target/arm: make pmccntr_op_start/finish static
[qemu/ar7.git] / migration / rdma.c
blob63c118af09377f48c63201da125124f30515e723
1 /*
2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
5 * Copyright Red Hat, Inc. 2015-2016
7 * Authors:
8 * Michael R. Hines <mrhines@us.ibm.com>
9 * Jiuxing Liu <jl@us.ibm.com>
10 * Daniel P. Berrange <berrange@redhat.com>
12 * This work is licensed under the terms of the GNU GPL, version 2 or
13 * later. See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "qemu-common.h"
19 #include "qemu/cutils.h"
20 #include "rdma.h"
21 #include "migration.h"
22 #include "qemu-file.h"
23 #include "ram.h"
24 #include "qemu-file-channel.h"
25 #include "qemu/error-report.h"
26 #include "qemu/main-loop.h"
27 #include "qemu/sockets.h"
28 #include "qemu/bitmap.h"
29 #include "qemu/coroutine.h"
30 #include <sys/socket.h>
31 #include <netdb.h>
32 #include <arpa/inet.h>
33 #include <rdma/rdma_cma.h>
34 #include "trace.h"
37 * Print and error on both the Monitor and the Log file.
39 #define ERROR(errp, fmt, ...) \
40 do { \
41 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
42 if (errp && (*(errp) == NULL)) { \
43 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
44 } \
45 } while (0)
47 #define RDMA_RESOLVE_TIMEOUT_MS 10000
49 /* Do not merge data if larger than this. */
50 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
51 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
53 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
56 * This is only for non-live state being migrated.
57 * Instead of RDMA_WRITE messages, we use RDMA_SEND
58 * messages for that state, which requires a different
59 * delivery design than main memory.
61 #define RDMA_SEND_INCREMENT 32768
64 * Maximum size infiniband SEND message
66 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
67 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
69 #define RDMA_CONTROL_VERSION_CURRENT 1
71 * Capabilities for negotiation.
73 #define RDMA_CAPABILITY_PIN_ALL 0x01
76 * Add the other flags above to this list of known capabilities
77 * as they are introduced.
79 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
81 #define CHECK_ERROR_STATE() \
82 do { \
83 if (rdma->error_state) { \
84 if (!rdma->error_reported) { \
85 error_report("RDMA is in an error state waiting migration" \
86 " to abort!"); \
87 rdma->error_reported = 1; \
88 } \
89 rcu_read_unlock(); \
90 return rdma->error_state; \
91 } \
92 } while (0)
95 * A work request ID is 64-bits and we split up these bits
96 * into 3 parts:
98 * bits 0-15 : type of control message, 2^16
99 * bits 16-29: ram block index, 2^14
100 * bits 30-63: ram block chunk number, 2^34
102 * The last two bit ranges are only used for RDMA writes,
103 * in order to track their completion and potentially
104 * also track unregistration status of the message.
106 #define RDMA_WRID_TYPE_SHIFT 0UL
107 #define RDMA_WRID_BLOCK_SHIFT 16UL
108 #define RDMA_WRID_CHUNK_SHIFT 30UL
110 #define RDMA_WRID_TYPE_MASK \
111 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
113 #define RDMA_WRID_BLOCK_MASK \
114 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
116 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
119 * RDMA migration protocol:
120 * 1. RDMA Writes (data messages, i.e. RAM)
121 * 2. IB Send/Recv (control channel messages)
123 enum {
124 RDMA_WRID_NONE = 0,
125 RDMA_WRID_RDMA_WRITE = 1,
126 RDMA_WRID_SEND_CONTROL = 2000,
127 RDMA_WRID_RECV_CONTROL = 4000,
130 static const char *wrid_desc[] = {
131 [RDMA_WRID_NONE] = "NONE",
132 [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
133 [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
134 [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
138 * Work request IDs for IB SEND messages only (not RDMA writes).
139 * This is used by the migration protocol to transmit
140 * control messages (such as device state and registration commands)
142 * We could use more WRs, but we have enough for now.
144 enum {
145 RDMA_WRID_READY = 0,
146 RDMA_WRID_DATA,
147 RDMA_WRID_CONTROL,
148 RDMA_WRID_MAX,
152 * SEND/RECV IB Control Messages.
154 enum {
155 RDMA_CONTROL_NONE = 0,
156 RDMA_CONTROL_ERROR,
157 RDMA_CONTROL_READY, /* ready to receive */
158 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
159 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
160 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
161 RDMA_CONTROL_COMPRESS, /* page contains repeat values */
162 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
163 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
164 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
165 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
166 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
171 * Memory and MR structures used to represent an IB Send/Recv work request.
172 * This is *not* used for RDMA writes, only IB Send/Recv.
174 typedef struct {
175 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
176 struct ibv_mr *control_mr; /* registration metadata */
177 size_t control_len; /* length of the message */
178 uint8_t *control_curr; /* start of unconsumed bytes */
179 } RDMAWorkRequestData;
182 * Negotiate RDMA capabilities during connection-setup time.
184 typedef struct {
185 uint32_t version;
186 uint32_t flags;
187 } RDMACapabilities;
189 static void caps_to_network(RDMACapabilities *cap)
191 cap->version = htonl(cap->version);
192 cap->flags = htonl(cap->flags);
195 static void network_to_caps(RDMACapabilities *cap)
197 cap->version = ntohl(cap->version);
198 cap->flags = ntohl(cap->flags);
202 * Representation of a RAMBlock from an RDMA perspective.
203 * This is not transmitted, only local.
204 * This and subsequent structures cannot be linked lists
205 * because we're using a single IB message to transmit
206 * the information. It's small anyway, so a list is overkill.
208 typedef struct RDMALocalBlock {
209 char *block_name;
210 uint8_t *local_host_addr; /* local virtual address */
211 uint64_t remote_host_addr; /* remote virtual address */
212 uint64_t offset;
213 uint64_t length;
214 struct ibv_mr **pmr; /* MRs for chunk-level registration */
215 struct ibv_mr *mr; /* MR for non-chunk-level registration */
216 uint32_t *remote_keys; /* rkeys for chunk-level registration */
217 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
218 int index; /* which block are we */
219 unsigned int src_index; /* (Only used on dest) */
220 bool is_ram_block;
221 int nb_chunks;
222 unsigned long *transit_bitmap;
223 unsigned long *unregister_bitmap;
224 } RDMALocalBlock;
227 * Also represents a RAMblock, but only on the dest.
228 * This gets transmitted by the dest during connection-time
229 * to the source VM and then is used to populate the
230 * corresponding RDMALocalBlock with
231 * the information needed to perform the actual RDMA.
233 typedef struct QEMU_PACKED RDMADestBlock {
234 uint64_t remote_host_addr;
235 uint64_t offset;
236 uint64_t length;
237 uint32_t remote_rkey;
238 uint32_t padding;
239 } RDMADestBlock;
241 static const char *control_desc(unsigned int rdma_control)
243 static const char *strs[] = {
244 [RDMA_CONTROL_NONE] = "NONE",
245 [RDMA_CONTROL_ERROR] = "ERROR",
246 [RDMA_CONTROL_READY] = "READY",
247 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
248 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
249 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
250 [RDMA_CONTROL_COMPRESS] = "COMPRESS",
251 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
252 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
253 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
254 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
255 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
258 if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
259 return "??BAD CONTROL VALUE??";
262 return strs[rdma_control];
265 static uint64_t htonll(uint64_t v)
267 union { uint32_t lv[2]; uint64_t llv; } u;
268 u.lv[0] = htonl(v >> 32);
269 u.lv[1] = htonl(v & 0xFFFFFFFFULL);
270 return u.llv;
273 static uint64_t ntohll(uint64_t v) {
274 union { uint32_t lv[2]; uint64_t llv; } u;
275 u.llv = v;
276 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
279 static void dest_block_to_network(RDMADestBlock *db)
281 db->remote_host_addr = htonll(db->remote_host_addr);
282 db->offset = htonll(db->offset);
283 db->length = htonll(db->length);
284 db->remote_rkey = htonl(db->remote_rkey);
287 static void network_to_dest_block(RDMADestBlock *db)
289 db->remote_host_addr = ntohll(db->remote_host_addr);
290 db->offset = ntohll(db->offset);
291 db->length = ntohll(db->length);
292 db->remote_rkey = ntohl(db->remote_rkey);
296 * Virtual address of the above structures used for transmitting
297 * the RAMBlock descriptions at connection-time.
298 * This structure is *not* transmitted.
300 typedef struct RDMALocalBlocks {
301 int nb_blocks;
302 bool init; /* main memory init complete */
303 RDMALocalBlock *block;
304 } RDMALocalBlocks;
307 * Main data structure for RDMA state.
308 * While there is only one copy of this structure being allocated right now,
309 * this is the place where one would start if you wanted to consider
310 * having more than one RDMA connection open at the same time.
312 typedef struct RDMAContext {
313 char *host;
314 int port;
316 RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
319 * This is used by *_exchange_send() to figure out whether or not
320 * the initial "READY" message has already been received or not.
321 * This is because other functions may potentially poll() and detect
322 * the READY message before send() does, in which case we need to
323 * know if it completed.
325 int control_ready_expected;
327 /* number of outstanding writes */
328 int nb_sent;
330 /* store info about current buffer so that we can
331 merge it with future sends */
332 uint64_t current_addr;
333 uint64_t current_length;
334 /* index of ram block the current buffer belongs to */
335 int current_index;
336 /* index of the chunk in the current ram block */
337 int current_chunk;
339 bool pin_all;
342 * infiniband-specific variables for opening the device
343 * and maintaining connection state and so forth.
345 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
346 * cm_id->verbs, cm_id->channel, and cm_id->qp.
348 struct rdma_cm_id *cm_id; /* connection manager ID */
349 struct rdma_cm_id *listen_id;
350 bool connected;
352 struct ibv_context *verbs;
353 struct rdma_event_channel *channel;
354 struct ibv_qp *qp; /* queue pair */
355 struct ibv_comp_channel *comp_channel; /* completion channel */
356 struct ibv_pd *pd; /* protection domain */
357 struct ibv_cq *cq; /* completion queue */
360 * If a previous write failed (perhaps because of a failed
361 * memory registration, then do not attempt any future work
362 * and remember the error state.
364 int error_state;
365 int error_reported;
366 int received_error;
369 * Description of ram blocks used throughout the code.
371 RDMALocalBlocks local_ram_blocks;
372 RDMADestBlock *dest_blocks;
374 /* Index of the next RAMBlock received during block registration */
375 unsigned int next_src_index;
378 * Migration on *destination* started.
379 * Then use coroutine yield function.
380 * Source runs in a thread, so we don't care.
382 int migration_started_on_destination;
384 int total_registrations;
385 int total_writes;
387 int unregister_current, unregister_next;
388 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
390 GHashTable *blockmap;
392 /* the RDMAContext for return path */
393 struct RDMAContext *return_path;
394 bool is_return_path;
395 } RDMAContext;
397 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
398 #define QIO_CHANNEL_RDMA(obj) \
399 OBJECT_CHECK(QIOChannelRDMA, (obj), TYPE_QIO_CHANNEL_RDMA)
401 typedef struct QIOChannelRDMA QIOChannelRDMA;
404 struct QIOChannelRDMA {
405 QIOChannel parent;
406 RDMAContext *rdmain;
407 RDMAContext *rdmaout;
408 QEMUFile *file;
409 bool blocking; /* XXX we don't actually honour this yet */
413 * Main structure for IB Send/Recv control messages.
414 * This gets prepended at the beginning of every Send/Recv.
416 typedef struct QEMU_PACKED {
417 uint32_t len; /* Total length of data portion */
418 uint32_t type; /* which control command to perform */
419 uint32_t repeat; /* number of commands in data portion of same type */
420 uint32_t padding;
421 } RDMAControlHeader;
423 static void control_to_network(RDMAControlHeader *control)
425 control->type = htonl(control->type);
426 control->len = htonl(control->len);
427 control->repeat = htonl(control->repeat);
430 static void network_to_control(RDMAControlHeader *control)
432 control->type = ntohl(control->type);
433 control->len = ntohl(control->len);
434 control->repeat = ntohl(control->repeat);
438 * Register a single Chunk.
439 * Information sent by the source VM to inform the dest
440 * to register an single chunk of memory before we can perform
441 * the actual RDMA operation.
443 typedef struct QEMU_PACKED {
444 union QEMU_PACKED {
445 uint64_t current_addr; /* offset into the ram_addr_t space */
446 uint64_t chunk; /* chunk to lookup if unregistering */
447 } key;
448 uint32_t current_index; /* which ramblock the chunk belongs to */
449 uint32_t padding;
450 uint64_t chunks; /* how many sequential chunks to register */
451 } RDMARegister;
453 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
455 RDMALocalBlock *local_block;
456 local_block = &rdma->local_ram_blocks.block[reg->current_index];
458 if (local_block->is_ram_block) {
460 * current_addr as passed in is an address in the local ram_addr_t
461 * space, we need to translate this for the destination
463 reg->key.current_addr -= local_block->offset;
464 reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
466 reg->key.current_addr = htonll(reg->key.current_addr);
467 reg->current_index = htonl(reg->current_index);
468 reg->chunks = htonll(reg->chunks);
471 static void network_to_register(RDMARegister *reg)
473 reg->key.current_addr = ntohll(reg->key.current_addr);
474 reg->current_index = ntohl(reg->current_index);
475 reg->chunks = ntohll(reg->chunks);
478 typedef struct QEMU_PACKED {
479 uint32_t value; /* if zero, we will madvise() */
480 uint32_t block_idx; /* which ram block index */
481 uint64_t offset; /* Address in remote ram_addr_t space */
482 uint64_t length; /* length of the chunk */
483 } RDMACompress;
485 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
487 comp->value = htonl(comp->value);
489 * comp->offset as passed in is an address in the local ram_addr_t
490 * space, we need to translate this for the destination
492 comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
493 comp->offset += rdma->dest_blocks[comp->block_idx].offset;
494 comp->block_idx = htonl(comp->block_idx);
495 comp->offset = htonll(comp->offset);
496 comp->length = htonll(comp->length);
499 static void network_to_compress(RDMACompress *comp)
501 comp->value = ntohl(comp->value);
502 comp->block_idx = ntohl(comp->block_idx);
503 comp->offset = ntohll(comp->offset);
504 comp->length = ntohll(comp->length);
508 * The result of the dest's memory registration produces an "rkey"
509 * which the source VM must reference in order to perform
510 * the RDMA operation.
512 typedef struct QEMU_PACKED {
513 uint32_t rkey;
514 uint32_t padding;
515 uint64_t host_addr;
516 } RDMARegisterResult;
518 static void result_to_network(RDMARegisterResult *result)
520 result->rkey = htonl(result->rkey);
521 result->host_addr = htonll(result->host_addr);
524 static void network_to_result(RDMARegisterResult *result)
526 result->rkey = ntohl(result->rkey);
527 result->host_addr = ntohll(result->host_addr);
530 const char *print_wrid(int wrid);
531 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
532 uint8_t *data, RDMAControlHeader *resp,
533 int *resp_idx,
534 int (*callback)(RDMAContext *rdma));
536 static inline uint64_t ram_chunk_index(const uint8_t *start,
537 const uint8_t *host)
539 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
542 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
543 uint64_t i)
545 return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
546 (i << RDMA_REG_CHUNK_SHIFT));
549 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
550 uint64_t i)
552 uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
553 (1UL << RDMA_REG_CHUNK_SHIFT);
555 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
556 result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
559 return result;
562 static int rdma_add_block(RDMAContext *rdma, const char *block_name,
563 void *host_addr,
564 ram_addr_t block_offset, uint64_t length)
566 RDMALocalBlocks *local = &rdma->local_ram_blocks;
567 RDMALocalBlock *block;
568 RDMALocalBlock *old = local->block;
570 local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
572 if (local->nb_blocks) {
573 int x;
575 if (rdma->blockmap) {
576 for (x = 0; x < local->nb_blocks; x++) {
577 g_hash_table_remove(rdma->blockmap,
578 (void *)(uintptr_t)old[x].offset);
579 g_hash_table_insert(rdma->blockmap,
580 (void *)(uintptr_t)old[x].offset,
581 &local->block[x]);
584 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
585 g_free(old);
588 block = &local->block[local->nb_blocks];
590 block->block_name = g_strdup(block_name);
591 block->local_host_addr = host_addr;
592 block->offset = block_offset;
593 block->length = length;
594 block->index = local->nb_blocks;
595 block->src_index = ~0U; /* Filled in by the receipt of the block list */
596 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
597 block->transit_bitmap = bitmap_new(block->nb_chunks);
598 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
599 block->unregister_bitmap = bitmap_new(block->nb_chunks);
600 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
601 block->remote_keys = g_new0(uint32_t, block->nb_chunks);
603 block->is_ram_block = local->init ? false : true;
605 if (rdma->blockmap) {
606 g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
609 trace_rdma_add_block(block_name, local->nb_blocks,
610 (uintptr_t) block->local_host_addr,
611 block->offset, block->length,
612 (uintptr_t) (block->local_host_addr + block->length),
613 BITS_TO_LONGS(block->nb_chunks) *
614 sizeof(unsigned long) * 8,
615 block->nb_chunks);
617 local->nb_blocks++;
619 return 0;
623 * Memory regions need to be registered with the device and queue pairs setup
624 * in advanced before the migration starts. This tells us where the RAM blocks
625 * are so that we can register them individually.
627 static int qemu_rdma_init_one_block(RAMBlock *rb, void *opaque)
629 const char *block_name = qemu_ram_get_idstr(rb);
630 void *host_addr = qemu_ram_get_host_addr(rb);
631 ram_addr_t block_offset = qemu_ram_get_offset(rb);
632 ram_addr_t length = qemu_ram_get_used_length(rb);
633 return rdma_add_block(opaque, block_name, host_addr, block_offset, length);
637 * Identify the RAMBlocks and their quantity. They will be references to
638 * identify chunk boundaries inside each RAMBlock and also be referenced
639 * during dynamic page registration.
641 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
643 RDMALocalBlocks *local = &rdma->local_ram_blocks;
645 assert(rdma->blockmap == NULL);
646 memset(local, 0, sizeof *local);
647 foreach_not_ignored_block(qemu_rdma_init_one_block, rdma);
648 trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
649 rdma->dest_blocks = g_new0(RDMADestBlock,
650 rdma->local_ram_blocks.nb_blocks);
651 local->init = true;
652 return 0;
656 * Note: If used outside of cleanup, the caller must ensure that the destination
657 * block structures are also updated
659 static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
661 RDMALocalBlocks *local = &rdma->local_ram_blocks;
662 RDMALocalBlock *old = local->block;
663 int x;
665 if (rdma->blockmap) {
666 g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
668 if (block->pmr) {
669 int j;
671 for (j = 0; j < block->nb_chunks; j++) {
672 if (!block->pmr[j]) {
673 continue;
675 ibv_dereg_mr(block->pmr[j]);
676 rdma->total_registrations--;
678 g_free(block->pmr);
679 block->pmr = NULL;
682 if (block->mr) {
683 ibv_dereg_mr(block->mr);
684 rdma->total_registrations--;
685 block->mr = NULL;
688 g_free(block->transit_bitmap);
689 block->transit_bitmap = NULL;
691 g_free(block->unregister_bitmap);
692 block->unregister_bitmap = NULL;
694 g_free(block->remote_keys);
695 block->remote_keys = NULL;
697 g_free(block->block_name);
698 block->block_name = NULL;
700 if (rdma->blockmap) {
701 for (x = 0; x < local->nb_blocks; x++) {
702 g_hash_table_remove(rdma->blockmap,
703 (void *)(uintptr_t)old[x].offset);
707 if (local->nb_blocks > 1) {
709 local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
711 if (block->index) {
712 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
715 if (block->index < (local->nb_blocks - 1)) {
716 memcpy(local->block + block->index, old + (block->index + 1),
717 sizeof(RDMALocalBlock) *
718 (local->nb_blocks - (block->index + 1)));
719 for (x = block->index; x < local->nb_blocks - 1; x++) {
720 local->block[x].index--;
723 } else {
724 assert(block == local->block);
725 local->block = NULL;
728 trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
729 block->offset, block->length,
730 (uintptr_t)(block->local_host_addr + block->length),
731 BITS_TO_LONGS(block->nb_chunks) *
732 sizeof(unsigned long) * 8, block->nb_chunks);
734 g_free(old);
736 local->nb_blocks--;
738 if (local->nb_blocks && rdma->blockmap) {
739 for (x = 0; x < local->nb_blocks; x++) {
740 g_hash_table_insert(rdma->blockmap,
741 (void *)(uintptr_t)local->block[x].offset,
742 &local->block[x]);
746 return 0;
750 * Put in the log file which RDMA device was opened and the details
751 * associated with that device.
753 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
755 struct ibv_port_attr port;
757 if (ibv_query_port(verbs, 1, &port)) {
758 error_report("Failed to query port information");
759 return;
762 printf("%s RDMA Device opened: kernel name %s "
763 "uverbs device name %s, "
764 "infiniband_verbs class device path %s, "
765 "infiniband class device path %s, "
766 "transport: (%d) %s\n",
767 who,
768 verbs->device->name,
769 verbs->device->dev_name,
770 verbs->device->dev_path,
771 verbs->device->ibdev_path,
772 port.link_layer,
773 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
774 ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
775 ? "Ethernet" : "Unknown"));
779 * Put in the log file the RDMA gid addressing information,
780 * useful for folks who have trouble understanding the
781 * RDMA device hierarchy in the kernel.
783 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
785 char sgid[33];
786 char dgid[33];
787 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
788 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
789 trace_qemu_rdma_dump_gid(who, sgid, dgid);
793 * As of now, IPv6 over RoCE / iWARP is not supported by linux.
794 * We will try the next addrinfo struct, and fail if there are
795 * no other valid addresses to bind against.
797 * If user is listening on '[::]', then we will not have a opened a device
798 * yet and have no way of verifying if the device is RoCE or not.
800 * In this case, the source VM will throw an error for ALL types of
801 * connections (both IPv4 and IPv6) if the destination machine does not have
802 * a regular infiniband network available for use.
804 * The only way to guarantee that an error is thrown for broken kernels is
805 * for the management software to choose a *specific* interface at bind time
806 * and validate what time of hardware it is.
808 * Unfortunately, this puts the user in a fix:
810 * If the source VM connects with an IPv4 address without knowing that the
811 * destination has bound to '[::]' the migration will unconditionally fail
812 * unless the management software is explicitly listening on the IPv4
813 * address while using a RoCE-based device.
815 * If the source VM connects with an IPv6 address, then we're OK because we can
816 * throw an error on the source (and similarly on the destination).
818 * But in mixed environments, this will be broken for a while until it is fixed
819 * inside linux.
821 * We do provide a *tiny* bit of help in this function: We can list all of the
822 * devices in the system and check to see if all the devices are RoCE or
823 * Infiniband.
825 * If we detect that we have a *pure* RoCE environment, then we can safely
826 * thrown an error even if the management software has specified '[::]' as the
827 * bind address.
829 * However, if there is are multiple hetergeneous devices, then we cannot make
830 * this assumption and the user just has to be sure they know what they are
831 * doing.
833 * Patches are being reviewed on linux-rdma.
835 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
837 struct ibv_port_attr port_attr;
839 /* This bug only exists in linux, to our knowledge. */
840 #ifdef CONFIG_LINUX
843 * Verbs are only NULL if management has bound to '[::]'.
845 * Let's iterate through all the devices and see if there any pure IB
846 * devices (non-ethernet).
848 * If not, then we can safely proceed with the migration.
849 * Otherwise, there are no guarantees until the bug is fixed in linux.
851 if (!verbs) {
852 int num_devices, x;
853 struct ibv_device ** dev_list = ibv_get_device_list(&num_devices);
854 bool roce_found = false;
855 bool ib_found = false;
857 for (x = 0; x < num_devices; x++) {
858 verbs = ibv_open_device(dev_list[x]);
859 if (!verbs) {
860 if (errno == EPERM) {
861 continue;
862 } else {
863 return -EINVAL;
867 if (ibv_query_port(verbs, 1, &port_attr)) {
868 ibv_close_device(verbs);
869 ERROR(errp, "Could not query initial IB port");
870 return -EINVAL;
873 if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
874 ib_found = true;
875 } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
876 roce_found = true;
879 ibv_close_device(verbs);
883 if (roce_found) {
884 if (ib_found) {
885 fprintf(stderr, "WARN: migrations may fail:"
886 " IPv6 over RoCE / iWARP in linux"
887 " is broken. But since you appear to have a"
888 " mixed RoCE / IB environment, be sure to only"
889 " migrate over the IB fabric until the kernel "
890 " fixes the bug.\n");
891 } else {
892 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
893 " and your management software has specified '[::]'"
894 ", but IPv6 over RoCE / iWARP is not supported in Linux.");
895 return -ENONET;
899 return 0;
903 * If we have a verbs context, that means that some other than '[::]' was
904 * used by the management software for binding. In which case we can
905 * actually warn the user about a potentially broken kernel.
908 /* IB ports start with 1, not 0 */
909 if (ibv_query_port(verbs, 1, &port_attr)) {
910 ERROR(errp, "Could not query initial IB port");
911 return -EINVAL;
914 if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
915 ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
916 "(but patches on linux-rdma in progress)");
917 return -ENONET;
920 #endif
922 return 0;
926 * Figure out which RDMA device corresponds to the requested IP hostname
927 * Also create the initial connection manager identifiers for opening
928 * the connection.
930 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
932 int ret;
933 struct rdma_addrinfo *res;
934 char port_str[16];
935 struct rdma_cm_event *cm_event;
936 char ip[40] = "unknown";
937 struct rdma_addrinfo *e;
939 if (rdma->host == NULL || !strcmp(rdma->host, "")) {
940 ERROR(errp, "RDMA hostname has not been set");
941 return -EINVAL;
944 /* create CM channel */
945 rdma->channel = rdma_create_event_channel();
946 if (!rdma->channel) {
947 ERROR(errp, "could not create CM channel");
948 return -EINVAL;
951 /* create CM id */
952 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
953 if (ret) {
954 ERROR(errp, "could not create channel id");
955 goto err_resolve_create_id;
958 snprintf(port_str, 16, "%d", rdma->port);
959 port_str[15] = '\0';
961 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
962 if (ret < 0) {
963 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
964 goto err_resolve_get_addr;
967 for (e = res; e != NULL; e = e->ai_next) {
968 inet_ntop(e->ai_family,
969 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
970 trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
972 ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
973 RDMA_RESOLVE_TIMEOUT_MS);
974 if (!ret) {
975 if (e->ai_family == AF_INET6) {
976 ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs, errp);
977 if (ret) {
978 continue;
981 goto route;
985 ERROR(errp, "could not resolve address %s", rdma->host);
986 goto err_resolve_get_addr;
988 route:
989 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
991 ret = rdma_get_cm_event(rdma->channel, &cm_event);
992 if (ret) {
993 ERROR(errp, "could not perform event_addr_resolved");
994 goto err_resolve_get_addr;
997 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
998 ERROR(errp, "result not equal to event_addr_resolved %s",
999 rdma_event_str(cm_event->event));
1000 perror("rdma_resolve_addr");
1001 rdma_ack_cm_event(cm_event);
1002 ret = -EINVAL;
1003 goto err_resolve_get_addr;
1005 rdma_ack_cm_event(cm_event);
1007 /* resolve route */
1008 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1009 if (ret) {
1010 ERROR(errp, "could not resolve rdma route");
1011 goto err_resolve_get_addr;
1014 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1015 if (ret) {
1016 ERROR(errp, "could not perform event_route_resolved");
1017 goto err_resolve_get_addr;
1019 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1020 ERROR(errp, "result not equal to event_route_resolved: %s",
1021 rdma_event_str(cm_event->event));
1022 rdma_ack_cm_event(cm_event);
1023 ret = -EINVAL;
1024 goto err_resolve_get_addr;
1026 rdma_ack_cm_event(cm_event);
1027 rdma->verbs = rdma->cm_id->verbs;
1028 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1029 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1030 return 0;
1032 err_resolve_get_addr:
1033 rdma_destroy_id(rdma->cm_id);
1034 rdma->cm_id = NULL;
1035 err_resolve_create_id:
1036 rdma_destroy_event_channel(rdma->channel);
1037 rdma->channel = NULL;
1038 return ret;
1042 * Create protection domain and completion queues
1044 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1046 /* allocate pd */
1047 rdma->pd = ibv_alloc_pd(rdma->verbs);
1048 if (!rdma->pd) {
1049 error_report("failed to allocate protection domain");
1050 return -1;
1053 /* create completion channel */
1054 rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
1055 if (!rdma->comp_channel) {
1056 error_report("failed to allocate completion channel");
1057 goto err_alloc_pd_cq;
1061 * Completion queue can be filled by both read and write work requests,
1062 * so must reflect the sum of both possible queue sizes.
1064 rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1065 NULL, rdma->comp_channel, 0);
1066 if (!rdma->cq) {
1067 error_report("failed to allocate completion queue");
1068 goto err_alloc_pd_cq;
1071 return 0;
1073 err_alloc_pd_cq:
1074 if (rdma->pd) {
1075 ibv_dealloc_pd(rdma->pd);
1077 if (rdma->comp_channel) {
1078 ibv_destroy_comp_channel(rdma->comp_channel);
1080 rdma->pd = NULL;
1081 rdma->comp_channel = NULL;
1082 return -1;
1087 * Create queue pairs.
1089 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1091 struct ibv_qp_init_attr attr = { 0 };
1092 int ret;
1094 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1095 attr.cap.max_recv_wr = 3;
1096 attr.cap.max_send_sge = 1;
1097 attr.cap.max_recv_sge = 1;
1098 attr.send_cq = rdma->cq;
1099 attr.recv_cq = rdma->cq;
1100 attr.qp_type = IBV_QPT_RC;
1102 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1103 if (ret) {
1104 return -1;
1107 rdma->qp = rdma->cm_id->qp;
1108 return 0;
1111 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1113 int i;
1114 RDMALocalBlocks *local = &rdma->local_ram_blocks;
1116 for (i = 0; i < local->nb_blocks; i++) {
1117 local->block[i].mr =
1118 ibv_reg_mr(rdma->pd,
1119 local->block[i].local_host_addr,
1120 local->block[i].length,
1121 IBV_ACCESS_LOCAL_WRITE |
1122 IBV_ACCESS_REMOTE_WRITE
1124 if (!local->block[i].mr) {
1125 perror("Failed to register local dest ram block!\n");
1126 break;
1128 rdma->total_registrations++;
1131 if (i >= local->nb_blocks) {
1132 return 0;
1135 for (i--; i >= 0; i--) {
1136 ibv_dereg_mr(local->block[i].mr);
1137 rdma->total_registrations--;
1140 return -1;
1145 * Find the ram block that corresponds to the page requested to be
1146 * transmitted by QEMU.
1148 * Once the block is found, also identify which 'chunk' within that
1149 * block that the page belongs to.
1151 * This search cannot fail or the migration will fail.
1153 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1154 uintptr_t block_offset,
1155 uint64_t offset,
1156 uint64_t length,
1157 uint64_t *block_index,
1158 uint64_t *chunk_index)
1160 uint64_t current_addr = block_offset + offset;
1161 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1162 (void *) block_offset);
1163 assert(block);
1164 assert(current_addr >= block->offset);
1165 assert((current_addr + length) <= (block->offset + block->length));
1167 *block_index = block->index;
1168 *chunk_index = ram_chunk_index(block->local_host_addr,
1169 block->local_host_addr + (current_addr - block->offset));
1171 return 0;
1175 * Register a chunk with IB. If the chunk was already registered
1176 * previously, then skip.
1178 * Also return the keys associated with the registration needed
1179 * to perform the actual RDMA operation.
1181 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1182 RDMALocalBlock *block, uintptr_t host_addr,
1183 uint32_t *lkey, uint32_t *rkey, int chunk,
1184 uint8_t *chunk_start, uint8_t *chunk_end)
1186 if (block->mr) {
1187 if (lkey) {
1188 *lkey = block->mr->lkey;
1190 if (rkey) {
1191 *rkey = block->mr->rkey;
1193 return 0;
1196 /* allocate memory to store chunk MRs */
1197 if (!block->pmr) {
1198 block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1202 * If 'rkey', then we're the destination, so grant access to the source.
1204 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1206 if (!block->pmr[chunk]) {
1207 uint64_t len = chunk_end - chunk_start;
1209 trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1211 block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1212 chunk_start, len,
1213 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1214 IBV_ACCESS_REMOTE_WRITE) : 0));
1216 if (!block->pmr[chunk]) {
1217 perror("Failed to register chunk!");
1218 fprintf(stderr, "Chunk details: block: %d chunk index %d"
1219 " start %" PRIuPTR " end %" PRIuPTR
1220 " host %" PRIuPTR
1221 " local %" PRIuPTR " registrations: %d\n",
1222 block->index, chunk, (uintptr_t)chunk_start,
1223 (uintptr_t)chunk_end, host_addr,
1224 (uintptr_t)block->local_host_addr,
1225 rdma->total_registrations);
1226 return -1;
1228 rdma->total_registrations++;
1231 if (lkey) {
1232 *lkey = block->pmr[chunk]->lkey;
1234 if (rkey) {
1235 *rkey = block->pmr[chunk]->rkey;
1237 return 0;
1241 * Register (at connection time) the memory used for control
1242 * channel messages.
1244 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1246 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1247 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1248 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1249 if (rdma->wr_data[idx].control_mr) {
1250 rdma->total_registrations++;
1251 return 0;
1253 error_report("qemu_rdma_reg_control failed");
1254 return -1;
1257 const char *print_wrid(int wrid)
1259 if (wrid >= RDMA_WRID_RECV_CONTROL) {
1260 return wrid_desc[RDMA_WRID_RECV_CONTROL];
1262 return wrid_desc[wrid];
1266 * RDMA requires memory registration (mlock/pinning), but this is not good for
1267 * overcommitment.
1269 * In preparation for the future where LRU information or workload-specific
1270 * writable writable working set memory access behavior is available to QEMU
1271 * it would be nice to have in place the ability to UN-register/UN-pin
1272 * particular memory regions from the RDMA hardware when it is determine that
1273 * those regions of memory will likely not be accessed again in the near future.
1275 * While we do not yet have such information right now, the following
1276 * compile-time option allows us to perform a non-optimized version of this
1277 * behavior.
1279 * By uncommenting this option, you will cause *all* RDMA transfers to be
1280 * unregistered immediately after the transfer completes on both sides of the
1281 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1283 * This will have a terrible impact on migration performance, so until future
1284 * workload information or LRU information is available, do not attempt to use
1285 * this feature except for basic testing.
1287 //#define RDMA_UNREGISTRATION_EXAMPLE
1290 * Perform a non-optimized memory unregistration after every transfer
1291 * for demonstration purposes, only if pin-all is not requested.
1293 * Potential optimizations:
1294 * 1. Start a new thread to run this function continuously
1295 - for bit clearing
1296 - and for receipt of unregister messages
1297 * 2. Use an LRU.
1298 * 3. Use workload hints.
1300 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1302 while (rdma->unregistrations[rdma->unregister_current]) {
1303 int ret;
1304 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1305 uint64_t chunk =
1306 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1307 uint64_t index =
1308 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1309 RDMALocalBlock *block =
1310 &(rdma->local_ram_blocks.block[index]);
1311 RDMARegister reg = { .current_index = index };
1312 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1314 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1315 .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1316 .repeat = 1,
1319 trace_qemu_rdma_unregister_waiting_proc(chunk,
1320 rdma->unregister_current);
1322 rdma->unregistrations[rdma->unregister_current] = 0;
1323 rdma->unregister_current++;
1325 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1326 rdma->unregister_current = 0;
1331 * Unregistration is speculative (because migration is single-threaded
1332 * and we cannot break the protocol's inifinband message ordering).
1333 * Thus, if the memory is currently being used for transmission,
1334 * then abort the attempt to unregister and try again
1335 * later the next time a completion is received for this memory.
1337 clear_bit(chunk, block->unregister_bitmap);
1339 if (test_bit(chunk, block->transit_bitmap)) {
1340 trace_qemu_rdma_unregister_waiting_inflight(chunk);
1341 continue;
1344 trace_qemu_rdma_unregister_waiting_send(chunk);
1346 ret = ibv_dereg_mr(block->pmr[chunk]);
1347 block->pmr[chunk] = NULL;
1348 block->remote_keys[chunk] = 0;
1350 if (ret != 0) {
1351 perror("unregistration chunk failed");
1352 return -ret;
1354 rdma->total_registrations--;
1356 reg.key.chunk = chunk;
1357 register_to_network(rdma, &reg);
1358 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1359 &resp, NULL, NULL);
1360 if (ret < 0) {
1361 return ret;
1364 trace_qemu_rdma_unregister_waiting_complete(chunk);
1367 return 0;
1370 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1371 uint64_t chunk)
1373 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1375 result |= (index << RDMA_WRID_BLOCK_SHIFT);
1376 result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1378 return result;
1382 * Set bit for unregistration in the next iteration.
1383 * We cannot transmit right here, but will unpin later.
1385 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1386 uint64_t chunk, uint64_t wr_id)
1388 if (rdma->unregistrations[rdma->unregister_next] != 0) {
1389 error_report("rdma migration: queue is full");
1390 } else {
1391 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1393 if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1394 trace_qemu_rdma_signal_unregister_append(chunk,
1395 rdma->unregister_next);
1397 rdma->unregistrations[rdma->unregister_next++] =
1398 qemu_rdma_make_wrid(wr_id, index, chunk);
1400 if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1401 rdma->unregister_next = 0;
1403 } else {
1404 trace_qemu_rdma_signal_unregister_already(chunk);
1410 * Consult the connection manager to see a work request
1411 * (of any kind) has completed.
1412 * Return the work request ID that completed.
1414 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1415 uint32_t *byte_len)
1417 int ret;
1418 struct ibv_wc wc;
1419 uint64_t wr_id;
1421 ret = ibv_poll_cq(rdma->cq, 1, &wc);
1423 if (!ret) {
1424 *wr_id_out = RDMA_WRID_NONE;
1425 return 0;
1428 if (ret < 0) {
1429 error_report("ibv_poll_cq return %d", ret);
1430 return ret;
1433 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1435 if (wc.status != IBV_WC_SUCCESS) {
1436 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1437 wc.status, ibv_wc_status_str(wc.status));
1438 fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1440 return -1;
1443 if (rdma->control_ready_expected &&
1444 (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1445 trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1446 wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1447 rdma->control_ready_expected = 0;
1450 if (wr_id == RDMA_WRID_RDMA_WRITE) {
1451 uint64_t chunk =
1452 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1453 uint64_t index =
1454 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1455 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1457 trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1458 index, chunk, block->local_host_addr,
1459 (void *)(uintptr_t)block->remote_host_addr);
1461 clear_bit(chunk, block->transit_bitmap);
1463 if (rdma->nb_sent > 0) {
1464 rdma->nb_sent--;
1467 if (!rdma->pin_all) {
1469 * FYI: If one wanted to signal a specific chunk to be unregistered
1470 * using LRU or workload-specific information, this is the function
1471 * you would call to do so. That chunk would then get asynchronously
1472 * unregistered later.
1474 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1475 qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1476 #endif
1478 } else {
1479 trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1482 *wr_id_out = wc.wr_id;
1483 if (byte_len) {
1484 *byte_len = wc.byte_len;
1487 return 0;
1490 /* Wait for activity on the completion channel.
1491 * Returns 0 on success, none-0 on error.
1493 static int qemu_rdma_wait_comp_channel(RDMAContext *rdma)
1495 struct rdma_cm_event *cm_event;
1496 int ret = -1;
1499 * Coroutine doesn't start until migration_fd_process_incoming()
1500 * so don't yield unless we know we're running inside of a coroutine.
1502 if (rdma->migration_started_on_destination &&
1503 migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) {
1504 yield_until_fd_readable(rdma->comp_channel->fd);
1505 } else {
1506 /* This is the source side, we're in a separate thread
1507 * or destination prior to migration_fd_process_incoming()
1508 * after postcopy, the destination also in a seprate thread.
1509 * we can't yield; so we have to poll the fd.
1510 * But we need to be able to handle 'cancel' or an error
1511 * without hanging forever.
1513 while (!rdma->error_state && !rdma->received_error) {
1514 GPollFD pfds[2];
1515 pfds[0].fd = rdma->comp_channel->fd;
1516 pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1517 pfds[0].revents = 0;
1519 pfds[1].fd = rdma->channel->fd;
1520 pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1521 pfds[1].revents = 0;
1523 /* 0.1s timeout, should be fine for a 'cancel' */
1524 switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) {
1525 case 2:
1526 case 1: /* fd active */
1527 if (pfds[0].revents) {
1528 return 0;
1531 if (pfds[1].revents) {
1532 ret = rdma_get_cm_event(rdma->channel, &cm_event);
1533 if (!ret) {
1534 rdma_ack_cm_event(cm_event);
1537 error_report("receive cm event while wait comp channel,"
1538 "cm event is %d", cm_event->event);
1539 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
1540 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
1541 return -EPIPE;
1544 break;
1546 case 0: /* Timeout, go around again */
1547 break;
1549 default: /* Error of some type -
1550 * I don't trust errno from qemu_poll_ns
1552 error_report("%s: poll failed", __func__);
1553 return -EPIPE;
1556 if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1557 /* Bail out and let the cancellation happen */
1558 return -EPIPE;
1563 if (rdma->received_error) {
1564 return -EPIPE;
1566 return rdma->error_state;
1570 * Block until the next work request has completed.
1572 * First poll to see if a work request has already completed,
1573 * otherwise block.
1575 * If we encounter completed work requests for IDs other than
1576 * the one we're interested in, then that's generally an error.
1578 * The only exception is actual RDMA Write completions. These
1579 * completions only need to be recorded, but do not actually
1580 * need further processing.
1582 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1583 uint32_t *byte_len)
1585 int num_cq_events = 0, ret = 0;
1586 struct ibv_cq *cq;
1587 void *cq_ctx;
1588 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1590 if (ibv_req_notify_cq(rdma->cq, 0)) {
1591 return -1;
1593 /* poll cq first */
1594 while (wr_id != wrid_requested) {
1595 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1596 if (ret < 0) {
1597 return ret;
1600 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1602 if (wr_id == RDMA_WRID_NONE) {
1603 break;
1605 if (wr_id != wrid_requested) {
1606 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1607 wrid_requested, print_wrid(wr_id), wr_id);
1611 if (wr_id == wrid_requested) {
1612 return 0;
1615 while (1) {
1616 ret = qemu_rdma_wait_comp_channel(rdma);
1617 if (ret) {
1618 goto err_block_for_wrid;
1621 ret = ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx);
1622 if (ret) {
1623 perror("ibv_get_cq_event");
1624 goto err_block_for_wrid;
1627 num_cq_events++;
1629 ret = -ibv_req_notify_cq(cq, 0);
1630 if (ret) {
1631 goto err_block_for_wrid;
1634 while (wr_id != wrid_requested) {
1635 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1636 if (ret < 0) {
1637 goto err_block_for_wrid;
1640 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1642 if (wr_id == RDMA_WRID_NONE) {
1643 break;
1645 if (wr_id != wrid_requested) {
1646 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1647 wrid_requested, print_wrid(wr_id), wr_id);
1651 if (wr_id == wrid_requested) {
1652 goto success_block_for_wrid;
1656 success_block_for_wrid:
1657 if (num_cq_events) {
1658 ibv_ack_cq_events(cq, num_cq_events);
1660 return 0;
1662 err_block_for_wrid:
1663 if (num_cq_events) {
1664 ibv_ack_cq_events(cq, num_cq_events);
1667 rdma->error_state = ret;
1668 return ret;
1672 * Post a SEND message work request for the control channel
1673 * containing some data and block until the post completes.
1675 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1676 RDMAControlHeader *head)
1678 int ret = 0;
1679 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1680 struct ibv_send_wr *bad_wr;
1681 struct ibv_sge sge = {
1682 .addr = (uintptr_t)(wr->control),
1683 .length = head->len + sizeof(RDMAControlHeader),
1684 .lkey = wr->control_mr->lkey,
1686 struct ibv_send_wr send_wr = {
1687 .wr_id = RDMA_WRID_SEND_CONTROL,
1688 .opcode = IBV_WR_SEND,
1689 .send_flags = IBV_SEND_SIGNALED,
1690 .sg_list = &sge,
1691 .num_sge = 1,
1694 trace_qemu_rdma_post_send_control(control_desc(head->type));
1697 * We don't actually need to do a memcpy() in here if we used
1698 * the "sge" properly, but since we're only sending control messages
1699 * (not RAM in a performance-critical path), then its OK for now.
1701 * The copy makes the RDMAControlHeader simpler to manipulate
1702 * for the time being.
1704 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1705 memcpy(wr->control, head, sizeof(RDMAControlHeader));
1706 control_to_network((void *) wr->control);
1708 if (buf) {
1709 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1713 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1715 if (ret > 0) {
1716 error_report("Failed to use post IB SEND for control");
1717 return -ret;
1720 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1721 if (ret < 0) {
1722 error_report("rdma migration: send polling control error");
1725 return ret;
1729 * Post a RECV work request in anticipation of some future receipt
1730 * of data on the control channel.
1732 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1734 struct ibv_recv_wr *bad_wr;
1735 struct ibv_sge sge = {
1736 .addr = (uintptr_t)(rdma->wr_data[idx].control),
1737 .length = RDMA_CONTROL_MAX_BUFFER,
1738 .lkey = rdma->wr_data[idx].control_mr->lkey,
1741 struct ibv_recv_wr recv_wr = {
1742 .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1743 .sg_list = &sge,
1744 .num_sge = 1,
1748 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1749 return -1;
1752 return 0;
1756 * Block and wait for a RECV control channel message to arrive.
1758 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1759 RDMAControlHeader *head, int expecting, int idx)
1761 uint32_t byte_len;
1762 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1763 &byte_len);
1765 if (ret < 0) {
1766 error_report("rdma migration: recv polling control error!");
1767 return ret;
1770 network_to_control((void *) rdma->wr_data[idx].control);
1771 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1773 trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1775 if (expecting == RDMA_CONTROL_NONE) {
1776 trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1777 head->type);
1778 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1779 error_report("Was expecting a %s (%d) control message"
1780 ", but got: %s (%d), length: %d",
1781 control_desc(expecting), expecting,
1782 control_desc(head->type), head->type, head->len);
1783 if (head->type == RDMA_CONTROL_ERROR) {
1784 rdma->received_error = true;
1786 return -EIO;
1788 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1789 error_report("too long length: %d", head->len);
1790 return -EINVAL;
1792 if (sizeof(*head) + head->len != byte_len) {
1793 error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1794 return -EINVAL;
1797 return 0;
1801 * When a RECV work request has completed, the work request's
1802 * buffer is pointed at the header.
1804 * This will advance the pointer to the data portion
1805 * of the control message of the work request's buffer that
1806 * was populated after the work request finished.
1808 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1809 RDMAControlHeader *head)
1811 rdma->wr_data[idx].control_len = head->len;
1812 rdma->wr_data[idx].control_curr =
1813 rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1817 * This is an 'atomic' high-level operation to deliver a single, unified
1818 * control-channel message.
1820 * Additionally, if the user is expecting some kind of reply to this message,
1821 * they can request a 'resp' response message be filled in by posting an
1822 * additional work request on behalf of the user and waiting for an additional
1823 * completion.
1825 * The extra (optional) response is used during registration to us from having
1826 * to perform an *additional* exchange of message just to provide a response by
1827 * instead piggy-backing on the acknowledgement.
1829 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1830 uint8_t *data, RDMAControlHeader *resp,
1831 int *resp_idx,
1832 int (*callback)(RDMAContext *rdma))
1834 int ret = 0;
1837 * Wait until the dest is ready before attempting to deliver the message
1838 * by waiting for a READY message.
1840 if (rdma->control_ready_expected) {
1841 RDMAControlHeader resp;
1842 ret = qemu_rdma_exchange_get_response(rdma,
1843 &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1844 if (ret < 0) {
1845 return ret;
1850 * If the user is expecting a response, post a WR in anticipation of it.
1852 if (resp) {
1853 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1854 if (ret) {
1855 error_report("rdma migration: error posting"
1856 " extra control recv for anticipated result!");
1857 return ret;
1862 * Post a WR to replace the one we just consumed for the READY message.
1864 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1865 if (ret) {
1866 error_report("rdma migration: error posting first control recv!");
1867 return ret;
1871 * Deliver the control message that was requested.
1873 ret = qemu_rdma_post_send_control(rdma, data, head);
1875 if (ret < 0) {
1876 error_report("Failed to send control buffer!");
1877 return ret;
1881 * If we're expecting a response, block and wait for it.
1883 if (resp) {
1884 if (callback) {
1885 trace_qemu_rdma_exchange_send_issue_callback();
1886 ret = callback(rdma);
1887 if (ret < 0) {
1888 return ret;
1892 trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
1893 ret = qemu_rdma_exchange_get_response(rdma, resp,
1894 resp->type, RDMA_WRID_DATA);
1896 if (ret < 0) {
1897 return ret;
1900 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1901 if (resp_idx) {
1902 *resp_idx = RDMA_WRID_DATA;
1904 trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
1907 rdma->control_ready_expected = 1;
1909 return 0;
1913 * This is an 'atomic' high-level operation to receive a single, unified
1914 * control-channel message.
1916 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1917 int expecting)
1919 RDMAControlHeader ready = {
1920 .len = 0,
1921 .type = RDMA_CONTROL_READY,
1922 .repeat = 1,
1924 int ret;
1927 * Inform the source that we're ready to receive a message.
1929 ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1931 if (ret < 0) {
1932 error_report("Failed to send control buffer!");
1933 return ret;
1937 * Block and wait for the message.
1939 ret = qemu_rdma_exchange_get_response(rdma, head,
1940 expecting, RDMA_WRID_READY);
1942 if (ret < 0) {
1943 return ret;
1946 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1949 * Post a new RECV work request to replace the one we just consumed.
1951 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1952 if (ret) {
1953 error_report("rdma migration: error posting second control recv!");
1954 return ret;
1957 return 0;
1961 * Write an actual chunk of memory using RDMA.
1963 * If we're using dynamic registration on the dest-side, we have to
1964 * send a registration command first.
1966 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1967 int current_index, uint64_t current_addr,
1968 uint64_t length)
1970 struct ibv_sge sge;
1971 struct ibv_send_wr send_wr = { 0 };
1972 struct ibv_send_wr *bad_wr;
1973 int reg_result_idx, ret, count = 0;
1974 uint64_t chunk, chunks;
1975 uint8_t *chunk_start, *chunk_end;
1976 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1977 RDMARegister reg;
1978 RDMARegisterResult *reg_result;
1979 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1980 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1981 .type = RDMA_CONTROL_REGISTER_REQUEST,
1982 .repeat = 1,
1985 retry:
1986 sge.addr = (uintptr_t)(block->local_host_addr +
1987 (current_addr - block->offset));
1988 sge.length = length;
1990 chunk = ram_chunk_index(block->local_host_addr,
1991 (uint8_t *)(uintptr_t)sge.addr);
1992 chunk_start = ram_chunk_start(block, chunk);
1994 if (block->is_ram_block) {
1995 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
1997 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1998 chunks--;
2000 } else {
2001 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
2003 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2004 chunks--;
2008 trace_qemu_rdma_write_one_top(chunks + 1,
2009 (chunks + 1) *
2010 (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
2012 chunk_end = ram_chunk_end(block, chunk + chunks);
2014 if (!rdma->pin_all) {
2015 #ifdef RDMA_UNREGISTRATION_EXAMPLE
2016 qemu_rdma_unregister_waiting(rdma);
2017 #endif
2020 while (test_bit(chunk, block->transit_bitmap)) {
2021 (void)count;
2022 trace_qemu_rdma_write_one_block(count++, current_index, chunk,
2023 sge.addr, length, rdma->nb_sent, block->nb_chunks);
2025 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2027 if (ret < 0) {
2028 error_report("Failed to Wait for previous write to complete "
2029 "block %d chunk %" PRIu64
2030 " current %" PRIu64 " len %" PRIu64 " %d",
2031 current_index, chunk, sge.addr, length, rdma->nb_sent);
2032 return ret;
2036 if (!rdma->pin_all || !block->is_ram_block) {
2037 if (!block->remote_keys[chunk]) {
2039 * This chunk has not yet been registered, so first check to see
2040 * if the entire chunk is zero. If so, tell the other size to
2041 * memset() + madvise() the entire chunk without RDMA.
2044 if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2045 RDMACompress comp = {
2046 .offset = current_addr,
2047 .value = 0,
2048 .block_idx = current_index,
2049 .length = length,
2052 head.len = sizeof(comp);
2053 head.type = RDMA_CONTROL_COMPRESS;
2055 trace_qemu_rdma_write_one_zero(chunk, sge.length,
2056 current_index, current_addr);
2058 compress_to_network(rdma, &comp);
2059 ret = qemu_rdma_exchange_send(rdma, &head,
2060 (uint8_t *) &comp, NULL, NULL, NULL);
2062 if (ret < 0) {
2063 return -EIO;
2066 acct_update_position(f, sge.length, true);
2068 return 1;
2072 * Otherwise, tell other side to register.
2074 reg.current_index = current_index;
2075 if (block->is_ram_block) {
2076 reg.key.current_addr = current_addr;
2077 } else {
2078 reg.key.chunk = chunk;
2080 reg.chunks = chunks;
2082 trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2083 current_addr);
2085 register_to_network(rdma, &reg);
2086 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2087 &resp, &reg_result_idx, NULL);
2088 if (ret < 0) {
2089 return ret;
2092 /* try to overlap this single registration with the one we sent. */
2093 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2094 &sge.lkey, NULL, chunk,
2095 chunk_start, chunk_end)) {
2096 error_report("cannot get lkey");
2097 return -EINVAL;
2100 reg_result = (RDMARegisterResult *)
2101 rdma->wr_data[reg_result_idx].control_curr;
2103 network_to_result(reg_result);
2105 trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2106 reg_result->rkey, chunk);
2108 block->remote_keys[chunk] = reg_result->rkey;
2109 block->remote_host_addr = reg_result->host_addr;
2110 } else {
2111 /* already registered before */
2112 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2113 &sge.lkey, NULL, chunk,
2114 chunk_start, chunk_end)) {
2115 error_report("cannot get lkey!");
2116 return -EINVAL;
2120 send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2121 } else {
2122 send_wr.wr.rdma.rkey = block->remote_rkey;
2124 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2125 &sge.lkey, NULL, chunk,
2126 chunk_start, chunk_end)) {
2127 error_report("cannot get lkey!");
2128 return -EINVAL;
2133 * Encode the ram block index and chunk within this wrid.
2134 * We will use this information at the time of completion
2135 * to figure out which bitmap to check against and then which
2136 * chunk in the bitmap to look for.
2138 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2139 current_index, chunk);
2141 send_wr.opcode = IBV_WR_RDMA_WRITE;
2142 send_wr.send_flags = IBV_SEND_SIGNALED;
2143 send_wr.sg_list = &sge;
2144 send_wr.num_sge = 1;
2145 send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2146 (current_addr - block->offset);
2148 trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2149 sge.length);
2152 * ibv_post_send() does not return negative error numbers,
2153 * per the specification they are positive - no idea why.
2155 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2157 if (ret == ENOMEM) {
2158 trace_qemu_rdma_write_one_queue_full();
2159 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2160 if (ret < 0) {
2161 error_report("rdma migration: failed to make "
2162 "room in full send queue! %d", ret);
2163 return ret;
2166 goto retry;
2168 } else if (ret > 0) {
2169 perror("rdma migration: post rdma write failed");
2170 return -ret;
2173 set_bit(chunk, block->transit_bitmap);
2174 acct_update_position(f, sge.length, false);
2175 rdma->total_writes++;
2177 return 0;
2181 * Push out any unwritten RDMA operations.
2183 * We support sending out multiple chunks at the same time.
2184 * Not all of them need to get signaled in the completion queue.
2186 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2188 int ret;
2190 if (!rdma->current_length) {
2191 return 0;
2194 ret = qemu_rdma_write_one(f, rdma,
2195 rdma->current_index, rdma->current_addr, rdma->current_length);
2197 if (ret < 0) {
2198 return ret;
2201 if (ret == 0) {
2202 rdma->nb_sent++;
2203 trace_qemu_rdma_write_flush(rdma->nb_sent);
2206 rdma->current_length = 0;
2207 rdma->current_addr = 0;
2209 return 0;
2212 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2213 uint64_t offset, uint64_t len)
2215 RDMALocalBlock *block;
2216 uint8_t *host_addr;
2217 uint8_t *chunk_end;
2219 if (rdma->current_index < 0) {
2220 return 0;
2223 if (rdma->current_chunk < 0) {
2224 return 0;
2227 block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2228 host_addr = block->local_host_addr + (offset - block->offset);
2229 chunk_end = ram_chunk_end(block, rdma->current_chunk);
2231 if (rdma->current_length == 0) {
2232 return 0;
2236 * Only merge into chunk sequentially.
2238 if (offset != (rdma->current_addr + rdma->current_length)) {
2239 return 0;
2242 if (offset < block->offset) {
2243 return 0;
2246 if ((offset + len) > (block->offset + block->length)) {
2247 return 0;
2250 if ((host_addr + len) > chunk_end) {
2251 return 0;
2254 return 1;
2258 * We're not actually writing here, but doing three things:
2260 * 1. Identify the chunk the buffer belongs to.
2261 * 2. If the chunk is full or the buffer doesn't belong to the current
2262 * chunk, then start a new chunk and flush() the old chunk.
2263 * 3. To keep the hardware busy, we also group chunks into batches
2264 * and only require that a batch gets acknowledged in the completion
2265 * qeueue instead of each individual chunk.
2267 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2268 uint64_t block_offset, uint64_t offset,
2269 uint64_t len)
2271 uint64_t current_addr = block_offset + offset;
2272 uint64_t index = rdma->current_index;
2273 uint64_t chunk = rdma->current_chunk;
2274 int ret;
2276 /* If we cannot merge it, we flush the current buffer first. */
2277 if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2278 ret = qemu_rdma_write_flush(f, rdma);
2279 if (ret) {
2280 return ret;
2282 rdma->current_length = 0;
2283 rdma->current_addr = current_addr;
2285 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2286 offset, len, &index, &chunk);
2287 if (ret) {
2288 error_report("ram block search failed");
2289 return ret;
2291 rdma->current_index = index;
2292 rdma->current_chunk = chunk;
2295 /* merge it */
2296 rdma->current_length += len;
2298 /* flush it if buffer is too large */
2299 if (rdma->current_length >= RDMA_MERGE_MAX) {
2300 return qemu_rdma_write_flush(f, rdma);
2303 return 0;
2306 static void qemu_rdma_cleanup(RDMAContext *rdma)
2308 int idx;
2310 if (rdma->cm_id && rdma->connected) {
2311 if ((rdma->error_state ||
2312 migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2313 !rdma->received_error) {
2314 RDMAControlHeader head = { .len = 0,
2315 .type = RDMA_CONTROL_ERROR,
2316 .repeat = 1,
2318 error_report("Early error. Sending error.");
2319 qemu_rdma_post_send_control(rdma, NULL, &head);
2322 rdma_disconnect(rdma->cm_id);
2323 trace_qemu_rdma_cleanup_disconnect();
2324 rdma->connected = false;
2327 if (rdma->channel) {
2328 qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2330 g_free(rdma->dest_blocks);
2331 rdma->dest_blocks = NULL;
2333 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2334 if (rdma->wr_data[idx].control_mr) {
2335 rdma->total_registrations--;
2336 ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2338 rdma->wr_data[idx].control_mr = NULL;
2341 if (rdma->local_ram_blocks.block) {
2342 while (rdma->local_ram_blocks.nb_blocks) {
2343 rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2347 if (rdma->qp) {
2348 rdma_destroy_qp(rdma->cm_id);
2349 rdma->qp = NULL;
2351 if (rdma->cq) {
2352 ibv_destroy_cq(rdma->cq);
2353 rdma->cq = NULL;
2355 if (rdma->comp_channel) {
2356 ibv_destroy_comp_channel(rdma->comp_channel);
2357 rdma->comp_channel = NULL;
2359 if (rdma->pd) {
2360 ibv_dealloc_pd(rdma->pd);
2361 rdma->pd = NULL;
2363 if (rdma->cm_id) {
2364 rdma_destroy_id(rdma->cm_id);
2365 rdma->cm_id = NULL;
2368 /* the destination side, listen_id and channel is shared */
2369 if (rdma->listen_id) {
2370 if (!rdma->is_return_path) {
2371 rdma_destroy_id(rdma->listen_id);
2373 rdma->listen_id = NULL;
2375 if (rdma->channel) {
2376 if (!rdma->is_return_path) {
2377 rdma_destroy_event_channel(rdma->channel);
2379 rdma->channel = NULL;
2383 if (rdma->channel) {
2384 rdma_destroy_event_channel(rdma->channel);
2385 rdma->channel = NULL;
2387 g_free(rdma->host);
2388 rdma->host = NULL;
2392 static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2394 int ret, idx;
2395 Error *local_err = NULL, **temp = &local_err;
2398 * Will be validated against destination's actual capabilities
2399 * after the connect() completes.
2401 rdma->pin_all = pin_all;
2403 ret = qemu_rdma_resolve_host(rdma, temp);
2404 if (ret) {
2405 goto err_rdma_source_init;
2408 ret = qemu_rdma_alloc_pd_cq(rdma);
2409 if (ret) {
2410 ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2411 " limits may be too low. Please check $ ulimit -a # and "
2412 "search for 'ulimit -l' in the output");
2413 goto err_rdma_source_init;
2416 ret = qemu_rdma_alloc_qp(rdma);
2417 if (ret) {
2418 ERROR(temp, "rdma migration: error allocating qp!");
2419 goto err_rdma_source_init;
2422 ret = qemu_rdma_init_ram_blocks(rdma);
2423 if (ret) {
2424 ERROR(temp, "rdma migration: error initializing ram blocks!");
2425 goto err_rdma_source_init;
2428 /* Build the hash that maps from offset to RAMBlock */
2429 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2430 for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2431 g_hash_table_insert(rdma->blockmap,
2432 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2433 &rdma->local_ram_blocks.block[idx]);
2436 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2437 ret = qemu_rdma_reg_control(rdma, idx);
2438 if (ret) {
2439 ERROR(temp, "rdma migration: error registering %d control!",
2440 idx);
2441 goto err_rdma_source_init;
2445 return 0;
2447 err_rdma_source_init:
2448 error_propagate(errp, local_err);
2449 qemu_rdma_cleanup(rdma);
2450 return -1;
2453 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
2455 RDMACapabilities cap = {
2456 .version = RDMA_CONTROL_VERSION_CURRENT,
2457 .flags = 0,
2459 struct rdma_conn_param conn_param = { .initiator_depth = 2,
2460 .retry_count = 5,
2461 .private_data = &cap,
2462 .private_data_len = sizeof(cap),
2464 struct rdma_cm_event *cm_event;
2465 int ret;
2468 * Only negotiate the capability with destination if the user
2469 * on the source first requested the capability.
2471 if (rdma->pin_all) {
2472 trace_qemu_rdma_connect_pin_all_requested();
2473 cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2476 caps_to_network(&cap);
2478 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2479 if (ret) {
2480 ERROR(errp, "posting second control recv");
2481 goto err_rdma_source_connect;
2484 ret = rdma_connect(rdma->cm_id, &conn_param);
2485 if (ret) {
2486 perror("rdma_connect");
2487 ERROR(errp, "connecting to destination!");
2488 goto err_rdma_source_connect;
2491 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2492 if (ret) {
2493 perror("rdma_get_cm_event after rdma_connect");
2494 ERROR(errp, "connecting to destination!");
2495 rdma_ack_cm_event(cm_event);
2496 goto err_rdma_source_connect;
2499 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2500 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2501 ERROR(errp, "connecting to destination!");
2502 rdma_ack_cm_event(cm_event);
2503 goto err_rdma_source_connect;
2505 rdma->connected = true;
2507 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2508 network_to_caps(&cap);
2511 * Verify that the *requested* capabilities are supported by the destination
2512 * and disable them otherwise.
2514 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2515 ERROR(errp, "Server cannot support pinning all memory. "
2516 "Will register memory dynamically.");
2517 rdma->pin_all = false;
2520 trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2522 rdma_ack_cm_event(cm_event);
2524 rdma->control_ready_expected = 1;
2525 rdma->nb_sent = 0;
2526 return 0;
2528 err_rdma_source_connect:
2529 qemu_rdma_cleanup(rdma);
2530 return -1;
2533 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2535 int ret, idx;
2536 struct rdma_cm_id *listen_id;
2537 char ip[40] = "unknown";
2538 struct rdma_addrinfo *res, *e;
2539 char port_str[16];
2541 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2542 rdma->wr_data[idx].control_len = 0;
2543 rdma->wr_data[idx].control_curr = NULL;
2546 if (!rdma->host || !rdma->host[0]) {
2547 ERROR(errp, "RDMA host is not set!");
2548 rdma->error_state = -EINVAL;
2549 return -1;
2551 /* create CM channel */
2552 rdma->channel = rdma_create_event_channel();
2553 if (!rdma->channel) {
2554 ERROR(errp, "could not create rdma event channel");
2555 rdma->error_state = -EINVAL;
2556 return -1;
2559 /* create CM id */
2560 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2561 if (ret) {
2562 ERROR(errp, "could not create cm_id!");
2563 goto err_dest_init_create_listen_id;
2566 snprintf(port_str, 16, "%d", rdma->port);
2567 port_str[15] = '\0';
2569 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2570 if (ret < 0) {
2571 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2572 goto err_dest_init_bind_addr;
2575 for (e = res; e != NULL; e = e->ai_next) {
2576 inet_ntop(e->ai_family,
2577 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2578 trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2579 ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2580 if (ret) {
2581 continue;
2583 if (e->ai_family == AF_INET6) {
2584 ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs, errp);
2585 if (ret) {
2586 continue;
2589 break;
2592 if (!e) {
2593 ERROR(errp, "Error: could not rdma_bind_addr!");
2594 goto err_dest_init_bind_addr;
2597 rdma->listen_id = listen_id;
2598 qemu_rdma_dump_gid("dest_init", listen_id);
2599 return 0;
2601 err_dest_init_bind_addr:
2602 rdma_destroy_id(listen_id);
2603 err_dest_init_create_listen_id:
2604 rdma_destroy_event_channel(rdma->channel);
2605 rdma->channel = NULL;
2606 rdma->error_state = ret;
2607 return ret;
2611 static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path,
2612 RDMAContext *rdma)
2614 int idx;
2616 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2617 rdma_return_path->wr_data[idx].control_len = 0;
2618 rdma_return_path->wr_data[idx].control_curr = NULL;
2621 /*the CM channel and CM id is shared*/
2622 rdma_return_path->channel = rdma->channel;
2623 rdma_return_path->listen_id = rdma->listen_id;
2625 rdma->return_path = rdma_return_path;
2626 rdma_return_path->return_path = rdma;
2627 rdma_return_path->is_return_path = true;
2630 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2632 RDMAContext *rdma = NULL;
2633 InetSocketAddress *addr;
2635 if (host_port) {
2636 rdma = g_new0(RDMAContext, 1);
2637 rdma->current_index = -1;
2638 rdma->current_chunk = -1;
2640 addr = g_new(InetSocketAddress, 1);
2641 if (!inet_parse(addr, host_port, NULL)) {
2642 rdma->port = atoi(addr->port);
2643 rdma->host = g_strdup(addr->host);
2644 } else {
2645 ERROR(errp, "bad RDMA migration address '%s'", host_port);
2646 g_free(rdma);
2647 rdma = NULL;
2650 qapi_free_InetSocketAddress(addr);
2653 return rdma;
2657 * QEMUFile interface to the control channel.
2658 * SEND messages for control only.
2659 * VM's ram is handled with regular RDMA messages.
2661 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2662 const struct iovec *iov,
2663 size_t niov,
2664 int *fds,
2665 size_t nfds,
2666 Error **errp)
2668 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2669 QEMUFile *f = rioc->file;
2670 RDMAContext *rdma;
2671 int ret;
2672 ssize_t done = 0;
2673 size_t i;
2674 size_t len = 0;
2676 rcu_read_lock();
2677 rdma = atomic_rcu_read(&rioc->rdmaout);
2679 if (!rdma) {
2680 rcu_read_unlock();
2681 return -EIO;
2684 CHECK_ERROR_STATE();
2687 * Push out any writes that
2688 * we're queued up for VM's ram.
2690 ret = qemu_rdma_write_flush(f, rdma);
2691 if (ret < 0) {
2692 rdma->error_state = ret;
2693 rcu_read_unlock();
2694 return ret;
2697 for (i = 0; i < niov; i++) {
2698 size_t remaining = iov[i].iov_len;
2699 uint8_t * data = (void *)iov[i].iov_base;
2700 while (remaining) {
2701 RDMAControlHeader head;
2703 len = MIN(remaining, RDMA_SEND_INCREMENT);
2704 remaining -= len;
2706 head.len = len;
2707 head.type = RDMA_CONTROL_QEMU_FILE;
2709 ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2711 if (ret < 0) {
2712 rdma->error_state = ret;
2713 rcu_read_unlock();
2714 return ret;
2717 data += len;
2718 done += len;
2722 rcu_read_unlock();
2723 return done;
2726 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2727 size_t size, int idx)
2729 size_t len = 0;
2731 if (rdma->wr_data[idx].control_len) {
2732 trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2734 len = MIN(size, rdma->wr_data[idx].control_len);
2735 memcpy(buf, rdma->wr_data[idx].control_curr, len);
2736 rdma->wr_data[idx].control_curr += len;
2737 rdma->wr_data[idx].control_len -= len;
2740 return len;
2744 * QEMUFile interface to the control channel.
2745 * RDMA links don't use bytestreams, so we have to
2746 * return bytes to QEMUFile opportunistically.
2748 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2749 const struct iovec *iov,
2750 size_t niov,
2751 int **fds,
2752 size_t *nfds,
2753 Error **errp)
2755 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2756 RDMAContext *rdma;
2757 RDMAControlHeader head;
2758 int ret = 0;
2759 ssize_t i;
2760 size_t done = 0;
2762 rcu_read_lock();
2763 rdma = atomic_rcu_read(&rioc->rdmain);
2765 if (!rdma) {
2766 rcu_read_unlock();
2767 return -EIO;
2770 CHECK_ERROR_STATE();
2772 for (i = 0; i < niov; i++) {
2773 size_t want = iov[i].iov_len;
2774 uint8_t *data = (void *)iov[i].iov_base;
2777 * First, we hold on to the last SEND message we
2778 * were given and dish out the bytes until we run
2779 * out of bytes.
2781 ret = qemu_rdma_fill(rdma, data, want, 0);
2782 done += ret;
2783 want -= ret;
2784 /* Got what we needed, so go to next iovec */
2785 if (want == 0) {
2786 continue;
2789 /* If we got any data so far, then don't wait
2790 * for more, just return what we have */
2791 if (done > 0) {
2792 break;
2796 /* We've got nothing at all, so lets wait for
2797 * more to arrive
2799 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2801 if (ret < 0) {
2802 rdma->error_state = ret;
2803 rcu_read_unlock();
2804 return ret;
2808 * SEND was received with new bytes, now try again.
2810 ret = qemu_rdma_fill(rdma, data, want, 0);
2811 done += ret;
2812 want -= ret;
2814 /* Still didn't get enough, so lets just return */
2815 if (want) {
2816 if (done == 0) {
2817 rcu_read_unlock();
2818 return QIO_CHANNEL_ERR_BLOCK;
2819 } else {
2820 break;
2824 rcu_read_unlock();
2825 return done;
2829 * Block until all the outstanding chunks have been delivered by the hardware.
2831 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2833 int ret;
2835 if (qemu_rdma_write_flush(f, rdma) < 0) {
2836 return -EIO;
2839 while (rdma->nb_sent) {
2840 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2841 if (ret < 0) {
2842 error_report("rdma migration: complete polling error!");
2843 return -EIO;
2847 qemu_rdma_unregister_waiting(rdma);
2849 return 0;
2853 static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2854 bool blocking,
2855 Error **errp)
2857 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2858 /* XXX we should make readv/writev actually honour this :-) */
2859 rioc->blocking = blocking;
2860 return 0;
2864 typedef struct QIOChannelRDMASource QIOChannelRDMASource;
2865 struct QIOChannelRDMASource {
2866 GSource parent;
2867 QIOChannelRDMA *rioc;
2868 GIOCondition condition;
2871 static gboolean
2872 qio_channel_rdma_source_prepare(GSource *source,
2873 gint *timeout)
2875 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2876 RDMAContext *rdma;
2877 GIOCondition cond = 0;
2878 *timeout = -1;
2880 rcu_read_lock();
2881 if (rsource->condition == G_IO_IN) {
2882 rdma = atomic_rcu_read(&rsource->rioc->rdmain);
2883 } else {
2884 rdma = atomic_rcu_read(&rsource->rioc->rdmaout);
2887 if (!rdma) {
2888 error_report("RDMAContext is NULL when prepare Gsource");
2889 rcu_read_unlock();
2890 return FALSE;
2893 if (rdma->wr_data[0].control_len) {
2894 cond |= G_IO_IN;
2896 cond |= G_IO_OUT;
2898 rcu_read_unlock();
2899 return cond & rsource->condition;
2902 static gboolean
2903 qio_channel_rdma_source_check(GSource *source)
2905 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2906 RDMAContext *rdma;
2907 GIOCondition cond = 0;
2909 rcu_read_lock();
2910 if (rsource->condition == G_IO_IN) {
2911 rdma = atomic_rcu_read(&rsource->rioc->rdmain);
2912 } else {
2913 rdma = atomic_rcu_read(&rsource->rioc->rdmaout);
2916 if (!rdma) {
2917 error_report("RDMAContext is NULL when check Gsource");
2918 rcu_read_unlock();
2919 return FALSE;
2922 if (rdma->wr_data[0].control_len) {
2923 cond |= G_IO_IN;
2925 cond |= G_IO_OUT;
2927 rcu_read_unlock();
2928 return cond & rsource->condition;
2931 static gboolean
2932 qio_channel_rdma_source_dispatch(GSource *source,
2933 GSourceFunc callback,
2934 gpointer user_data)
2936 QIOChannelFunc func = (QIOChannelFunc)callback;
2937 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2938 RDMAContext *rdma;
2939 GIOCondition cond = 0;
2941 rcu_read_lock();
2942 if (rsource->condition == G_IO_IN) {
2943 rdma = atomic_rcu_read(&rsource->rioc->rdmain);
2944 } else {
2945 rdma = atomic_rcu_read(&rsource->rioc->rdmaout);
2948 if (!rdma) {
2949 error_report("RDMAContext is NULL when dispatch Gsource");
2950 rcu_read_unlock();
2951 return FALSE;
2954 if (rdma->wr_data[0].control_len) {
2955 cond |= G_IO_IN;
2957 cond |= G_IO_OUT;
2959 rcu_read_unlock();
2960 return (*func)(QIO_CHANNEL(rsource->rioc),
2961 (cond & rsource->condition),
2962 user_data);
2965 static void
2966 qio_channel_rdma_source_finalize(GSource *source)
2968 QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
2970 object_unref(OBJECT(ssource->rioc));
2973 GSourceFuncs qio_channel_rdma_source_funcs = {
2974 qio_channel_rdma_source_prepare,
2975 qio_channel_rdma_source_check,
2976 qio_channel_rdma_source_dispatch,
2977 qio_channel_rdma_source_finalize
2980 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
2981 GIOCondition condition)
2983 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2984 QIOChannelRDMASource *ssource;
2985 GSource *source;
2987 source = g_source_new(&qio_channel_rdma_source_funcs,
2988 sizeof(QIOChannelRDMASource));
2989 ssource = (QIOChannelRDMASource *)source;
2991 ssource->rioc = rioc;
2992 object_ref(OBJECT(rioc));
2994 ssource->condition = condition;
2996 return source;
2999 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc,
3000 AioContext *ctx,
3001 IOHandler *io_read,
3002 IOHandler *io_write,
3003 void *opaque)
3005 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3006 if (io_read) {
3007 aio_set_fd_handler(ctx, rioc->rdmain->comp_channel->fd,
3008 false, io_read, io_write, NULL, opaque);
3009 } else {
3010 aio_set_fd_handler(ctx, rioc->rdmaout->comp_channel->fd,
3011 false, io_read, io_write, NULL, opaque);
3015 static int qio_channel_rdma_close(QIOChannel *ioc,
3016 Error **errp)
3018 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3019 RDMAContext *rdmain, *rdmaout;
3020 trace_qemu_rdma_close();
3022 rdmain = rioc->rdmain;
3023 if (rdmain) {
3024 atomic_rcu_set(&rioc->rdmain, NULL);
3027 rdmaout = rioc->rdmaout;
3028 if (rdmaout) {
3029 atomic_rcu_set(&rioc->rdmaout, NULL);
3032 synchronize_rcu();
3034 if (rdmain) {
3035 qemu_rdma_cleanup(rdmain);
3038 if (rdmaout) {
3039 qemu_rdma_cleanup(rdmaout);
3042 g_free(rdmain);
3043 g_free(rdmaout);
3045 return 0;
3048 static int
3049 qio_channel_rdma_shutdown(QIOChannel *ioc,
3050 QIOChannelShutdown how,
3051 Error **errp)
3053 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3054 RDMAContext *rdmain, *rdmaout;
3056 rcu_read_lock();
3058 rdmain = atomic_rcu_read(&rioc->rdmain);
3059 rdmaout = atomic_rcu_read(&rioc->rdmain);
3061 switch (how) {
3062 case QIO_CHANNEL_SHUTDOWN_READ:
3063 if (rdmain) {
3064 rdmain->error_state = -1;
3066 break;
3067 case QIO_CHANNEL_SHUTDOWN_WRITE:
3068 if (rdmaout) {
3069 rdmaout->error_state = -1;
3071 break;
3072 case QIO_CHANNEL_SHUTDOWN_BOTH:
3073 default:
3074 if (rdmain) {
3075 rdmain->error_state = -1;
3077 if (rdmaout) {
3078 rdmaout->error_state = -1;
3080 break;
3083 rcu_read_unlock();
3084 return 0;
3088 * Parameters:
3089 * @offset == 0 :
3090 * This means that 'block_offset' is a full virtual address that does not
3091 * belong to a RAMBlock of the virtual machine and instead
3092 * represents a private malloc'd memory area that the caller wishes to
3093 * transfer.
3095 * @offset != 0 :
3096 * Offset is an offset to be added to block_offset and used
3097 * to also lookup the corresponding RAMBlock.
3099 * @size > 0 :
3100 * Initiate an transfer this size.
3102 * @size == 0 :
3103 * A 'hint' or 'advice' that means that we wish to speculatively
3104 * and asynchronously unregister this memory. In this case, there is no
3105 * guarantee that the unregister will actually happen, for example,
3106 * if the memory is being actively transmitted. Additionally, the memory
3107 * may be re-registered at any future time if a write within the same
3108 * chunk was requested again, even if you attempted to unregister it
3109 * here.
3111 * @size < 0 : TODO, not yet supported
3112 * Unregister the memory NOW. This means that the caller does not
3113 * expect there to be any future RDMA transfers and we just want to clean
3114 * things up. This is used in case the upper layer owns the memory and
3115 * cannot wait for qemu_fclose() to occur.
3117 * @bytes_sent : User-specificed pointer to indicate how many bytes were
3118 * sent. Usually, this will not be more than a few bytes of
3119 * the protocol because most transfers are sent asynchronously.
3121 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
3122 ram_addr_t block_offset, ram_addr_t offset,
3123 size_t size, uint64_t *bytes_sent)
3125 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3126 RDMAContext *rdma;
3127 int ret;
3129 rcu_read_lock();
3130 rdma = atomic_rcu_read(&rioc->rdmaout);
3132 if (!rdma) {
3133 rcu_read_unlock();
3134 return -EIO;
3137 CHECK_ERROR_STATE();
3139 if (migrate_get_current()->state == MIGRATION_STATUS_POSTCOPY_ACTIVE) {
3140 rcu_read_unlock();
3141 return RAM_SAVE_CONTROL_NOT_SUPP;
3144 qemu_fflush(f);
3146 if (size > 0) {
3148 * Add this page to the current 'chunk'. If the chunk
3149 * is full, or the page doen't belong to the current chunk,
3150 * an actual RDMA write will occur and a new chunk will be formed.
3152 ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
3153 if (ret < 0) {
3154 error_report("rdma migration: write error! %d", ret);
3155 goto err;
3159 * We always return 1 bytes because the RDMA
3160 * protocol is completely asynchronous. We do not yet know
3161 * whether an identified chunk is zero or not because we're
3162 * waiting for other pages to potentially be merged with
3163 * the current chunk. So, we have to call qemu_update_position()
3164 * later on when the actual write occurs.
3166 if (bytes_sent) {
3167 *bytes_sent = 1;
3169 } else {
3170 uint64_t index, chunk;
3172 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
3173 if (size < 0) {
3174 ret = qemu_rdma_drain_cq(f, rdma);
3175 if (ret < 0) {
3176 fprintf(stderr, "rdma: failed to synchronously drain"
3177 " completion queue before unregistration.\n");
3178 goto err;
3183 ret = qemu_rdma_search_ram_block(rdma, block_offset,
3184 offset, size, &index, &chunk);
3186 if (ret) {
3187 error_report("ram block search failed");
3188 goto err;
3191 qemu_rdma_signal_unregister(rdma, index, chunk, 0);
3194 * TODO: Synchronous, guaranteed unregistration (should not occur during
3195 * fast-path). Otherwise, unregisters will process on the next call to
3196 * qemu_rdma_drain_cq()
3197 if (size < 0) {
3198 qemu_rdma_unregister_waiting(rdma);
3204 * Drain the Completion Queue if possible, but do not block,
3205 * just poll.
3207 * If nothing to poll, the end of the iteration will do this
3208 * again to make sure we don't overflow the request queue.
3210 while (1) {
3211 uint64_t wr_id, wr_id_in;
3212 int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
3213 if (ret < 0) {
3214 error_report("rdma migration: polling error! %d", ret);
3215 goto err;
3218 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3220 if (wr_id == RDMA_WRID_NONE) {
3221 break;
3225 rcu_read_unlock();
3226 return RAM_SAVE_CONTROL_DELAYED;
3227 err:
3228 rdma->error_state = ret;
3229 rcu_read_unlock();
3230 return ret;
3233 static void rdma_accept_incoming_migration(void *opaque);
3235 static void rdma_cm_poll_handler(void *opaque)
3237 RDMAContext *rdma = opaque;
3238 int ret;
3239 struct rdma_cm_event *cm_event;
3240 MigrationIncomingState *mis = migration_incoming_get_current();
3242 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3243 if (ret) {
3244 error_report("get_cm_event failed %d", errno);
3245 return;
3247 rdma_ack_cm_event(cm_event);
3249 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
3250 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
3251 error_report("receive cm event, cm event is %d", cm_event->event);
3252 rdma->error_state = -EPIPE;
3253 if (rdma->return_path) {
3254 rdma->return_path->error_state = -EPIPE;
3257 if (mis->migration_incoming_co) {
3258 qemu_coroutine_enter(mis->migration_incoming_co);
3260 return;
3264 static int qemu_rdma_accept(RDMAContext *rdma)
3266 RDMACapabilities cap;
3267 struct rdma_conn_param conn_param = {
3268 .responder_resources = 2,
3269 .private_data = &cap,
3270 .private_data_len = sizeof(cap),
3272 struct rdma_cm_event *cm_event;
3273 struct ibv_context *verbs;
3274 int ret = -EINVAL;
3275 int idx;
3277 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3278 if (ret) {
3279 goto err_rdma_dest_wait;
3282 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3283 rdma_ack_cm_event(cm_event);
3284 goto err_rdma_dest_wait;
3287 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3289 network_to_caps(&cap);
3291 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3292 error_report("Unknown source RDMA version: %d, bailing...",
3293 cap.version);
3294 rdma_ack_cm_event(cm_event);
3295 goto err_rdma_dest_wait;
3299 * Respond with only the capabilities this version of QEMU knows about.
3301 cap.flags &= known_capabilities;
3304 * Enable the ones that we do know about.
3305 * Add other checks here as new ones are introduced.
3307 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3308 rdma->pin_all = true;
3311 rdma->cm_id = cm_event->id;
3312 verbs = cm_event->id->verbs;
3314 rdma_ack_cm_event(cm_event);
3316 trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3318 caps_to_network(&cap);
3320 trace_qemu_rdma_accept_pin_verbsc(verbs);
3322 if (!rdma->verbs) {
3323 rdma->verbs = verbs;
3324 } else if (rdma->verbs != verbs) {
3325 error_report("ibv context not matching %p, %p!", rdma->verbs,
3326 verbs);
3327 goto err_rdma_dest_wait;
3330 qemu_rdma_dump_id("dest_init", verbs);
3332 ret = qemu_rdma_alloc_pd_cq(rdma);
3333 if (ret) {
3334 error_report("rdma migration: error allocating pd and cq!");
3335 goto err_rdma_dest_wait;
3338 ret = qemu_rdma_alloc_qp(rdma);
3339 if (ret) {
3340 error_report("rdma migration: error allocating qp!");
3341 goto err_rdma_dest_wait;
3344 ret = qemu_rdma_init_ram_blocks(rdma);
3345 if (ret) {
3346 error_report("rdma migration: error initializing ram blocks!");
3347 goto err_rdma_dest_wait;
3350 for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3351 ret = qemu_rdma_reg_control(rdma, idx);
3352 if (ret) {
3353 error_report("rdma: error registering %d control", idx);
3354 goto err_rdma_dest_wait;
3358 /* Accept the second connection request for return path */
3359 if (migrate_postcopy() && !rdma->is_return_path) {
3360 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3361 NULL,
3362 (void *)(intptr_t)rdma->return_path);
3363 } else {
3364 qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler,
3365 NULL, rdma);
3368 ret = rdma_accept(rdma->cm_id, &conn_param);
3369 if (ret) {
3370 error_report("rdma_accept returns %d", ret);
3371 goto err_rdma_dest_wait;
3374 ret = rdma_get_cm_event(rdma->channel, &cm_event);
3375 if (ret) {
3376 error_report("rdma_accept get_cm_event failed %d", ret);
3377 goto err_rdma_dest_wait;
3380 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3381 error_report("rdma_accept not event established");
3382 rdma_ack_cm_event(cm_event);
3383 goto err_rdma_dest_wait;
3386 rdma_ack_cm_event(cm_event);
3387 rdma->connected = true;
3389 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
3390 if (ret) {
3391 error_report("rdma migration: error posting second control recv");
3392 goto err_rdma_dest_wait;
3395 qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3397 return 0;
3399 err_rdma_dest_wait:
3400 rdma->error_state = ret;
3401 qemu_rdma_cleanup(rdma);
3402 return ret;
3405 static int dest_ram_sort_func(const void *a, const void *b)
3407 unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3408 unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3410 return (a_index < b_index) ? -1 : (a_index != b_index);
3414 * During each iteration of the migration, we listen for instructions
3415 * by the source VM to perform dynamic page registrations before they
3416 * can perform RDMA operations.
3418 * We respond with the 'rkey'.
3420 * Keep doing this until the source tells us to stop.
3422 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque)
3424 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3425 .type = RDMA_CONTROL_REGISTER_RESULT,
3426 .repeat = 0,
3428 RDMAControlHeader unreg_resp = { .len = 0,
3429 .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3430 .repeat = 0,
3432 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3433 .repeat = 1 };
3434 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3435 RDMAContext *rdma;
3436 RDMALocalBlocks *local;
3437 RDMAControlHeader head;
3438 RDMARegister *reg, *registers;
3439 RDMACompress *comp;
3440 RDMARegisterResult *reg_result;
3441 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3442 RDMALocalBlock *block;
3443 void *host_addr;
3444 int ret = 0;
3445 int idx = 0;
3446 int count = 0;
3447 int i = 0;
3449 rcu_read_lock();
3450 rdma = atomic_rcu_read(&rioc->rdmain);
3452 if (!rdma) {
3453 rcu_read_unlock();
3454 return -EIO;
3457 CHECK_ERROR_STATE();
3459 local = &rdma->local_ram_blocks;
3460 do {
3461 trace_qemu_rdma_registration_handle_wait();
3463 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
3465 if (ret < 0) {
3466 break;
3469 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3470 error_report("rdma: Too many requests in this message (%d)."
3471 "Bailing.", head.repeat);
3472 ret = -EIO;
3473 break;
3476 switch (head.type) {
3477 case RDMA_CONTROL_COMPRESS:
3478 comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3479 network_to_compress(comp);
3481 trace_qemu_rdma_registration_handle_compress(comp->length,
3482 comp->block_idx,
3483 comp->offset);
3484 if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3485 error_report("rdma: 'compress' bad block index %u (vs %d)",
3486 (unsigned int)comp->block_idx,
3487 rdma->local_ram_blocks.nb_blocks);
3488 ret = -EIO;
3489 goto out;
3491 block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3493 host_addr = block->local_host_addr +
3494 (comp->offset - block->offset);
3496 ram_handle_compressed(host_addr, comp->value, comp->length);
3497 break;
3499 case RDMA_CONTROL_REGISTER_FINISHED:
3500 trace_qemu_rdma_registration_handle_finished();
3501 goto out;
3503 case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3504 trace_qemu_rdma_registration_handle_ram_blocks();
3506 /* Sort our local RAM Block list so it's the same as the source,
3507 * we can do this since we've filled in a src_index in the list
3508 * as we received the RAMBlock list earlier.
3510 qsort(rdma->local_ram_blocks.block,
3511 rdma->local_ram_blocks.nb_blocks,
3512 sizeof(RDMALocalBlock), dest_ram_sort_func);
3513 for (i = 0; i < local->nb_blocks; i++) {
3514 local->block[i].index = i;
3517 if (rdma->pin_all) {
3518 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3519 if (ret) {
3520 error_report("rdma migration: error dest "
3521 "registering ram blocks");
3522 goto out;
3527 * Dest uses this to prepare to transmit the RAMBlock descriptions
3528 * to the source VM after connection setup.
3529 * Both sides use the "remote" structure to communicate and update
3530 * their "local" descriptions with what was sent.
3532 for (i = 0; i < local->nb_blocks; i++) {
3533 rdma->dest_blocks[i].remote_host_addr =
3534 (uintptr_t)(local->block[i].local_host_addr);
3536 if (rdma->pin_all) {
3537 rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3540 rdma->dest_blocks[i].offset = local->block[i].offset;
3541 rdma->dest_blocks[i].length = local->block[i].length;
3543 dest_block_to_network(&rdma->dest_blocks[i]);
3544 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3545 local->block[i].block_name,
3546 local->block[i].offset,
3547 local->block[i].length,
3548 local->block[i].local_host_addr,
3549 local->block[i].src_index);
3552 blocks.len = rdma->local_ram_blocks.nb_blocks
3553 * sizeof(RDMADestBlock);
3556 ret = qemu_rdma_post_send_control(rdma,
3557 (uint8_t *) rdma->dest_blocks, &blocks);
3559 if (ret < 0) {
3560 error_report("rdma migration: error sending remote info");
3561 goto out;
3564 break;
3565 case RDMA_CONTROL_REGISTER_REQUEST:
3566 trace_qemu_rdma_registration_handle_register(head.repeat);
3568 reg_resp.repeat = head.repeat;
3569 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3571 for (count = 0; count < head.repeat; count++) {
3572 uint64_t chunk;
3573 uint8_t *chunk_start, *chunk_end;
3575 reg = &registers[count];
3576 network_to_register(reg);
3578 reg_result = &results[count];
3580 trace_qemu_rdma_registration_handle_register_loop(count,
3581 reg->current_index, reg->key.current_addr, reg->chunks);
3583 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3584 error_report("rdma: 'register' bad block index %u (vs %d)",
3585 (unsigned int)reg->current_index,
3586 rdma->local_ram_blocks.nb_blocks);
3587 ret = -ENOENT;
3588 goto out;
3590 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3591 if (block->is_ram_block) {
3592 if (block->offset > reg->key.current_addr) {
3593 error_report("rdma: bad register address for block %s"
3594 " offset: %" PRIx64 " current_addr: %" PRIx64,
3595 block->block_name, block->offset,
3596 reg->key.current_addr);
3597 ret = -ERANGE;
3598 goto out;
3600 host_addr = (block->local_host_addr +
3601 (reg->key.current_addr - block->offset));
3602 chunk = ram_chunk_index(block->local_host_addr,
3603 (uint8_t *) host_addr);
3604 } else {
3605 chunk = reg->key.chunk;
3606 host_addr = block->local_host_addr +
3607 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3608 /* Check for particularly bad chunk value */
3609 if (host_addr < (void *)block->local_host_addr) {
3610 error_report("rdma: bad chunk for block %s"
3611 " chunk: %" PRIx64,
3612 block->block_name, reg->key.chunk);
3613 ret = -ERANGE;
3614 goto out;
3617 chunk_start = ram_chunk_start(block, chunk);
3618 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3619 /* avoid "-Waddress-of-packed-member" warning */
3620 uint32_t tmp_rkey = 0;
3621 if (qemu_rdma_register_and_get_keys(rdma, block,
3622 (uintptr_t)host_addr, NULL, &tmp_rkey,
3623 chunk, chunk_start, chunk_end)) {
3624 error_report("cannot get rkey");
3625 ret = -EINVAL;
3626 goto out;
3628 reg_result->rkey = tmp_rkey;
3630 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3632 trace_qemu_rdma_registration_handle_register_rkey(
3633 reg_result->rkey);
3635 result_to_network(reg_result);
3638 ret = qemu_rdma_post_send_control(rdma,
3639 (uint8_t *) results, &reg_resp);
3641 if (ret < 0) {
3642 error_report("Failed to send control buffer");
3643 goto out;
3645 break;
3646 case RDMA_CONTROL_UNREGISTER_REQUEST:
3647 trace_qemu_rdma_registration_handle_unregister(head.repeat);
3648 unreg_resp.repeat = head.repeat;
3649 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3651 for (count = 0; count < head.repeat; count++) {
3652 reg = &registers[count];
3653 network_to_register(reg);
3655 trace_qemu_rdma_registration_handle_unregister_loop(count,
3656 reg->current_index, reg->key.chunk);
3658 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3660 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3661 block->pmr[reg->key.chunk] = NULL;
3663 if (ret != 0) {
3664 perror("rdma unregistration chunk failed");
3665 ret = -ret;
3666 goto out;
3669 rdma->total_registrations--;
3671 trace_qemu_rdma_registration_handle_unregister_success(
3672 reg->key.chunk);
3675 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3677 if (ret < 0) {
3678 error_report("Failed to send control buffer");
3679 goto out;
3681 break;
3682 case RDMA_CONTROL_REGISTER_RESULT:
3683 error_report("Invalid RESULT message at dest.");
3684 ret = -EIO;
3685 goto out;
3686 default:
3687 error_report("Unknown control message %s", control_desc(head.type));
3688 ret = -EIO;
3689 goto out;
3691 } while (1);
3692 out:
3693 if (ret < 0) {
3694 rdma->error_state = ret;
3696 rcu_read_unlock();
3697 return ret;
3700 /* Destination:
3701 * Called via a ram_control_load_hook during the initial RAM load section which
3702 * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks
3703 * on the source.
3704 * We've already built our local RAMBlock list, but not yet sent the list to
3705 * the source.
3707 static int
3708 rdma_block_notification_handle(QIOChannelRDMA *rioc, const char *name)
3710 RDMAContext *rdma;
3711 int curr;
3712 int found = -1;
3714 rcu_read_lock();
3715 rdma = atomic_rcu_read(&rioc->rdmain);
3717 if (!rdma) {
3718 rcu_read_unlock();
3719 return -EIO;
3722 /* Find the matching RAMBlock in our local list */
3723 for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3724 if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3725 found = curr;
3726 break;
3730 if (found == -1) {
3731 error_report("RAMBlock '%s' not found on destination", name);
3732 rcu_read_unlock();
3733 return -ENOENT;
3736 rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3737 trace_rdma_block_notification_handle(name, rdma->next_src_index);
3738 rdma->next_src_index++;
3740 rcu_read_unlock();
3741 return 0;
3744 static int rdma_load_hook(QEMUFile *f, void *opaque, uint64_t flags, void *data)
3746 switch (flags) {
3747 case RAM_CONTROL_BLOCK_REG:
3748 return rdma_block_notification_handle(opaque, data);
3750 case RAM_CONTROL_HOOK:
3751 return qemu_rdma_registration_handle(f, opaque);
3753 default:
3754 /* Shouldn't be called with any other values */
3755 abort();
3759 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3760 uint64_t flags, void *data)
3762 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3763 RDMAContext *rdma;
3765 rcu_read_lock();
3766 rdma = atomic_rcu_read(&rioc->rdmaout);
3767 if (!rdma) {
3768 rcu_read_unlock();
3769 return -EIO;
3772 CHECK_ERROR_STATE();
3774 if (migrate_get_current()->state == MIGRATION_STATUS_POSTCOPY_ACTIVE) {
3775 rcu_read_unlock();
3776 return 0;
3779 trace_qemu_rdma_registration_start(flags);
3780 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3781 qemu_fflush(f);
3783 rcu_read_unlock();
3784 return 0;
3788 * Inform dest that dynamic registrations are done for now.
3789 * First, flush writes, if any.
3791 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3792 uint64_t flags, void *data)
3794 Error *local_err = NULL, **errp = &local_err;
3795 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3796 RDMAContext *rdma;
3797 RDMAControlHeader head = { .len = 0, .repeat = 1 };
3798 int ret = 0;
3800 rcu_read_lock();
3801 rdma = atomic_rcu_read(&rioc->rdmaout);
3802 if (!rdma) {
3803 rcu_read_unlock();
3804 return -EIO;
3807 CHECK_ERROR_STATE();
3809 if (migrate_get_current()->state == MIGRATION_STATUS_POSTCOPY_ACTIVE) {
3810 rcu_read_unlock();
3811 return 0;
3814 qemu_fflush(f);
3815 ret = qemu_rdma_drain_cq(f, rdma);
3817 if (ret < 0) {
3818 goto err;
3821 if (flags == RAM_CONTROL_SETUP) {
3822 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3823 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3824 int reg_result_idx, i, nb_dest_blocks;
3826 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3827 trace_qemu_rdma_registration_stop_ram();
3830 * Make sure that we parallelize the pinning on both sides.
3831 * For very large guests, doing this serially takes a really
3832 * long time, so we have to 'interleave' the pinning locally
3833 * with the control messages by performing the pinning on this
3834 * side before we receive the control response from the other
3835 * side that the pinning has completed.
3837 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3838 &reg_result_idx, rdma->pin_all ?
3839 qemu_rdma_reg_whole_ram_blocks : NULL);
3840 if (ret < 0) {
3841 ERROR(errp, "receiving remote info!");
3842 rcu_read_unlock();
3843 return ret;
3846 nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3849 * The protocol uses two different sets of rkeys (mutually exclusive):
3850 * 1. One key to represent the virtual address of the entire ram block.
3851 * (dynamic chunk registration disabled - pin everything with one rkey.)
3852 * 2. One to represent individual chunks within a ram block.
3853 * (dynamic chunk registration enabled - pin individual chunks.)
3855 * Once the capability is successfully negotiated, the destination transmits
3856 * the keys to use (or sends them later) including the virtual addresses
3857 * and then propagates the remote ram block descriptions to his local copy.
3860 if (local->nb_blocks != nb_dest_blocks) {
3861 ERROR(errp, "ram blocks mismatch (Number of blocks %d vs %d) "
3862 "Your QEMU command line parameters are probably "
3863 "not identical on both the source and destination.",
3864 local->nb_blocks, nb_dest_blocks);
3865 rdma->error_state = -EINVAL;
3866 rcu_read_unlock();
3867 return -EINVAL;
3870 qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3871 memcpy(rdma->dest_blocks,
3872 rdma->wr_data[reg_result_idx].control_curr, resp.len);
3873 for (i = 0; i < nb_dest_blocks; i++) {
3874 network_to_dest_block(&rdma->dest_blocks[i]);
3876 /* We require that the blocks are in the same order */
3877 if (rdma->dest_blocks[i].length != local->block[i].length) {
3878 ERROR(errp, "Block %s/%d has a different length %" PRIu64
3879 "vs %" PRIu64, local->block[i].block_name, i,
3880 local->block[i].length,
3881 rdma->dest_blocks[i].length);
3882 rdma->error_state = -EINVAL;
3883 rcu_read_unlock();
3884 return -EINVAL;
3886 local->block[i].remote_host_addr =
3887 rdma->dest_blocks[i].remote_host_addr;
3888 local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3892 trace_qemu_rdma_registration_stop(flags);
3894 head.type = RDMA_CONTROL_REGISTER_FINISHED;
3895 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3897 if (ret < 0) {
3898 goto err;
3901 rcu_read_unlock();
3902 return 0;
3903 err:
3904 rdma->error_state = ret;
3905 rcu_read_unlock();
3906 return ret;
3909 static const QEMUFileHooks rdma_read_hooks = {
3910 .hook_ram_load = rdma_load_hook,
3913 static const QEMUFileHooks rdma_write_hooks = {
3914 .before_ram_iterate = qemu_rdma_registration_start,
3915 .after_ram_iterate = qemu_rdma_registration_stop,
3916 .save_page = qemu_rdma_save_page,
3920 static void qio_channel_rdma_finalize(Object *obj)
3922 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
3923 if (rioc->rdmain) {
3924 qemu_rdma_cleanup(rioc->rdmain);
3925 g_free(rioc->rdmain);
3926 rioc->rdmain = NULL;
3928 if (rioc->rdmaout) {
3929 qemu_rdma_cleanup(rioc->rdmaout);
3930 g_free(rioc->rdmaout);
3931 rioc->rdmaout = NULL;
3935 static void qio_channel_rdma_class_init(ObjectClass *klass,
3936 void *class_data G_GNUC_UNUSED)
3938 QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
3940 ioc_klass->io_writev = qio_channel_rdma_writev;
3941 ioc_klass->io_readv = qio_channel_rdma_readv;
3942 ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
3943 ioc_klass->io_close = qio_channel_rdma_close;
3944 ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
3945 ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler;
3946 ioc_klass->io_shutdown = qio_channel_rdma_shutdown;
3949 static const TypeInfo qio_channel_rdma_info = {
3950 .parent = TYPE_QIO_CHANNEL,
3951 .name = TYPE_QIO_CHANNEL_RDMA,
3952 .instance_size = sizeof(QIOChannelRDMA),
3953 .instance_finalize = qio_channel_rdma_finalize,
3954 .class_init = qio_channel_rdma_class_init,
3957 static void qio_channel_rdma_register_types(void)
3959 type_register_static(&qio_channel_rdma_info);
3962 type_init(qio_channel_rdma_register_types);
3964 static QEMUFile *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
3966 QIOChannelRDMA *rioc;
3968 if (qemu_file_mode_is_not_valid(mode)) {
3969 return NULL;
3972 rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
3974 if (mode[0] == 'w') {
3975 rioc->file = qemu_fopen_channel_output(QIO_CHANNEL(rioc));
3976 rioc->rdmaout = rdma;
3977 rioc->rdmain = rdma->return_path;
3978 qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
3979 } else {
3980 rioc->file = qemu_fopen_channel_input(QIO_CHANNEL(rioc));
3981 rioc->rdmain = rdma;
3982 rioc->rdmaout = rdma->return_path;
3983 qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
3986 return rioc->file;
3989 static void rdma_accept_incoming_migration(void *opaque)
3991 RDMAContext *rdma = opaque;
3992 int ret;
3993 QEMUFile *f;
3994 Error *local_err = NULL, **errp = &local_err;
3996 trace_qemu_rdma_accept_incoming_migration();
3997 ret = qemu_rdma_accept(rdma);
3999 if (ret) {
4000 ERROR(errp, "RDMA Migration initialization failed!");
4001 return;
4004 trace_qemu_rdma_accept_incoming_migration_accepted();
4006 if (rdma->is_return_path) {
4007 return;
4010 f = qemu_fopen_rdma(rdma, "rb");
4011 if (f == NULL) {
4012 ERROR(errp, "could not qemu_fopen_rdma!");
4013 qemu_rdma_cleanup(rdma);
4014 return;
4017 rdma->migration_started_on_destination = 1;
4018 migration_fd_process_incoming(f);
4021 void rdma_start_incoming_migration(const char *host_port, Error **errp)
4023 int ret;
4024 RDMAContext *rdma, *rdma_return_path = NULL;
4025 Error *local_err = NULL;
4027 trace_rdma_start_incoming_migration();
4028 rdma = qemu_rdma_data_init(host_port, &local_err);
4030 if (rdma == NULL) {
4031 goto err;
4034 ret = qemu_rdma_dest_init(rdma, &local_err);
4036 if (ret) {
4037 goto err;
4040 trace_rdma_start_incoming_migration_after_dest_init();
4042 ret = rdma_listen(rdma->listen_id, 5);
4044 if (ret) {
4045 ERROR(errp, "listening on socket!");
4046 goto err;
4049 trace_rdma_start_incoming_migration_after_rdma_listen();
4051 /* initialize the RDMAContext for return path */
4052 if (migrate_postcopy()) {
4053 rdma_return_path = qemu_rdma_data_init(host_port, &local_err);
4055 if (rdma_return_path == NULL) {
4056 goto err;
4059 qemu_rdma_return_path_dest_init(rdma_return_path, rdma);
4062 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
4063 NULL, (void *)(intptr_t)rdma);
4064 return;
4065 err:
4066 error_propagate(errp, local_err);
4067 g_free(rdma);
4068 g_free(rdma_return_path);
4071 void rdma_start_outgoing_migration(void *opaque,
4072 const char *host_port, Error **errp)
4074 MigrationState *s = opaque;
4075 RDMAContext *rdma = qemu_rdma_data_init(host_port, errp);
4076 RDMAContext *rdma_return_path = NULL;
4077 int ret = 0;
4079 if (rdma == NULL) {
4080 goto err;
4083 ret = qemu_rdma_source_init(rdma,
4084 s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4086 if (ret) {
4087 goto err;
4090 trace_rdma_start_outgoing_migration_after_rdma_source_init();
4091 ret = qemu_rdma_connect(rdma, errp);
4093 if (ret) {
4094 goto err;
4097 /* RDMA postcopy need a seprate queue pair for return path */
4098 if (migrate_postcopy()) {
4099 rdma_return_path = qemu_rdma_data_init(host_port, errp);
4101 if (rdma_return_path == NULL) {
4102 goto err;
4105 ret = qemu_rdma_source_init(rdma_return_path,
4106 s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4108 if (ret) {
4109 goto err;
4112 ret = qemu_rdma_connect(rdma_return_path, errp);
4114 if (ret) {
4115 goto err;
4118 rdma->return_path = rdma_return_path;
4119 rdma_return_path->return_path = rdma;
4120 rdma_return_path->is_return_path = true;
4123 trace_rdma_start_outgoing_migration_after_rdma_connect();
4125 s->to_dst_file = qemu_fopen_rdma(rdma, "wb");
4126 migrate_fd_connect(s, NULL);
4127 return;
4128 err:
4129 g_free(rdma);
4130 g_free(rdma_return_path);