4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
38 #include <sys/times.h>
42 #include <sys/ioctl.h>
43 #include <sys/resource.h>
44 #include <sys/socket.h>
45 #include <netinet/in.h>
47 #if defined(__NetBSD__)
48 #include <net/if_tap.h>
51 #include <linux/if_tun.h>
53 #include <arpa/inet.h>
56 #include <sys/select.h>
59 #if defined(__FreeBSD__) || defined(__DragonFly__)
64 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
65 #include <freebsd/stdlib.h>
70 #include <linux/rtc.h>
72 /* For the benefit of older linux systems which don't supply it,
73 we use a local copy of hpet.h. */
74 /* #include <linux/hpet.h> */
77 #include <linux/ppdev.h>
78 #include <linux/parport.h>
82 #include <sys/ethernet.h>
83 #include <sys/sockio.h>
84 #include <netinet/arp.h>
85 #include <netinet/in.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/ip.h>
88 #include <netinet/ip_icmp.h> // must come after ip.h
89 #include <netinet/udp.h>
90 #include <netinet/tcp.h>
98 #if defined(__OpenBSD__)
102 #if defined(CONFIG_VDE)
103 #include <libvdeplug.h>
109 #include <sys/timeb.h>
110 #include <mmsystem.h>
111 #define getopt_long_only getopt_long
112 #define memalign(align, size) malloc(size)
118 int qemu_main(int argc
, char **argv
, char **envp
);
119 int main(int argc
, char **argv
)
121 qemu_main(argc
, argv
, NULL
);
124 #define main qemu_main
126 #endif /* CONFIG_SDL */
130 #define main qemu_main
131 #endif /* CONFIG_COCOA */
134 #include "hw/boards.h"
136 #include "hw/pcmcia.h"
138 #include "hw/audiodev.h"
142 #include "hw/watchdog.h"
143 #include "hw/smbios.h"
151 #include "qemu-timer.h"
152 #include "qemu-char.h"
153 #include "cache-utils.h"
156 #include "audio/audio.h"
157 #include "migration.h"
160 #include "qemu-option.h"
164 #include "exec-all.h"
166 #include "qemu_socket.h"
168 #if defined(CONFIG_SLIRP)
169 #include "libslirp.h"
172 //#define DEBUG_UNUSED_IOPORT
173 //#define DEBUG_IOPORT
175 //#define DEBUG_SLIRP
179 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
181 # define LOG_IOPORT(...) do { } while (0)
184 #define DEFAULT_RAM_SIZE 128
186 /* Max number of USB devices that can be specified on the commandline. */
187 #define MAX_USB_CMDLINE 8
189 /* Max number of bluetooth switches on the commandline. */
190 #define MAX_BT_CMDLINE 10
192 /* XXX: use a two level table to limit memory usage */
193 #define MAX_IOPORTS 65536
195 static const char *data_dir
;
196 const char *bios_name
= NULL
;
197 static void *ioport_opaque
[MAX_IOPORTS
];
198 static IOPortReadFunc
*ioport_read_table
[3][MAX_IOPORTS
];
199 static IOPortWriteFunc
*ioport_write_table
[3][MAX_IOPORTS
];
200 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
201 to store the VM snapshots */
202 DriveInfo drives_table
[MAX_DRIVES
+1];
204 enum vga_retrace_method vga_retrace_method
= VGA_RETRACE_DUMB
;
205 static DisplayState
*display_state
;
206 DisplayType display_type
= DT_DEFAULT
;
207 const char* keyboard_layout
= NULL
;
208 int64_t ticks_per_sec
;
211 NICInfo nd_table
[MAX_NICS
];
213 static int autostart
;
214 static int rtc_utc
= 1;
215 static int rtc_date_offset
= -1; /* -1 means no change */
216 int cirrus_vga_enabled
= 1;
217 int std_vga_enabled
= 0;
218 int vmsvga_enabled
= 0;
219 int xenfb_enabled
= 0;
221 int graphic_width
= 1024;
222 int graphic_height
= 768;
223 int graphic_depth
= 8;
225 int graphic_width
= 800;
226 int graphic_height
= 600;
227 int graphic_depth
= 15;
229 static int full_screen
= 0;
231 static int no_frame
= 0;
234 CharDriverState
*serial_hds
[MAX_SERIAL_PORTS
];
235 CharDriverState
*parallel_hds
[MAX_PARALLEL_PORTS
];
236 CharDriverState
*virtcon_hds
[MAX_VIRTIO_CONSOLES
];
238 int win2k_install_hack
= 0;
244 const char *vnc_display
;
245 int acpi_enabled
= 1;
251 int graphic_rotate
= 0;
255 WatchdogTimerModel
*watchdog
= NULL
;
256 int watchdog_action
= WDT_RESET
;
257 const char *option_rom
[MAX_OPTION_ROMS
];
259 int semihosting_enabled
= 0;
263 const char *qemu_name
;
265 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
266 unsigned int nb_prom_envs
= 0;
267 const char *prom_envs
[MAX_PROM_ENVS
];
270 struct drive_opt drives_opt
[MAX_DRIVES
];
273 uint64_t node_mem
[MAX_NODES
];
274 uint64_t node_cpumask
[MAX_NODES
];
276 static CPUState
*cur_cpu
;
277 static CPUState
*next_cpu
;
278 static int timer_alarm_pending
= 1;
279 /* Conversion factor from emulated instructions to virtual clock ticks. */
280 static int icount_time_shift
;
281 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
282 #define MAX_ICOUNT_SHIFT 10
283 /* Compensate for varying guest execution speed. */
284 static int64_t qemu_icount_bias
;
285 static QEMUTimer
*icount_rt_timer
;
286 static QEMUTimer
*icount_vm_timer
;
287 static QEMUTimer
*nographic_timer
;
289 uint8_t qemu_uuid
[16];
291 /***********************************************************/
292 /* x86 ISA bus support */
294 target_phys_addr_t isa_mem_base
= 0;
297 static IOPortReadFunc default_ioport_readb
, default_ioport_readw
, default_ioport_readl
;
298 static IOPortWriteFunc default_ioport_writeb
, default_ioport_writew
, default_ioport_writel
;
300 static uint32_t ioport_read(int index
, uint32_t address
)
302 static IOPortReadFunc
*default_func
[3] = {
303 default_ioport_readb
,
304 default_ioport_readw
,
307 IOPortReadFunc
*func
= ioport_read_table
[index
][address
];
309 func
= default_func
[index
];
310 return func(ioport_opaque
[address
], address
);
313 static void ioport_write(int index
, uint32_t address
, uint32_t data
)
315 static IOPortWriteFunc
*default_func
[3] = {
316 default_ioport_writeb
,
317 default_ioport_writew
,
318 default_ioport_writel
320 IOPortWriteFunc
*func
= ioport_write_table
[index
][address
];
322 func
= default_func
[index
];
323 func(ioport_opaque
[address
], address
, data
);
326 static uint32_t default_ioport_readb(void *opaque
, uint32_t address
)
328 #ifdef DEBUG_UNUSED_IOPORT
329 fprintf(stderr
, "unused inb: port=0x%04x\n", address
);
334 static void default_ioport_writeb(void *opaque
, uint32_t address
, uint32_t data
)
336 #ifdef DEBUG_UNUSED_IOPORT
337 fprintf(stderr
, "unused outb: port=0x%04x data=0x%02x\n", address
, data
);
341 /* default is to make two byte accesses */
342 static uint32_t default_ioport_readw(void *opaque
, uint32_t address
)
345 data
= ioport_read(0, address
);
346 address
= (address
+ 1) & (MAX_IOPORTS
- 1);
347 data
|= ioport_read(0, address
) << 8;
351 static void default_ioport_writew(void *opaque
, uint32_t address
, uint32_t data
)
353 ioport_write(0, address
, data
& 0xff);
354 address
= (address
+ 1) & (MAX_IOPORTS
- 1);
355 ioport_write(0, address
, (data
>> 8) & 0xff);
358 static uint32_t default_ioport_readl(void *opaque
, uint32_t address
)
360 #ifdef DEBUG_UNUSED_IOPORT
361 fprintf(stderr
, "unused inl: port=0x%04x\n", address
);
366 static void default_ioport_writel(void *opaque
, uint32_t address
, uint32_t data
)
368 #ifdef DEBUG_UNUSED_IOPORT
369 fprintf(stderr
, "unused outl: port=0x%04x data=0x%02x\n", address
, data
);
373 /* size is the word size in byte */
374 int register_ioport_read(int start
, int length
, int size
,
375 IOPortReadFunc
*func
, void *opaque
)
381 } else if (size
== 2) {
383 } else if (size
== 4) {
386 hw_error("register_ioport_read: invalid size");
389 for(i
= start
; i
< start
+ length
; i
+= size
) {
390 ioport_read_table
[bsize
][i
] = func
;
391 if (ioport_opaque
[i
] != NULL
&& ioport_opaque
[i
] != opaque
)
392 hw_error("register_ioport_read: invalid opaque");
393 ioport_opaque
[i
] = opaque
;
398 /* size is the word size in byte */
399 int register_ioport_write(int start
, int length
, int size
,
400 IOPortWriteFunc
*func
, void *opaque
)
406 } else if (size
== 2) {
408 } else if (size
== 4) {
411 hw_error("register_ioport_write: invalid size");
414 for(i
= start
; i
< start
+ length
; i
+= size
) {
415 ioport_write_table
[bsize
][i
] = func
;
416 if (ioport_opaque
[i
] != NULL
&& ioport_opaque
[i
] != opaque
)
417 hw_error("register_ioport_write: invalid opaque");
418 ioport_opaque
[i
] = opaque
;
423 void isa_unassign_ioport(int start
, int length
)
427 for(i
= start
; i
< start
+ length
; i
++) {
428 ioport_read_table
[0][i
] = default_ioport_readb
;
429 ioport_read_table
[1][i
] = default_ioport_readw
;
430 ioport_read_table
[2][i
] = default_ioport_readl
;
432 ioport_write_table
[0][i
] = default_ioport_writeb
;
433 ioport_write_table
[1][i
] = default_ioport_writew
;
434 ioport_write_table
[2][i
] = default_ioport_writel
;
436 ioport_opaque
[i
] = NULL
;
440 /***********************************************************/
442 void cpu_outb(CPUState
*env
, int addr
, int val
)
444 LOG_IOPORT("outb: %04x %02x\n", addr
, val
);
445 ioport_write(0, addr
, val
);
448 env
->last_io_time
= cpu_get_time_fast();
452 void cpu_outw(CPUState
*env
, int addr
, int val
)
454 LOG_IOPORT("outw: %04x %04x\n", addr
, val
);
455 ioport_write(1, addr
, val
);
458 env
->last_io_time
= cpu_get_time_fast();
462 void cpu_outl(CPUState
*env
, int addr
, int val
)
464 LOG_IOPORT("outl: %04x %08x\n", addr
, val
);
465 ioport_write(2, addr
, val
);
468 env
->last_io_time
= cpu_get_time_fast();
472 int cpu_inb(CPUState
*env
, int addr
)
475 val
= ioport_read(0, addr
);
476 LOG_IOPORT("inb : %04x %02x\n", addr
, val
);
479 env
->last_io_time
= cpu_get_time_fast();
484 int cpu_inw(CPUState
*env
, int addr
)
487 val
= ioport_read(1, addr
);
488 LOG_IOPORT("inw : %04x %04x\n", addr
, val
);
491 env
->last_io_time
= cpu_get_time_fast();
496 int cpu_inl(CPUState
*env
, int addr
)
499 val
= ioport_read(2, addr
);
500 LOG_IOPORT("inl : %04x %08x\n", addr
, val
);
503 env
->last_io_time
= cpu_get_time_fast();
508 /***********************************************************/
509 void hw_error(const char *fmt
, ...)
515 fprintf(stderr
, "qemu: hardware error: ");
516 vfprintf(stderr
, fmt
, ap
);
517 fprintf(stderr
, "\n");
518 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
519 fprintf(stderr
, "CPU #%d:\n", env
->cpu_index
);
521 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
);
523 cpu_dump_state(env
, stderr
, fprintf
, 0);
533 static QEMUBalloonEvent
*qemu_balloon_event
;
534 void *qemu_balloon_event_opaque
;
536 void qemu_add_balloon_handler(QEMUBalloonEvent
*func
, void *opaque
)
538 qemu_balloon_event
= func
;
539 qemu_balloon_event_opaque
= opaque
;
542 void qemu_balloon(ram_addr_t target
)
544 if (qemu_balloon_event
)
545 qemu_balloon_event(qemu_balloon_event_opaque
, target
);
548 ram_addr_t
qemu_balloon_status(void)
550 if (qemu_balloon_event
)
551 return qemu_balloon_event(qemu_balloon_event_opaque
, 0);
555 /***********************************************************/
558 static QEMUPutKBDEvent
*qemu_put_kbd_event
;
559 static void *qemu_put_kbd_event_opaque
;
560 static QEMUPutMouseEntry
*qemu_put_mouse_event_head
;
561 static QEMUPutMouseEntry
*qemu_put_mouse_event_current
;
563 void qemu_add_kbd_event_handler(QEMUPutKBDEvent
*func
, void *opaque
)
565 qemu_put_kbd_event_opaque
= opaque
;
566 qemu_put_kbd_event
= func
;
569 QEMUPutMouseEntry
*qemu_add_mouse_event_handler(QEMUPutMouseEvent
*func
,
570 void *opaque
, int absolute
,
573 QEMUPutMouseEntry
*s
, *cursor
;
575 s
= qemu_mallocz(sizeof(QEMUPutMouseEntry
));
577 s
->qemu_put_mouse_event
= func
;
578 s
->qemu_put_mouse_event_opaque
= opaque
;
579 s
->qemu_put_mouse_event_absolute
= absolute
;
580 s
->qemu_put_mouse_event_name
= qemu_strdup(name
);
583 if (!qemu_put_mouse_event_head
) {
584 qemu_put_mouse_event_head
= qemu_put_mouse_event_current
= s
;
588 cursor
= qemu_put_mouse_event_head
;
589 while (cursor
->next
!= NULL
)
590 cursor
= cursor
->next
;
593 qemu_put_mouse_event_current
= s
;
598 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry
*entry
)
600 QEMUPutMouseEntry
*prev
= NULL
, *cursor
;
602 if (!qemu_put_mouse_event_head
|| entry
== NULL
)
605 cursor
= qemu_put_mouse_event_head
;
606 while (cursor
!= NULL
&& cursor
!= entry
) {
608 cursor
= cursor
->next
;
611 if (cursor
== NULL
) // does not exist or list empty
613 else if (prev
== NULL
) { // entry is head
614 qemu_put_mouse_event_head
= cursor
->next
;
615 if (qemu_put_mouse_event_current
== entry
)
616 qemu_put_mouse_event_current
= cursor
->next
;
617 qemu_free(entry
->qemu_put_mouse_event_name
);
622 prev
->next
= entry
->next
;
624 if (qemu_put_mouse_event_current
== entry
)
625 qemu_put_mouse_event_current
= prev
;
627 qemu_free(entry
->qemu_put_mouse_event_name
);
631 void kbd_put_keycode(int keycode
)
633 if (qemu_put_kbd_event
) {
634 qemu_put_kbd_event(qemu_put_kbd_event_opaque
, keycode
);
638 void kbd_mouse_event(int dx
, int dy
, int dz
, int buttons_state
)
640 QEMUPutMouseEvent
*mouse_event
;
641 void *mouse_event_opaque
;
644 if (!qemu_put_mouse_event_current
) {
649 qemu_put_mouse_event_current
->qemu_put_mouse_event
;
651 qemu_put_mouse_event_current
->qemu_put_mouse_event_opaque
;
654 if (graphic_rotate
) {
655 if (qemu_put_mouse_event_current
->qemu_put_mouse_event_absolute
)
658 width
= graphic_width
- 1;
659 mouse_event(mouse_event_opaque
,
660 width
- dy
, dx
, dz
, buttons_state
);
662 mouse_event(mouse_event_opaque
,
663 dx
, dy
, dz
, buttons_state
);
667 int kbd_mouse_is_absolute(void)
669 if (!qemu_put_mouse_event_current
)
672 return qemu_put_mouse_event_current
->qemu_put_mouse_event_absolute
;
675 void do_info_mice(Monitor
*mon
)
677 QEMUPutMouseEntry
*cursor
;
680 if (!qemu_put_mouse_event_head
) {
681 monitor_printf(mon
, "No mouse devices connected\n");
685 monitor_printf(mon
, "Mouse devices available:\n");
686 cursor
= qemu_put_mouse_event_head
;
687 while (cursor
!= NULL
) {
688 monitor_printf(mon
, "%c Mouse #%d: %s\n",
689 (cursor
== qemu_put_mouse_event_current
? '*' : ' '),
690 index
, cursor
->qemu_put_mouse_event_name
);
692 cursor
= cursor
->next
;
696 void do_mouse_set(Monitor
*mon
, int index
)
698 QEMUPutMouseEntry
*cursor
;
701 if (!qemu_put_mouse_event_head
) {
702 monitor_printf(mon
, "No mouse devices connected\n");
706 cursor
= qemu_put_mouse_event_head
;
707 while (cursor
!= NULL
&& index
!= i
) {
709 cursor
= cursor
->next
;
713 qemu_put_mouse_event_current
= cursor
;
715 monitor_printf(mon
, "Mouse at given index not found\n");
718 /* compute with 96 bit intermediate result: (a*b)/c */
719 uint64_t muldiv64(uint64_t a
, uint32_t b
, uint32_t c
)
724 #ifdef WORDS_BIGENDIAN
734 rl
= (uint64_t)u
.l
.low
* (uint64_t)b
;
735 rh
= (uint64_t)u
.l
.high
* (uint64_t)b
;
738 res
.l
.low
= (((rh
% c
) << 32) + (rl
& 0xffffffff)) / c
;
742 /***********************************************************/
743 /* real time host monotonic timer */
745 #define QEMU_TIMER_BASE 1000000000LL
749 static int64_t clock_freq
;
751 static void init_get_clock(void)
755 ret
= QueryPerformanceFrequency(&freq
);
757 fprintf(stderr
, "Could not calibrate ticks\n");
760 clock_freq
= freq
.QuadPart
;
763 static int64_t get_clock(void)
766 QueryPerformanceCounter(&ti
);
767 return muldiv64(ti
.QuadPart
, QEMU_TIMER_BASE
, clock_freq
);
772 static int use_rt_clock
;
774 static void init_get_clock(void)
777 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
778 || defined(__DragonFly__)
781 if (clock_gettime(CLOCK_MONOTONIC
, &ts
) == 0) {
788 static int64_t get_clock(void)
790 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
791 || defined(__DragonFly__)
794 clock_gettime(CLOCK_MONOTONIC
, &ts
);
795 return ts
.tv_sec
* 1000000000LL + ts
.tv_nsec
;
799 /* XXX: using gettimeofday leads to problems if the date
800 changes, so it should be avoided. */
802 gettimeofday(&tv
, NULL
);
803 return tv
.tv_sec
* 1000000000LL + (tv
.tv_usec
* 1000);
808 /* Return the virtual CPU time, based on the instruction counter. */
809 static int64_t cpu_get_icount(void)
812 CPUState
*env
= cpu_single_env
;;
813 icount
= qemu_icount
;
816 fprintf(stderr
, "Bad clock read\n");
817 icount
-= (env
->icount_decr
.u16
.low
+ env
->icount_extra
);
819 return qemu_icount_bias
+ (icount
<< icount_time_shift
);
822 /***********************************************************/
823 /* guest cycle counter */
825 static int64_t cpu_ticks_prev
;
826 static int64_t cpu_ticks_offset
;
827 static int64_t cpu_clock_offset
;
828 static int cpu_ticks_enabled
;
830 /* return the host CPU cycle counter and handle stop/restart */
831 int64_t cpu_get_ticks(void)
834 return cpu_get_icount();
836 if (!cpu_ticks_enabled
) {
837 return cpu_ticks_offset
;
840 ticks
= cpu_get_real_ticks();
841 if (cpu_ticks_prev
> ticks
) {
842 /* Note: non increasing ticks may happen if the host uses
844 cpu_ticks_offset
+= cpu_ticks_prev
- ticks
;
846 cpu_ticks_prev
= ticks
;
847 return ticks
+ cpu_ticks_offset
;
851 /* return the host CPU monotonic timer and handle stop/restart */
852 static int64_t cpu_get_clock(void)
855 if (!cpu_ticks_enabled
) {
856 return cpu_clock_offset
;
859 return ti
+ cpu_clock_offset
;
863 /* enable cpu_get_ticks() */
864 void cpu_enable_ticks(void)
866 if (!cpu_ticks_enabled
) {
867 cpu_ticks_offset
-= cpu_get_real_ticks();
868 cpu_clock_offset
-= get_clock();
869 cpu_ticks_enabled
= 1;
873 /* disable cpu_get_ticks() : the clock is stopped. You must not call
874 cpu_get_ticks() after that. */
875 void cpu_disable_ticks(void)
877 if (cpu_ticks_enabled
) {
878 cpu_ticks_offset
= cpu_get_ticks();
879 cpu_clock_offset
= cpu_get_clock();
880 cpu_ticks_enabled
= 0;
884 /***********************************************************/
887 #define QEMU_TIMER_REALTIME 0
888 #define QEMU_TIMER_VIRTUAL 1
892 /* XXX: add frequency */
900 struct QEMUTimer
*next
;
903 struct qemu_alarm_timer
{
907 int (*start
)(struct qemu_alarm_timer
*t
);
908 void (*stop
)(struct qemu_alarm_timer
*t
);
909 void (*rearm
)(struct qemu_alarm_timer
*t
);
913 #define ALARM_FLAG_DYNTICKS 0x1
914 #define ALARM_FLAG_EXPIRED 0x2
916 static inline int alarm_has_dynticks(struct qemu_alarm_timer
*t
)
918 return t
&& (t
->flags
& ALARM_FLAG_DYNTICKS
);
921 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer
*t
)
923 if (!alarm_has_dynticks(t
))
929 /* TODO: MIN_TIMER_REARM_US should be optimized */
930 #define MIN_TIMER_REARM_US 250
932 static struct qemu_alarm_timer
*alarm_timer
;
936 struct qemu_alarm_win32
{
939 } alarm_win32_data
= {0, -1};
941 static int win32_start_timer(struct qemu_alarm_timer
*t
);
942 static void win32_stop_timer(struct qemu_alarm_timer
*t
);
943 static void win32_rearm_timer(struct qemu_alarm_timer
*t
);
947 static int unix_start_timer(struct qemu_alarm_timer
*t
);
948 static void unix_stop_timer(struct qemu_alarm_timer
*t
);
952 static int dynticks_start_timer(struct qemu_alarm_timer
*t
);
953 static void dynticks_stop_timer(struct qemu_alarm_timer
*t
);
954 static void dynticks_rearm_timer(struct qemu_alarm_timer
*t
);
956 static int hpet_start_timer(struct qemu_alarm_timer
*t
);
957 static void hpet_stop_timer(struct qemu_alarm_timer
*t
);
959 static int rtc_start_timer(struct qemu_alarm_timer
*t
);
960 static void rtc_stop_timer(struct qemu_alarm_timer
*t
);
962 #endif /* __linux__ */
966 /* Correlation between real and virtual time is always going to be
967 fairly approximate, so ignore small variation.
968 When the guest is idle real and virtual time will be aligned in
970 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
972 static void icount_adjust(void)
977 static int64_t last_delta
;
978 /* If the VM is not running, then do nothing. */
982 cur_time
= cpu_get_clock();
983 cur_icount
= qemu_get_clock(vm_clock
);
984 delta
= cur_icount
- cur_time
;
985 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
987 && last_delta
+ ICOUNT_WOBBLE
< delta
* 2
988 && icount_time_shift
> 0) {
989 /* The guest is getting too far ahead. Slow time down. */
993 && last_delta
- ICOUNT_WOBBLE
> delta
* 2
994 && icount_time_shift
< MAX_ICOUNT_SHIFT
) {
995 /* The guest is getting too far behind. Speed time up. */
999 qemu_icount_bias
= cur_icount
- (qemu_icount
<< icount_time_shift
);
1002 static void icount_adjust_rt(void * opaque
)
1004 qemu_mod_timer(icount_rt_timer
,
1005 qemu_get_clock(rt_clock
) + 1000);
1009 static void icount_adjust_vm(void * opaque
)
1011 qemu_mod_timer(icount_vm_timer
,
1012 qemu_get_clock(vm_clock
) + QEMU_TIMER_BASE
/ 10);
1016 static void init_icount_adjust(void)
1018 /* Have both realtime and virtual time triggers for speed adjustment.
1019 The realtime trigger catches emulated time passing too slowly,
1020 the virtual time trigger catches emulated time passing too fast.
1021 Realtime triggers occur even when idle, so use them less frequently
1022 than VM triggers. */
1023 icount_rt_timer
= qemu_new_timer(rt_clock
, icount_adjust_rt
, NULL
);
1024 qemu_mod_timer(icount_rt_timer
,
1025 qemu_get_clock(rt_clock
) + 1000);
1026 icount_vm_timer
= qemu_new_timer(vm_clock
, icount_adjust_vm
, NULL
);
1027 qemu_mod_timer(icount_vm_timer
,
1028 qemu_get_clock(vm_clock
) + QEMU_TIMER_BASE
/ 10);
1031 static struct qemu_alarm_timer alarm_timers
[] = {
1034 {"dynticks", ALARM_FLAG_DYNTICKS
, dynticks_start_timer
,
1035 dynticks_stop_timer
, dynticks_rearm_timer
, NULL
},
1036 /* HPET - if available - is preferred */
1037 {"hpet", 0, hpet_start_timer
, hpet_stop_timer
, NULL
, NULL
},
1038 /* ...otherwise try RTC */
1039 {"rtc", 0, rtc_start_timer
, rtc_stop_timer
, NULL
, NULL
},
1041 {"unix", 0, unix_start_timer
, unix_stop_timer
, NULL
, NULL
},
1043 {"dynticks", ALARM_FLAG_DYNTICKS
, win32_start_timer
,
1044 win32_stop_timer
, win32_rearm_timer
, &alarm_win32_data
},
1045 {"win32", 0, win32_start_timer
,
1046 win32_stop_timer
, NULL
, &alarm_win32_data
},
1051 static void show_available_alarms(void)
1055 printf("Available alarm timers, in order of precedence:\n");
1056 for (i
= 0; alarm_timers
[i
].name
; i
++)
1057 printf("%s\n", alarm_timers
[i
].name
);
1060 static void configure_alarms(char const *opt
)
1064 int count
= ARRAY_SIZE(alarm_timers
) - 1;
1067 struct qemu_alarm_timer tmp
;
1069 if (!strcmp(opt
, "?")) {
1070 show_available_alarms();
1076 /* Reorder the array */
1077 name
= strtok(arg
, ",");
1079 for (i
= 0; i
< count
&& alarm_timers
[i
].name
; i
++) {
1080 if (!strcmp(alarm_timers
[i
].name
, name
))
1085 fprintf(stderr
, "Unknown clock %s\n", name
);
1094 tmp
= alarm_timers
[i
];
1095 alarm_timers
[i
] = alarm_timers
[cur
];
1096 alarm_timers
[cur
] = tmp
;
1100 name
= strtok(NULL
, ",");
1106 /* Disable remaining timers */
1107 for (i
= cur
; i
< count
; i
++)
1108 alarm_timers
[i
].name
= NULL
;
1110 show_available_alarms();
1115 QEMUClock
*rt_clock
;
1116 QEMUClock
*vm_clock
;
1118 static QEMUTimer
*active_timers
[2];
1120 static QEMUClock
*qemu_new_clock(int type
)
1123 clock
= qemu_mallocz(sizeof(QEMUClock
));
1128 QEMUTimer
*qemu_new_timer(QEMUClock
*clock
, QEMUTimerCB
*cb
, void *opaque
)
1132 ts
= qemu_mallocz(sizeof(QEMUTimer
));
1135 ts
->opaque
= opaque
;
1139 void qemu_free_timer(QEMUTimer
*ts
)
1144 /* stop a timer, but do not dealloc it */
1145 void qemu_del_timer(QEMUTimer
*ts
)
1149 /* NOTE: this code must be signal safe because
1150 qemu_timer_expired() can be called from a signal. */
1151 pt
= &active_timers
[ts
->clock
->type
];
1164 /* modify the current timer so that it will be fired when current_time
1165 >= expire_time. The corresponding callback will be called. */
1166 void qemu_mod_timer(QEMUTimer
*ts
, int64_t expire_time
)
1172 /* add the timer in the sorted list */
1173 /* NOTE: this code must be signal safe because
1174 qemu_timer_expired() can be called from a signal. */
1175 pt
= &active_timers
[ts
->clock
->type
];
1180 if (t
->expire_time
> expire_time
)
1184 ts
->expire_time
= expire_time
;
1188 /* Rearm if necessary */
1189 if (pt
== &active_timers
[ts
->clock
->type
]) {
1190 if ((alarm_timer
->flags
& ALARM_FLAG_EXPIRED
) == 0) {
1191 qemu_rearm_alarm_timer(alarm_timer
);
1193 /* Interrupt execution to force deadline recalculation. */
1195 qemu_notify_event();
1199 int qemu_timer_pending(QEMUTimer
*ts
)
1202 for(t
= active_timers
[ts
->clock
->type
]; t
!= NULL
; t
= t
->next
) {
1209 static inline int qemu_timer_expired(QEMUTimer
*timer_head
, int64_t current_time
)
1213 return (timer_head
->expire_time
<= current_time
);
1216 static void qemu_run_timers(QEMUTimer
**ptimer_head
, int64_t current_time
)
1222 if (!ts
|| ts
->expire_time
> current_time
)
1224 /* remove timer from the list before calling the callback */
1225 *ptimer_head
= ts
->next
;
1228 /* run the callback (the timer list can be modified) */
1233 int64_t qemu_get_clock(QEMUClock
*clock
)
1235 switch(clock
->type
) {
1236 case QEMU_TIMER_REALTIME
:
1237 return get_clock() / 1000000;
1239 case QEMU_TIMER_VIRTUAL
:
1241 return cpu_get_icount();
1243 return cpu_get_clock();
1248 static void init_timers(void)
1251 ticks_per_sec
= QEMU_TIMER_BASE
;
1252 rt_clock
= qemu_new_clock(QEMU_TIMER_REALTIME
);
1253 vm_clock
= qemu_new_clock(QEMU_TIMER_VIRTUAL
);
1257 void qemu_put_timer(QEMUFile
*f
, QEMUTimer
*ts
)
1259 uint64_t expire_time
;
1261 if (qemu_timer_pending(ts
)) {
1262 expire_time
= ts
->expire_time
;
1266 qemu_put_be64(f
, expire_time
);
1269 void qemu_get_timer(QEMUFile
*f
, QEMUTimer
*ts
)
1271 uint64_t expire_time
;
1273 expire_time
= qemu_get_be64(f
);
1274 if (expire_time
!= -1) {
1275 qemu_mod_timer(ts
, expire_time
);
1281 static void timer_save(QEMUFile
*f
, void *opaque
)
1283 if (cpu_ticks_enabled
) {
1284 hw_error("cannot save state if virtual timers are running");
1286 qemu_put_be64(f
, cpu_ticks_offset
);
1287 qemu_put_be64(f
, ticks_per_sec
);
1288 qemu_put_be64(f
, cpu_clock_offset
);
1291 static int timer_load(QEMUFile
*f
, void *opaque
, int version_id
)
1293 if (version_id
!= 1 && version_id
!= 2)
1295 if (cpu_ticks_enabled
) {
1298 cpu_ticks_offset
=qemu_get_be64(f
);
1299 ticks_per_sec
=qemu_get_be64(f
);
1300 if (version_id
== 2) {
1301 cpu_clock_offset
=qemu_get_be64(f
);
1306 static void qemu_event_increment(void);
1309 static void CALLBACK
host_alarm_handler(UINT uTimerID
, UINT uMsg
,
1310 DWORD_PTR dwUser
, DWORD_PTR dw1
,
1313 static void host_alarm_handler(int host_signum
)
1317 #define DISP_FREQ 1000
1319 static int64_t delta_min
= INT64_MAX
;
1320 static int64_t delta_max
, delta_cum
, last_clock
, delta
, ti
;
1322 ti
= qemu_get_clock(vm_clock
);
1323 if (last_clock
!= 0) {
1324 delta
= ti
- last_clock
;
1325 if (delta
< delta_min
)
1327 if (delta
> delta_max
)
1330 if (++count
== DISP_FREQ
) {
1331 printf("timer: min=%" PRId64
" us max=%" PRId64
" us avg=%" PRId64
" us avg_freq=%0.3f Hz\n",
1332 muldiv64(delta_min
, 1000000, ticks_per_sec
),
1333 muldiv64(delta_max
, 1000000, ticks_per_sec
),
1334 muldiv64(delta_cum
, 1000000 / DISP_FREQ
, ticks_per_sec
),
1335 (double)ticks_per_sec
/ ((double)delta_cum
/ DISP_FREQ
));
1337 delta_min
= INT64_MAX
;
1345 if (alarm_has_dynticks(alarm_timer
) ||
1347 qemu_timer_expired(active_timers
[QEMU_TIMER_VIRTUAL
],
1348 qemu_get_clock(vm_clock
))) ||
1349 qemu_timer_expired(active_timers
[QEMU_TIMER_REALTIME
],
1350 qemu_get_clock(rt_clock
))) {
1351 qemu_event_increment();
1352 if (alarm_timer
) alarm_timer
->flags
|= ALARM_FLAG_EXPIRED
;
1354 #ifndef CONFIG_IOTHREAD
1356 /* stop the currently executing cpu because a timer occured */
1359 if (next_cpu
->kqemu_enabled
) {
1360 kqemu_cpu_interrupt(next_cpu
);
1365 timer_alarm_pending
= 1;
1366 qemu_notify_event();
1370 static int64_t qemu_next_deadline(void)
1374 if (active_timers
[QEMU_TIMER_VIRTUAL
]) {
1375 delta
= active_timers
[QEMU_TIMER_VIRTUAL
]->expire_time
-
1376 qemu_get_clock(vm_clock
);
1378 /* To avoid problems with overflow limit this to 2^32. */
1388 #if defined(__linux__) || defined(_WIN32)
1389 static uint64_t qemu_next_deadline_dyntick(void)
1397 delta
= (qemu_next_deadline() + 999) / 1000;
1399 if (active_timers
[QEMU_TIMER_REALTIME
]) {
1400 rtdelta
= (active_timers
[QEMU_TIMER_REALTIME
]->expire_time
-
1401 qemu_get_clock(rt_clock
))*1000;
1402 if (rtdelta
< delta
)
1406 if (delta
< MIN_TIMER_REARM_US
)
1407 delta
= MIN_TIMER_REARM_US
;
1415 /* Sets a specific flag */
1416 static int fcntl_setfl(int fd
, int flag
)
1420 flags
= fcntl(fd
, F_GETFL
);
1424 if (fcntl(fd
, F_SETFL
, flags
| flag
) == -1)
1430 #if defined(__linux__)
1432 #define RTC_FREQ 1024
1434 static void enable_sigio_timer(int fd
)
1436 struct sigaction act
;
1439 sigfillset(&act
.sa_mask
);
1441 act
.sa_handler
= host_alarm_handler
;
1443 sigaction(SIGIO
, &act
, NULL
);
1444 fcntl_setfl(fd
, O_ASYNC
);
1445 fcntl(fd
, F_SETOWN
, getpid());
1448 static int hpet_start_timer(struct qemu_alarm_timer
*t
)
1450 struct hpet_info info
;
1453 fd
= open("/dev/hpet", O_RDONLY
);
1458 r
= ioctl(fd
, HPET_IRQFREQ
, RTC_FREQ
);
1460 fprintf(stderr
, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1461 "error, but for better emulation accuracy type:\n"
1462 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1466 /* Check capabilities */
1467 r
= ioctl(fd
, HPET_INFO
, &info
);
1471 /* Enable periodic mode */
1472 r
= ioctl(fd
, HPET_EPI
, 0);
1473 if (info
.hi_flags
&& (r
< 0))
1476 /* Enable interrupt */
1477 r
= ioctl(fd
, HPET_IE_ON
, 0);
1481 enable_sigio_timer(fd
);
1482 t
->priv
= (void *)(long)fd
;
1490 static void hpet_stop_timer(struct qemu_alarm_timer
*t
)
1492 int fd
= (long)t
->priv
;
1497 static int rtc_start_timer(struct qemu_alarm_timer
*t
)
1500 unsigned long current_rtc_freq
= 0;
1502 TFR(rtc_fd
= open("/dev/rtc", O_RDONLY
));
1505 ioctl(rtc_fd
, RTC_IRQP_READ
, ¤t_rtc_freq
);
1506 if (current_rtc_freq
!= RTC_FREQ
&&
1507 ioctl(rtc_fd
, RTC_IRQP_SET
, RTC_FREQ
) < 0) {
1508 fprintf(stderr
, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1509 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1510 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1513 if (ioctl(rtc_fd
, RTC_PIE_ON
, 0) < 0) {
1519 enable_sigio_timer(rtc_fd
);
1521 t
->priv
= (void *)(long)rtc_fd
;
1526 static void rtc_stop_timer(struct qemu_alarm_timer
*t
)
1528 int rtc_fd
= (long)t
->priv
;
1533 static int dynticks_start_timer(struct qemu_alarm_timer
*t
)
1537 struct sigaction act
;
1539 sigfillset(&act
.sa_mask
);
1541 act
.sa_handler
= host_alarm_handler
;
1543 sigaction(SIGALRM
, &act
, NULL
);
1546 * Initialize ev struct to 0 to avoid valgrind complaining
1547 * about uninitialized data in timer_create call
1549 memset(&ev
, 0, sizeof(ev
));
1550 ev
.sigev_value
.sival_int
= 0;
1551 ev
.sigev_notify
= SIGEV_SIGNAL
;
1552 ev
.sigev_signo
= SIGALRM
;
1554 if (timer_create(CLOCK_REALTIME
, &ev
, &host_timer
)) {
1555 perror("timer_create");
1557 /* disable dynticks */
1558 fprintf(stderr
, "Dynamic Ticks disabled\n");
1563 t
->priv
= (void *)(long)host_timer
;
1568 static void dynticks_stop_timer(struct qemu_alarm_timer
*t
)
1570 timer_t host_timer
= (timer_t
)(long)t
->priv
;
1572 timer_delete(host_timer
);
1575 static void dynticks_rearm_timer(struct qemu_alarm_timer
*t
)
1577 timer_t host_timer
= (timer_t
)(long)t
->priv
;
1578 struct itimerspec timeout
;
1579 int64_t nearest_delta_us
= INT64_MAX
;
1582 if (!active_timers
[QEMU_TIMER_REALTIME
] &&
1583 !active_timers
[QEMU_TIMER_VIRTUAL
])
1586 nearest_delta_us
= qemu_next_deadline_dyntick();
1588 /* check whether a timer is already running */
1589 if (timer_gettime(host_timer
, &timeout
)) {
1591 fprintf(stderr
, "Internal timer error: aborting\n");
1594 current_us
= timeout
.it_value
.tv_sec
* 1000000 + timeout
.it_value
.tv_nsec
/1000;
1595 if (current_us
&& current_us
<= nearest_delta_us
)
1598 timeout
.it_interval
.tv_sec
= 0;
1599 timeout
.it_interval
.tv_nsec
= 0; /* 0 for one-shot timer */
1600 timeout
.it_value
.tv_sec
= nearest_delta_us
/ 1000000;
1601 timeout
.it_value
.tv_nsec
= (nearest_delta_us
% 1000000) * 1000;
1602 if (timer_settime(host_timer
, 0 /* RELATIVE */, &timeout
, NULL
)) {
1604 fprintf(stderr
, "Internal timer error: aborting\n");
1609 #endif /* defined(__linux__) */
1611 static int unix_start_timer(struct qemu_alarm_timer
*t
)
1613 struct sigaction act
;
1614 struct itimerval itv
;
1618 sigfillset(&act
.sa_mask
);
1620 act
.sa_handler
= host_alarm_handler
;
1622 sigaction(SIGALRM
, &act
, NULL
);
1624 itv
.it_interval
.tv_sec
= 0;
1625 /* for i386 kernel 2.6 to get 1 ms */
1626 itv
.it_interval
.tv_usec
= 999;
1627 itv
.it_value
.tv_sec
= 0;
1628 itv
.it_value
.tv_usec
= 10 * 1000;
1630 err
= setitimer(ITIMER_REAL
, &itv
, NULL
);
1637 static void unix_stop_timer(struct qemu_alarm_timer
*t
)
1639 struct itimerval itv
;
1641 memset(&itv
, 0, sizeof(itv
));
1642 setitimer(ITIMER_REAL
, &itv
, NULL
);
1645 #endif /* !defined(_WIN32) */
1650 static int win32_start_timer(struct qemu_alarm_timer
*t
)
1653 struct qemu_alarm_win32
*data
= t
->priv
;
1656 memset(&tc
, 0, sizeof(tc
));
1657 timeGetDevCaps(&tc
, sizeof(tc
));
1659 if (data
->period
< tc
.wPeriodMin
)
1660 data
->period
= tc
.wPeriodMin
;
1662 timeBeginPeriod(data
->period
);
1664 flags
= TIME_CALLBACK_FUNCTION
;
1665 if (alarm_has_dynticks(t
))
1666 flags
|= TIME_ONESHOT
;
1668 flags
|= TIME_PERIODIC
;
1670 data
->timerId
= timeSetEvent(1, // interval (ms)
1671 data
->period
, // resolution
1672 host_alarm_handler
, // function
1673 (DWORD
)t
, // parameter
1676 if (!data
->timerId
) {
1677 perror("Failed to initialize win32 alarm timer");
1678 timeEndPeriod(data
->period
);
1685 static void win32_stop_timer(struct qemu_alarm_timer
*t
)
1687 struct qemu_alarm_win32
*data
= t
->priv
;
1689 timeKillEvent(data
->timerId
);
1690 timeEndPeriod(data
->period
);
1693 static void win32_rearm_timer(struct qemu_alarm_timer
*t
)
1695 struct qemu_alarm_win32
*data
= t
->priv
;
1696 uint64_t nearest_delta_us
;
1698 if (!active_timers
[QEMU_TIMER_REALTIME
] &&
1699 !active_timers
[QEMU_TIMER_VIRTUAL
])
1702 nearest_delta_us
= qemu_next_deadline_dyntick();
1703 nearest_delta_us
/= 1000;
1705 timeKillEvent(data
->timerId
);
1707 data
->timerId
= timeSetEvent(1,
1711 TIME_ONESHOT
| TIME_PERIODIC
);
1713 if (!data
->timerId
) {
1714 perror("Failed to re-arm win32 alarm timer");
1716 timeEndPeriod(data
->period
);
1723 static int init_timer_alarm(void)
1725 struct qemu_alarm_timer
*t
= NULL
;
1728 for (i
= 0; alarm_timers
[i
].name
; i
++) {
1729 t
= &alarm_timers
[i
];
1749 static void quit_timers(void)
1751 alarm_timer
->stop(alarm_timer
);
1755 /***********************************************************/
1756 /* host time/date access */
1757 void qemu_get_timedate(struct tm
*tm
, int offset
)
1764 if (rtc_date_offset
== -1) {
1768 ret
= localtime(&ti
);
1770 ti
-= rtc_date_offset
;
1774 memcpy(tm
, ret
, sizeof(struct tm
));
1777 int qemu_timedate_diff(struct tm
*tm
)
1781 if (rtc_date_offset
== -1)
1783 seconds
= mktimegm(tm
);
1785 seconds
= mktime(tm
);
1787 seconds
= mktimegm(tm
) + rtc_date_offset
;
1789 return seconds
- time(NULL
);
1793 static void socket_cleanup(void)
1798 static int socket_init(void)
1803 ret
= WSAStartup(MAKEWORD(2,2), &Data
);
1805 err
= WSAGetLastError();
1806 fprintf(stderr
, "WSAStartup: %d\n", err
);
1809 atexit(socket_cleanup
);
1814 int get_param_value(char *buf
, int buf_size
,
1815 const char *tag
, const char *str
)
1822 p
= get_opt_name(option
, sizeof(option
), p
, '=');
1826 if (!strcmp(tag
, option
)) {
1827 (void)get_opt_value(buf
, buf_size
, p
);
1830 p
= get_opt_value(NULL
, 0, p
);
1839 int check_params(char *buf
, int buf_size
,
1840 const char * const *params
, const char *str
)
1846 while (*p
!= '\0') {
1847 p
= get_opt_name(buf
, buf_size
, p
, '=');
1852 for (i
= 0; params
[i
] != NULL
; i
++) {
1853 if (!strcmp(params
[i
], buf
)) {
1857 if (params
[i
] == NULL
) {
1860 p
= get_opt_value(NULL
, 0, p
);
1869 /***********************************************************/
1870 /* Bluetooth support */
1873 static struct HCIInfo
*hci_table
[MAX_NICS
];
1875 static struct bt_vlan_s
{
1876 struct bt_scatternet_s net
;
1878 struct bt_vlan_s
*next
;
1881 /* find or alloc a new bluetooth "VLAN" */
1882 static struct bt_scatternet_s
*qemu_find_bt_vlan(int id
)
1884 struct bt_vlan_s
**pvlan
, *vlan
;
1885 for (vlan
= first_bt_vlan
; vlan
!= NULL
; vlan
= vlan
->next
) {
1889 vlan
= qemu_mallocz(sizeof(struct bt_vlan_s
));
1891 pvlan
= &first_bt_vlan
;
1892 while (*pvlan
!= NULL
)
1893 pvlan
= &(*pvlan
)->next
;
1898 static void null_hci_send(struct HCIInfo
*hci
, const uint8_t *data
, int len
)
1902 static int null_hci_addr_set(struct HCIInfo
*hci
, const uint8_t *bd_addr
)
1907 static struct HCIInfo null_hci
= {
1908 .cmd_send
= null_hci_send
,
1909 .sco_send
= null_hci_send
,
1910 .acl_send
= null_hci_send
,
1911 .bdaddr_set
= null_hci_addr_set
,
1914 struct HCIInfo
*qemu_next_hci(void)
1916 if (cur_hci
== nb_hcis
)
1919 return hci_table
[cur_hci
++];
1922 static struct HCIInfo
*hci_init(const char *str
)
1925 struct bt_scatternet_s
*vlan
= 0;
1927 if (!strcmp(str
, "null"))
1930 else if (!strncmp(str
, "host", 4) && (str
[4] == '\0' || str
[4] == ':'))
1932 return bt_host_hci(str
[4] ? str
+ 5 : "hci0");
1933 else if (!strncmp(str
, "hci", 3)) {
1936 if (!strncmp(str
+ 3, ",vlan=", 6)) {
1937 vlan
= qemu_find_bt_vlan(strtol(str
+ 9, &endp
, 0));
1942 vlan
= qemu_find_bt_vlan(0);
1944 return bt_new_hci(vlan
);
1947 fprintf(stderr
, "qemu: Unknown bluetooth HCI `%s'.\n", str
);
1952 static int bt_hci_parse(const char *str
)
1954 struct HCIInfo
*hci
;
1957 if (nb_hcis
>= MAX_NICS
) {
1958 fprintf(stderr
, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS
);
1962 hci
= hci_init(str
);
1971 bdaddr
.b
[5] = 0x56 + nb_hcis
;
1972 hci
->bdaddr_set(hci
, bdaddr
.b
);
1974 hci_table
[nb_hcis
++] = hci
;
1979 static void bt_vhci_add(int vlan_id
)
1981 struct bt_scatternet_s
*vlan
= qemu_find_bt_vlan(vlan_id
);
1984 fprintf(stderr
, "qemu: warning: adding a VHCI to "
1985 "an empty scatternet %i\n", vlan_id
);
1987 bt_vhci_init(bt_new_hci(vlan
));
1990 static struct bt_device_s
*bt_device_add(const char *opt
)
1992 struct bt_scatternet_s
*vlan
;
1994 char *endp
= strstr(opt
, ",vlan=");
1995 int len
= (endp
? endp
- opt
: strlen(opt
)) + 1;
1998 pstrcpy(devname
, MIN(sizeof(devname
), len
), opt
);
2001 vlan_id
= strtol(endp
+ 6, &endp
, 0);
2003 fprintf(stderr
, "qemu: unrecognised bluetooth vlan Id\n");
2008 vlan
= qemu_find_bt_vlan(vlan_id
);
2011 fprintf(stderr
, "qemu: warning: adding a slave device to "
2012 "an empty scatternet %i\n", vlan_id
);
2014 if (!strcmp(devname
, "keyboard"))
2015 return bt_keyboard_init(vlan
);
2017 fprintf(stderr
, "qemu: unsupported bluetooth device `%s'\n", devname
);
2021 static int bt_parse(const char *opt
)
2023 const char *endp
, *p
;
2026 if (strstart(opt
, "hci", &endp
)) {
2027 if (!*endp
|| *endp
== ',') {
2029 if (!strstart(endp
, ",vlan=", 0))
2032 return bt_hci_parse(opt
);
2034 } else if (strstart(opt
, "vhci", &endp
)) {
2035 if (!*endp
|| *endp
== ',') {
2037 if (strstart(endp
, ",vlan=", &p
)) {
2038 vlan
= strtol(p
, (char **) &endp
, 0);
2040 fprintf(stderr
, "qemu: bad scatternet '%s'\n", p
);
2044 fprintf(stderr
, "qemu: bad parameter '%s'\n", endp
+ 1);
2053 } else if (strstart(opt
, "device:", &endp
))
2054 return !bt_device_add(endp
);
2056 fprintf(stderr
, "qemu: bad bluetooth parameter '%s'\n", opt
);
2060 /***********************************************************/
2061 /* QEMU Block devices */
2063 #define HD_ALIAS "index=%d,media=disk"
2064 #define CDROM_ALIAS "index=2,media=cdrom"
2065 #define FD_ALIAS "index=%d,if=floppy"
2066 #define PFLASH_ALIAS "if=pflash"
2067 #define MTD_ALIAS "if=mtd"
2068 #define SD_ALIAS "index=0,if=sd"
2070 static int drive_opt_get_free_idx(void)
2074 for (index
= 0; index
< MAX_DRIVES
; index
++)
2075 if (!drives_opt
[index
].used
) {
2076 drives_opt
[index
].used
= 1;
2083 static int drive_get_free_idx(void)
2087 for (index
= 0; index
< MAX_DRIVES
; index
++)
2088 if (!drives_table
[index
].used
) {
2089 drives_table
[index
].used
= 1;
2096 int drive_add(const char *file
, const char *fmt
, ...)
2099 int index
= drive_opt_get_free_idx();
2101 if (nb_drives_opt
>= MAX_DRIVES
|| index
== -1) {
2102 fprintf(stderr
, "qemu: too many drives\n");
2106 drives_opt
[index
].file
= file
;
2108 vsnprintf(drives_opt
[index
].opt
,
2109 sizeof(drives_opt
[0].opt
), fmt
, ap
);
2116 void drive_remove(int index
)
2118 drives_opt
[index
].used
= 0;
2122 int drive_get_index(BlockInterfaceType type
, int bus
, int unit
)
2126 /* seek interface, bus and unit */
2128 for (index
= 0; index
< MAX_DRIVES
; index
++)
2129 if (drives_table
[index
].type
== type
&&
2130 drives_table
[index
].bus
== bus
&&
2131 drives_table
[index
].unit
== unit
&&
2132 drives_table
[index
].used
)
2138 int drive_get_max_bus(BlockInterfaceType type
)
2144 for (index
= 0; index
< nb_drives
; index
++) {
2145 if(drives_table
[index
].type
== type
&&
2146 drives_table
[index
].bus
> max_bus
)
2147 max_bus
= drives_table
[index
].bus
;
2152 const char *drive_get_serial(BlockDriverState
*bdrv
)
2156 for (index
= 0; index
< nb_drives
; index
++)
2157 if (drives_table
[index
].bdrv
== bdrv
)
2158 return drives_table
[index
].serial
;
2163 BlockInterfaceErrorAction
drive_get_onerror(BlockDriverState
*bdrv
)
2167 for (index
= 0; index
< nb_drives
; index
++)
2168 if (drives_table
[index
].bdrv
== bdrv
)
2169 return drives_table
[index
].onerror
;
2171 return BLOCK_ERR_STOP_ENOSPC
;
2174 static void bdrv_format_print(void *opaque
, const char *name
)
2176 fprintf(stderr
, " %s", name
);
2179 void drive_uninit(BlockDriverState
*bdrv
)
2183 for (i
= 0; i
< MAX_DRIVES
; i
++)
2184 if (drives_table
[i
].bdrv
== bdrv
) {
2185 drives_table
[i
].bdrv
= NULL
;
2186 drives_table
[i
].used
= 0;
2187 drive_remove(drives_table
[i
].drive_opt_idx
);
2193 int drive_init(struct drive_opt
*arg
, int snapshot
, void *opaque
)
2199 const char *mediastr
= "";
2200 BlockInterfaceType type
;
2201 enum { MEDIA_DISK
, MEDIA_CDROM
} media
;
2202 int bus_id
, unit_id
;
2203 int cyls
, heads
, secs
, translation
;
2204 BlockDriverState
*bdrv
;
2205 BlockDriver
*drv
= NULL
;
2206 QEMUMachine
*machine
= opaque
;
2210 int bdrv_flags
, onerror
;
2211 int drives_table_idx
;
2212 char *str
= arg
->opt
;
2213 static const char * const params
[] = { "bus", "unit", "if", "index",
2214 "cyls", "heads", "secs", "trans",
2215 "media", "snapshot", "file",
2216 "cache", "format", "serial", "werror",
2219 if (check_params(buf
, sizeof(buf
), params
, str
) < 0) {
2220 fprintf(stderr
, "qemu: unknown parameter '%s' in '%s'\n",
2226 cyls
= heads
= secs
= 0;
2229 translation
= BIOS_ATA_TRANSLATION_AUTO
;
2233 if (machine
->use_scsi
) {
2235 max_devs
= MAX_SCSI_DEVS
;
2236 pstrcpy(devname
, sizeof(devname
), "scsi");
2239 max_devs
= MAX_IDE_DEVS
;
2240 pstrcpy(devname
, sizeof(devname
), "ide");
2244 /* extract parameters */
2246 if (get_param_value(buf
, sizeof(buf
), "bus", str
)) {
2247 bus_id
= strtol(buf
, NULL
, 0);
2249 fprintf(stderr
, "qemu: '%s' invalid bus id\n", str
);
2254 if (get_param_value(buf
, sizeof(buf
), "unit", str
)) {
2255 unit_id
= strtol(buf
, NULL
, 0);
2257 fprintf(stderr
, "qemu: '%s' invalid unit id\n", str
);
2262 if (get_param_value(buf
, sizeof(buf
), "if", str
)) {
2263 pstrcpy(devname
, sizeof(devname
), buf
);
2264 if (!strcmp(buf
, "ide")) {
2266 max_devs
= MAX_IDE_DEVS
;
2267 } else if (!strcmp(buf
, "scsi")) {
2269 max_devs
= MAX_SCSI_DEVS
;
2270 } else if (!strcmp(buf
, "floppy")) {
2273 } else if (!strcmp(buf
, "pflash")) {
2276 } else if (!strcmp(buf
, "mtd")) {
2279 } else if (!strcmp(buf
, "sd")) {
2282 } else if (!strcmp(buf
, "virtio")) {
2285 } else if (!strcmp(buf
, "xen")) {
2289 fprintf(stderr
, "qemu: '%s' unsupported bus type '%s'\n", str
, buf
);
2294 if (get_param_value(buf
, sizeof(buf
), "index", str
)) {
2295 index
= strtol(buf
, NULL
, 0);
2297 fprintf(stderr
, "qemu: '%s' invalid index\n", str
);
2302 if (get_param_value(buf
, sizeof(buf
), "cyls", str
)) {
2303 cyls
= strtol(buf
, NULL
, 0);
2306 if (get_param_value(buf
, sizeof(buf
), "heads", str
)) {
2307 heads
= strtol(buf
, NULL
, 0);
2310 if (get_param_value(buf
, sizeof(buf
), "secs", str
)) {
2311 secs
= strtol(buf
, NULL
, 0);
2314 if (cyls
|| heads
|| secs
) {
2315 if (cyls
< 1 || cyls
> 16383) {
2316 fprintf(stderr
, "qemu: '%s' invalid physical cyls number\n", str
);
2319 if (heads
< 1 || heads
> 16) {
2320 fprintf(stderr
, "qemu: '%s' invalid physical heads number\n", str
);
2323 if (secs
< 1 || secs
> 63) {
2324 fprintf(stderr
, "qemu: '%s' invalid physical secs number\n", str
);
2329 if (get_param_value(buf
, sizeof(buf
), "trans", str
)) {
2332 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2336 if (!strcmp(buf
, "none"))
2337 translation
= BIOS_ATA_TRANSLATION_NONE
;
2338 else if (!strcmp(buf
, "lba"))
2339 translation
= BIOS_ATA_TRANSLATION_LBA
;
2340 else if (!strcmp(buf
, "auto"))
2341 translation
= BIOS_ATA_TRANSLATION_AUTO
;
2343 fprintf(stderr
, "qemu: '%s' invalid translation type\n", str
);
2348 if (get_param_value(buf
, sizeof(buf
), "media", str
)) {
2349 if (!strcmp(buf
, "disk")) {
2351 } else if (!strcmp(buf
, "cdrom")) {
2352 if (cyls
|| secs
|| heads
) {
2354 "qemu: '%s' invalid physical CHS format\n", str
);
2357 media
= MEDIA_CDROM
;
2359 fprintf(stderr
, "qemu: '%s' invalid media\n", str
);
2364 if (get_param_value(buf
, sizeof(buf
), "snapshot", str
)) {
2365 if (!strcmp(buf
, "on"))
2367 else if (!strcmp(buf
, "off"))
2370 fprintf(stderr
, "qemu: '%s' invalid snapshot option\n", str
);
2375 if (get_param_value(buf
, sizeof(buf
), "cache", str
)) {
2376 if (!strcmp(buf
, "off") || !strcmp(buf
, "none"))
2378 else if (!strcmp(buf
, "writethrough"))
2380 else if (!strcmp(buf
, "writeback"))
2383 fprintf(stderr
, "qemu: invalid cache option\n");
2388 if (get_param_value(buf
, sizeof(buf
), "format", str
)) {
2389 if (strcmp(buf
, "?") == 0) {
2390 fprintf(stderr
, "qemu: Supported formats:");
2391 bdrv_iterate_format(bdrv_format_print
, NULL
);
2392 fprintf(stderr
, "\n");
2395 drv
= bdrv_find_format(buf
);
2397 fprintf(stderr
, "qemu: '%s' invalid format\n", buf
);
2402 if (arg
->file
== NULL
)
2403 get_param_value(file
, sizeof(file
), "file", str
);
2405 pstrcpy(file
, sizeof(file
), arg
->file
);
2407 if (!get_param_value(serial
, sizeof(serial
), "serial", str
))
2408 memset(serial
, 0, sizeof(serial
));
2410 onerror
= BLOCK_ERR_STOP_ENOSPC
;
2411 if (get_param_value(buf
, sizeof(serial
), "werror", str
)) {
2412 if (type
!= IF_IDE
&& type
!= IF_SCSI
&& type
!= IF_VIRTIO
) {
2413 fprintf(stderr
, "werror is no supported by this format\n");
2416 if (!strcmp(buf
, "ignore"))
2417 onerror
= BLOCK_ERR_IGNORE
;
2418 else if (!strcmp(buf
, "enospc"))
2419 onerror
= BLOCK_ERR_STOP_ENOSPC
;
2420 else if (!strcmp(buf
, "stop"))
2421 onerror
= BLOCK_ERR_STOP_ANY
;
2422 else if (!strcmp(buf
, "report"))
2423 onerror
= BLOCK_ERR_REPORT
;
2425 fprintf(stderr
, "qemu: '%s' invalid write error action\n", buf
);
2430 /* compute bus and unit according index */
2433 if (bus_id
!= 0 || unit_id
!= -1) {
2435 "qemu: '%s' index cannot be used with bus and unit\n", str
);
2443 unit_id
= index
% max_devs
;
2444 bus_id
= index
/ max_devs
;
2448 /* if user doesn't specify a unit_id,
2449 * try to find the first free
2452 if (unit_id
== -1) {
2454 while (drive_get_index(type
, bus_id
, unit_id
) != -1) {
2456 if (max_devs
&& unit_id
>= max_devs
) {
2457 unit_id
-= max_devs
;
2465 if (max_devs
&& unit_id
>= max_devs
) {
2466 fprintf(stderr
, "qemu: '%s' unit %d too big (max is %d)\n",
2467 str
, unit_id
, max_devs
- 1);
2472 * ignore multiple definitions
2475 if (drive_get_index(type
, bus_id
, unit_id
) != -1)
2480 if (type
== IF_IDE
|| type
== IF_SCSI
)
2481 mediastr
= (media
== MEDIA_CDROM
) ? "-cd" : "-hd";
2483 snprintf(buf
, sizeof(buf
), "%s%i%s%i",
2484 devname
, bus_id
, mediastr
, unit_id
);
2486 snprintf(buf
, sizeof(buf
), "%s%s%i",
2487 devname
, mediastr
, unit_id
);
2488 bdrv
= bdrv_new(buf
);
2489 drives_table_idx
= drive_get_free_idx();
2490 drives_table
[drives_table_idx
].bdrv
= bdrv
;
2491 drives_table
[drives_table_idx
].type
= type
;
2492 drives_table
[drives_table_idx
].bus
= bus_id
;
2493 drives_table
[drives_table_idx
].unit
= unit_id
;
2494 drives_table
[drives_table_idx
].onerror
= onerror
;
2495 drives_table
[drives_table_idx
].drive_opt_idx
= arg
- drives_opt
;
2496 strncpy(drives_table
[drives_table_idx
].serial
, serial
, sizeof(serial
));
2506 bdrv_set_geometry_hint(bdrv
, cyls
, heads
, secs
);
2507 bdrv_set_translation_hint(bdrv
, translation
);
2511 bdrv_set_type_hint(bdrv
, BDRV_TYPE_CDROM
);
2516 /* FIXME: This isn't really a floppy, but it's a reasonable
2519 bdrv_set_type_hint(bdrv
, BDRV_TYPE_FLOPPY
);
2532 bdrv_flags
|= BDRV_O_SNAPSHOT
;
2533 cache
= 2; /* always use write-back with snapshot */
2535 if (cache
== 0) /* no caching */
2536 bdrv_flags
|= BDRV_O_NOCACHE
;
2537 else if (cache
== 2) /* write-back */
2538 bdrv_flags
|= BDRV_O_CACHE_WB
;
2539 else if (cache
== 3) /* not specified */
2540 bdrv_flags
|= BDRV_O_CACHE_DEF
;
2541 if (bdrv_open2(bdrv
, file
, bdrv_flags
, drv
) < 0) {
2542 fprintf(stderr
, "qemu: could not open disk image %s\n",
2546 if (bdrv_key_required(bdrv
))
2548 return drives_table_idx
;
2551 static void numa_add(const char *optarg
)
2555 unsigned long long value
, endvalue
;
2558 optarg
= get_opt_name(option
, 128, optarg
, ',') + 1;
2559 if (!strcmp(option
, "node")) {
2560 if (get_param_value(option
, 128, "nodeid", optarg
) == 0) {
2561 nodenr
= nb_numa_nodes
;
2563 nodenr
= strtoull(option
, NULL
, 10);
2566 if (get_param_value(option
, 128, "mem", optarg
) == 0) {
2567 node_mem
[nodenr
] = 0;
2569 value
= strtoull(option
, &endptr
, 0);
2571 case 0: case 'M': case 'm':
2578 node_mem
[nodenr
] = value
;
2580 if (get_param_value(option
, 128, "cpus", optarg
) == 0) {
2581 node_cpumask
[nodenr
] = 0;
2583 value
= strtoull(option
, &endptr
, 10);
2586 fprintf(stderr
, "only 64 CPUs in NUMA mode supported.\n");
2588 if (*endptr
== '-') {
2589 endvalue
= strtoull(endptr
+1, &endptr
, 10);
2590 if (endvalue
>= 63) {
2593 "only 63 CPUs in NUMA mode supported.\n");
2595 value
= (1 << (endvalue
+ 1)) - (1 << value
);
2600 node_cpumask
[nodenr
] = value
;
2607 /***********************************************************/
2610 static USBPort
*used_usb_ports
;
2611 static USBPort
*free_usb_ports
;
2613 /* ??? Maybe change this to register a hub to keep track of the topology. */
2614 void qemu_register_usb_port(USBPort
*port
, void *opaque
, int index
,
2615 usb_attachfn attach
)
2617 port
->opaque
= opaque
;
2618 port
->index
= index
;
2619 port
->attach
= attach
;
2620 port
->next
= free_usb_ports
;
2621 free_usb_ports
= port
;
2624 int usb_device_add_dev(USBDevice
*dev
)
2628 /* Find a USB port to add the device to. */
2629 port
= free_usb_ports
;
2633 /* Create a new hub and chain it on. */
2634 free_usb_ports
= NULL
;
2635 port
->next
= used_usb_ports
;
2636 used_usb_ports
= port
;
2638 hub
= usb_hub_init(VM_USB_HUB_SIZE
);
2639 usb_attach(port
, hub
);
2640 port
= free_usb_ports
;
2643 free_usb_ports
= port
->next
;
2644 port
->next
= used_usb_ports
;
2645 used_usb_ports
= port
;
2646 usb_attach(port
, dev
);
2650 static void usb_msd_password_cb(void *opaque
, int err
)
2652 USBDevice
*dev
= opaque
;
2655 usb_device_add_dev(dev
);
2657 dev
->handle_destroy(dev
);
2660 static int usb_device_add(const char *devname
, int is_hotplug
)
2665 if (!free_usb_ports
)
2668 if (strstart(devname
, "host:", &p
)) {
2669 dev
= usb_host_device_open(p
);
2670 } else if (!strcmp(devname
, "mouse")) {
2671 dev
= usb_mouse_init();
2672 } else if (!strcmp(devname
, "tablet")) {
2673 dev
= usb_tablet_init();
2674 } else if (!strcmp(devname
, "keyboard")) {
2675 dev
= usb_keyboard_init();
2676 } else if (strstart(devname
, "disk:", &p
)) {
2677 BlockDriverState
*bs
;
2679 dev
= usb_msd_init(p
);
2682 bs
= usb_msd_get_bdrv(dev
);
2683 if (bdrv_key_required(bs
)) {
2686 monitor_read_bdrv_key_start(cur_mon
, bs
, usb_msd_password_cb
,
2691 } else if (!strcmp(devname
, "wacom-tablet")) {
2692 dev
= usb_wacom_init();
2693 } else if (strstart(devname
, "serial:", &p
)) {
2694 dev
= usb_serial_init(p
);
2695 #ifdef CONFIG_BRLAPI
2696 } else if (!strcmp(devname
, "braille")) {
2697 dev
= usb_baum_init();
2699 } else if (strstart(devname
, "net:", &p
)) {
2702 if (net_client_init(NULL
, "nic", p
) < 0)
2704 nd_table
[nic
].model
= "usb";
2705 dev
= usb_net_init(&nd_table
[nic
]);
2706 } else if (!strcmp(devname
, "bt") || strstart(devname
, "bt:", &p
)) {
2707 dev
= usb_bt_init(devname
[2] ? hci_init(p
) :
2708 bt_new_hci(qemu_find_bt_vlan(0)));
2715 return usb_device_add_dev(dev
);
2718 int usb_device_del_addr(int bus_num
, int addr
)
2724 if (!used_usb_ports
)
2730 lastp
= &used_usb_ports
;
2731 port
= used_usb_ports
;
2732 while (port
&& port
->dev
->addr
!= addr
) {
2733 lastp
= &port
->next
;
2741 *lastp
= port
->next
;
2742 usb_attach(port
, NULL
);
2743 dev
->handle_destroy(dev
);
2744 port
->next
= free_usb_ports
;
2745 free_usb_ports
= port
;
2749 static int usb_device_del(const char *devname
)
2754 if (strstart(devname
, "host:", &p
))
2755 return usb_host_device_close(p
);
2757 if (!used_usb_ports
)
2760 p
= strchr(devname
, '.');
2763 bus_num
= strtoul(devname
, NULL
, 0);
2764 addr
= strtoul(p
+ 1, NULL
, 0);
2766 return usb_device_del_addr(bus_num
, addr
);
2769 void do_usb_add(Monitor
*mon
, const char *devname
)
2771 usb_device_add(devname
, 1);
2774 void do_usb_del(Monitor
*mon
, const char *devname
)
2776 usb_device_del(devname
);
2779 void usb_info(Monitor
*mon
)
2783 const char *speed_str
;
2786 monitor_printf(mon
, "USB support not enabled\n");
2790 for (port
= used_usb_ports
; port
; port
= port
->next
) {
2794 switch(dev
->speed
) {
2798 case USB_SPEED_FULL
:
2801 case USB_SPEED_HIGH
:
2808 monitor_printf(mon
, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2809 0, dev
->addr
, speed_str
, dev
->devname
);
2813 /***********************************************************/
2814 /* PCMCIA/Cardbus */
2816 static struct pcmcia_socket_entry_s
{
2817 PCMCIASocket
*socket
;
2818 struct pcmcia_socket_entry_s
*next
;
2819 } *pcmcia_sockets
= 0;
2821 void pcmcia_socket_register(PCMCIASocket
*socket
)
2823 struct pcmcia_socket_entry_s
*entry
;
2825 entry
= qemu_malloc(sizeof(struct pcmcia_socket_entry_s
));
2826 entry
->socket
= socket
;
2827 entry
->next
= pcmcia_sockets
;
2828 pcmcia_sockets
= entry
;
2831 void pcmcia_socket_unregister(PCMCIASocket
*socket
)
2833 struct pcmcia_socket_entry_s
*entry
, **ptr
;
2835 ptr
= &pcmcia_sockets
;
2836 for (entry
= *ptr
; entry
; ptr
= &entry
->next
, entry
= *ptr
)
2837 if (entry
->socket
== socket
) {
2843 void pcmcia_info(Monitor
*mon
)
2845 struct pcmcia_socket_entry_s
*iter
;
2847 if (!pcmcia_sockets
)
2848 monitor_printf(mon
, "No PCMCIA sockets\n");
2850 for (iter
= pcmcia_sockets
; iter
; iter
= iter
->next
)
2851 monitor_printf(mon
, "%s: %s\n", iter
->socket
->slot_string
,
2852 iter
->socket
->attached
? iter
->socket
->card_string
:
2856 /***********************************************************/
2857 /* register display */
2859 struct DisplayAllocator default_allocator
= {
2860 defaultallocator_create_displaysurface
,
2861 defaultallocator_resize_displaysurface
,
2862 defaultallocator_free_displaysurface
2865 void register_displaystate(DisplayState
*ds
)
2875 DisplayState
*get_displaystate(void)
2877 return display_state
;
2880 DisplayAllocator
*register_displayallocator(DisplayState
*ds
, DisplayAllocator
*da
)
2882 if(ds
->allocator
== &default_allocator
) ds
->allocator
= da
;
2883 return ds
->allocator
;
2888 static void dumb_display_init(void)
2890 DisplayState
*ds
= qemu_mallocz(sizeof(DisplayState
));
2891 ds
->allocator
= &default_allocator
;
2892 ds
->surface
= qemu_create_displaysurface(ds
, 640, 480);
2893 register_displaystate(ds
);
2896 /***********************************************************/
2899 typedef struct IOHandlerRecord
{
2901 IOCanRWHandler
*fd_read_poll
;
2903 IOHandler
*fd_write
;
2906 /* temporary data */
2908 struct IOHandlerRecord
*next
;
2911 static IOHandlerRecord
*first_io_handler
;
2913 /* XXX: fd_read_poll should be suppressed, but an API change is
2914 necessary in the character devices to suppress fd_can_read(). */
2915 int qemu_set_fd_handler2(int fd
,
2916 IOCanRWHandler
*fd_read_poll
,
2918 IOHandler
*fd_write
,
2921 IOHandlerRecord
**pioh
, *ioh
;
2923 if (!fd_read
&& !fd_write
) {
2924 pioh
= &first_io_handler
;
2929 if (ioh
->fd
== fd
) {
2936 for(ioh
= first_io_handler
; ioh
!= NULL
; ioh
= ioh
->next
) {
2940 ioh
= qemu_mallocz(sizeof(IOHandlerRecord
));
2941 ioh
->next
= first_io_handler
;
2942 first_io_handler
= ioh
;
2945 ioh
->fd_read_poll
= fd_read_poll
;
2946 ioh
->fd_read
= fd_read
;
2947 ioh
->fd_write
= fd_write
;
2948 ioh
->opaque
= opaque
;
2954 int qemu_set_fd_handler(int fd
,
2956 IOHandler
*fd_write
,
2959 return qemu_set_fd_handler2(fd
, NULL
, fd_read
, fd_write
, opaque
);
2963 /***********************************************************/
2964 /* Polling handling */
2966 typedef struct PollingEntry
{
2969 struct PollingEntry
*next
;
2972 static PollingEntry
*first_polling_entry
;
2974 int qemu_add_polling_cb(PollingFunc
*func
, void *opaque
)
2976 PollingEntry
**ppe
, *pe
;
2977 pe
= qemu_mallocz(sizeof(PollingEntry
));
2979 pe
->opaque
= opaque
;
2980 for(ppe
= &first_polling_entry
; *ppe
!= NULL
; ppe
= &(*ppe
)->next
);
2985 void qemu_del_polling_cb(PollingFunc
*func
, void *opaque
)
2987 PollingEntry
**ppe
, *pe
;
2988 for(ppe
= &first_polling_entry
; *ppe
!= NULL
; ppe
= &(*ppe
)->next
) {
2990 if (pe
->func
== func
&& pe
->opaque
== opaque
) {
2998 /***********************************************************/
2999 /* Wait objects support */
3000 typedef struct WaitObjects
{
3002 HANDLE events
[MAXIMUM_WAIT_OBJECTS
+ 1];
3003 WaitObjectFunc
*func
[MAXIMUM_WAIT_OBJECTS
+ 1];
3004 void *opaque
[MAXIMUM_WAIT_OBJECTS
+ 1];
3007 static WaitObjects wait_objects
= {0};
3009 int qemu_add_wait_object(HANDLE handle
, WaitObjectFunc
*func
, void *opaque
)
3011 WaitObjects
*w
= &wait_objects
;
3013 if (w
->num
>= MAXIMUM_WAIT_OBJECTS
)
3015 w
->events
[w
->num
] = handle
;
3016 w
->func
[w
->num
] = func
;
3017 w
->opaque
[w
->num
] = opaque
;
3022 void qemu_del_wait_object(HANDLE handle
, WaitObjectFunc
*func
, void *opaque
)
3025 WaitObjects
*w
= &wait_objects
;
3028 for (i
= 0; i
< w
->num
; i
++) {
3029 if (w
->events
[i
] == handle
)
3032 w
->events
[i
] = w
->events
[i
+ 1];
3033 w
->func
[i
] = w
->func
[i
+ 1];
3034 w
->opaque
[i
] = w
->opaque
[i
+ 1];
3042 /***********************************************************/
3043 /* ram save/restore */
3045 static int ram_get_page(QEMUFile
*f
, uint8_t *buf
, int len
)
3049 v
= qemu_get_byte(f
);
3052 if (qemu_get_buffer(f
, buf
, len
) != len
)
3056 v
= qemu_get_byte(f
);
3057 memset(buf
, v
, len
);
3063 if (qemu_file_has_error(f
))
3069 static int ram_load_v1(QEMUFile
*f
, void *opaque
)
3074 if (qemu_get_be32(f
) != last_ram_offset
)
3076 for(i
= 0; i
< last_ram_offset
; i
+= TARGET_PAGE_SIZE
) {
3077 ret
= ram_get_page(f
, qemu_get_ram_ptr(i
), TARGET_PAGE_SIZE
);
3084 #define BDRV_HASH_BLOCK_SIZE 1024
3085 #define IOBUF_SIZE 4096
3086 #define RAM_CBLOCK_MAGIC 0xfabe
3088 typedef struct RamDecompressState
{
3091 uint8_t buf
[IOBUF_SIZE
];
3092 } RamDecompressState
;
3094 static int ram_decompress_open(RamDecompressState
*s
, QEMUFile
*f
)
3097 memset(s
, 0, sizeof(*s
));
3099 ret
= inflateInit(&s
->zstream
);
3105 static int ram_decompress_buf(RamDecompressState
*s
, uint8_t *buf
, int len
)
3109 s
->zstream
.avail_out
= len
;
3110 s
->zstream
.next_out
= buf
;
3111 while (s
->zstream
.avail_out
> 0) {
3112 if (s
->zstream
.avail_in
== 0) {
3113 if (qemu_get_be16(s
->f
) != RAM_CBLOCK_MAGIC
)
3115 clen
= qemu_get_be16(s
->f
);
3116 if (clen
> IOBUF_SIZE
)
3118 qemu_get_buffer(s
->f
, s
->buf
, clen
);
3119 s
->zstream
.avail_in
= clen
;
3120 s
->zstream
.next_in
= s
->buf
;
3122 ret
= inflate(&s
->zstream
, Z_PARTIAL_FLUSH
);
3123 if (ret
!= Z_OK
&& ret
!= Z_STREAM_END
) {
3130 static void ram_decompress_close(RamDecompressState
*s
)
3132 inflateEnd(&s
->zstream
);
3135 #define RAM_SAVE_FLAG_FULL 0x01
3136 #define RAM_SAVE_FLAG_COMPRESS 0x02
3137 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3138 #define RAM_SAVE_FLAG_PAGE 0x08
3139 #define RAM_SAVE_FLAG_EOS 0x10
3141 static int is_dup_page(uint8_t *page
, uint8_t ch
)
3143 uint32_t val
= ch
<< 24 | ch
<< 16 | ch
<< 8 | ch
;
3144 uint32_t *array
= (uint32_t *)page
;
3147 for (i
= 0; i
< (TARGET_PAGE_SIZE
/ 4); i
++) {
3148 if (array
[i
] != val
)
3155 static int ram_save_block(QEMUFile
*f
)
3157 static ram_addr_t current_addr
= 0;
3158 ram_addr_t saved_addr
= current_addr
;
3159 ram_addr_t addr
= 0;
3162 while (addr
< last_ram_offset
) {
3163 if (cpu_physical_memory_get_dirty(current_addr
, MIGRATION_DIRTY_FLAG
)) {
3166 cpu_physical_memory_reset_dirty(current_addr
,
3167 current_addr
+ TARGET_PAGE_SIZE
,
3168 MIGRATION_DIRTY_FLAG
);
3170 p
= qemu_get_ram_ptr(current_addr
);
3172 if (is_dup_page(p
, *p
)) {
3173 qemu_put_be64(f
, current_addr
| RAM_SAVE_FLAG_COMPRESS
);
3174 qemu_put_byte(f
, *p
);
3176 qemu_put_be64(f
, current_addr
| RAM_SAVE_FLAG_PAGE
);
3177 qemu_put_buffer(f
, p
, TARGET_PAGE_SIZE
);
3183 addr
+= TARGET_PAGE_SIZE
;
3184 current_addr
= (saved_addr
+ addr
) % last_ram_offset
;
3190 static ram_addr_t ram_save_threshold
= 10;
3191 static uint64_t bytes_transferred
= 0;
3193 static ram_addr_t
ram_save_remaining(void)
3196 ram_addr_t count
= 0;
3198 for (addr
= 0; addr
< last_ram_offset
; addr
+= TARGET_PAGE_SIZE
) {
3199 if (cpu_physical_memory_get_dirty(addr
, MIGRATION_DIRTY_FLAG
))
3206 uint64_t ram_bytes_remaining(void)
3208 return ram_save_remaining() * TARGET_PAGE_SIZE
;
3211 uint64_t ram_bytes_transferred(void)
3213 return bytes_transferred
;
3216 uint64_t ram_bytes_total(void)
3218 return last_ram_offset
;
3221 static int ram_save_live(QEMUFile
*f
, int stage
, void *opaque
)
3225 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX
) != 0) {
3226 qemu_file_set_error(f
);
3231 /* Make sure all dirty bits are set */
3232 for (addr
= 0; addr
< last_ram_offset
; addr
+= TARGET_PAGE_SIZE
) {
3233 if (!cpu_physical_memory_get_dirty(addr
, MIGRATION_DIRTY_FLAG
))
3234 cpu_physical_memory_set_dirty(addr
);
3237 /* Enable dirty memory tracking */
3238 cpu_physical_memory_set_dirty_tracking(1);
3240 qemu_put_be64(f
, last_ram_offset
| RAM_SAVE_FLAG_MEM_SIZE
);
3243 while (!qemu_file_rate_limit(f
)) {
3246 ret
= ram_save_block(f
);
3247 bytes_transferred
+= ret
* TARGET_PAGE_SIZE
;
3248 if (ret
== 0) /* no more blocks */
3252 /* try transferring iterative blocks of memory */
3256 /* flush all remaining blocks regardless of rate limiting */
3257 while (ram_save_block(f
) != 0) {
3258 bytes_transferred
+= TARGET_PAGE_SIZE
;
3260 cpu_physical_memory_set_dirty_tracking(0);
3263 qemu_put_be64(f
, RAM_SAVE_FLAG_EOS
);
3265 return (stage
== 2) && (ram_save_remaining() < ram_save_threshold
);
3268 static int ram_load_dead(QEMUFile
*f
, void *opaque
)
3270 RamDecompressState s1
, *s
= &s1
;
3274 if (ram_decompress_open(s
, f
) < 0)
3276 for(i
= 0; i
< last_ram_offset
; i
+= BDRV_HASH_BLOCK_SIZE
) {
3277 if (ram_decompress_buf(s
, buf
, 1) < 0) {
3278 fprintf(stderr
, "Error while reading ram block header\n");
3282 if (ram_decompress_buf(s
, qemu_get_ram_ptr(i
),
3283 BDRV_HASH_BLOCK_SIZE
) < 0) {
3284 fprintf(stderr
, "Error while reading ram block address=0x%08" PRIx64
, (uint64_t)i
);
3289 printf("Error block header\n");
3293 ram_decompress_close(s
);
3298 static int ram_load(QEMUFile
*f
, void *opaque
, int version_id
)
3303 if (version_id
== 1)
3304 return ram_load_v1(f
, opaque
);
3306 if (version_id
== 2) {
3307 if (qemu_get_be32(f
) != last_ram_offset
)
3309 return ram_load_dead(f
, opaque
);
3312 if (version_id
!= 3)
3316 addr
= qemu_get_be64(f
);
3318 flags
= addr
& ~TARGET_PAGE_MASK
;
3319 addr
&= TARGET_PAGE_MASK
;
3321 if (flags
& RAM_SAVE_FLAG_MEM_SIZE
) {
3322 if (addr
!= last_ram_offset
)
3326 if (flags
& RAM_SAVE_FLAG_FULL
) {
3327 if (ram_load_dead(f
, opaque
) < 0)
3331 if (flags
& RAM_SAVE_FLAG_COMPRESS
) {
3332 uint8_t ch
= qemu_get_byte(f
);
3333 memset(qemu_get_ram_ptr(addr
), ch
, TARGET_PAGE_SIZE
);
3334 } else if (flags
& RAM_SAVE_FLAG_PAGE
)
3335 qemu_get_buffer(f
, qemu_get_ram_ptr(addr
), TARGET_PAGE_SIZE
);
3336 } while (!(flags
& RAM_SAVE_FLAG_EOS
));
3341 void qemu_service_io(void)
3343 qemu_notify_event();
3346 /***********************************************************/
3347 /* bottom halves (can be seen as timers which expire ASAP) */
3358 static QEMUBH
*first_bh
= NULL
;
3360 QEMUBH
*qemu_bh_new(QEMUBHFunc
*cb
, void *opaque
)
3363 bh
= qemu_mallocz(sizeof(QEMUBH
));
3365 bh
->opaque
= opaque
;
3366 bh
->next
= first_bh
;
3371 int qemu_bh_poll(void)
3377 for (bh
= first_bh
; bh
; bh
= bh
->next
) {
3378 if (!bh
->deleted
&& bh
->scheduled
) {
3387 /* remove deleted bhs */
3401 void qemu_bh_schedule_idle(QEMUBH
*bh
)
3409 void qemu_bh_schedule(QEMUBH
*bh
)
3415 /* stop the currently executing CPU to execute the BH ASAP */
3416 qemu_notify_event();
3419 void qemu_bh_cancel(QEMUBH
*bh
)
3424 void qemu_bh_delete(QEMUBH
*bh
)
3430 static void qemu_bh_update_timeout(int *timeout
)
3434 for (bh
= first_bh
; bh
; bh
= bh
->next
) {
3435 if (!bh
->deleted
&& bh
->scheduled
) {
3437 /* idle bottom halves will be polled at least
3439 *timeout
= MIN(10, *timeout
);
3441 /* non-idle bottom halves will be executed
3450 /***********************************************************/
3451 /* machine registration */
3453 static QEMUMachine
*first_machine
= NULL
;
3454 QEMUMachine
*current_machine
= NULL
;
3456 int qemu_register_machine(QEMUMachine
*m
)
3459 pm
= &first_machine
;
3467 static QEMUMachine
*find_machine(const char *name
)
3471 for(m
= first_machine
; m
!= NULL
; m
= m
->next
) {
3472 if (!strcmp(m
->name
, name
))
3478 static QEMUMachine
*find_default_machine(void)
3482 for(m
= first_machine
; m
!= NULL
; m
= m
->next
) {
3483 if (m
->is_default
) {
3490 /***********************************************************/
3491 /* main execution loop */
3493 static void gui_update(void *opaque
)
3495 uint64_t interval
= GUI_REFRESH_INTERVAL
;
3496 DisplayState
*ds
= opaque
;
3497 DisplayChangeListener
*dcl
= ds
->listeners
;
3501 while (dcl
!= NULL
) {
3502 if (dcl
->gui_timer_interval
&&
3503 dcl
->gui_timer_interval
< interval
)
3504 interval
= dcl
->gui_timer_interval
;
3507 qemu_mod_timer(ds
->gui_timer
, interval
+ qemu_get_clock(rt_clock
));
3510 static void nographic_update(void *opaque
)
3512 uint64_t interval
= GUI_REFRESH_INTERVAL
;
3514 qemu_mod_timer(nographic_timer
, interval
+ qemu_get_clock(rt_clock
));
3517 struct vm_change_state_entry
{
3518 VMChangeStateHandler
*cb
;
3520 LIST_ENTRY (vm_change_state_entry
) entries
;
3523 static LIST_HEAD(vm_change_state_head
, vm_change_state_entry
) vm_change_state_head
;
3525 VMChangeStateEntry
*qemu_add_vm_change_state_handler(VMChangeStateHandler
*cb
,
3528 VMChangeStateEntry
*e
;
3530 e
= qemu_mallocz(sizeof (*e
));
3534 LIST_INSERT_HEAD(&vm_change_state_head
, e
, entries
);
3538 void qemu_del_vm_change_state_handler(VMChangeStateEntry
*e
)
3540 LIST_REMOVE (e
, entries
);
3544 static void vm_state_notify(int running
, int reason
)
3546 VMChangeStateEntry
*e
;
3548 for (e
= vm_change_state_head
.lh_first
; e
; e
= e
->entries
.le_next
) {
3549 e
->cb(e
->opaque
, running
, reason
);
3553 static void resume_all_vcpus(void);
3554 static void pause_all_vcpus(void);
3561 vm_state_notify(1, 0);
3562 qemu_rearm_alarm_timer(alarm_timer
);
3567 /* reset/shutdown handler */
3569 typedef struct QEMUResetEntry
{
3570 QEMUResetHandler
*func
;
3573 struct QEMUResetEntry
*next
;
3576 static QEMUResetEntry
*first_reset_entry
;
3577 static int reset_requested
;
3578 static int shutdown_requested
;
3579 static int powerdown_requested
;
3580 static int debug_requested
;
3581 static int vmstop_requested
;
3583 int qemu_shutdown_requested(void)
3585 int r
= shutdown_requested
;
3586 shutdown_requested
= 0;
3590 int qemu_reset_requested(void)
3592 int r
= reset_requested
;
3593 reset_requested
= 0;
3597 int qemu_powerdown_requested(void)
3599 int r
= powerdown_requested
;
3600 powerdown_requested
= 0;
3604 static int qemu_debug_requested(void)
3606 int r
= debug_requested
;
3607 debug_requested
= 0;
3611 static int qemu_vmstop_requested(void)
3613 int r
= vmstop_requested
;
3614 vmstop_requested
= 0;
3618 static void do_vm_stop(int reason
)
3621 cpu_disable_ticks();
3624 vm_state_notify(0, reason
);
3628 void qemu_register_reset(QEMUResetHandler
*func
, int order
, void *opaque
)
3630 QEMUResetEntry
**pre
, *re
;
3632 pre
= &first_reset_entry
;
3633 while (*pre
!= NULL
&& (*pre
)->order
>= order
) {
3634 pre
= &(*pre
)->next
;
3636 re
= qemu_mallocz(sizeof(QEMUResetEntry
));
3638 re
->opaque
= opaque
;
3644 void qemu_system_reset(void)
3648 /* reset all devices */
3649 for(re
= first_reset_entry
; re
!= NULL
; re
= re
->next
) {
3650 re
->func(re
->opaque
);
3654 void qemu_system_reset_request(void)
3657 shutdown_requested
= 1;
3659 reset_requested
= 1;
3661 qemu_notify_event();
3664 void qemu_system_shutdown_request(void)
3666 shutdown_requested
= 1;
3667 qemu_notify_event();
3670 void qemu_system_powerdown_request(void)
3672 powerdown_requested
= 1;
3673 qemu_notify_event();
3676 #ifdef CONFIG_IOTHREAD
3677 static void qemu_system_vmstop_request(int reason
)
3679 vmstop_requested
= reason
;
3680 qemu_notify_event();
3685 static int io_thread_fd
= -1;
3687 static void qemu_event_increment(void)
3689 static const char byte
= 0;
3691 if (io_thread_fd
== -1)
3694 write(io_thread_fd
, &byte
, sizeof(byte
));
3697 static void qemu_event_read(void *opaque
)
3699 int fd
= (unsigned long)opaque
;
3702 /* Drain the notify pipe */
3705 len
= read(fd
, buffer
, sizeof(buffer
));
3706 } while ((len
== -1 && errno
== EINTR
) || len
> 0);
3709 static int qemu_event_init(void)
3718 err
= fcntl_setfl(fds
[0], O_NONBLOCK
);
3722 err
= fcntl_setfl(fds
[1], O_NONBLOCK
);
3726 qemu_set_fd_handler2(fds
[0], NULL
, qemu_event_read
, NULL
,
3727 (void *)(unsigned long)fds
[0]);
3729 io_thread_fd
= fds
[1];
3738 HANDLE qemu_event_handle
;
3740 static void dummy_event_handler(void *opaque
)
3744 static int qemu_event_init(void)
3746 qemu_event_handle
= CreateEvent(NULL
, FALSE
, FALSE
, NULL
);
3747 if (!qemu_event_handle
) {
3748 perror("Failed CreateEvent");
3751 qemu_add_wait_object(qemu_event_handle
, dummy_event_handler
, NULL
);
3755 static void qemu_event_increment(void)
3757 SetEvent(qemu_event_handle
);
3761 static int cpu_can_run(CPUState
*env
)
3770 #ifndef CONFIG_IOTHREAD
3771 static int qemu_init_main_loop(void)
3773 return qemu_event_init();
3776 void qemu_init_vcpu(void *_env
)
3778 CPUState
*env
= _env
;
3785 int qemu_cpu_self(void *env
)
3790 static void resume_all_vcpus(void)
3794 static void pause_all_vcpus(void)
3798 void qemu_cpu_kick(void *env
)
3803 void qemu_notify_event(void)
3805 CPUState
*env
= cpu_single_env
;
3810 if (env
->kqemu_enabled
)
3811 kqemu_cpu_interrupt(env
);
3816 #define qemu_mutex_lock_iothread() do { } while (0)
3817 #define qemu_mutex_unlock_iothread() do { } while (0)
3819 void vm_stop(int reason
)
3824 #else /* CONFIG_IOTHREAD */
3826 #include "qemu-thread.h"
3828 QemuMutex qemu_global_mutex
;
3829 static QemuMutex qemu_fair_mutex
;
3831 static QemuThread io_thread
;
3833 static QemuThread
*tcg_cpu_thread
;
3834 static QemuCond
*tcg_halt_cond
;
3836 static int qemu_system_ready
;
3838 static QemuCond qemu_cpu_cond
;
3840 static QemuCond qemu_system_cond
;
3841 static QemuCond qemu_pause_cond
;
3843 static void block_io_signals(void);
3844 static void unblock_io_signals(void);
3845 static int tcg_has_work(void);
3847 static int qemu_init_main_loop(void)
3851 ret
= qemu_event_init();
3855 qemu_cond_init(&qemu_pause_cond
);
3856 qemu_mutex_init(&qemu_fair_mutex
);
3857 qemu_mutex_init(&qemu_global_mutex
);
3858 qemu_mutex_lock(&qemu_global_mutex
);
3860 unblock_io_signals();
3861 qemu_thread_self(&io_thread
);
3866 static void qemu_wait_io_event(CPUState
*env
)
3868 while (!tcg_has_work())
3869 qemu_cond_timedwait(env
->halt_cond
, &qemu_global_mutex
, 1000);
3871 qemu_mutex_unlock(&qemu_global_mutex
);
3874 * Users of qemu_global_mutex can be starved, having no chance
3875 * to acquire it since this path will get to it first.
3876 * So use another lock to provide fairness.
3878 qemu_mutex_lock(&qemu_fair_mutex
);
3879 qemu_mutex_unlock(&qemu_fair_mutex
);
3881 qemu_mutex_lock(&qemu_global_mutex
);
3885 qemu_cond_signal(&qemu_pause_cond
);
3889 static int qemu_cpu_exec(CPUState
*env
);
3891 static void *kvm_cpu_thread_fn(void *arg
)
3893 CPUState
*env
= arg
;
3896 qemu_thread_self(env
->thread
);
3898 /* signal CPU creation */
3899 qemu_mutex_lock(&qemu_global_mutex
);
3901 qemu_cond_signal(&qemu_cpu_cond
);
3903 /* and wait for machine initialization */
3904 while (!qemu_system_ready
)
3905 qemu_cond_timedwait(&qemu_system_cond
, &qemu_global_mutex
, 100);
3908 if (cpu_can_run(env
))
3910 qemu_wait_io_event(env
);
3916 static void tcg_cpu_exec(void);
3918 static void *tcg_cpu_thread_fn(void *arg
)
3920 CPUState
*env
= arg
;
3923 qemu_thread_self(env
->thread
);
3925 /* signal CPU creation */
3926 qemu_mutex_lock(&qemu_global_mutex
);
3927 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
3929 qemu_cond_signal(&qemu_cpu_cond
);
3931 /* and wait for machine initialization */
3932 while (!qemu_system_ready
)
3933 qemu_cond_timedwait(&qemu_system_cond
, &qemu_global_mutex
, 100);
3937 qemu_wait_io_event(cur_cpu
);
3943 void qemu_cpu_kick(void *_env
)
3945 CPUState
*env
= _env
;
3946 qemu_cond_broadcast(env
->halt_cond
);
3948 qemu_thread_signal(env
->thread
, SIGUSR1
);
3951 int qemu_cpu_self(void *env
)
3953 return (cpu_single_env
!= NULL
);
3956 static void cpu_signal(int sig
)
3959 cpu_exit(cpu_single_env
);
3962 static void block_io_signals(void)
3965 struct sigaction sigact
;
3968 sigaddset(&set
, SIGUSR2
);
3969 sigaddset(&set
, SIGIO
);
3970 sigaddset(&set
, SIGALRM
);
3971 pthread_sigmask(SIG_BLOCK
, &set
, NULL
);
3974 sigaddset(&set
, SIGUSR1
);
3975 pthread_sigmask(SIG_UNBLOCK
, &set
, NULL
);
3977 memset(&sigact
, 0, sizeof(sigact
));
3978 sigact
.sa_handler
= cpu_signal
;
3979 sigaction(SIGUSR1
, &sigact
, NULL
);
3982 static void unblock_io_signals(void)
3987 sigaddset(&set
, SIGUSR2
);
3988 sigaddset(&set
, SIGIO
);
3989 sigaddset(&set
, SIGALRM
);
3990 pthread_sigmask(SIG_UNBLOCK
, &set
, NULL
);
3993 sigaddset(&set
, SIGUSR1
);
3994 pthread_sigmask(SIG_BLOCK
, &set
, NULL
);
3997 static void qemu_signal_lock(unsigned int msecs
)
3999 qemu_mutex_lock(&qemu_fair_mutex
);
4001 while (qemu_mutex_trylock(&qemu_global_mutex
)) {
4002 qemu_thread_signal(tcg_cpu_thread
, SIGUSR1
);
4003 if (!qemu_mutex_timedlock(&qemu_global_mutex
, msecs
))
4006 qemu_mutex_unlock(&qemu_fair_mutex
);
4009 static void qemu_mutex_lock_iothread(void)
4011 if (kvm_enabled()) {
4012 qemu_mutex_lock(&qemu_fair_mutex
);
4013 qemu_mutex_lock(&qemu_global_mutex
);
4014 qemu_mutex_unlock(&qemu_fair_mutex
);
4016 qemu_signal_lock(100);
4019 static void qemu_mutex_unlock_iothread(void)
4021 qemu_mutex_unlock(&qemu_global_mutex
);
4024 static int all_vcpus_paused(void)
4026 CPUState
*penv
= first_cpu
;
4031 penv
= (CPUState
*)penv
->next_cpu
;
4037 static void pause_all_vcpus(void)
4039 CPUState
*penv
= first_cpu
;
4043 qemu_thread_signal(penv
->thread
, SIGUSR1
);
4044 qemu_cpu_kick(penv
);
4045 penv
= (CPUState
*)penv
->next_cpu
;
4048 while (!all_vcpus_paused()) {
4049 qemu_cond_timedwait(&qemu_pause_cond
, &qemu_global_mutex
, 100);
4052 qemu_thread_signal(penv
->thread
, SIGUSR1
);
4053 penv
= (CPUState
*)penv
->next_cpu
;
4058 static void resume_all_vcpus(void)
4060 CPUState
*penv
= first_cpu
;
4065 qemu_thread_signal(penv
->thread
, SIGUSR1
);
4066 qemu_cpu_kick(penv
);
4067 penv
= (CPUState
*)penv
->next_cpu
;
4071 static void tcg_init_vcpu(void *_env
)
4073 CPUState
*env
= _env
;
4074 /* share a single thread for all cpus with TCG */
4075 if (!tcg_cpu_thread
) {
4076 env
->thread
= qemu_mallocz(sizeof(QemuThread
));
4077 env
->halt_cond
= qemu_mallocz(sizeof(QemuCond
));
4078 qemu_cond_init(env
->halt_cond
);
4079 qemu_thread_create(env
->thread
, tcg_cpu_thread_fn
, env
);
4080 while (env
->created
== 0)
4081 qemu_cond_timedwait(&qemu_cpu_cond
, &qemu_global_mutex
, 100);
4082 tcg_cpu_thread
= env
->thread
;
4083 tcg_halt_cond
= env
->halt_cond
;
4085 env
->thread
= tcg_cpu_thread
;
4086 env
->halt_cond
= tcg_halt_cond
;
4090 static void kvm_start_vcpu(CPUState
*env
)
4093 env
->thread
= qemu_mallocz(sizeof(QemuThread
));
4094 env
->halt_cond
= qemu_mallocz(sizeof(QemuCond
));
4095 qemu_cond_init(env
->halt_cond
);
4096 qemu_thread_create(env
->thread
, kvm_cpu_thread_fn
, env
);
4097 while (env
->created
== 0)
4098 qemu_cond_timedwait(&qemu_cpu_cond
, &qemu_global_mutex
, 100);
4101 void qemu_init_vcpu(void *_env
)
4103 CPUState
*env
= _env
;
4106 kvm_start_vcpu(env
);
4111 void qemu_notify_event(void)
4113 qemu_event_increment();
4116 void vm_stop(int reason
)
4119 qemu_thread_self(&me
);
4121 if (!qemu_thread_equal(&me
, &io_thread
)) {
4122 qemu_system_vmstop_request(reason
);
4124 * FIXME: should not return to device code in case
4125 * vm_stop() has been requested.
4127 if (cpu_single_env
) {
4128 cpu_exit(cpu_single_env
);
4129 cpu_single_env
->stop
= 1;
4140 static void host_main_loop_wait(int *timeout
)
4146 /* XXX: need to suppress polling by better using win32 events */
4148 for(pe
= first_polling_entry
; pe
!= NULL
; pe
= pe
->next
) {
4149 ret
|= pe
->func(pe
->opaque
);
4153 WaitObjects
*w
= &wait_objects
;
4155 ret
= WaitForMultipleObjects(w
->num
, w
->events
, FALSE
, *timeout
);
4156 if (WAIT_OBJECT_0
+ 0 <= ret
&& ret
<= WAIT_OBJECT_0
+ w
->num
- 1) {
4157 if (w
->func
[ret
- WAIT_OBJECT_0
])
4158 w
->func
[ret
- WAIT_OBJECT_0
](w
->opaque
[ret
- WAIT_OBJECT_0
]);
4160 /* Check for additional signaled events */
4161 for(i
= (ret
- WAIT_OBJECT_0
+ 1); i
< w
->num
; i
++) {
4163 /* Check if event is signaled */
4164 ret2
= WaitForSingleObject(w
->events
[i
], 0);
4165 if(ret2
== WAIT_OBJECT_0
) {
4167 w
->func
[i
](w
->opaque
[i
]);
4168 } else if (ret2
== WAIT_TIMEOUT
) {
4170 err
= GetLastError();
4171 fprintf(stderr
, "WaitForSingleObject error %d %d\n", i
, err
);
4174 } else if (ret
== WAIT_TIMEOUT
) {
4176 err
= GetLastError();
4177 fprintf(stderr
, "WaitForMultipleObjects error %d %d\n", ret
, err
);
4184 static void host_main_loop_wait(int *timeout
)
4189 void main_loop_wait(int timeout
)
4191 IOHandlerRecord
*ioh
;
4192 fd_set rfds
, wfds
, xfds
;
4196 qemu_bh_update_timeout(&timeout
);
4198 host_main_loop_wait(&timeout
);
4200 /* poll any events */
4201 /* XXX: separate device handlers from system ones */
4206 for(ioh
= first_io_handler
; ioh
!= NULL
; ioh
= ioh
->next
) {
4210 (!ioh
->fd_read_poll
||
4211 ioh
->fd_read_poll(ioh
->opaque
) != 0)) {
4212 FD_SET(ioh
->fd
, &rfds
);
4216 if (ioh
->fd_write
) {
4217 FD_SET(ioh
->fd
, &wfds
);
4223 tv
.tv_sec
= timeout
/ 1000;
4224 tv
.tv_usec
= (timeout
% 1000) * 1000;
4226 #if defined(CONFIG_SLIRP)
4227 if (slirp_is_inited()) {
4228 slirp_select_fill(&nfds
, &rfds
, &wfds
, &xfds
);
4231 qemu_mutex_unlock_iothread();
4232 ret
= select(nfds
+ 1, &rfds
, &wfds
, &xfds
, &tv
);
4233 qemu_mutex_lock_iothread();
4235 IOHandlerRecord
**pioh
;
4237 for(ioh
= first_io_handler
; ioh
!= NULL
; ioh
= ioh
->next
) {
4238 if (!ioh
->deleted
&& ioh
->fd_read
&& FD_ISSET(ioh
->fd
, &rfds
)) {
4239 ioh
->fd_read(ioh
->opaque
);
4241 if (!ioh
->deleted
&& ioh
->fd_write
&& FD_ISSET(ioh
->fd
, &wfds
)) {
4242 ioh
->fd_write(ioh
->opaque
);
4246 /* remove deleted IO handlers */
4247 pioh
= &first_io_handler
;
4257 #if defined(CONFIG_SLIRP)
4258 if (slirp_is_inited()) {
4264 slirp_select_poll(&rfds
, &wfds
, &xfds
);
4268 /* rearm timer, if not periodic */
4269 if (alarm_timer
->flags
& ALARM_FLAG_EXPIRED
) {
4270 alarm_timer
->flags
&= ~ALARM_FLAG_EXPIRED
;
4271 qemu_rearm_alarm_timer(alarm_timer
);
4274 /* vm time timers */
4276 if (!cur_cpu
|| likely(!(cur_cpu
->singlestep_enabled
& SSTEP_NOTIMER
)))
4277 qemu_run_timers(&active_timers
[QEMU_TIMER_VIRTUAL
],
4278 qemu_get_clock(vm_clock
));
4281 /* real time timers */
4282 qemu_run_timers(&active_timers
[QEMU_TIMER_REALTIME
],
4283 qemu_get_clock(rt_clock
));
4285 /* Check bottom-halves last in case any of the earlier events triggered
4291 static int qemu_cpu_exec(CPUState
*env
)
4294 #ifdef CONFIG_PROFILER
4298 #ifdef CONFIG_PROFILER
4299 ti
= profile_getclock();
4304 qemu_icount
-= (env
->icount_decr
.u16
.low
+ env
->icount_extra
);
4305 env
->icount_decr
.u16
.low
= 0;
4306 env
->icount_extra
= 0;
4307 count
= qemu_next_deadline();
4308 count
= (count
+ (1 << icount_time_shift
) - 1)
4309 >> icount_time_shift
;
4310 qemu_icount
+= count
;
4311 decr
= (count
> 0xffff) ? 0xffff : count
;
4313 env
->icount_decr
.u16
.low
= decr
;
4314 env
->icount_extra
= count
;
4316 ret
= cpu_exec(env
);
4317 #ifdef CONFIG_PROFILER
4318 qemu_time
+= profile_getclock() - ti
;
4321 /* Fold pending instructions back into the
4322 instruction counter, and clear the interrupt flag. */
4323 qemu_icount
-= (env
->icount_decr
.u16
.low
4324 + env
->icount_extra
);
4325 env
->icount_decr
.u32
= 0;
4326 env
->icount_extra
= 0;
4331 static void tcg_cpu_exec(void)
4335 if (next_cpu
== NULL
)
4336 next_cpu
= first_cpu
;
4337 for (; next_cpu
!= NULL
; next_cpu
= next_cpu
->next_cpu
) {
4338 CPUState
*env
= cur_cpu
= next_cpu
;
4342 if (timer_alarm_pending
) {
4343 timer_alarm_pending
= 0;
4346 if (cpu_can_run(env
))
4347 ret
= qemu_cpu_exec(env
);
4348 if (ret
== EXCP_DEBUG
) {
4349 gdb_set_stop_cpu(env
);
4350 debug_requested
= 1;
4356 static int cpu_has_work(CPUState
*env
)
4364 if (qemu_cpu_has_work(env
))
4369 static int tcg_has_work(void)
4373 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
4374 if (cpu_has_work(env
))
4379 static int qemu_calculate_timeout(void)
4385 else if (tcg_has_work())
4387 else if (!use_icount
)
4390 /* XXX: use timeout computed from timers */
4393 /* Advance virtual time to the next event. */
4394 if (use_icount
== 1) {
4395 /* When not using an adaptive execution frequency
4396 we tend to get badly out of sync with real time,
4397 so just delay for a reasonable amount of time. */
4400 delta
= cpu_get_icount() - cpu_get_clock();
4403 /* If virtual time is ahead of real time then just
4405 timeout
= (delta
/ 1000000) + 1;
4407 /* Wait for either IO to occur or the next
4409 add
= qemu_next_deadline();
4410 /* We advance the timer before checking for IO.
4411 Limit the amount we advance so that early IO
4412 activity won't get the guest too far ahead. */
4416 add
= (add
+ (1 << icount_time_shift
) - 1)
4417 >> icount_time_shift
;
4419 timeout
= delta
/ 1000000;
4428 static int vm_can_run(void)
4430 if (powerdown_requested
)
4432 if (reset_requested
)
4434 if (shutdown_requested
)
4436 if (debug_requested
)
4441 static void main_loop(void)
4445 #ifdef CONFIG_IOTHREAD
4446 qemu_system_ready
= 1;
4447 qemu_cond_broadcast(&qemu_system_cond
);
4452 #ifdef CONFIG_PROFILER
4455 #ifndef CONFIG_IOTHREAD
4458 #ifdef CONFIG_PROFILER
4459 ti
= profile_getclock();
4461 #ifdef CONFIG_IOTHREAD
4462 main_loop_wait(1000);
4464 main_loop_wait(qemu_calculate_timeout());
4466 #ifdef CONFIG_PROFILER
4467 dev_time
+= profile_getclock() - ti
;
4469 } while (vm_can_run());
4471 if (qemu_debug_requested())
4472 vm_stop(EXCP_DEBUG
);
4473 if (qemu_shutdown_requested()) {
4480 if (qemu_reset_requested()) {
4482 qemu_system_reset();
4485 if (qemu_powerdown_requested())
4486 qemu_system_powerdown();
4487 if ((r
= qemu_vmstop_requested()))
4493 static void version(void)
4495 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION
", Copyright (c) 2003-2008 Fabrice Bellard\n");
4498 static void help(int exitcode
)
4501 printf("usage: %s [options] [disk_image]\n"
4503 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4505 #define DEF(option, opt_arg, opt_enum, opt_help) \
4507 #define DEFHEADING(text) stringify(text) "\n"
4508 #include "qemu-options.h"
4513 "During emulation, the following keys are useful:\n"
4514 "ctrl-alt-f toggle full screen\n"
4515 "ctrl-alt-n switch to virtual console 'n'\n"
4516 "ctrl-alt toggle mouse and keyboard grab\n"
4518 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4523 DEFAULT_NETWORK_SCRIPT
,
4524 DEFAULT_NETWORK_DOWN_SCRIPT
,
4526 DEFAULT_GDBSTUB_PORT
,
4531 #define HAS_ARG 0x0001
4534 #define DEF(option, opt_arg, opt_enum, opt_help) \
4536 #define DEFHEADING(text)
4537 #include "qemu-options.h"
4543 typedef struct QEMUOption
{
4549 static const QEMUOption qemu_options
[] = {
4550 { "h", 0, QEMU_OPTION_h
},
4551 #define DEF(option, opt_arg, opt_enum, opt_help) \
4552 { option, opt_arg, opt_enum },
4553 #define DEFHEADING(text)
4554 #include "qemu-options.h"
4562 struct soundhw soundhw
[] = {
4563 #ifdef HAS_AUDIO_CHOICE
4564 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4570 { .init_isa
= pcspk_audio_init
}
4577 "Creative Sound Blaster 16",
4580 { .init_isa
= SB16_init
}
4584 #ifdef CONFIG_CS4231A
4590 { .init_isa
= cs4231a_init
}
4598 "Yamaha YMF262 (OPL3)",
4600 "Yamaha YM3812 (OPL2)",
4604 { .init_isa
= Adlib_init
}
4611 "Gravis Ultrasound GF1",
4614 { .init_isa
= GUS_init
}
4621 "Intel 82801AA AC97 Audio",
4624 { .init_pci
= ac97_init
}
4628 #ifdef CONFIG_ES1370
4631 "ENSONIQ AudioPCI ES1370",
4634 { .init_pci
= es1370_init
}
4638 #endif /* HAS_AUDIO_CHOICE */
4640 { NULL
, NULL
, 0, 0, { NULL
} }
4643 static void select_soundhw (const char *optarg
)
4647 if (*optarg
== '?') {
4650 printf ("Valid sound card names (comma separated):\n");
4651 for (c
= soundhw
; c
->name
; ++c
) {
4652 printf ("%-11s %s\n", c
->name
, c
->descr
);
4654 printf ("\n-soundhw all will enable all of the above\n");
4655 exit (*optarg
!= '?');
4663 if (!strcmp (optarg
, "all")) {
4664 for (c
= soundhw
; c
->name
; ++c
) {
4672 e
= strchr (p
, ',');
4673 l
= !e
? strlen (p
) : (size_t) (e
- p
);
4675 for (c
= soundhw
; c
->name
; ++c
) {
4676 if (!strncmp (c
->name
, p
, l
)) {
4685 "Unknown sound card name (too big to show)\n");
4688 fprintf (stderr
, "Unknown sound card name `%.*s'\n",
4693 p
+= l
+ (e
!= NULL
);
4697 goto show_valid_cards
;
4702 static void select_vgahw (const char *p
)
4706 cirrus_vga_enabled
= 0;
4707 std_vga_enabled
= 0;
4710 if (strstart(p
, "std", &opts
)) {
4711 std_vga_enabled
= 1;
4712 } else if (strstart(p
, "cirrus", &opts
)) {
4713 cirrus_vga_enabled
= 1;
4714 } else if (strstart(p
, "vmware", &opts
)) {
4716 } else if (strstart(p
, "xenfb", &opts
)) {
4718 } else if (!strstart(p
, "none", &opts
)) {
4720 fprintf(stderr
, "Unknown vga type: %s\n", p
);
4724 const char *nextopt
;
4726 if (strstart(opts
, ",retrace=", &nextopt
)) {
4728 if (strstart(opts
, "dumb", &nextopt
))
4729 vga_retrace_method
= VGA_RETRACE_DUMB
;
4730 else if (strstart(opts
, "precise", &nextopt
))
4731 vga_retrace_method
= VGA_RETRACE_PRECISE
;
4732 else goto invalid_vga
;
4733 } else goto invalid_vga
;
4739 static BOOL WINAPI
qemu_ctrl_handler(DWORD type
)
4741 exit(STATUS_CONTROL_C_EXIT
);
4746 int qemu_uuid_parse(const char *str
, uint8_t *uuid
)
4750 if(strlen(str
) != 36)
4753 ret
= sscanf(str
, UUID_FMT
, &uuid
[0], &uuid
[1], &uuid
[2], &uuid
[3],
4754 &uuid
[4], &uuid
[5], &uuid
[6], &uuid
[7], &uuid
[8], &uuid
[9],
4755 &uuid
[10], &uuid
[11], &uuid
[12], &uuid
[13], &uuid
[14], &uuid
[15]);
4761 smbios_add_field(1, offsetof(struct smbios_type_1
, uuid
), 16, uuid
);
4767 #define MAX_NET_CLIENTS 32
4771 static void termsig_handler(int signal
)
4773 qemu_system_shutdown_request();
4776 static void sigchld_handler(int signal
)
4778 waitpid(-1, NULL
, WNOHANG
);
4781 static void sighandler_setup(void)
4783 struct sigaction act
;
4785 memset(&act
, 0, sizeof(act
));
4786 act
.sa_handler
= termsig_handler
;
4787 sigaction(SIGINT
, &act
, NULL
);
4788 sigaction(SIGHUP
, &act
, NULL
);
4789 sigaction(SIGTERM
, &act
, NULL
);
4791 act
.sa_handler
= sigchld_handler
;
4792 act
.sa_flags
= SA_NOCLDSTOP
;
4793 sigaction(SIGCHLD
, &act
, NULL
);
4799 /* Look for support files in the same directory as the executable. */
4800 static char *find_datadir(const char *argv0
)
4806 len
= GetModuleFileName(NULL
, buf
, sizeof(buf
) - 1);
4813 while (p
!= buf
&& *p
!= '\\')
4816 if (access(buf
, R_OK
) == 0) {
4817 return qemu_strdup(buf
);
4823 /* Find a likely location for support files using the location of the binary.
4824 For installed binaries this will be "$bindir/../share/qemu". When
4825 running from the build tree this will be "$bindir/../pc-bios". */
4826 #define SHARE_SUFFIX "/share/qemu"
4827 #define BUILD_SUFFIX "/pc-bios"
4828 static char *find_datadir(const char *argv0
)
4837 #if defined(__linux__)
4840 len
= readlink("/proc/self/exe", buf
, sizeof(buf
) - 1);
4846 #elif defined(__FreeBSD__)
4849 len
= readlink("/proc/curproc/file", buf
, sizeof(buf
) - 1);
4856 /* If we don't have any way of figuring out the actual executable
4857 location then try argv[0]. */
4862 p
= realpath(argv0
, p
);
4870 res
= qemu_mallocz(strlen(dir
) +
4871 MAX(strlen(SHARE_SUFFIX
), strlen(BUILD_SUFFIX
)) + 1);
4872 sprintf(res
, "%s%s", dir
, SHARE_SUFFIX
);
4873 if (access(res
, R_OK
)) {
4874 sprintf(res
, "%s%s", dir
, BUILD_SUFFIX
);
4875 if (access(res
, R_OK
)) {
4889 char *qemu_find_file(int type
, const char *name
)
4895 /* If name contains path separators then try it as a straight path. */
4896 if ((strchr(name
, '/') || strchr(name
, '\\'))
4897 && access(name
, R_OK
) == 0) {
4898 return strdup(name
);
4901 case QEMU_FILE_TYPE_BIOS
:
4904 case QEMU_FILE_TYPE_KEYMAP
:
4905 subdir
= "keymaps/";
4910 len
= strlen(data_dir
) + strlen(name
) + strlen(subdir
) + 2;
4911 buf
= qemu_mallocz(len
);
4912 sprintf(buf
, "%s/%s%s", data_dir
, subdir
, name
);
4913 if (access(buf
, R_OK
)) {
4920 int main(int argc
, char **argv
, char **envp
)
4922 const char *gdbstub_dev
= NULL
;
4923 uint32_t boot_devices_bitmap
= 0;
4925 int snapshot
, linux_boot
, net_boot
;
4926 const char *initrd_filename
;
4927 const char *kernel_filename
, *kernel_cmdline
;
4928 const char *boot_devices
= "";
4930 DisplayChangeListener
*dcl
;
4931 int cyls
, heads
, secs
, translation
;
4932 const char *net_clients
[MAX_NET_CLIENTS
];
4934 const char *bt_opts
[MAX_BT_CMDLINE
];
4938 const char *r
, *optarg
;
4939 CharDriverState
*monitor_hd
= NULL
;
4940 const char *monitor_device
;
4941 const char *serial_devices
[MAX_SERIAL_PORTS
];
4942 int serial_device_index
;
4943 const char *parallel_devices
[MAX_PARALLEL_PORTS
];
4944 int parallel_device_index
;
4945 const char *virtio_consoles
[MAX_VIRTIO_CONSOLES
];
4946 int virtio_console_index
;
4947 const char *loadvm
= NULL
;
4948 QEMUMachine
*machine
;
4949 const char *cpu_model
;
4950 const char *usb_devices
[MAX_USB_CMDLINE
];
4951 int usb_devices_index
;
4956 const char *pid_file
= NULL
;
4957 const char *incoming
= NULL
;
4960 struct passwd
*pwd
= NULL
;
4961 const char *chroot_dir
= NULL
;
4962 const char *run_as
= NULL
;
4965 int show_vnc_port
= 0;
4967 qemu_cache_utils_init(envp
);
4969 LIST_INIT (&vm_change_state_head
);
4972 struct sigaction act
;
4973 sigfillset(&act
.sa_mask
);
4975 act
.sa_handler
= SIG_IGN
;
4976 sigaction(SIGPIPE
, &act
, NULL
);
4979 SetConsoleCtrlHandler(qemu_ctrl_handler
, TRUE
);
4980 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4981 QEMU to run on a single CPU */
4986 h
= GetCurrentProcess();
4987 if (GetProcessAffinityMask(h
, &mask
, &smask
)) {
4988 for(i
= 0; i
< 32; i
++) {
4989 if (mask
& (1 << i
))
4994 SetProcessAffinityMask(h
, mask
);
5000 module_call_init(MODULE_INIT_MACHINE
);
5001 machine
= find_default_machine();
5003 initrd_filename
= NULL
;
5006 kernel_filename
= NULL
;
5007 kernel_cmdline
= "";
5008 cyls
= heads
= secs
= 0;
5009 translation
= BIOS_ATA_TRANSLATION_AUTO
;
5010 monitor_device
= "vc:80Cx24C";
5012 serial_devices
[0] = "vc:80Cx24C";
5013 for(i
= 1; i
< MAX_SERIAL_PORTS
; i
++)
5014 serial_devices
[i
] = NULL
;
5015 serial_device_index
= 0;
5017 parallel_devices
[0] = "vc:80Cx24C";
5018 for(i
= 1; i
< MAX_PARALLEL_PORTS
; i
++)
5019 parallel_devices
[i
] = NULL
;
5020 parallel_device_index
= 0;
5022 for(i
= 0; i
< MAX_VIRTIO_CONSOLES
; i
++)
5023 virtio_consoles
[i
] = NULL
;
5024 virtio_console_index
= 0;
5026 for (i
= 0; i
< MAX_NODES
; i
++) {
5028 node_cpumask
[i
] = 0;
5031 usb_devices_index
= 0;
5045 register_watchdogs();
5053 hda_index
= drive_add(argv
[optind
++], HD_ALIAS
, 0);
5055 const QEMUOption
*popt
;
5058 /* Treat --foo the same as -foo. */
5061 popt
= qemu_options
;
5064 fprintf(stderr
, "%s: invalid option -- '%s'\n",
5068 if (!strcmp(popt
->name
, r
+ 1))
5072 if (popt
->flags
& HAS_ARG
) {
5073 if (optind
>= argc
) {
5074 fprintf(stderr
, "%s: option '%s' requires an argument\n",
5078 optarg
= argv
[optind
++];
5083 switch(popt
->index
) {
5085 machine
= find_machine(optarg
);
5088 printf("Supported machines are:\n");
5089 for(m
= first_machine
; m
!= NULL
; m
= m
->next
) {
5090 printf("%-10s %s%s\n",
5092 m
->is_default
? " (default)" : "");
5094 exit(*optarg
!= '?');
5097 case QEMU_OPTION_cpu
:
5098 /* hw initialization will check this */
5099 if (*optarg
== '?') {
5100 /* XXX: implement xxx_cpu_list for targets that still miss it */
5101 #if defined(cpu_list)
5102 cpu_list(stdout
, &fprintf
);
5109 case QEMU_OPTION_initrd
:
5110 initrd_filename
= optarg
;
5112 case QEMU_OPTION_hda
:
5114 hda_index
= drive_add(optarg
, HD_ALIAS
, 0);
5116 hda_index
= drive_add(optarg
, HD_ALIAS
5117 ",cyls=%d,heads=%d,secs=%d%s",
5118 0, cyls
, heads
, secs
,
5119 translation
== BIOS_ATA_TRANSLATION_LBA
?
5121 translation
== BIOS_ATA_TRANSLATION_NONE
?
5122 ",trans=none" : "");
5124 case QEMU_OPTION_hdb
:
5125 case QEMU_OPTION_hdc
:
5126 case QEMU_OPTION_hdd
:
5127 drive_add(optarg
, HD_ALIAS
, popt
->index
- QEMU_OPTION_hda
);
5129 case QEMU_OPTION_drive
:
5130 drive_add(NULL
, "%s", optarg
);
5132 case QEMU_OPTION_mtdblock
:
5133 drive_add(optarg
, MTD_ALIAS
);
5135 case QEMU_OPTION_sd
:
5136 drive_add(optarg
, SD_ALIAS
);
5138 case QEMU_OPTION_pflash
:
5139 drive_add(optarg
, PFLASH_ALIAS
);
5141 case QEMU_OPTION_snapshot
:
5144 case QEMU_OPTION_hdachs
:
5148 cyls
= strtol(p
, (char **)&p
, 0);
5149 if (cyls
< 1 || cyls
> 16383)
5154 heads
= strtol(p
, (char **)&p
, 0);
5155 if (heads
< 1 || heads
> 16)
5160 secs
= strtol(p
, (char **)&p
, 0);
5161 if (secs
< 1 || secs
> 63)
5165 if (!strcmp(p
, "none"))
5166 translation
= BIOS_ATA_TRANSLATION_NONE
;
5167 else if (!strcmp(p
, "lba"))
5168 translation
= BIOS_ATA_TRANSLATION_LBA
;
5169 else if (!strcmp(p
, "auto"))
5170 translation
= BIOS_ATA_TRANSLATION_AUTO
;
5173 } else if (*p
!= '\0') {
5175 fprintf(stderr
, "qemu: invalid physical CHS format\n");
5178 if (hda_index
!= -1)
5179 snprintf(drives_opt
[hda_index
].opt
,
5180 sizeof(drives_opt
[hda_index
].opt
),
5181 HD_ALIAS
",cyls=%d,heads=%d,secs=%d%s",
5182 0, cyls
, heads
, secs
,
5183 translation
== BIOS_ATA_TRANSLATION_LBA
?
5185 translation
== BIOS_ATA_TRANSLATION_NONE
?
5186 ",trans=none" : "");
5189 case QEMU_OPTION_numa
:
5190 if (nb_numa_nodes
>= MAX_NODES
) {
5191 fprintf(stderr
, "qemu: too many NUMA nodes\n");
5196 case QEMU_OPTION_nographic
:
5197 display_type
= DT_NOGRAPHIC
;
5199 #ifdef CONFIG_CURSES
5200 case QEMU_OPTION_curses
:
5201 display_type
= DT_CURSES
;
5204 case QEMU_OPTION_portrait
:
5207 case QEMU_OPTION_kernel
:
5208 kernel_filename
= optarg
;
5210 case QEMU_OPTION_append
:
5211 kernel_cmdline
= optarg
;
5213 case QEMU_OPTION_cdrom
:
5214 drive_add(optarg
, CDROM_ALIAS
);
5216 case QEMU_OPTION_boot
:
5217 boot_devices
= optarg
;
5218 /* We just do some generic consistency checks */
5220 /* Could easily be extended to 64 devices if needed */
5223 boot_devices_bitmap
= 0;
5224 for (p
= boot_devices
; *p
!= '\0'; p
++) {
5225 /* Allowed boot devices are:
5226 * a b : floppy disk drives
5227 * c ... f : IDE disk drives
5228 * g ... m : machine implementation dependant drives
5229 * n ... p : network devices
5230 * It's up to each machine implementation to check
5231 * if the given boot devices match the actual hardware
5232 * implementation and firmware features.
5234 if (*p
< 'a' || *p
> 'q') {
5235 fprintf(stderr
, "Invalid boot device '%c'\n", *p
);
5238 if (boot_devices_bitmap
& (1 << (*p
- 'a'))) {
5240 "Boot device '%c' was given twice\n",*p
);
5243 boot_devices_bitmap
|= 1 << (*p
- 'a');
5247 case QEMU_OPTION_fda
:
5248 case QEMU_OPTION_fdb
:
5249 drive_add(optarg
, FD_ALIAS
, popt
->index
- QEMU_OPTION_fda
);
5252 case QEMU_OPTION_no_fd_bootchk
:
5256 case QEMU_OPTION_net
:
5257 if (nb_net_clients
>= MAX_NET_CLIENTS
) {
5258 fprintf(stderr
, "qemu: too many network clients\n");
5261 net_clients
[nb_net_clients
] = optarg
;
5265 case QEMU_OPTION_tftp
:
5266 tftp_prefix
= optarg
;
5268 case QEMU_OPTION_bootp
:
5269 bootp_filename
= optarg
;
5272 case QEMU_OPTION_smb
:
5273 net_slirp_smb(optarg
);
5276 case QEMU_OPTION_redir
:
5277 net_slirp_redir(NULL
, optarg
, NULL
);
5280 case QEMU_OPTION_bt
:
5281 if (nb_bt_opts
>= MAX_BT_CMDLINE
) {
5282 fprintf(stderr
, "qemu: too many bluetooth options\n");
5285 bt_opts
[nb_bt_opts
++] = optarg
;
5288 case QEMU_OPTION_audio_help
:
5292 case QEMU_OPTION_soundhw
:
5293 select_soundhw (optarg
);
5299 case QEMU_OPTION_version
:
5303 case QEMU_OPTION_m
: {
5307 value
= strtoul(optarg
, &ptr
, 10);
5309 case 0: case 'M': case 'm':
5316 fprintf(stderr
, "qemu: invalid ram size: %s\n", optarg
);
5320 /* On 32-bit hosts, QEMU is limited by virtual address space */
5321 if (value
> (2047 << 20)
5322 #ifndef CONFIG_KQEMU
5323 && HOST_LONG_BITS
== 32
5326 fprintf(stderr
, "qemu: at most 2047 MB RAM can be simulated\n");
5329 if (value
!= (uint64_t)(ram_addr_t
)value
) {
5330 fprintf(stderr
, "qemu: ram size too large\n");
5339 const CPULogItem
*item
;
5341 mask
= cpu_str_to_log_mask(optarg
);
5343 printf("Log items (comma separated):\n");
5344 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
5345 printf("%-10s %s\n", item
->name
, item
->help
);
5353 gdbstub_dev
= "tcp::" DEFAULT_GDBSTUB_PORT
;
5355 case QEMU_OPTION_gdb
:
5356 gdbstub_dev
= optarg
;
5361 case QEMU_OPTION_bios
:
5364 case QEMU_OPTION_singlestep
:
5372 keyboard_layout
= optarg
;
5375 case QEMU_OPTION_localtime
:
5378 case QEMU_OPTION_vga
:
5379 select_vgahw (optarg
);
5381 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5387 w
= strtol(p
, (char **)&p
, 10);
5390 fprintf(stderr
, "qemu: invalid resolution or depth\n");
5396 h
= strtol(p
, (char **)&p
, 10);
5401 depth
= strtol(p
, (char **)&p
, 10);
5402 if (depth
!= 8 && depth
!= 15 && depth
!= 16 &&
5403 depth
!= 24 && depth
!= 32)
5405 } else if (*p
== '\0') {
5406 depth
= graphic_depth
;
5413 graphic_depth
= depth
;
5417 case QEMU_OPTION_echr
:
5420 term_escape_char
= strtol(optarg
, &r
, 0);
5422 printf("Bad argument to echr\n");
5425 case QEMU_OPTION_monitor
:
5426 monitor_device
= optarg
;
5428 case QEMU_OPTION_serial
:
5429 if (serial_device_index
>= MAX_SERIAL_PORTS
) {
5430 fprintf(stderr
, "qemu: too many serial ports\n");
5433 serial_devices
[serial_device_index
] = optarg
;
5434 serial_device_index
++;
5436 case QEMU_OPTION_watchdog
:
5437 i
= select_watchdog(optarg
);
5439 exit (i
== 1 ? 1 : 0);
5441 case QEMU_OPTION_watchdog_action
:
5442 if (select_watchdog_action(optarg
) == -1) {
5443 fprintf(stderr
, "Unknown -watchdog-action parameter\n");
5447 case QEMU_OPTION_virtiocon
:
5448 if (virtio_console_index
>= MAX_VIRTIO_CONSOLES
) {
5449 fprintf(stderr
, "qemu: too many virtio consoles\n");
5452 virtio_consoles
[virtio_console_index
] = optarg
;
5453 virtio_console_index
++;
5455 case QEMU_OPTION_parallel
:
5456 if (parallel_device_index
>= MAX_PARALLEL_PORTS
) {
5457 fprintf(stderr
, "qemu: too many parallel ports\n");
5460 parallel_devices
[parallel_device_index
] = optarg
;
5461 parallel_device_index
++;
5463 case QEMU_OPTION_loadvm
:
5466 case QEMU_OPTION_full_screen
:
5470 case QEMU_OPTION_no_frame
:
5473 case QEMU_OPTION_alt_grab
:
5476 case QEMU_OPTION_no_quit
:
5479 case QEMU_OPTION_sdl
:
5480 display_type
= DT_SDL
;
5483 case QEMU_OPTION_pidfile
:
5487 case QEMU_OPTION_win2k_hack
:
5488 win2k_install_hack
= 1;
5490 case QEMU_OPTION_rtc_td_hack
:
5493 case QEMU_OPTION_acpitable
:
5494 if(acpi_table_add(optarg
) < 0) {
5495 fprintf(stderr
, "Wrong acpi table provided\n");
5499 case QEMU_OPTION_smbios
:
5500 if(smbios_entry_add(optarg
) < 0) {
5501 fprintf(stderr
, "Wrong smbios provided\n");
5507 case QEMU_OPTION_no_kqemu
:
5510 case QEMU_OPTION_kernel_kqemu
:
5515 case QEMU_OPTION_enable_kvm
:
5522 case QEMU_OPTION_usb
:
5525 case QEMU_OPTION_usbdevice
:
5527 if (usb_devices_index
>= MAX_USB_CMDLINE
) {
5528 fprintf(stderr
, "Too many USB devices\n");
5531 usb_devices
[usb_devices_index
] = optarg
;
5532 usb_devices_index
++;
5534 case QEMU_OPTION_smp
:
5535 smp_cpus
= atoi(optarg
);
5537 fprintf(stderr
, "Invalid number of CPUs\n");
5541 case QEMU_OPTION_vnc
:
5542 display_type
= DT_VNC
;
5543 vnc_display
= optarg
;
5546 case QEMU_OPTION_no_acpi
:
5549 case QEMU_OPTION_no_hpet
:
5553 case QEMU_OPTION_no_reboot
:
5556 case QEMU_OPTION_no_shutdown
:
5559 case QEMU_OPTION_show_cursor
:
5562 case QEMU_OPTION_uuid
:
5563 if(qemu_uuid_parse(optarg
, qemu_uuid
) < 0) {
5564 fprintf(stderr
, "Fail to parse UUID string."
5565 " Wrong format.\n");
5570 case QEMU_OPTION_daemonize
:
5574 case QEMU_OPTION_option_rom
:
5575 if (nb_option_roms
>= MAX_OPTION_ROMS
) {
5576 fprintf(stderr
, "Too many option ROMs\n");
5579 option_rom
[nb_option_roms
] = optarg
;
5582 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5583 case QEMU_OPTION_semihosting
:
5584 semihosting_enabled
= 1;
5587 case QEMU_OPTION_name
:
5590 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5591 case QEMU_OPTION_prom_env
:
5592 if (nb_prom_envs
>= MAX_PROM_ENVS
) {
5593 fprintf(stderr
, "Too many prom variables\n");
5596 prom_envs
[nb_prom_envs
] = optarg
;
5601 case QEMU_OPTION_old_param
:
5605 case QEMU_OPTION_clock
:
5606 configure_alarms(optarg
);
5608 case QEMU_OPTION_startdate
:
5611 time_t rtc_start_date
;
5612 if (!strcmp(optarg
, "now")) {
5613 rtc_date_offset
= -1;
5615 if (sscanf(optarg
, "%d-%d-%dT%d:%d:%d",
5623 } else if (sscanf(optarg
, "%d-%d-%d",
5626 &tm
.tm_mday
) == 3) {
5635 rtc_start_date
= mktimegm(&tm
);
5636 if (rtc_start_date
== -1) {
5638 fprintf(stderr
, "Invalid date format. Valid format are:\n"
5639 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5642 rtc_date_offset
= time(NULL
) - rtc_start_date
;
5646 case QEMU_OPTION_tb_size
:
5647 tb_size
= strtol(optarg
, NULL
, 0);
5651 case QEMU_OPTION_icount
:
5653 if (strcmp(optarg
, "auto") == 0) {
5654 icount_time_shift
= -1;
5656 icount_time_shift
= strtol(optarg
, NULL
, 0);
5659 case QEMU_OPTION_incoming
:
5663 case QEMU_OPTION_chroot
:
5664 chroot_dir
= optarg
;
5666 case QEMU_OPTION_runas
:
5671 case QEMU_OPTION_xen_domid
:
5672 xen_domid
= atoi(optarg
);
5674 case QEMU_OPTION_xen_create
:
5675 xen_mode
= XEN_CREATE
;
5677 case QEMU_OPTION_xen_attach
:
5678 xen_mode
= XEN_ATTACH
;
5685 /* If no data_dir is specified then try to find it relative to the
5688 data_dir
= find_datadir(argv
[0]);
5690 /* If all else fails use the install patch specified when building. */
5692 data_dir
= CONFIG_QEMU_SHAREDIR
;
5695 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5696 if (kvm_allowed
&& kqemu_allowed
) {
5698 "You can not enable both KVM and kqemu at the same time\n");
5703 machine
->max_cpus
= machine
->max_cpus
?: 1; /* Default to UP */
5704 if (smp_cpus
> machine
->max_cpus
) {
5705 fprintf(stderr
, "Number of SMP cpus requested (%d), exceeds max cpus "
5706 "supported by machine `%s' (%d)\n", smp_cpus
, machine
->name
,
5711 if (display_type
== DT_NOGRAPHIC
) {
5712 if (serial_device_index
== 0)
5713 serial_devices
[0] = "stdio";
5714 if (parallel_device_index
== 0)
5715 parallel_devices
[0] = "null";
5716 if (strncmp(monitor_device
, "vc", 2) == 0)
5717 monitor_device
= "stdio";
5724 if (pipe(fds
) == -1)
5735 len
= read(fds
[0], &status
, 1);
5736 if (len
== -1 && (errno
== EINTR
))
5741 else if (status
== 1) {
5742 fprintf(stderr
, "Could not acquire pidfile\n");
5759 signal(SIGTSTP
, SIG_IGN
);
5760 signal(SIGTTOU
, SIG_IGN
);
5761 signal(SIGTTIN
, SIG_IGN
);
5764 if (pid_file
&& qemu_create_pidfile(pid_file
) != 0) {
5767 write(fds
[1], &status
, 1);
5769 fprintf(stderr
, "Could not acquire pid file\n");
5778 if (qemu_init_main_loop()) {
5779 fprintf(stderr
, "qemu_init_main_loop failed\n");
5782 linux_boot
= (kernel_filename
!= NULL
);
5783 net_boot
= (boot_devices_bitmap
>> ('n' - 'a')) & 0xF;
5785 if (!linux_boot
&& *kernel_cmdline
!= '\0') {
5786 fprintf(stderr
, "-append only allowed with -kernel option\n");
5790 if (!linux_boot
&& initrd_filename
!= NULL
) {
5791 fprintf(stderr
, "-initrd only allowed with -kernel option\n");
5795 /* boot to floppy or the default cd if no hard disk defined yet */
5796 if (!boot_devices
[0]) {
5797 boot_devices
= "cad";
5799 setvbuf(stdout
, NULL
, _IOLBF
, 0);
5802 if (init_timer_alarm() < 0) {
5803 fprintf(stderr
, "could not initialize alarm timer\n");
5806 if (use_icount
&& icount_time_shift
< 0) {
5808 /* 125MIPS seems a reasonable initial guess at the guest speed.
5809 It will be corrected fairly quickly anyway. */
5810 icount_time_shift
= 3;
5811 init_icount_adjust();
5818 /* init network clients */
5819 if (nb_net_clients
== 0) {
5820 /* if no clients, we use a default config */
5821 net_clients
[nb_net_clients
++] = "nic";
5823 net_clients
[nb_net_clients
++] = "user";
5827 for(i
= 0;i
< nb_net_clients
; i
++) {
5828 if (net_client_parse(net_clients
[i
]) < 0)
5834 /* XXX: this should be moved in the PC machine instantiation code */
5835 if (net_boot
!= 0) {
5837 for (i
= 0; i
< nb_nics
&& i
< 4; i
++) {
5838 const char *model
= nd_table
[i
].model
;
5841 if (net_boot
& (1 << i
)) {
5844 snprintf(buf
, sizeof(buf
), "pxe-%s.bin", model
);
5845 filename
= qemu_find_file(QEMU_FILE_TYPE_BIOS
, buf
);
5846 if (filename
&& get_image_size(filename
) > 0) {
5847 if (nb_option_roms
>= MAX_OPTION_ROMS
) {
5848 fprintf(stderr
, "Too many option ROMs\n");
5851 option_rom
[nb_option_roms
] = qemu_strdup(buf
);
5856 qemu_free(filename
);
5861 fprintf(stderr
, "No valid PXE rom found for network device\n");
5867 /* init the bluetooth world */
5868 for (i
= 0; i
< nb_bt_opts
; i
++)
5869 if (bt_parse(bt_opts
[i
]))
5872 /* init the memory */
5874 ram_size
= DEFAULT_RAM_SIZE
* 1024 * 1024;
5877 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5878 guest ram allocation. It needs to go away. */
5879 if (kqemu_allowed
) {
5880 kqemu_phys_ram_size
= ram_size
+ 8 * 1024 * 1024 + 4 * 1024 * 1024;
5881 kqemu_phys_ram_base
= qemu_vmalloc(kqemu_phys_ram_size
);
5882 if (!kqemu_phys_ram_base
) {
5883 fprintf(stderr
, "Could not allocate physical memory\n");
5889 /* init the dynamic translator */
5890 cpu_exec_init_all(tb_size
* 1024 * 1024);
5894 /* we always create the cdrom drive, even if no disk is there */
5896 if (nb_drives_opt
< MAX_DRIVES
)
5897 drive_add(NULL
, CDROM_ALIAS
);
5899 /* we always create at least one floppy */
5901 if (nb_drives_opt
< MAX_DRIVES
)
5902 drive_add(NULL
, FD_ALIAS
, 0);
5904 /* we always create one sd slot, even if no card is in it */
5906 if (nb_drives_opt
< MAX_DRIVES
)
5907 drive_add(NULL
, SD_ALIAS
);
5909 /* open the virtual block devices */
5911 for(i
= 0; i
< nb_drives_opt
; i
++)
5912 if (drive_init(&drives_opt
[i
], snapshot
, machine
) == -1)
5915 register_savevm("timer", 0, 2, timer_save
, timer_load
, NULL
);
5916 register_savevm_live("ram", 0, 3, ram_save_live
, NULL
, ram_load
, NULL
);
5919 /* must be after terminal init, SDL library changes signal handlers */
5923 /* Maintain compatibility with multiple stdio monitors */
5924 if (!strcmp(monitor_device
,"stdio")) {
5925 for (i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
5926 const char *devname
= serial_devices
[i
];
5927 if (devname
&& !strcmp(devname
,"mon:stdio")) {
5928 monitor_device
= NULL
;
5930 } else if (devname
&& !strcmp(devname
,"stdio")) {
5931 monitor_device
= NULL
;
5932 serial_devices
[i
] = "mon:stdio";
5938 if (nb_numa_nodes
> 0) {
5941 if (nb_numa_nodes
> smp_cpus
) {
5942 nb_numa_nodes
= smp_cpus
;
5945 /* If no memory size if given for any node, assume the default case
5946 * and distribute the available memory equally across all nodes
5948 for (i
= 0; i
< nb_numa_nodes
; i
++) {
5949 if (node_mem
[i
] != 0)
5952 if (i
== nb_numa_nodes
) {
5953 uint64_t usedmem
= 0;
5955 /* On Linux, the each node's border has to be 8MB aligned,
5956 * the final node gets the rest.
5958 for (i
= 0; i
< nb_numa_nodes
- 1; i
++) {
5959 node_mem
[i
] = (ram_size
/ nb_numa_nodes
) & ~((1 << 23UL) - 1);
5960 usedmem
+= node_mem
[i
];
5962 node_mem
[i
] = ram_size
- usedmem
;
5965 for (i
= 0; i
< nb_numa_nodes
; i
++) {
5966 if (node_cpumask
[i
] != 0)
5969 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5970 * must cope with this anyway, because there are BIOSes out there in
5971 * real machines which also use this scheme.
5973 if (i
== nb_numa_nodes
) {
5974 for (i
= 0; i
< smp_cpus
; i
++) {
5975 node_cpumask
[i
% nb_numa_nodes
] |= 1 << i
;
5980 if (kvm_enabled()) {
5983 ret
= kvm_init(smp_cpus
);
5985 fprintf(stderr
, "failed to initialize KVM\n");
5990 if (monitor_device
) {
5991 monitor_hd
= qemu_chr_open("monitor", monitor_device
, NULL
);
5993 fprintf(stderr
, "qemu: could not open monitor device '%s'\n", monitor_device
);
5998 for(i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
5999 const char *devname
= serial_devices
[i
];
6000 if (devname
&& strcmp(devname
, "none")) {
6002 snprintf(label
, sizeof(label
), "serial%d", i
);
6003 serial_hds
[i
] = qemu_chr_open(label
, devname
, NULL
);
6004 if (!serial_hds
[i
]) {
6005 fprintf(stderr
, "qemu: could not open serial device '%s'\n",
6012 for(i
= 0; i
< MAX_PARALLEL_PORTS
; i
++) {
6013 const char *devname
= parallel_devices
[i
];
6014 if (devname
&& strcmp(devname
, "none")) {
6016 snprintf(label
, sizeof(label
), "parallel%d", i
);
6017 parallel_hds
[i
] = qemu_chr_open(label
, devname
, NULL
);
6018 if (!parallel_hds
[i
]) {
6019 fprintf(stderr
, "qemu: could not open parallel device '%s'\n",
6026 for(i
= 0; i
< MAX_VIRTIO_CONSOLES
; i
++) {
6027 const char *devname
= virtio_consoles
[i
];
6028 if (devname
&& strcmp(devname
, "none")) {
6030 snprintf(label
, sizeof(label
), "virtcon%d", i
);
6031 virtcon_hds
[i
] = qemu_chr_open(label
, devname
, NULL
);
6032 if (!virtcon_hds
[i
]) {
6033 fprintf(stderr
, "qemu: could not open virtio console '%s'\n",
6040 module_call_init(MODULE_INIT_DEVICE
);
6042 machine
->init(ram_size
, boot_devices
,
6043 kernel_filename
, kernel_cmdline
, initrd_filename
, cpu_model
);
6046 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
6047 for (i
= 0; i
< nb_numa_nodes
; i
++) {
6048 if (node_cpumask
[i
] & (1 << env
->cpu_index
)) {
6054 current_machine
= machine
;
6056 /* Set KVM's vcpu state to qemu's initial CPUState. */
6057 if (kvm_enabled()) {
6060 ret
= kvm_sync_vcpus();
6062 fprintf(stderr
, "failed to initialize vcpus\n");
6067 /* init USB devices */
6069 for(i
= 0; i
< usb_devices_index
; i
++) {
6070 if (usb_device_add(usb_devices
[i
], 0) < 0) {
6071 fprintf(stderr
, "Warning: could not add USB device %s\n",
6078 dumb_display_init();
6079 /* just use the first displaystate for the moment */
6082 if (display_type
== DT_DEFAULT
) {
6083 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
6084 display_type
= DT_SDL
;
6086 display_type
= DT_VNC
;
6087 vnc_display
= "localhost:0,to=99";
6093 switch (display_type
) {
6096 #if defined(CONFIG_CURSES)
6098 curses_display_init(ds
, full_screen
);
6101 #if defined(CONFIG_SDL)
6103 sdl_display_init(ds
, full_screen
, no_frame
);
6105 #elif defined(CONFIG_COCOA)
6107 cocoa_display_init(ds
, full_screen
);
6111 vnc_display_init(ds
);
6112 if (vnc_display_open(ds
, vnc_display
) < 0)
6115 if (show_vnc_port
) {
6116 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds
));
6124 dcl
= ds
->listeners
;
6125 while (dcl
!= NULL
) {
6126 if (dcl
->dpy_refresh
!= NULL
) {
6127 ds
->gui_timer
= qemu_new_timer(rt_clock
, gui_update
, ds
);
6128 qemu_mod_timer(ds
->gui_timer
, qemu_get_clock(rt_clock
));
6133 if (display_type
== DT_NOGRAPHIC
|| display_type
== DT_VNC
) {
6134 nographic_timer
= qemu_new_timer(rt_clock
, nographic_update
, NULL
);
6135 qemu_mod_timer(nographic_timer
, qemu_get_clock(rt_clock
));
6138 text_consoles_set_display(display_state
);
6139 qemu_chr_initial_reset();
6141 if (monitor_device
&& monitor_hd
)
6142 monitor_init(monitor_hd
, MONITOR_USE_READLINE
| MONITOR_IS_DEFAULT
);
6144 for(i
= 0; i
< MAX_SERIAL_PORTS
; i
++) {
6145 const char *devname
= serial_devices
[i
];
6146 if (devname
&& strcmp(devname
, "none")) {
6148 snprintf(label
, sizeof(label
), "serial%d", i
);
6149 if (strstart(devname
, "vc", 0))
6150 qemu_chr_printf(serial_hds
[i
], "serial%d console\r\n", i
);
6154 for(i
= 0; i
< MAX_PARALLEL_PORTS
; i
++) {
6155 const char *devname
= parallel_devices
[i
];
6156 if (devname
&& strcmp(devname
, "none")) {
6158 snprintf(label
, sizeof(label
), "parallel%d", i
);
6159 if (strstart(devname
, "vc", 0))
6160 qemu_chr_printf(parallel_hds
[i
], "parallel%d console\r\n", i
);
6164 for(i
= 0; i
< MAX_VIRTIO_CONSOLES
; i
++) {
6165 const char *devname
= virtio_consoles
[i
];
6166 if (virtcon_hds
[i
] && devname
) {
6168 snprintf(label
, sizeof(label
), "virtcon%d", i
);
6169 if (strstart(devname
, "vc", 0))
6170 qemu_chr_printf(virtcon_hds
[i
], "virtio console%d\r\n", i
);
6174 if (gdbstub_dev
&& gdbserver_start(gdbstub_dev
) < 0) {
6175 fprintf(stderr
, "qemu: could not open gdbserver on device '%s'\n",
6181 do_loadvm(cur_mon
, loadvm
);
6184 autostart
= 0; /* fixme how to deal with -daemonize */
6185 qemu_start_incoming_migration(incoming
);
6197 len
= write(fds
[1], &status
, 1);
6198 if (len
== -1 && (errno
== EINTR
))
6205 TFR(fd
= open("/dev/null", O_RDWR
));
6211 pwd
= getpwnam(run_as
);
6213 fprintf(stderr
, "User \"%s\" doesn't exist\n", run_as
);
6219 if (chroot(chroot_dir
) < 0) {
6220 fprintf(stderr
, "chroot failed\n");
6227 if (setgid(pwd
->pw_gid
) < 0) {
6228 fprintf(stderr
, "Failed to setgid(%d)\n", pwd
->pw_gid
);
6231 if (setuid(pwd
->pw_uid
) < 0) {
6232 fprintf(stderr
, "Failed to setuid(%d)\n", pwd
->pw_uid
);
6235 if (setuid(0) != -1) {
6236 fprintf(stderr
, "Dropping privileges failed\n");