tb_page_addr_t phys_pc;
973 TranslationBlock *tb1, *tb2;
975 /* remove the TB from the hash list */
976 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
977 h = tb_phys_hash_func(phys_pc);
978 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
980 /* remove the TB from the page list */
981 if (tb->page_addr[0] != page_addr) {
982 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
983 tb_page_remove(&p->first_tb, tb);
984 invalidate_page_bitmap(p);
986 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
987 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
988 tb_page_remove(&p->first_tb, tb);
989 invalidate_page_bitmap(p);
992 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
994 /* remove the TB from the hash list */
995 h = tb_jmp_cache_hash_func(tb->pc);
996 CPU_FOREACH(cpu) {
997 if (cpu->tb_jmp_cache[h] == tb) {
998 cpu->tb_jmp_cache[h] = NULL;
1002 /* suppress this TB from the two jump lists */
1003 tb_jmp_remove(tb, 0);
1004 tb_jmp_remove(tb, 1);
1006 /* suppress any remaining jumps to this TB */
1007 tb1 = tb->jmp_list_first;
1008 for (;;) {
1009 n1 = (uintptr_t)tb1 & 3;
1010 if (n1 == 2) {
1011 break;
1013 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1014 tb2 = tb1->jmp_list_next[n1];
1015 tb_reset_jump(tb1, n1);
1016 tb1->jmp_list_next[n1] = NULL;
1017 tb1 = tb2;
1020 /* fail safe */
1021 tb->jmp_list_first = (TranslationBlock *)((uintptr_t)tb | 2);
1023 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
1026 static void build_page_bitmap(PageDesc *p)
1028 int n, tb_start, tb_end;
1029 TranslationBlock *tb;
1031 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1033 tb = p->first_tb;
1034 while (tb != NULL) {
1035 n = (uintptr_t)tb & 3;
1036 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1037 /* NOTE: this is subtle as a TB may span two physical pages */
1038 if (n == 0) {
1039 /* NOTE: tb_end may be after the end of the page, but
1040 it is not a problem */
1041 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1042 tb_end = tb_start + tb->size;
1043 if (tb_end > TARGET_PAGE_SIZE) {
1044 tb_end = TARGET_PAGE_SIZE;
1046 } else {
1047 tb_start = 0;
1048 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1050 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1051 tb = tb->page_next[n];
1055 /* Called with mmap_lock held for user mode emulation. */
1056 TranslationBlock *tb_gen_code(CPUState *cpu,
1057 target_ulong pc, target_ulong cs_base,
1058 uint32_t flags, int cflags)
1060 CPUArchState *env = cpu->env_ptr;
1061 TranslationBlock *tb;
1062 tb_page_addr_t phys_pc, phys_page2;
1063 target_ulong virt_page2;
1064 tcg_insn_unit *gen_code_buf;
1065 int gen_code_size, search_size;
1066 #ifdef CONFIG_PROFILER
1067 int64_t ti;
1068 #endif
1070 phys_pc = get_page_addr_code(env, pc);
1071 if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
1072 cflags |= CF_USE_ICOUNT;
1075 tb = tb_alloc(pc);
1076 if (unlikely(!tb)) {
1077 buffer_overflow:
1078 /* flush must be done */
1079 tb_flush(cpu);
1080 /* cannot fail at this point */
1081 tb = tb_alloc(pc);
1082 assert(tb != NULL);
1083 /* Don't forget to invalidate previous TB info. */
1084 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
1087 gen_code_buf = tcg_ctx.code_gen_ptr;
1088 tb->tc_ptr = gen_code_buf;
1089 tb->cs_base = cs_base;
1090 tb->flags = flags;
1091 tb->cflags = cflags;
1093 #ifdef CONFIG_PROFILER
1094 tcg_ctx.tb_count1++; /* includes aborted translations because of
1095 exceptions */
1096 ti = profile_getclock();
1097 #endif
1099 tcg_func_start(&tcg_ctx);
1101 gen_intermediate_code(env, tb);
1103 trace_translate_block(tb, tb->pc, tb->tc_ptr);
1105 /* generate machine code */
1106 tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
1107 tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
1108 tcg_ctx.tb_jmp_reset_offset = tb->jmp_reset_offset;
1109 #ifdef USE_DIRECT_JUMP
1110 tcg_ctx.tb_jmp_insn_offset = tb->jmp_insn_offset;
1111 tcg_ctx.tb_jmp_target_addr = NULL;
1112 #else
1113 tcg_ctx.tb_jmp_insn_offset = NULL;
1114 tcg_ctx.tb_jmp_target_addr = tb->jmp_target_addr;
1115 #endif
1117 #ifdef CONFIG_PROFILER
1118 tcg_ctx.tb_count++;
1119 tcg_ctx.interm_time += profile_getclock() - ti;
1120 tcg_ctx.code_time -= profile_getclock();
1121 #endif
1123 /* ??? Overflow could be handled better here. In particular, we
1124 don't need to re-do gen_intermediate_code, nor should we re-do
1125 the tcg optimization currently hidden inside tcg_gen_code. All
1126 that should be required is to flush the TBs, allocate a new TB,
1127 re-initialize it per above, and re-do the actual code generation. */
1128 gen_code_size = tcg_gen_code(&tcg_ctx, tb);
1129 if (unlikely(gen_code_size < 0)) {
1130 goto buffer_overflow;
1132 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1133 if (unlikely(search_size < 0)) {
1134 goto buffer_overflow;
1137 #ifdef CONFIG_PROFILER
1138 tcg_ctx.code_time += profile_getclock();
1139 tcg_ctx.code_in_len += tb->size;
1140 tcg_ctx.code_out_len += gen_code_size;
1141 tcg_ctx.search_out_len += search_size;
1142 #endif
1144 #ifdef DEBUG_DISAS
1145 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
1146 qemu_log_in_addr_range(tb->pc)) {
1147 qemu_log("OUT: [size=%d]\n", gen_code_size);
1148 log_disas(tb->tc_ptr, gen_code_size);
1149 qemu_log("\n");
1150 qemu_log_flush();
1152 #endif
1154 tcg_ctx.code_gen_ptr = (void *)
1155 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1156 CODE_GEN_ALIGN);
1158 /* check next page if needed */
1159 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1160 phys_page2 = -1;
1161 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1162 phys_page2 = get_page_addr_code(env, virt_page2);
1164 tb_link_page(tb, phys_pc, phys_page2);
1165 return tb;
1169 * Invalidate all TBs which intersect with the target physical address range
1170 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1171 * 'is_cpu_write_access' should be true if called from a real cpu write
1172 * access: the virtual CPU will exit the current TB if code is modified inside
1173 * this TB.
1175 * Called with mmap_lock held for user-mode emulation
1177 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1179 while (start < end) {
1180 tb_invalidate_phys_page_range(start, end, 0);
1181 start &= TARGET_PAGE_MASK;
1182 start += TARGET_PAGE_SIZE;
1187 * Invalidate all TBs which intersect with the target physical address range
1188 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1189 * 'is_cpu_write_access' should be true if called from a real cpu write
1190 * access: the virtual CPU will exit the current TB if code is modified inside
1191 * this TB.
1193 * Called with mmap_lock held for user-mode emulation
1195 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1196 int is_cpu_write_access)
1198 TranslationBlock *tb, *tb_next, *saved_tb;
1199 CPUState *cpu = current_cpu;
1200 #if defined(TARGET_HAS_PRECISE_SMC)
1201 CPUArchState *env = NULL;
1202 #endif
1203 tb_page_addr_t tb_start, tb_end;
1204 PageDesc *p;
1205 int n;
1206 #ifdef TARGET_HAS_PRECISE_SMC
1207 int current_tb_not_found = is_cpu_write_access;
1208 TranslationBlock *current_tb = NULL;
1209 int current_tb_modified = 0;
1210 target_ulong current_pc = 0;
1211 target_ulong current_cs_base = 0;
1212 uint32_t current_flags = 0;
1213 #endif /* TARGET_HAS_PRECISE_SMC */
1215 p = page_find(start >> TARGET_PAGE_BITS);
1216 if (!p) {
1217 return;
1219 #if defined(TARGET_HAS_PRECISE_SMC)
1220 if (cpu != NULL) {
1221 env = cpu->env_ptr;
1223 #endif
1225 /* we remove all the TBs in the range [start, end[ */
1226 /* XXX: see if in some cases it could be faster to invalidate all
1227 the code */
1228 tb = p->first_tb;
1229 while (tb != NULL) {
1230 n = (uintptr_t)tb & 3;
1231 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1232 tb_next = tb->page_next[n];
1233 /* NOTE: this is subtle as a TB may span two physical pages */
1234 if (n == 0) {
1235 /* NOTE: tb_end may be after the end of the page, but
1236 it is not a problem */
1237 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1238 tb_end = tb_start + tb->size;
1239 } else {
1240 tb_start = tb->page_addr[1];
1241 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1243 if (!(tb_end <= start || tb_start >= end)) {
1244 #ifdef TARGET_HAS_PRECISE_SMC
1245 if (current_tb_not_found) {
1246 current_tb_not_found = 0;
1247 current_tb = NULL;
1248 if (cpu->mem_io_pc) {
1249 /* now we have a real cpu fault */
1250 current_tb = tb_find_pc(cpu->mem_io_pc);
1253 if (current_tb == tb &&
1254 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1255 /* If we are modifying the current TB, we must stop
1256 its execution. We could be more precise by checking
1257 that the modification is after the current PC, but it
1258 would require a specialized function to partially
1259 restore the CPU state */
1261 current_tb_modified = 1;
1262 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1263 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1264 &current_flags);
1266 #endif /* TARGET_HAS_PRECISE_SMC */
1267 /* we need to do that to handle the case where a signal
1268 occurs while doing tb_phys_invalidate() */
1269 saved_tb = NULL;
1270 if (cpu != NULL) {
1271 saved_tb = cpu->current_tb;
1272 cpu->current_tb = NULL;
1274 tb_phys_invalidate(tb, -1);
1275 if (cpu != NULL) {
1276 cpu->current_tb = saved_tb;
1277 if (cpu->interrupt_request && cpu->current_tb) {
1278 cpu_interrupt(cpu, cpu->interrupt_request);
1282 tb = tb_next;
1284 #if !defined(CONFIG_USER_ONLY)
1285 /* if no code remaining, no need to continue to use slow writes */
1286 if (!p->first_tb) {
1287 invalidate_page_bitmap(p);
1288 tlb_unprotect_code(start);
1290 #endif
1291 #ifdef TARGET_HAS_PRECISE_SMC
1292 if (current_tb_modified) {
1293 /* we generate a block containing just the instruction
1294 modifying the memory. It will ensure that it cannot modify
1295 itself */
1296 cpu->current_tb = NULL;
1297 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1298 cpu_resume_from_signal(cpu, NULL);
1300 #endif
1303 /* len must be <= 8 and start must be a multiple of len */
1304 void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1306 PageDesc *p;
1308 #if 0
1309 if (1) {
1310 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1311 cpu_single_env->mem_io_vaddr, len,
1312 cpu_single_env->eip,
1313 cpu_single_env->eip +
1314 (intptr_t)cpu_single_env->segs[R_CS].base);
1316 #endif
1317 p = page_find(start >> TARGET_PAGE_BITS);
1318 if (!p) {
1319 return;
1321 if (!p->code_bitmap &&
1322 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1323 /* build code bitmap */
1324 build_page_bitmap(p);
1326 if (p->code_bitmap) {
1327 unsigned int nr;
1328 unsigned long b;
1330 nr = start & ~TARGET_PAGE_MASK;
1331 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1332 if (b & ((1 << len) - 1)) {
1333 goto do_invalidate;
1335 } else {
1336 do_invalidate:
1337 tb_invalidate_phys_page_range(start, start + len, 1);
1341 #if !defined(CONFIG_SOFTMMU)
1342 /* Called with mmap_lock held. */
1343 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1344 uintptr_t pc, void *puc,
1345 bool locked)
1347 TranslationBlock *tb;
1348 PageDesc *p;
1349 int n;
1350 #ifdef TARGET_HAS_PRECISE_SMC
1351 TranslationBlock *current_tb = NULL;
1352 CPUState *cpu = current_cpu;
1353 CPUArchState *env = NULL;
1354 int current_tb_modified = 0;
1355 target_ulong current_pc = 0;
1356 target_ulong current_cs_base = 0;
1357 uint32_t current_flags = 0;
1358 #endif
1360 addr &= TARGET_PAGE_MASK;
1361 p = page_find(addr >> TARGET_PAGE_BITS);
1362 if (!p) {
1363 return;
1365 tb = p->first_tb;
1366 #ifdef TARGET_HAS_PRECISE_SMC
1367 if (tb && pc != 0) {
1368 current_tb = tb_find_pc(pc);
1370 if (cpu != NULL) {
1371 env = cpu->env_ptr;
1373 #endif
1374 while (tb != NULL) {
1375 n = (uintptr_t)tb & 3;
1376 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1377 #ifdef TARGET_HAS_PRECISE_SMC
1378 if (current_tb == tb &&
1379 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1380 /* If we are modifying the current TB, we must stop
1381 its execution. We could be more precise by checking
1382 that the modification is after the current PC, but it
1383 would require a specialized function to partially
1384 restore the CPU state */
1386 current_tb_modified = 1;
1387 cpu_restore_state_from_tb(cpu, current_tb, pc);
1388 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1389 &current_flags);
1391 #endif /* TARGET_HAS_PRECISE_SMC */
1392 tb_phys_invalidate(tb, addr);
1393 tb = tb->page_next[n];
1395 p->first_tb = NULL;
1396 #ifdef TARGET_HAS_PRECISE_SMC
1397 if (current_tb_modified) {
1398 /* we generate a block containing just the instruction
1399 modifying the memory. It will ensure that it cannot modify
1400 itself */
1401 cpu->current_tb = NULL;
1402 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1403 if (locked) {
1404 mmap_unlock();
1406 cpu_resume_from_signal(cpu, puc);
1408 #endif
1410 #endif
1412 /* add the tb in the target page and protect it if necessary
1414 * Called with mmap_lock held for user-mode emulation.
1416 static inline void tb_alloc_page(TranslationBlock *tb,
1417 unsigned int n, tb_page_addr_t page_addr)
1419 PageDesc *p;
1420 #ifndef CONFIG_USER_ONLY
1421 bool page_already_protected;
1422 #endif
1424 tb->page_addr[n] = page_addr;
1425 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1426 tb->page_next[n] = p->first_tb;
1427 #ifndef CONFIG_USER_ONLY
1428 page_already_protected = p->first_tb != NULL;
1429 #endif
1430 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1431 invalidate_page_bitmap(p);
1433 #if defined(CONFIG_USER_ONLY)
1434 if (p->flags & PAGE_WRITE) {
1435 target_ulong addr;
1436 PageDesc *p2;
1437 int prot;
1439 /* force the host page as non writable (writes will have a
1440 page fault + mprotect overhead) */
1441 page_addr &= qemu_host_page_mask;
1442 prot = 0;
1443 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1444 addr += TARGET_PAGE_SIZE) {
1446 p2 = page_find(addr >> TARGET_PAGE_BITS);
1447 if (!p2) {
1448 continue;
1450 prot |= p2->flags;
1451 p2->flags &= ~PAGE_WRITE;
1453 mprotect(g2h(page_addr), qemu_host_page_size,
1454 (prot & PAGE_BITS) & ~PAGE_WRITE);
1455 #ifdef DEBUG_TB_INVALIDATE
1456 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1457 page_addr);
1458 #endif
1460 #else
1461 /* if some code is already present, then the pages are already
1462 protected. So we handle the case where only the first TB is
1463 allocated in a physical page */
1464 if (!page_already_protected) {
1465 tlb_protect_code(page_addr);
1467 #endif
1470 /* add a new TB and link it to the physical page tables. phys_page2 is
1471 * (-1) to indicate that only one page contains the TB.
1473 * Called with mmap_lock held for user-mode emulation.
1475 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1476 tb_page_addr_t phys_page2)
1478 unsigned int h;
1479 TranslationBlock **ptb;
1481 /* add in the physical hash table */
1482 h = tb_phys_hash_func(phys_pc);
1483 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
1484 tb->phys_hash_next = *ptb;
1485 *ptb = tb;
1487 /* add in the page list */
1488 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1489 if (phys_page2 != -1) {
1490 tb_alloc_page(tb, 1, phys_page2);
1491 } else {
1492 tb->page_addr[1] = -1;
1495 tb->jmp_list_first = (TranslationBlock *)((uintptr_t)tb | 2);
1496 tb->jmp_list_next[0] = NULL;
1497 tb->jmp_list_next[1] = NULL;
1499 /* init original jump addresses */
1500 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1501 tb_reset_jump(tb, 0);
1503 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1504 tb_reset_jump(tb, 1);
1507 #ifdef DEBUG_TB_CHECK
1508 tb_page_check();
1509 #endif
1512 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1513 tb[1].tc_ptr. Return NULL if not found */
1514 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1516 int m_min, m_max, m;
1517 uintptr_t v;
1518 TranslationBlock *tb;
1520 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1521 return NULL;
1523 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1524 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1525 return NULL;
1527 /* binary search (cf Knuth) */
1528 m_min = 0;
1529 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1530 while (m_min <= m_max) {
1531 m = (m_min + m_max) >> 1;
1532 tb = &tcg_ctx.tb_ctx.tbs[m];
1533 v = (uintptr_t)tb->tc_ptr;
1534 if (v == tc_ptr) {
1535 return tb;
1536 } else if (tc_ptr < v) {
1537 m_max = m - 1;
1538 } else {
1539 m_min = m + 1;
1542 return &tcg_ctx.tb_ctx.tbs[m_max];
1545 #if !defined(CONFIG_USER_ONLY)
1546 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1548 ram_addr_t ram_addr;
1549 MemoryRegion *mr;
1550 hwaddr l = 1;
1552 rcu_read_lock();
1553 mr = address_space_translate(as, addr, &addr, &l, false);
1554 if (!(memory_region_is_ram(mr)
1555 || memory_region_is_romd(mr))) {
1556 rcu_read_unlock();
1557 return;
1559 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
1560 + addr;
1561 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1562 rcu_read_unlock();
1564 #endif /* !defined(CONFIG_USER_ONLY) */
1566 void tb_check_watchpoint(CPUState *cpu)
1568 TranslationBlock *tb;
1570 tb = tb_find_pc(cpu->mem_io_pc);
1571 if (tb) {
1572 /* We can use retranslation to find the PC. */
1573 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1574 tb_phys_invalidate(tb, -1);
1575 } else {
1576 /* The exception probably happened in a helper. The CPU state should
1577 have been saved before calling it. Fetch the PC from there. */
1578 CPUArchState *env = cpu->env_ptr;
1579 target_ulong pc, cs_base;
1580 tb_page_addr_t addr;
1581 uint32_t flags;
1583 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1584 addr = get_page_addr_code(env, pc);
1585 tb_invalidate_phys_range(addr, addr + 1);
1589 #ifndef CONFIG_USER_ONLY
1590 /* in deterministic execution mode, instructions doing device I/Os
1591 must be at the end of the TB */
1592 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1594 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
1595 CPUArchState *env = cpu->env_ptr;
1596 #endif
1597 TranslationBlock *tb;
1598 uint32_t n, cflags;
1599 target_ulong pc, cs_base;
1600 uint32_t flags;
1602 tb = tb_find_pc(retaddr);
1603 if (!tb) {
1604 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1605 (void *)retaddr);
1607 n = cpu->icount_decr.u16.low + tb->icount;
1608 cpu_restore_state_from_tb(cpu, tb, retaddr);
1609 /* Calculate how many instructions had been executed before the fault
1610 occurred. */
1611 n = n - cpu->icount_decr.u16.low;
1612 /* Generate a new TB ending on the I/O insn. */
1613 n++;
1614 /* On MIPS and SH, delay slot instructions can only be restarted if
1615 they were already the first instruction in the TB. If this is not
1616 the first instruction in a TB then re-execute the preceding
1617 branch. */
1618 #if defined(TARGET_MIPS)
1619 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1620 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1621 cpu->icount_decr.u16.low++;
1622 env->hflags &= ~MIPS_HFLAG_BMASK;
1624 #elif defined(TARGET_SH4)
1625 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1626 && n > 1) {
1627 env->pc -= 2;
1628 cpu->icount_decr.u16.low++;
1629 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1631 #endif
1632 /* This should never happen. */
1633 if (n > CF_COUNT_MASK) {
1634 cpu_abort(cpu, "TB too big during recompile");
1637 cflags = n | CF_LAST_IO;
1638 pc = tb->pc;
1639 cs_base = tb->cs_base;
1640 flags = tb->flags;
1641 tb_phys_invalidate(tb, -1);
1642 if (tb->cflags & CF_NOCACHE) {
1643 if (tb->orig_tb) {
1644 /* Invalidate original TB if this TB was generated in
1645 * cpu_exec_nocache() */
1646 tb_phys_invalidate(tb->orig_tb, -1);
1648 tb_free(tb);
1650 /* FIXME: In theory this could raise an exception. In practice
1651 we have already translated the block once so it's probably ok. */
1652 tb_gen_code(cpu, pc, cs_base, flags, cflags);
1653 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1654 the first in the TB) then we end up generating a whole new TB and
1655 repeating the fault, which is horribly inefficient.
1656 Better would be to execute just this insn uncached, or generate a
1657 second new TB. */
1658 cpu_resume_from_signal(cpu, NULL);
1661 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1663 unsigned int i;
1665 /* Discard jump cache entries for any tb which might potentially
1666 overlap the flushed page. */
1667 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1668 memset(&cpu->tb_jmp_cache[i], 0,
1669 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1671 i = tb_jmp_cache_hash_page(addr);
1672 memset(&cpu->tb_jmp_cache[i], 0,
1673 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1676 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1678 int i, target_code_size, max_target_code_size;
1679 int direct_jmp_count, direct_jmp2_count, cross_page;
1680 TranslationBlock *tb;
1682 target_code_size = 0;
1683 max_target_code_size = 0;
1684 cross_page = 0;
1685 direct_jmp_count = 0;
1686 direct_jmp2_count = 0;
1687 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1688 tb = &tcg_ctx.tb_ctx.tbs[i];
1689 target_code_size += tb->size;
1690 if (tb->size > max_target_code_size) {
1691 max_target_code_size = tb->size;
1693 if (tb->page_addr[1] != -1) {
1694 cross_page++;
1696 if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
1697 direct_jmp_count++;
1698 if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
1699 direct_jmp2_count++;
1703 /* XXX: avoid using doubles ? */
1704 cpu_fprintf(f, "Translation buffer state:\n");
1705 cpu_fprintf(f, "gen code size %td/%zd\n",
1706 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1707 tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
1708 cpu_fprintf(f, "TB count %d/%d\n",
1709 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1710 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
1711 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1712 tcg_ctx.tb_ctx.nb_tbs : 0,
1713 max_target_code_size);
1714 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1715 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1716 tcg_ctx.code_gen_buffer) /
1717 tcg_ctx.tb_ctx.nb_tbs : 0,
1718 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1719 tcg_ctx.code_gen_buffer) /
1720 target_code_size : 0);
1721 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1722 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1723 tcg_ctx.tb_ctx.nb_tbs : 0);
1724 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1725 direct_jmp_count,
1726 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1727 tcg_ctx.tb_ctx.nb_tbs : 0,
1728 direct_jmp2_count,
1729 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1730 tcg_ctx.tb_ctx.nb_tbs : 0);
1731 cpu_fprintf(f, "\nStatistics:\n");
1732 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1733 cpu_fprintf(f, "TB invalidate count %d\n",
1734 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1735 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1736 tcg_dump_info(f, cpu_fprintf);
1739 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1741 tcg_dump_op_count(f, cpu_fprintf);
1744 #else /* CONFIG_USER_ONLY */
1746 void cpu_interrupt(CPUState *cpu, int mask)
1748 cpu->interrupt_request |= mask;
1749 cpu->tcg_exit_req = 1;
1753 * Walks guest process memory "regions" one by one
1754 * and calls callback function 'fn' for each region.
1756 struct walk_memory_regions_data {
1757 walk_memory_regions_fn fn;
1758 void *priv;
1759 target_ulong start;
1760 int prot;
1763 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1764 target_ulong end, int new_prot)
1766 if (data->start != -1u) {
1767 int rc = data->fn(data->priv, data->start, end, data->prot);
1768 if (rc != 0) {
1769 return rc;
1773 data->start = (new_prot ? end : -1u);
1774 data->prot = new_prot;
1776 return 0;
1779 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1780 target_ulong base, int level, void **lp)
1782 target_ulong pa;
1783 int i, rc;
1785 if (*lp == NULL) {
1786 return walk_memory_regions_end(data, base, 0);
1789 if (level == 0) {
1790 PageDesc *pd = *lp;
1792 for (i = 0; i < V_L2_SIZE; ++i) {
1793 int prot = pd[i].flags;
1795 pa = base | (i << TARGET_PAGE_BITS);
1796 if (prot != data->prot) {
1797 rc = walk_memory_regions_end(data, pa, prot);
1798 if (rc != 0) {
1799 return rc;
1803 } else {
1804 void **pp = *lp;
1806 for (i = 0; i < V_L2_SIZE; ++i) {
1807 pa = base | ((target_ulong)i <<
1808 (TARGET_PAGE_BITS + V_L2_BITS * level));
1809 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1810 if (rc != 0) {
1811 return rc;
1816 return 0;
1819 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1821 struct walk_memory_regions_data data;
1822 uintptr_t i;
1824 data.fn = fn;
1825 data.priv = priv;
1826 data.start = -1u;
1827 data.prot = 0;
1829 for (i = 0; i < V_L1_SIZE; i++) {
1830 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
1831 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
1832 if (rc != 0) {
1833 return rc;
1837 return walk_memory_regions_end(&data, 0, 0);
1840 static int dump_region(void *priv, target_ulong start,
1841 target_ulong end, unsigned long prot)
1843 FILE *f = (FILE *)priv;
1845 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1846 " "TARGET_FMT_lx" %c%c%c\n",
1847 start, end, end - start,
1848 ((prot & PAGE_READ) ? 'r' : '-'),
1849 ((prot & PAGE_WRITE) ? 'w' : '-'),
1850 ((prot & PAGE_EXEC) ? 'x' : '-'));
1852 return 0;
1855 /* dump memory mappings */
1856 void page_dump(FILE *f)
1858 const int length = sizeof(target_ulong) * 2;
1859 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1860 length, "start", length, "end", length, "size", "prot");
1861 walk_memory_regions(f, dump_region);
1864 int page_get_flags(target_ulong address)
1866 PageDesc *p;
1868 p = page_find(address >> TARGET_PAGE_BITS);
1869 if (!p) {
1870 return 0;
1872 return p->flags;
1875 /* Modify the flags of a page and invalidate the code if necessary.
1876 The flag PAGE_WRITE_ORG is positioned automatically depending
1877 on PAGE_WRITE. The mmap_lock should already be held. */
1878 void page_set_flags(target_ulong start, target_ulong end, int flags)
1880 target_ulong addr, len;
1882 /* This function should never be called with addresses outside the
1883 guest address space. If this assert fires, it probably indicates
1884 a missing call to h2g_valid. */
1885 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1886 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1887 #endif
1888 assert(start < end);
1890 start = start & TARGET_PAGE_MASK;
1891 end = TARGET_PAGE_ALIGN(end);
1893 if (flags & PAGE_WRITE) {
1894 flags |= PAGE_WRITE_ORG;
1897 for (addr = start, len = end - start;
1898 len != 0;
1899 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1900 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1902 /* If the write protection bit is set, then we invalidate
1903 the code inside. */
1904 if (!(p->flags & PAGE_WRITE) &&
1905 (flags & PAGE_WRITE) &&
1906 p->first_tb) {
1907 tb_invalidate_phys_page(addr, 0, NULL, false);
1909 p->flags = flags;
1913 int page_check_range(target_ulong start, target_ulong len, int flags)
1915 PageDesc *p;
1916 target_ulong end;
1917 target_ulong addr;
1919 /* This function should never be called with addresses outside the
1920 guest address space. If this assert fires, it probably indicates
1921 a missing call to h2g_valid. */
1922 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1923 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1924 #endif
1926 if (len == 0) {
1927 return 0;
1929 if (start + len - 1 < start) {
1930 /* We've wrapped around. */
1931 return -1;
1934 /* must do before we loose bits in the next step */
1935 end = TARGET_PAGE_ALIGN(start + len);
1936 start = start & TARGET_PAGE_MASK;
1938 for (addr = start, len = end - start;
1939 len != 0;
1940 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1941 p = page_find(addr >> TARGET_PAGE_BITS);
1942 if (!p) {
1943 return -1;
1945 if (!(p->flags & PAGE_VALID)) {
1946 return -1;
1949 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1950 return -1;
1952 if (flags & PAGE_WRITE) {
1953 if (!(p->flags & PAGE_WRITE_ORG)) {
1954 return -1;
1956 /* unprotect the page if it was put read-only because it
1957 contains translated code */
1958 if (!(p->flags & PAGE_WRITE)) {
1959 if (!page_unprotect(addr, 0, NULL)) {
1960 return -1;
1965 return 0;
1968 /* called from signal handler: invalidate the code and unprotect the
1969 page. Return TRUE if the fault was successfully handled. */
1970 int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1972 unsigned int prot;
1973 PageDesc *p;
1974 target_ulong host_start, host_end, addr;
1976 /* Technically this isn't safe inside a signal handler. However we
1977 know this only ever happens in a synchronous SEGV handler, so in
1978 practice it seems to be ok. */
1979 mmap_lock();
1981 p = page_find(address >> TARGET_PAGE_BITS);
1982 if (!p) {
1983 mmap_unlock();
1984 return 0;
1987 /* if the page was really writable, then we change its
1988 protection back to writable */
1989 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1990 host_start = address & qemu_host_page_mask;
1991 host_end = host_start + qemu_host_page_size;
1993 prot = 0;
1994 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1995 p = page_find(addr >> TARGET_PAGE_BITS);
1996 p->flags |= PAGE_WRITE;
1997 prot |= p->flags;
1999 /* and since the content will be modified, we must invalidate
2000 the corresponding translated code. */
2001 tb_invalidate_phys_page(addr, pc, puc, true);
2002 #ifdef DEBUG_TB_CHECK
2003 tb_invalidate_check(addr);
2004 #endif
2006 mprotect((void *)g2h(host_start), qemu_host_page_size,
2007 prot & PAGE_BITS);
2009 mmap_unlock();
2010 return 1;
2012 mmap_unlock();
2013 return 0;
2015 #endif /* CONFIG_USER_ONLY */