2 * i386 helpers (without register variable usage)
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "exec/exec-all.h"
23 #include "sysemu/kvm.h"
25 #ifndef CONFIG_USER_ONLY
26 #include "sysemu/sysemu.h"
27 #include "monitor/monitor.h"
28 #include "hw/i386/apic_internal.h"
31 static void cpu_x86_version(CPUX86State
*env
, int *family
, int *model
)
33 int cpuver
= env
->cpuid_version
;
35 if (family
== NULL
|| model
== NULL
) {
39 *family
= (cpuver
>> 8) & 0x0f;
40 *model
= ((cpuver
>> 12) & 0xf0) + ((cpuver
>> 4) & 0x0f);
43 /* Broadcast MCA signal for processor version 06H_EH and above */
44 int cpu_x86_support_mca_broadcast(CPUX86State
*env
)
49 cpu_x86_version(env
, &family
, &model
);
50 if ((family
== 6 && model
>= 14) || family
> 6) {
57 /***********************************************************/
60 static const char *cc_op_str
[CC_OP_NB
] = {
127 cpu_x86_dump_seg_cache(CPUX86State
*env
, FILE *f
, fprintf_function cpu_fprintf
,
128 const char *name
, struct SegmentCache
*sc
)
131 if (env
->hflags
& HF_CS64_MASK
) {
132 cpu_fprintf(f
, "%-3s=%04x %016" PRIx64
" %08x %08x", name
,
133 sc
->selector
, sc
->base
, sc
->limit
, sc
->flags
& 0x00ffff00);
137 cpu_fprintf(f
, "%-3s=%04x %08x %08x %08x", name
, sc
->selector
,
138 (uint32_t)sc
->base
, sc
->limit
, sc
->flags
& 0x00ffff00);
141 if (!(env
->hflags
& HF_PE_MASK
) || !(sc
->flags
& DESC_P_MASK
))
144 cpu_fprintf(f
, " DPL=%d ", (sc
->flags
& DESC_DPL_MASK
) >> DESC_DPL_SHIFT
);
145 if (sc
->flags
& DESC_S_MASK
) {
146 if (sc
->flags
& DESC_CS_MASK
) {
147 cpu_fprintf(f
, (sc
->flags
& DESC_L_MASK
) ? "CS64" :
148 ((sc
->flags
& DESC_B_MASK
) ? "CS32" : "CS16"));
149 cpu_fprintf(f
, " [%c%c", (sc
->flags
& DESC_C_MASK
) ? 'C' : '-',
150 (sc
->flags
& DESC_R_MASK
) ? 'R' : '-');
153 (sc
->flags
& DESC_B_MASK
|| env
->hflags
& HF_LMA_MASK
)
155 cpu_fprintf(f
, " [%c%c", (sc
->flags
& DESC_E_MASK
) ? 'E' : '-',
156 (sc
->flags
& DESC_W_MASK
) ? 'W' : '-');
158 cpu_fprintf(f
, "%c]", (sc
->flags
& DESC_A_MASK
) ? 'A' : '-');
160 static const char *sys_type_name
[2][16] = {
162 "Reserved", "TSS16-avl", "LDT", "TSS16-busy",
163 "CallGate16", "TaskGate", "IntGate16", "TrapGate16",
164 "Reserved", "TSS32-avl", "Reserved", "TSS32-busy",
165 "CallGate32", "Reserved", "IntGate32", "TrapGate32"
168 "<hiword>", "Reserved", "LDT", "Reserved", "Reserved",
169 "Reserved", "Reserved", "Reserved", "Reserved",
170 "TSS64-avl", "Reserved", "TSS64-busy", "CallGate64",
171 "Reserved", "IntGate64", "TrapGate64"
175 sys_type_name
[(env
->hflags
& HF_LMA_MASK
) ? 1 : 0]
176 [(sc
->flags
& DESC_TYPE_MASK
)
177 >> DESC_TYPE_SHIFT
]);
180 cpu_fprintf(f
, "\n");
183 #ifndef CONFIG_USER_ONLY
185 /* ARRAY_SIZE check is not required because
186 * DeliveryMode(dm) has a size of 3 bit.
188 static inline const char *dm2str(uint32_t dm
)
190 static const char *str
[] = {
203 static void dump_apic_lvt(FILE *f
, fprintf_function cpu_fprintf
,
204 const char *name
, uint32_t lvt
, bool is_timer
)
206 uint32_t dm
= (lvt
& APIC_LVT_DELIV_MOD
) >> APIC_LVT_DELIV_MOD_SHIFT
;
208 "%s\t 0x%08x %s %-5s %-6s %-7s %-12s %-6s",
210 lvt
& APIC_LVT_INT_POLARITY
? "active-lo" : "active-hi",
211 lvt
& APIC_LVT_LEVEL_TRIGGER
? "level" : "edge",
212 lvt
& APIC_LVT_MASKED
? "masked" : "",
213 lvt
& APIC_LVT_DELIV_STS
? "pending" : "",
215 "" : lvt
& APIC_LVT_TIMER_PERIODIC
?
216 "periodic" : lvt
& APIC_LVT_TIMER_TSCDEADLINE
?
217 "tsc-deadline" : "one-shot",
219 if (dm
!= APIC_DM_NMI
) {
220 cpu_fprintf(f
, " (vec %u)\n", lvt
& APIC_VECTOR_MASK
);
222 cpu_fprintf(f
, "\n");
226 /* ARRAY_SIZE check is not required because
227 * destination shorthand has a size of 2 bit.
229 static inline const char *shorthand2str(uint32_t shorthand
)
231 const char *str
[] = {
232 "no-shorthand", "self", "all-self", "all"
234 return str
[shorthand
];
237 static inline uint8_t divider_conf(uint32_t divide_conf
)
239 uint8_t divide_val
= ((divide_conf
& 0x8) >> 1) | (divide_conf
& 0x3);
241 return divide_val
== 7 ? 1 : 2 << divide_val
;
244 static inline void mask2str(char *str
, uint32_t val
, uint8_t size
)
247 *str
++ = (val
>> size
) & 1 ? '1' : '0';
252 #define MAX_LOGICAL_APIC_ID_MASK_SIZE 16
254 static void dump_apic_icr(FILE *f
, fprintf_function cpu_fprintf
,
255 APICCommonState
*s
, CPUX86State
*env
)
257 uint32_t icr
= s
->icr
[0], icr2
= s
->icr
[1];
258 uint8_t dest_shorthand
= \
259 (icr
& APIC_ICR_DEST_SHORT
) >> APIC_ICR_DEST_SHORT_SHIFT
;
260 bool logical_mod
= icr
& APIC_ICR_DEST_MOD
;
261 char apic_id_str
[MAX_LOGICAL_APIC_ID_MASK_SIZE
+ 1];
265 cpu_fprintf(f
, "ICR\t 0x%08x %s %s %s %s\n",
267 logical_mod
? "logical" : "physical",
268 icr
& APIC_ICR_TRIGGER_MOD
? "level" : "edge",
269 icr
& APIC_ICR_LEVEL
? "assert" : "de-assert",
270 shorthand2str(dest_shorthand
));
272 cpu_fprintf(f
, "ICR2\t 0x%08x", icr2
);
273 if (dest_shorthand
!= 0) {
274 cpu_fprintf(f
, "\n");
277 x2apic
= env
->features
[FEAT_1_ECX
] & CPUID_EXT_X2APIC
;
278 dest_field
= x2apic
? icr2
: icr2
>> APIC_ICR_DEST_SHIFT
;
282 cpu_fprintf(f
, " cpu %u (X2APIC ID)\n", dest_field
);
284 cpu_fprintf(f
, " cpu %u (APIC ID)\n",
285 dest_field
& APIC_LOGDEST_XAPIC_ID
);
290 if (s
->dest_mode
== 0xf) { /* flat mode */
291 mask2str(apic_id_str
, icr2
>> APIC_ICR_DEST_SHIFT
, 8);
292 cpu_fprintf(f
, " mask %s (APIC ID)\n", apic_id_str
);
293 } else if (s
->dest_mode
== 0) { /* cluster mode */
295 mask2str(apic_id_str
, dest_field
& APIC_LOGDEST_X2APIC_ID
, 16);
296 cpu_fprintf(f
, " cluster %u mask %s (X2APIC ID)\n",
297 dest_field
>> APIC_LOGDEST_X2APIC_SHIFT
, apic_id_str
);
299 mask2str(apic_id_str
, dest_field
& APIC_LOGDEST_XAPIC_ID
, 4);
300 cpu_fprintf(f
, " cluster %u mask %s (APIC ID)\n",
301 dest_field
>> APIC_LOGDEST_XAPIC_SHIFT
, apic_id_str
);
306 static void dump_apic_interrupt(FILE *f
, fprintf_function cpu_fprintf
,
307 const char *name
, uint32_t *ireg_tab
,
312 cpu_fprintf(f
, "%s\t ", name
);
313 for (i
= 0; i
< 256; i
++) {
314 if (apic_get_bit(ireg_tab
, i
)) {
315 cpu_fprintf(f
, "%u%s ", i
,
316 apic_get_bit(tmr_tab
, i
) ? "(level)" : "");
320 cpu_fprintf(f
, "%s\n", empty
? "(none)" : "");
323 void x86_cpu_dump_local_apic_state(CPUState
*cs
, FILE *f
,
324 fprintf_function cpu_fprintf
, int flags
)
326 X86CPU
*cpu
= X86_CPU(cs
);
327 APICCommonState
*s
= APIC_COMMON(cpu
->apic_state
);
328 uint32_t *lvt
= s
->lvt
;
330 cpu_fprintf(f
, "dumping local APIC state for CPU %-2u\n\n",
331 CPU(cpu
)->cpu_index
);
332 dump_apic_lvt(f
, cpu_fprintf
, "LVT0", lvt
[APIC_LVT_LINT0
], false);
333 dump_apic_lvt(f
, cpu_fprintf
, "LVT1", lvt
[APIC_LVT_LINT1
], false);
334 dump_apic_lvt(f
, cpu_fprintf
, "LVTPC", lvt
[APIC_LVT_PERFORM
], false);
335 dump_apic_lvt(f
, cpu_fprintf
, "LVTERR", lvt
[APIC_LVT_ERROR
], false);
336 dump_apic_lvt(f
, cpu_fprintf
, "LVTTHMR", lvt
[APIC_LVT_THERMAL
], false);
337 dump_apic_lvt(f
, cpu_fprintf
, "LVTT", lvt
[APIC_LVT_TIMER
], true);
339 cpu_fprintf(f
, "Timer\t DCR=0x%x (divide by %u) initial_count = %u\n",
340 s
->divide_conf
& APIC_DCR_MASK
,
341 divider_conf(s
->divide_conf
),
344 cpu_fprintf(f
, "SPIV\t 0x%08x APIC %s, focus=%s, spurious vec %u\n",
346 s
->spurious_vec
& APIC_SPURIO_ENABLED
? "enabled" : "disabled",
347 s
->spurious_vec
& APIC_SPURIO_FOCUS
? "on" : "off",
348 s
->spurious_vec
& APIC_VECTOR_MASK
);
350 dump_apic_icr(f
, cpu_fprintf
, s
, &cpu
->env
);
352 cpu_fprintf(f
, "ESR\t 0x%08x\n", s
->esr
);
354 dump_apic_interrupt(f
, cpu_fprintf
, "ISR", s
->isr
, s
->tmr
);
355 dump_apic_interrupt(f
, cpu_fprintf
, "IRR", s
->irr
, s
->tmr
);
357 cpu_fprintf(f
, "\nAPR 0x%02x TPR 0x%02x DFR 0x%02x LDR 0x%02x",
358 s
->arb_id
, s
->tpr
, s
->dest_mode
, s
->log_dest
);
359 if (s
->dest_mode
== 0) {
360 cpu_fprintf(f
, "(cluster %u: id %u)",
361 s
->log_dest
>> APIC_LOGDEST_XAPIC_SHIFT
,
362 s
->log_dest
& APIC_LOGDEST_XAPIC_ID
);
364 cpu_fprintf(f
, " PPR 0x%02x\n", apic_get_ppr(s
));
367 void x86_cpu_dump_local_apic_state(CPUState
*cs
, FILE *f
,
368 fprintf_function cpu_fprintf
, int flags
)
371 #endif /* !CONFIG_USER_ONLY */
373 #define DUMP_CODE_BYTES_TOTAL 50
374 #define DUMP_CODE_BYTES_BACKWARD 20
376 void x86_cpu_dump_state(CPUState
*cs
, FILE *f
, fprintf_function cpu_fprintf
,
379 X86CPU
*cpu
= X86_CPU(cs
);
380 CPUX86State
*env
= &cpu
->env
;
383 static const char *seg_name
[6] = { "ES", "CS", "SS", "DS", "FS", "GS" };
385 eflags
= cpu_compute_eflags(env
);
387 if (env
->hflags
& HF_CS64_MASK
) {
389 "RAX=%016" PRIx64
" RBX=%016" PRIx64
" RCX=%016" PRIx64
" RDX=%016" PRIx64
"\n"
390 "RSI=%016" PRIx64
" RDI=%016" PRIx64
" RBP=%016" PRIx64
" RSP=%016" PRIx64
"\n"
391 "R8 =%016" PRIx64
" R9 =%016" PRIx64
" R10=%016" PRIx64
" R11=%016" PRIx64
"\n"
392 "R12=%016" PRIx64
" R13=%016" PRIx64
" R14=%016" PRIx64
" R15=%016" PRIx64
"\n"
393 "RIP=%016" PRIx64
" RFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
411 eflags
& DF_MASK
? 'D' : '-',
412 eflags
& CC_O
? 'O' : '-',
413 eflags
& CC_S
? 'S' : '-',
414 eflags
& CC_Z
? 'Z' : '-',
415 eflags
& CC_A
? 'A' : '-',
416 eflags
& CC_P
? 'P' : '-',
417 eflags
& CC_C
? 'C' : '-',
418 env
->hflags
& HF_CPL_MASK
,
419 (env
->hflags
>> HF_INHIBIT_IRQ_SHIFT
) & 1,
420 (env
->a20_mask
>> 20) & 1,
421 (env
->hflags
>> HF_SMM_SHIFT
) & 1,
426 cpu_fprintf(f
, "EAX=%08x EBX=%08x ECX=%08x EDX=%08x\n"
427 "ESI=%08x EDI=%08x EBP=%08x ESP=%08x\n"
428 "EIP=%08x EFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d SMM=%d HLT=%d\n",
429 (uint32_t)env
->regs
[R_EAX
],
430 (uint32_t)env
->regs
[R_EBX
],
431 (uint32_t)env
->regs
[R_ECX
],
432 (uint32_t)env
->regs
[R_EDX
],
433 (uint32_t)env
->regs
[R_ESI
],
434 (uint32_t)env
->regs
[R_EDI
],
435 (uint32_t)env
->regs
[R_EBP
],
436 (uint32_t)env
->regs
[R_ESP
],
437 (uint32_t)env
->eip
, eflags
,
438 eflags
& DF_MASK
? 'D' : '-',
439 eflags
& CC_O
? 'O' : '-',
440 eflags
& CC_S
? 'S' : '-',
441 eflags
& CC_Z
? 'Z' : '-',
442 eflags
& CC_A
? 'A' : '-',
443 eflags
& CC_P
? 'P' : '-',
444 eflags
& CC_C
? 'C' : '-',
445 env
->hflags
& HF_CPL_MASK
,
446 (env
->hflags
>> HF_INHIBIT_IRQ_SHIFT
) & 1,
447 (env
->a20_mask
>> 20) & 1,
448 (env
->hflags
>> HF_SMM_SHIFT
) & 1,
452 for(i
= 0; i
< 6; i
++) {
453 cpu_x86_dump_seg_cache(env
, f
, cpu_fprintf
, seg_name
[i
],
456 cpu_x86_dump_seg_cache(env
, f
, cpu_fprintf
, "LDT", &env
->ldt
);
457 cpu_x86_dump_seg_cache(env
, f
, cpu_fprintf
, "TR", &env
->tr
);
460 if (env
->hflags
& HF_LMA_MASK
) {
461 cpu_fprintf(f
, "GDT= %016" PRIx64
" %08x\n",
462 env
->gdt
.base
, env
->gdt
.limit
);
463 cpu_fprintf(f
, "IDT= %016" PRIx64
" %08x\n",
464 env
->idt
.base
, env
->idt
.limit
);
465 cpu_fprintf(f
, "CR0=%08x CR2=%016" PRIx64
" CR3=%016" PRIx64
" CR4=%08x\n",
466 (uint32_t)env
->cr
[0],
469 (uint32_t)env
->cr
[4]);
470 for(i
= 0; i
< 4; i
++)
471 cpu_fprintf(f
, "DR%d=%016" PRIx64
" ", i
, env
->dr
[i
]);
472 cpu_fprintf(f
, "\nDR6=%016" PRIx64
" DR7=%016" PRIx64
"\n",
473 env
->dr
[6], env
->dr
[7]);
477 cpu_fprintf(f
, "GDT= %08x %08x\n",
478 (uint32_t)env
->gdt
.base
, env
->gdt
.limit
);
479 cpu_fprintf(f
, "IDT= %08x %08x\n",
480 (uint32_t)env
->idt
.base
, env
->idt
.limit
);
481 cpu_fprintf(f
, "CR0=%08x CR2=%08x CR3=%08x CR4=%08x\n",
482 (uint32_t)env
->cr
[0],
483 (uint32_t)env
->cr
[2],
484 (uint32_t)env
->cr
[3],
485 (uint32_t)env
->cr
[4]);
486 for(i
= 0; i
< 4; i
++) {
487 cpu_fprintf(f
, "DR%d=" TARGET_FMT_lx
" ", i
, env
->dr
[i
]);
489 cpu_fprintf(f
, "\nDR6=" TARGET_FMT_lx
" DR7=" TARGET_FMT_lx
"\n",
490 env
->dr
[6], env
->dr
[7]);
492 if (flags
& CPU_DUMP_CCOP
) {
493 if ((unsigned)env
->cc_op
< CC_OP_NB
)
494 snprintf(cc_op_name
, sizeof(cc_op_name
), "%s", cc_op_str
[env
->cc_op
]);
496 snprintf(cc_op_name
, sizeof(cc_op_name
), "[%d]", env
->cc_op
);
498 if (env
->hflags
& HF_CS64_MASK
) {
499 cpu_fprintf(f
, "CCS=%016" PRIx64
" CCD=%016" PRIx64
" CCO=%-8s\n",
500 env
->cc_src
, env
->cc_dst
,
505 cpu_fprintf(f
, "CCS=%08x CCD=%08x CCO=%-8s\n",
506 (uint32_t)env
->cc_src
, (uint32_t)env
->cc_dst
,
510 cpu_fprintf(f
, "EFER=%016" PRIx64
"\n", env
->efer
);
511 if (flags
& CPU_DUMP_FPU
) {
514 for(i
= 0; i
< 8; i
++) {
515 fptag
|= ((!env
->fptags
[i
]) << i
);
517 cpu_fprintf(f
, "FCW=%04x FSW=%04x [ST=%d] FTW=%02x MXCSR=%08x\n",
519 (env
->fpus
& ~0x3800) | (env
->fpstt
& 0x7) << 11,
525 u
.d
= env
->fpregs
[i
].d
;
526 cpu_fprintf(f
, "FPR%d=%016" PRIx64
" %04x",
527 i
, u
.l
.lower
, u
.l
.upper
);
529 cpu_fprintf(f
, "\n");
533 if (env
->hflags
& HF_CS64_MASK
)
538 cpu_fprintf(f
, "XMM%02d=%08x%08x%08x%08x",
540 env
->xmm_regs
[i
].ZMM_L(3),
541 env
->xmm_regs
[i
].ZMM_L(2),
542 env
->xmm_regs
[i
].ZMM_L(1),
543 env
->xmm_regs
[i
].ZMM_L(0));
545 cpu_fprintf(f
, "\n");
550 if (flags
& CPU_DUMP_CODE
) {
551 target_ulong base
= env
->segs
[R_CS
].base
+ env
->eip
;
552 target_ulong offs
= MIN(env
->eip
, DUMP_CODE_BYTES_BACKWARD
);
556 cpu_fprintf(f
, "Code=");
557 for (i
= 0; i
< DUMP_CODE_BYTES_TOTAL
; i
++) {
558 if (cpu_memory_rw_debug(cs
, base
- offs
+ i
, &code
, 1, 0) == 0) {
559 snprintf(codestr
, sizeof(codestr
), "%02x", code
);
561 snprintf(codestr
, sizeof(codestr
), "??");
563 cpu_fprintf(f
, "%s%s%s%s", i
> 0 ? " " : "",
564 i
== offs
? "<" : "", codestr
, i
== offs
? ">" : "");
566 cpu_fprintf(f
, "\n");
570 /***********************************************************/
572 /* XXX: add PGE support */
574 void x86_cpu_set_a20(X86CPU
*cpu
, int a20_state
)
576 CPUX86State
*env
= &cpu
->env
;
578 a20_state
= (a20_state
!= 0);
579 if (a20_state
!= ((env
->a20_mask
>> 20) & 1)) {
580 CPUState
*cs
= CPU(cpu
);
582 qemu_log_mask(CPU_LOG_MMU
, "A20 update: a20=%d\n", a20_state
);
583 /* if the cpu is currently executing code, we must unlink it and
584 all the potentially executing TB */
585 cpu_interrupt(cs
, CPU_INTERRUPT_EXITTB
);
587 /* when a20 is changed, all the MMU mappings are invalid, so
588 we must flush everything */
590 env
->a20_mask
= ~(1 << 20) | (a20_state
<< 20);
594 void cpu_x86_update_cr0(CPUX86State
*env
, uint32_t new_cr0
)
596 X86CPU
*cpu
= x86_env_get_cpu(env
);
599 qemu_log_mask(CPU_LOG_MMU
, "CR0 update: CR0=0x%08x\n", new_cr0
);
600 if ((new_cr0
& (CR0_PG_MASK
| CR0_WP_MASK
| CR0_PE_MASK
)) !=
601 (env
->cr
[0] & (CR0_PG_MASK
| CR0_WP_MASK
| CR0_PE_MASK
))) {
602 tlb_flush(CPU(cpu
), 1);
606 if (!(env
->cr
[0] & CR0_PG_MASK
) && (new_cr0
& CR0_PG_MASK
) &&
607 (env
->efer
& MSR_EFER_LME
)) {
608 /* enter in long mode */
609 /* XXX: generate an exception */
610 if (!(env
->cr
[4] & CR4_PAE_MASK
))
612 env
->efer
|= MSR_EFER_LMA
;
613 env
->hflags
|= HF_LMA_MASK
;
614 } else if ((env
->cr
[0] & CR0_PG_MASK
) && !(new_cr0
& CR0_PG_MASK
) &&
615 (env
->efer
& MSR_EFER_LMA
)) {
617 env
->efer
&= ~MSR_EFER_LMA
;
618 env
->hflags
&= ~(HF_LMA_MASK
| HF_CS64_MASK
);
619 env
->eip
&= 0xffffffff;
622 env
->cr
[0] = new_cr0
| CR0_ET_MASK
;
624 /* update PE flag in hidden flags */
625 pe_state
= (env
->cr
[0] & CR0_PE_MASK
);
626 env
->hflags
= (env
->hflags
& ~HF_PE_MASK
) | (pe_state
<< HF_PE_SHIFT
);
627 /* ensure that ADDSEG is always set in real mode */
628 env
->hflags
|= ((pe_state
^ 1) << HF_ADDSEG_SHIFT
);
629 /* update FPU flags */
630 env
->hflags
= (env
->hflags
& ~(HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
)) |
631 ((new_cr0
<< (HF_MP_SHIFT
- 1)) & (HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
));
634 /* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in
636 void cpu_x86_update_cr3(CPUX86State
*env
, target_ulong new_cr3
)
638 X86CPU
*cpu
= x86_env_get_cpu(env
);
640 env
->cr
[3] = new_cr3
;
641 if (env
->cr
[0] & CR0_PG_MASK
) {
642 qemu_log_mask(CPU_LOG_MMU
,
643 "CR3 update: CR3=" TARGET_FMT_lx
"\n", new_cr3
);
644 tlb_flush(CPU(cpu
), 0);
648 void cpu_x86_update_cr4(CPUX86State
*env
, uint32_t new_cr4
)
650 X86CPU
*cpu
= x86_env_get_cpu(env
);
653 #if defined(DEBUG_MMU)
654 printf("CR4 update: CR4=%08x\n", (uint32_t)env
->cr
[4]);
656 if ((new_cr4
^ env
->cr
[4]) &
657 (CR4_PGE_MASK
| CR4_PAE_MASK
| CR4_PSE_MASK
|
658 CR4_SMEP_MASK
| CR4_SMAP_MASK
)) {
659 tlb_flush(CPU(cpu
), 1);
662 /* Clear bits we're going to recompute. */
663 hflags
= env
->hflags
& ~(HF_OSFXSR_MASK
| HF_SMAP_MASK
);
666 if (!(env
->features
[FEAT_1_EDX
] & CPUID_SSE
)) {
667 new_cr4
&= ~CR4_OSFXSR_MASK
;
669 if (new_cr4
& CR4_OSFXSR_MASK
) {
670 hflags
|= HF_OSFXSR_MASK
;
673 if (!(env
->features
[FEAT_7_0_EBX
] & CPUID_7_0_EBX_SMAP
)) {
674 new_cr4
&= ~CR4_SMAP_MASK
;
676 if (new_cr4
& CR4_SMAP_MASK
) {
677 hflags
|= HF_SMAP_MASK
;
680 if (!(env
->features
[FEAT_7_0_ECX
] & CPUID_7_0_ECX_PKU
)) {
681 new_cr4
&= ~CR4_PKE_MASK
;
684 env
->cr
[4] = new_cr4
;
685 env
->hflags
= hflags
;
687 cpu_sync_bndcs_hflags(env
);
690 #if defined(CONFIG_USER_ONLY)
692 int x86_cpu_handle_mmu_fault(CPUState
*cs
, vaddr addr
,
693 int is_write
, int mmu_idx
)
695 X86CPU
*cpu
= X86_CPU(cs
);
696 CPUX86State
*env
= &cpu
->env
;
698 /* user mode only emulation */
701 env
->error_code
= (is_write
<< PG_ERROR_W_BIT
);
702 env
->error_code
|= PG_ERROR_U_MASK
;
703 cs
->exception_index
= EXCP0E_PAGE
;
704 env
->exception_is_int
= 0;
705 env
->exception_next_eip
= -1;
712 * -1 = cannot handle fault
713 * 0 = nothing more to do
714 * 1 = generate PF fault
716 int x86_cpu_handle_mmu_fault(CPUState
*cs
, vaddr addr
,
717 int is_write1
, int mmu_idx
)
719 X86CPU
*cpu
= X86_CPU(cs
);
720 CPUX86State
*env
= &cpu
->env
;
722 target_ulong pde_addr
, pte_addr
;
724 int is_dirty
, prot
, page_size
, is_write
, is_user
;
726 uint64_t rsvd_mask
= PG_HI_RSVD_MASK
;
727 uint32_t page_offset
;
730 is_user
= mmu_idx
== MMU_USER_IDX
;
731 #if defined(DEBUG_MMU)
732 printf("MMU fault: addr=%" VADDR_PRIx
" w=%d u=%d eip=" TARGET_FMT_lx
"\n",
733 addr
, is_write1
, is_user
, env
->eip
);
735 is_write
= is_write1
& 1;
737 if (!(env
->cr
[0] & CR0_PG_MASK
)) {
740 if (!(env
->hflags
& HF_LMA_MASK
)) {
741 /* Without long mode we can only address 32bits in real mode */
745 prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
750 if (!(env
->efer
& MSR_EFER_NXE
)) {
751 rsvd_mask
|= PG_NX_MASK
;
754 if (env
->cr
[4] & CR4_PAE_MASK
) {
756 target_ulong pdpe_addr
;
759 if (env
->hflags
& HF_LMA_MASK
) {
760 uint64_t pml4e_addr
, pml4e
;
763 /* test virtual address sign extension */
764 sext
= (int64_t)addr
>> 47;
765 if (sext
!= 0 && sext
!= -1) {
767 cs
->exception_index
= EXCP0D_GPF
;
771 pml4e_addr
= ((env
->cr
[3] & ~0xfff) + (((addr
>> 39) & 0x1ff) << 3)) &
773 pml4e
= x86_ldq_phys(cs
, pml4e_addr
);
774 if (!(pml4e
& PG_PRESENT_MASK
)) {
777 if (pml4e
& (rsvd_mask
| PG_PSE_MASK
)) {
780 if (!(pml4e
& PG_ACCESSED_MASK
)) {
781 pml4e
|= PG_ACCESSED_MASK
;
782 x86_stl_phys_notdirty(cs
, pml4e_addr
, pml4e
);
784 ptep
= pml4e
^ PG_NX_MASK
;
785 pdpe_addr
= ((pml4e
& PG_ADDRESS_MASK
) + (((addr
>> 30) & 0x1ff) << 3)) &
787 pdpe
= x86_ldq_phys(cs
, pdpe_addr
);
788 if (!(pdpe
& PG_PRESENT_MASK
)) {
791 if (pdpe
& rsvd_mask
) {
794 ptep
&= pdpe
^ PG_NX_MASK
;
795 if (!(pdpe
& PG_ACCESSED_MASK
)) {
796 pdpe
|= PG_ACCESSED_MASK
;
797 x86_stl_phys_notdirty(cs
, pdpe_addr
, pdpe
);
799 if (pdpe
& PG_PSE_MASK
) {
801 page_size
= 1024 * 1024 * 1024;
802 pte_addr
= pdpe_addr
;
804 goto do_check_protect
;
809 /* XXX: load them when cr3 is loaded ? */
810 pdpe_addr
= ((env
->cr
[3] & ~0x1f) + ((addr
>> 27) & 0x18)) &
812 pdpe
= x86_ldq_phys(cs
, pdpe_addr
);
813 if (!(pdpe
& PG_PRESENT_MASK
)) {
816 rsvd_mask
|= PG_HI_USER_MASK
;
817 if (pdpe
& (rsvd_mask
| PG_NX_MASK
)) {
820 ptep
= PG_NX_MASK
| PG_USER_MASK
| PG_RW_MASK
;
823 pde_addr
= ((pdpe
& PG_ADDRESS_MASK
) + (((addr
>> 21) & 0x1ff) << 3)) &
825 pde
= x86_ldq_phys(cs
, pde_addr
);
826 if (!(pde
& PG_PRESENT_MASK
)) {
829 if (pde
& rsvd_mask
) {
832 ptep
&= pde
^ PG_NX_MASK
;
833 if (pde
& PG_PSE_MASK
) {
835 page_size
= 2048 * 1024;
838 goto do_check_protect
;
841 if (!(pde
& PG_ACCESSED_MASK
)) {
842 pde
|= PG_ACCESSED_MASK
;
843 x86_stl_phys_notdirty(cs
, pde_addr
, pde
);
845 pte_addr
= ((pde
& PG_ADDRESS_MASK
) + (((addr
>> 12) & 0x1ff) << 3)) &
847 pte
= x86_ldq_phys(cs
, pte_addr
);
848 if (!(pte
& PG_PRESENT_MASK
)) {
851 if (pte
& rsvd_mask
) {
854 /* combine pde and pte nx, user and rw protections */
855 ptep
&= pte
^ PG_NX_MASK
;
860 /* page directory entry */
861 pde_addr
= ((env
->cr
[3] & ~0xfff) + ((addr
>> 20) & 0xffc)) &
863 pde
= x86_ldl_phys(cs
, pde_addr
);
864 if (!(pde
& PG_PRESENT_MASK
)) {
867 ptep
= pde
| PG_NX_MASK
;
869 /* if PSE bit is set, then we use a 4MB page */
870 if ((pde
& PG_PSE_MASK
) && (env
->cr
[4] & CR4_PSE_MASK
)) {
871 page_size
= 4096 * 1024;
874 /* Bits 20-13 provide bits 39-32 of the address, bit 21 is reserved.
875 * Leave bits 20-13 in place for setting accessed/dirty bits below.
877 pte
= pde
| ((pde
& 0x1fe000LL
) << (32 - 13));
878 rsvd_mask
= 0x200000;
879 goto do_check_protect_pse36
;
882 if (!(pde
& PG_ACCESSED_MASK
)) {
883 pde
|= PG_ACCESSED_MASK
;
884 x86_stl_phys_notdirty(cs
, pde_addr
, pde
);
887 /* page directory entry */
888 pte_addr
= ((pde
& ~0xfff) + ((addr
>> 10) & 0xffc)) &
890 pte
= x86_ldl_phys(cs
, pte_addr
);
891 if (!(pte
& PG_PRESENT_MASK
)) {
894 /* combine pde and pte user and rw protections */
895 ptep
&= pte
| PG_NX_MASK
;
901 rsvd_mask
|= (page_size
- 1) & PG_ADDRESS_MASK
& ~PG_PSE_PAT_MASK
;
902 do_check_protect_pse36
:
903 if (pte
& rsvd_mask
) {
908 /* can the page can be put in the TLB? prot will tell us */
909 if (is_user
&& !(ptep
& PG_USER_MASK
)) {
910 goto do_fault_protect
;
914 if (mmu_idx
!= MMU_KSMAP_IDX
|| !(ptep
& PG_USER_MASK
)) {
916 if ((ptep
& PG_RW_MASK
) || (!is_user
&& !(env
->cr
[0] & CR0_WP_MASK
))) {
920 if (!(ptep
& PG_NX_MASK
) &&
921 (mmu_idx
== MMU_USER_IDX
||
922 !((env
->cr
[4] & CR4_SMEP_MASK
) && (ptep
& PG_USER_MASK
)))) {
925 if ((env
->cr
[4] & CR4_PKE_MASK
) && (env
->hflags
& HF_LMA_MASK
) &&
926 (ptep
& PG_USER_MASK
) && env
->pkru
) {
927 uint32_t pk
= (pte
& PG_PKRU_MASK
) >> PG_PKRU_BIT
;
928 uint32_t pkru_ad
= (env
->pkru
>> pk
* 2) & 1;
929 uint32_t pkru_wd
= (env
->pkru
>> pk
* 2) & 2;
930 uint32_t pkru_prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
933 pkru_prot
&= ~(PAGE_READ
| PAGE_WRITE
);
934 } else if (pkru_wd
&& (is_user
|| env
->cr
[0] & CR0_WP_MASK
)) {
935 pkru_prot
&= ~PAGE_WRITE
;
939 if ((pkru_prot
& (1 << is_write1
)) == 0) {
940 assert(is_write1
!= 2);
941 error_code
|= PG_ERROR_PK_MASK
;
942 goto do_fault_protect
;
946 if ((prot
& (1 << is_write1
)) == 0) {
947 goto do_fault_protect
;
951 is_dirty
= is_write
&& !(pte
& PG_DIRTY_MASK
);
952 if (!(pte
& PG_ACCESSED_MASK
) || is_dirty
) {
953 pte
|= PG_ACCESSED_MASK
;
955 pte
|= PG_DIRTY_MASK
;
957 x86_stl_phys_notdirty(cs
, pte_addr
, pte
);
960 if (!(pte
& PG_DIRTY_MASK
)) {
961 /* only set write access if already dirty... otherwise wait
968 pte
= pte
& env
->a20_mask
;
970 /* align to page_size */
971 pte
&= PG_ADDRESS_MASK
& ~(page_size
- 1);
973 /* Even if 4MB pages, we map only one 4KB page in the cache to
974 avoid filling it too fast */
975 vaddr
= addr
& TARGET_PAGE_MASK
;
976 page_offset
= vaddr
& (page_size
- 1);
977 paddr
= pte
+ page_offset
;
979 assert(prot
& (1 << is_write1
));
980 tlb_set_page_with_attrs(cs
, vaddr
, paddr
, cpu_get_mem_attrs(env
),
981 prot
, mmu_idx
, page_size
);
984 error_code
|= PG_ERROR_RSVD_MASK
;
986 error_code
|= PG_ERROR_P_MASK
;
988 error_code
|= (is_write
<< PG_ERROR_W_BIT
);
990 error_code
|= PG_ERROR_U_MASK
;
991 if (is_write1
== 2 &&
992 (((env
->efer
& MSR_EFER_NXE
) &&
993 (env
->cr
[4] & CR4_PAE_MASK
)) ||
994 (env
->cr
[4] & CR4_SMEP_MASK
)))
995 error_code
|= PG_ERROR_I_D_MASK
;
996 if (env
->intercept_exceptions
& (1 << EXCP0E_PAGE
)) {
997 /* cr2 is not modified in case of exceptions */
999 env
->vm_vmcb
+ offsetof(struct vmcb
, control
.exit_info_2
),
1004 env
->error_code
= error_code
;
1005 cs
->exception_index
= EXCP0E_PAGE
;
1009 hwaddr
x86_cpu_get_phys_page_debug(CPUState
*cs
, vaddr addr
)
1011 X86CPU
*cpu
= X86_CPU(cs
);
1012 CPUX86State
*env
= &cpu
->env
;
1013 target_ulong pde_addr
, pte_addr
;
1015 uint32_t page_offset
;
1018 if (!(env
->cr
[0] & CR0_PG_MASK
)) {
1019 pte
= addr
& env
->a20_mask
;
1021 } else if (env
->cr
[4] & CR4_PAE_MASK
) {
1022 target_ulong pdpe_addr
;
1025 #ifdef TARGET_X86_64
1026 if (env
->hflags
& HF_LMA_MASK
) {
1027 uint64_t pml4e_addr
, pml4e
;
1030 /* test virtual address sign extension */
1031 sext
= (int64_t)addr
>> 47;
1032 if (sext
!= 0 && sext
!= -1) {
1035 pml4e_addr
= ((env
->cr
[3] & ~0xfff) + (((addr
>> 39) & 0x1ff) << 3)) &
1037 pml4e
= x86_ldq_phys(cs
, pml4e_addr
);
1038 if (!(pml4e
& PG_PRESENT_MASK
)) {
1041 pdpe_addr
= ((pml4e
& PG_ADDRESS_MASK
) +
1042 (((addr
>> 30) & 0x1ff) << 3)) & env
->a20_mask
;
1043 pdpe
= x86_ldq_phys(cs
, pdpe_addr
);
1044 if (!(pdpe
& PG_PRESENT_MASK
)) {
1047 if (pdpe
& PG_PSE_MASK
) {
1048 page_size
= 1024 * 1024 * 1024;
1056 pdpe_addr
= ((env
->cr
[3] & ~0x1f) + ((addr
>> 27) & 0x18)) &
1058 pdpe
= x86_ldq_phys(cs
, pdpe_addr
);
1059 if (!(pdpe
& PG_PRESENT_MASK
))
1063 pde_addr
= ((pdpe
& PG_ADDRESS_MASK
) +
1064 (((addr
>> 21) & 0x1ff) << 3)) & env
->a20_mask
;
1065 pde
= x86_ldq_phys(cs
, pde_addr
);
1066 if (!(pde
& PG_PRESENT_MASK
)) {
1069 if (pde
& PG_PSE_MASK
) {
1071 page_size
= 2048 * 1024;
1075 pte_addr
= ((pde
& PG_ADDRESS_MASK
) +
1076 (((addr
>> 12) & 0x1ff) << 3)) & env
->a20_mask
;
1078 pte
= x86_ldq_phys(cs
, pte_addr
);
1080 if (!(pte
& PG_PRESENT_MASK
)) {
1086 /* page directory entry */
1087 pde_addr
= ((env
->cr
[3] & ~0xfff) + ((addr
>> 20) & 0xffc)) & env
->a20_mask
;
1088 pde
= x86_ldl_phys(cs
, pde_addr
);
1089 if (!(pde
& PG_PRESENT_MASK
))
1091 if ((pde
& PG_PSE_MASK
) && (env
->cr
[4] & CR4_PSE_MASK
)) {
1092 pte
= pde
| ((pde
& 0x1fe000LL
) << (32 - 13));
1093 page_size
= 4096 * 1024;
1095 /* page directory entry */
1096 pte_addr
= ((pde
& ~0xfff) + ((addr
>> 10) & 0xffc)) & env
->a20_mask
;
1097 pte
= x86_ldl_phys(cs
, pte_addr
);
1098 if (!(pte
& PG_PRESENT_MASK
)) {
1103 pte
= pte
& env
->a20_mask
;
1106 #ifdef TARGET_X86_64
1109 pte
&= PG_ADDRESS_MASK
& ~(page_size
- 1);
1110 page_offset
= (addr
& TARGET_PAGE_MASK
) & (page_size
- 1);
1111 return pte
| page_offset
;
1114 typedef struct MCEInjectionParams
{
1119 uint64_t mcg_status
;
1123 } MCEInjectionParams
;
1125 static void do_inject_x86_mce(void *data
)
1127 MCEInjectionParams
*params
= data
;
1128 CPUX86State
*cenv
= ¶ms
->cpu
->env
;
1129 CPUState
*cpu
= CPU(params
->cpu
);
1130 uint64_t *banks
= cenv
->mce_banks
+ 4 * params
->bank
;
1132 cpu_synchronize_state(cpu
);
1135 * If there is an MCE exception being processed, ignore this SRAO MCE
1136 * unless unconditional injection was requested.
1138 if (!(params
->flags
& MCE_INJECT_UNCOND_AO
)
1139 && !(params
->status
& MCI_STATUS_AR
)
1140 && (cenv
->mcg_status
& MCG_STATUS_MCIP
)) {
1144 if (params
->status
& MCI_STATUS_UC
) {
1146 * if MSR_MCG_CTL is not all 1s, the uncorrected error
1147 * reporting is disabled
1149 if ((cenv
->mcg_cap
& MCG_CTL_P
) && cenv
->mcg_ctl
!= ~(uint64_t)0) {
1150 monitor_printf(params
->mon
,
1151 "CPU %d: Uncorrected error reporting disabled\n",
1157 * if MSR_MCi_CTL is not all 1s, the uncorrected error
1158 * reporting is disabled for the bank
1160 if (banks
[0] != ~(uint64_t)0) {
1161 monitor_printf(params
->mon
,
1162 "CPU %d: Uncorrected error reporting disabled for"
1164 cpu
->cpu_index
, params
->bank
);
1168 if ((cenv
->mcg_status
& MCG_STATUS_MCIP
) ||
1169 !(cenv
->cr
[4] & CR4_MCE_MASK
)) {
1170 monitor_printf(params
->mon
,
1171 "CPU %d: Previous MCE still in progress, raising"
1174 qemu_log_mask(CPU_LOG_RESET
, "Triple fault\n");
1175 qemu_system_reset_request();
1178 if (banks
[1] & MCI_STATUS_VAL
) {
1179 params
->status
|= MCI_STATUS_OVER
;
1181 banks
[2] = params
->addr
;
1182 banks
[3] = params
->misc
;
1183 cenv
->mcg_status
= params
->mcg_status
;
1184 banks
[1] = params
->status
;
1185 cpu_interrupt(cpu
, CPU_INTERRUPT_MCE
);
1186 } else if (!(banks
[1] & MCI_STATUS_VAL
)
1187 || !(banks
[1] & MCI_STATUS_UC
)) {
1188 if (banks
[1] & MCI_STATUS_VAL
) {
1189 params
->status
|= MCI_STATUS_OVER
;
1191 banks
[2] = params
->addr
;
1192 banks
[3] = params
->misc
;
1193 banks
[1] = params
->status
;
1195 banks
[1] |= MCI_STATUS_OVER
;
1199 void cpu_x86_inject_mce(Monitor
*mon
, X86CPU
*cpu
, int bank
,
1200 uint64_t status
, uint64_t mcg_status
, uint64_t addr
,
1201 uint64_t misc
, int flags
)
1203 CPUState
*cs
= CPU(cpu
);
1204 CPUX86State
*cenv
= &cpu
->env
;
1205 MCEInjectionParams params
= {
1210 .mcg_status
= mcg_status
,
1215 unsigned bank_num
= cenv
->mcg_cap
& 0xff;
1217 if (!cenv
->mcg_cap
) {
1218 monitor_printf(mon
, "MCE injection not supported\n");
1221 if (bank
>= bank_num
) {
1222 monitor_printf(mon
, "Invalid MCE bank number\n");
1225 if (!(status
& MCI_STATUS_VAL
)) {
1226 monitor_printf(mon
, "Invalid MCE status code\n");
1229 if ((flags
& MCE_INJECT_BROADCAST
)
1230 && !cpu_x86_support_mca_broadcast(cenv
)) {
1231 monitor_printf(mon
, "Guest CPU does not support MCA broadcast\n");
1235 run_on_cpu(cs
, do_inject_x86_mce
, ¶ms
);
1236 if (flags
& MCE_INJECT_BROADCAST
) {
1240 params
.status
= MCI_STATUS_VAL
| MCI_STATUS_UC
;
1241 params
.mcg_status
= MCG_STATUS_MCIP
| MCG_STATUS_RIPV
;
1244 CPU_FOREACH(other_cs
) {
1245 if (other_cs
== cs
) {
1248 params
.cpu
= X86_CPU(other_cs
);
1249 run_on_cpu(other_cs
, do_inject_x86_mce
, ¶ms
);
1254 void cpu_report_tpr_access(CPUX86State
*env
, TPRAccess access
)
1256 X86CPU
*cpu
= x86_env_get_cpu(env
);
1257 CPUState
*cs
= CPU(cpu
);
1259 if (kvm_enabled()) {
1260 env
->tpr_access_type
= access
;
1262 cpu_interrupt(cs
, CPU_INTERRUPT_TPR
);
1264 cpu_restore_state(cs
, cs
->mem_io_pc
);
1266 apic_handle_tpr_access_report(cpu
->apic_state
, env
->eip
, access
);
1269 #endif /* !CONFIG_USER_ONLY */
1271 int cpu_x86_get_descr_debug(CPUX86State
*env
, unsigned int selector
,
1272 target_ulong
*base
, unsigned int *limit
,
1273 unsigned int *flags
)
1275 X86CPU
*cpu
= x86_env_get_cpu(env
);
1276 CPUState
*cs
= CPU(cpu
);
1286 index
= selector
& ~7;
1287 ptr
= dt
->base
+ index
;
1288 if ((index
+ 7) > dt
->limit
1289 || cpu_memory_rw_debug(cs
, ptr
, (uint8_t *)&e1
, sizeof(e1
), 0) != 0
1290 || cpu_memory_rw_debug(cs
, ptr
+4, (uint8_t *)&e2
, sizeof(e2
), 0) != 0)
1293 *base
= ((e1
>> 16) | ((e2
& 0xff) << 16) | (e2
& 0xff000000));
1294 *limit
= (e1
& 0xffff) | (e2
& 0x000f0000);
1295 if (e2
& DESC_G_MASK
)
1296 *limit
= (*limit
<< 12) | 0xfff;
1302 #if !defined(CONFIG_USER_ONLY)
1303 void do_cpu_init(X86CPU
*cpu
)
1305 CPUState
*cs
= CPU(cpu
);
1306 CPUX86State
*env
= &cpu
->env
;
1307 CPUX86State
*save
= g_new(CPUX86State
, 1);
1308 int sipi
= cs
->interrupt_request
& CPU_INTERRUPT_SIPI
;
1313 cs
->interrupt_request
= sipi
;
1314 memcpy(&env
->start_init_save
, &save
->start_init_save
,
1315 offsetof(CPUX86State
, end_init_save
) -
1316 offsetof(CPUX86State
, start_init_save
));
1319 if (kvm_enabled()) {
1320 kvm_arch_do_init_vcpu(cpu
);
1322 apic_init_reset(cpu
->apic_state
);
1325 void do_cpu_sipi(X86CPU
*cpu
)
1327 apic_sipi(cpu
->apic_state
);
1330 void do_cpu_init(X86CPU
*cpu
)
1333 void do_cpu_sipi(X86CPU
*cpu
)
1338 /* Frob eflags into and out of the CPU temporary format. */
1340 void x86_cpu_exec_enter(CPUState
*cs
)
1342 X86CPU
*cpu
= X86_CPU(cs
);
1343 CPUX86State
*env
= &cpu
->env
;
1345 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
1346 env
->df
= 1 - (2 * ((env
->eflags
>> 10) & 1));
1347 CC_OP
= CC_OP_EFLAGS
;
1348 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
1351 void x86_cpu_exec_exit(CPUState
*cs
)
1353 X86CPU
*cpu
= X86_CPU(cs
);
1354 CPUX86State
*env
= &cpu
->env
;
1356 env
->eflags
= cpu_compute_eflags(env
);
1359 #ifndef CONFIG_USER_ONLY
1360 uint8_t x86_ldub_phys(CPUState
*cs
, hwaddr addr
)
1362 X86CPU
*cpu
= X86_CPU(cs
);
1363 CPUX86State
*env
= &cpu
->env
;
1365 return address_space_ldub(cs
->as
, addr
,
1366 cpu_get_mem_attrs(env
),
1370 uint32_t x86_lduw_phys(CPUState
*cs
, hwaddr addr
)
1372 X86CPU
*cpu
= X86_CPU(cs
);
1373 CPUX86State
*env
= &cpu
->env
;
1375 return address_space_lduw(cs
->as
, addr
,
1376 cpu_get_mem_attrs(env
),
1380 uint32_t x86_ldl_phys(CPUState
*cs
, hwaddr addr
)
1382 X86CPU
*cpu
= X86_CPU(cs
);
1383 CPUX86State
*env
= &cpu
->env
;
1385 return address_space_ldl(cs
->as
, addr
,
1386 cpu_get_mem_attrs(env
),
1390 uint64_t x86_ldq_phys(CPUState
*cs
, hwaddr addr
)
1392 X86CPU
*cpu
= X86_CPU(cs
);
1393 CPUX86State
*env
= &cpu
->env
;
1395 return address_space_ldq(cs
->as
, addr
,
1396 cpu_get_mem_attrs(env
),
1400 void x86_stb_phys(CPUState
*cs
, hwaddr addr
, uint8_t val
)
1402 X86CPU
*cpu
= X86_CPU(cs
);
1403 CPUX86State
*env
= &cpu
->env
;
1405 address_space_stb(cs
->as
, addr
, val
,
1406 cpu_get_mem_attrs(env
),
1410 void x86_stl_phys_notdirty(CPUState
*cs
, hwaddr addr
, uint32_t val
)
1412 X86CPU
*cpu
= X86_CPU(cs
);
1413 CPUX86State
*env
= &cpu
->env
;
1415 address_space_stl_notdirty(cs
->as
, addr
, val
,
1416 cpu_get_mem_attrs(env
),
1420 void x86_stw_phys(CPUState
*cs
, hwaddr addr
, uint32_t val
)
1422 X86CPU
*cpu
= X86_CPU(cs
);
1423 CPUX86State
*env
= &cpu
->env
;
1425 address_space_stw(cs
->as
, addr
, val
,
1426 cpu_get_mem_attrs(env
),
1430 void x86_stl_phys(CPUState
*cs
, hwaddr addr
, uint32_t val
)
1432 X86CPU
*cpu
= X86_CPU(cs
);
1433 CPUX86State
*env
= &cpu
->env
;
1435 address_space_stl(cs
->as
, addr
, val
,
1436 cpu_get_mem_attrs(env
),
1440 void x86_stq_phys(CPUState
*cs
, hwaddr addr
, uint64_t val
)
1442 X86CPU
*cpu
= X86_CPU(cs
);
1443 CPUX86State
*env
= &cpu
->env
;
1445 address_space_stq(cs
->as
, addr
, val
,
1446 cpu_get_mem_attrs(env
),