2 * Win32 implementation for mutex/cond/thread functions
4 * Copyright Red Hat, Inc. 2010
7 * Paolo Bonzini <pbonzini@redhat.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
14 #include "qemu/osdep.h"
15 #include "qemu-common.h"
16 #include "qemu/thread.h"
17 #include "qemu/notify.h"
18 #include "qemu-thread-common.h"
21 static bool name_threads
;
23 void qemu_thread_naming(bool enable
)
25 /* But note we don't actually name them on Windows yet */
26 name_threads
= enable
;
28 fprintf(stderr
, "qemu: thread naming not supported on this host\n");
31 static void error_exit(int err
, const char *msg
)
35 FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM
| FORMAT_MESSAGE_ALLOCATE_BUFFER
,
36 NULL
, err
, 0, (LPTSTR
)&pstr
, 2, NULL
);
37 fprintf(stderr
, "qemu: %s: %s\n", msg
, pstr
);
42 void qemu_mutex_init(QemuMutex
*mutex
)
44 InitializeSRWLock(&mutex
->lock
);
45 qemu_mutex_post_init(mutex
);
48 void qemu_mutex_destroy(QemuMutex
*mutex
)
50 assert(mutex
->initialized
);
51 mutex
->initialized
= false;
52 InitializeSRWLock(&mutex
->lock
);
55 void qemu_mutex_lock_impl(QemuMutex
*mutex
, const char *file
, const int line
)
57 assert(mutex
->initialized
);
58 qemu_mutex_pre_lock(mutex
, file
, line
);
59 AcquireSRWLockExclusive(&mutex
->lock
);
60 qemu_mutex_post_lock(mutex
, file
, line
);
63 int qemu_mutex_trylock_impl(QemuMutex
*mutex
, const char *file
, const int line
)
67 assert(mutex
->initialized
);
68 owned
= TryAcquireSRWLockExclusive(&mutex
->lock
);
70 qemu_mutex_post_lock(mutex
, file
, line
);
76 void qemu_mutex_unlock_impl(QemuMutex
*mutex
, const char *file
, const int line
)
78 assert(mutex
->initialized
);
79 qemu_mutex_pre_unlock(mutex
, file
, line
);
80 ReleaseSRWLockExclusive(&mutex
->lock
);
83 void qemu_rec_mutex_init(QemuRecMutex
*mutex
)
85 InitializeCriticalSection(&mutex
->lock
);
86 mutex
->initialized
= true;
89 void qemu_rec_mutex_destroy(QemuRecMutex
*mutex
)
91 assert(mutex
->initialized
);
92 mutex
->initialized
= false;
93 DeleteCriticalSection(&mutex
->lock
);
96 void qemu_rec_mutex_lock_impl(QemuRecMutex
*mutex
, const char *file
, int line
)
98 assert(mutex
->initialized
);
99 EnterCriticalSection(&mutex
->lock
);
102 int qemu_rec_mutex_trylock_impl(QemuRecMutex
*mutex
, const char *file
, int line
)
104 assert(mutex
->initialized
);
105 return !TryEnterCriticalSection(&mutex
->lock
);
108 void qemu_rec_mutex_unlock(QemuRecMutex
*mutex
)
110 assert(mutex
->initialized
);
111 LeaveCriticalSection(&mutex
->lock
);
114 void qemu_cond_init(QemuCond
*cond
)
116 memset(cond
, 0, sizeof(*cond
));
117 InitializeConditionVariable(&cond
->var
);
118 cond
->initialized
= true;
121 void qemu_cond_destroy(QemuCond
*cond
)
123 assert(cond
->initialized
);
124 cond
->initialized
= false;
125 InitializeConditionVariable(&cond
->var
);
128 void qemu_cond_signal(QemuCond
*cond
)
130 assert(cond
->initialized
);
131 WakeConditionVariable(&cond
->var
);
134 void qemu_cond_broadcast(QemuCond
*cond
)
136 assert(cond
->initialized
);
137 WakeAllConditionVariable(&cond
->var
);
140 void qemu_cond_wait_impl(QemuCond
*cond
, QemuMutex
*mutex
, const char *file
, const int line
)
142 assert(cond
->initialized
);
143 qemu_mutex_pre_unlock(mutex
, file
, line
);
144 SleepConditionVariableSRW(&cond
->var
, &mutex
->lock
, INFINITE
, 0);
145 qemu_mutex_post_lock(mutex
, file
, line
);
148 void qemu_sem_init(QemuSemaphore
*sem
, int init
)
151 sem
->sema
= CreateSemaphore(NULL
, init
, LONG_MAX
, NULL
);
152 sem
->initialized
= true;
155 void qemu_sem_destroy(QemuSemaphore
*sem
)
157 assert(sem
->initialized
);
158 sem
->initialized
= false;
159 CloseHandle(sem
->sema
);
162 void qemu_sem_post(QemuSemaphore
*sem
)
164 assert(sem
->initialized
);
165 ReleaseSemaphore(sem
->sema
, 1, NULL
);
168 int qemu_sem_timedwait(QemuSemaphore
*sem
, int ms
)
172 assert(sem
->initialized
);
173 rc
= WaitForSingleObject(sem
->sema
, ms
);
174 if (rc
== WAIT_OBJECT_0
) {
177 if (rc
!= WAIT_TIMEOUT
) {
178 error_exit(GetLastError(), __func__
);
183 void qemu_sem_wait(QemuSemaphore
*sem
)
185 assert(sem
->initialized
);
186 if (WaitForSingleObject(sem
->sema
, INFINITE
) != WAIT_OBJECT_0
) {
187 error_exit(GetLastError(), __func__
);
191 /* Wrap a Win32 manual-reset event with a fast userspace path. The idea
192 * is to reset the Win32 event lazily, as part of a test-reset-test-wait
193 * sequence. Such a sequence is, indeed, how QemuEvents are used by
194 * RCU and other subsystems!
197 * - free->set, when setting the event
198 * - busy->set, when setting the event, followed by SetEvent
199 * - set->free, when resetting the event
200 * - free->busy, when waiting
202 * set->busy does not happen (it can be observed from the outside but
203 * it really is set->free->busy).
205 * busy->free provably cannot happen; to enforce it, the set->free transition
206 * is done with an OR, which becomes a no-op if the event has concurrently
207 * transitioned to free or busy (and is faster than cmpxchg).
214 void qemu_event_init(QemuEvent
*ev
, bool init
)
217 ev
->event
= CreateEvent(NULL
, TRUE
, TRUE
, NULL
);
218 ev
->value
= (init
? EV_SET
: EV_FREE
);
219 ev
->initialized
= true;
222 void qemu_event_destroy(QemuEvent
*ev
)
224 assert(ev
->initialized
);
225 ev
->initialized
= false;
226 CloseHandle(ev
->event
);
229 void qemu_event_set(QemuEvent
*ev
)
231 assert(ev
->initialized
);
232 /* qemu_event_set has release semantics, but because it *loads*
233 * ev->value we need a full memory barrier here.
236 if (atomic_read(&ev
->value
) != EV_SET
) {
237 if (atomic_xchg(&ev
->value
, EV_SET
) == EV_BUSY
) {
238 /* There were waiters, wake them up. */
244 void qemu_event_reset(QemuEvent
*ev
)
248 assert(ev
->initialized
);
249 value
= atomic_read(&ev
->value
);
251 if (value
== EV_SET
) {
252 /* If there was a concurrent reset (or even reset+wait),
253 * do nothing. Otherwise change EV_SET->EV_FREE.
255 atomic_or(&ev
->value
, EV_FREE
);
259 void qemu_event_wait(QemuEvent
*ev
)
263 assert(ev
->initialized
);
264 value
= atomic_read(&ev
->value
);
266 if (value
!= EV_SET
) {
267 if (value
== EV_FREE
) {
268 /* qemu_event_set is not yet going to call SetEvent, but we are
269 * going to do another check for EV_SET below when setting EV_BUSY.
270 * At that point it is safe to call WaitForSingleObject.
272 ResetEvent(ev
->event
);
274 /* Tell qemu_event_set that there are waiters. No need to retry
275 * because there cannot be a concurent busy->free transition.
276 * After the CAS, the event will be either set or busy.
278 if (atomic_cmpxchg(&ev
->value
, EV_FREE
, EV_BUSY
) == EV_SET
) {
284 if (value
== EV_BUSY
) {
285 WaitForSingleObject(ev
->event
, INFINITE
);
290 struct QemuThreadData
{
291 /* Passed to win32_start_routine. */
292 void *(*start_routine
)(void *);
297 /* Only used for joinable threads. */
303 static bool atexit_registered
;
304 static NotifierList main_thread_exit
;
306 static __thread QemuThreadData
*qemu_thread_data
;
308 static void run_main_thread_exit(void)
310 notifier_list_notify(&main_thread_exit
, NULL
);
313 void qemu_thread_atexit_add(Notifier
*notifier
)
315 if (!qemu_thread_data
) {
316 if (!atexit_registered
) {
317 atexit_registered
= true;
318 atexit(run_main_thread_exit
);
320 notifier_list_add(&main_thread_exit
, notifier
);
322 notifier_list_add(&qemu_thread_data
->exit
, notifier
);
326 void qemu_thread_atexit_remove(Notifier
*notifier
)
328 notifier_remove(notifier
);
331 static unsigned __stdcall
win32_start_routine(void *arg
)
333 QemuThreadData
*data
= (QemuThreadData
*) arg
;
334 void *(*start_routine
)(void *) = data
->start_routine
;
335 void *thread_arg
= data
->arg
;
337 qemu_thread_data
= data
;
338 qemu_thread_exit(start_routine(thread_arg
));
342 void qemu_thread_exit(void *arg
)
344 QemuThreadData
*data
= qemu_thread_data
;
346 notifier_list_notify(&data
->exit
, NULL
);
347 if (data
->mode
== QEMU_THREAD_JOINABLE
) {
349 EnterCriticalSection(&data
->cs
);
351 LeaveCriticalSection(&data
->cs
);
358 void *qemu_thread_join(QemuThread
*thread
)
360 QemuThreadData
*data
;
365 if (data
->mode
== QEMU_THREAD_DETACHED
) {
370 * Because multiple copies of the QemuThread can exist via
371 * qemu_thread_get_self, we need to store a value that cannot
372 * leak there. The simplest, non racy way is to store the TID,
373 * discard the handle that _beginthreadex gives back, and
374 * get another copy of the handle here.
376 handle
= qemu_thread_get_handle(thread
);
378 WaitForSingleObject(handle
, INFINITE
);
382 DeleteCriticalSection(&data
->cs
);
387 void qemu_thread_create(QemuThread
*thread
, const char *name
,
388 void *(*start_routine
)(void *),
392 struct QemuThreadData
*data
;
394 data
= g_malloc(sizeof *data
);
395 data
->start_routine
= start_routine
;
398 data
->exited
= false;
399 notifier_list_init(&data
->exit
);
401 if (data
->mode
!= QEMU_THREAD_DETACHED
) {
402 InitializeCriticalSection(&data
->cs
);
405 hThread
= (HANDLE
) _beginthreadex(NULL
, 0, win32_start_routine
,
406 data
, 0, &thread
->tid
);
408 error_exit(GetLastError(), __func__
);
410 CloseHandle(hThread
);
414 void qemu_thread_get_self(QemuThread
*thread
)
416 thread
->data
= qemu_thread_data
;
417 thread
->tid
= GetCurrentThreadId();
420 HANDLE
qemu_thread_get_handle(QemuThread
*thread
)
422 QemuThreadData
*data
;
426 if (data
->mode
== QEMU_THREAD_DETACHED
) {
430 EnterCriticalSection(&data
->cs
);
432 handle
= OpenThread(SYNCHRONIZE
| THREAD_SUSPEND_RESUME
|
433 THREAD_SET_CONTEXT
, FALSE
, thread
->tid
);
437 LeaveCriticalSection(&data
->cs
);
441 bool qemu_thread_is_self(QemuThread
*thread
)
443 return GetCurrentThreadId() == thread
->tid
;