2 * ARM implementation of KVM hooks, 32 bit specific code.
4 * Copyright Christoffer Dall 2009-2010
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
14 #include <linux/kvm.h>
16 #include "qemu-common.h"
18 #include "qemu/timer.h"
19 #include "sysemu/sysemu.h"
20 #include "sysemu/kvm.h"
22 #include "internals.h"
23 #include "hw/arm/arm.h"
26 static inline void set_feature(uint64_t *features
, int feature
)
28 *features
|= 1ULL << feature
;
31 bool kvm_arm_get_host_cpu_features(ARMHostCPUClass
*ahcc
)
33 /* Identify the feature bits corresponding to the host CPU, and
34 * fill out the ARMHostCPUClass fields accordingly. To do this
35 * we have to create a scratch VM, create a single CPU inside it,
36 * and then query that CPU for the relevant ID registers.
38 int i
, ret
, fdarray
[3];
39 uint32_t midr
, id_pfr0
, id_isar0
, mvfr1
;
40 uint64_t features
= 0;
41 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
42 * we know these will only support creating one kind of guest CPU,
43 * which is its preferred CPU type.
45 static const uint32_t cpus_to_try
[] = {
46 QEMU_KVM_ARM_TARGET_CORTEX_A15
,
47 QEMU_KVM_ARM_TARGET_NONE
49 struct kvm_vcpu_init init
;
50 struct kvm_one_reg idregs
[] = {
52 .id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
53 | ENCODE_CP_REG(15, 0, 0, 0, 0, 0, 0),
54 .addr
= (uintptr_t)&midr
,
57 .id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
58 | ENCODE_CP_REG(15, 0, 0, 0, 1, 0, 0),
59 .addr
= (uintptr_t)&id_pfr0
,
62 .id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
63 | ENCODE_CP_REG(15, 0, 0, 0, 2, 0, 0),
64 .addr
= (uintptr_t)&id_isar0
,
67 .id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
68 | KVM_REG_ARM_VFP
| KVM_REG_ARM_VFP_MVFR1
,
69 .addr
= (uintptr_t)&mvfr1
,
73 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try
, fdarray
, &init
)) {
77 ahcc
->target
= init
.target
;
79 /* This is not strictly blessed by the device tree binding docs yet,
80 * but in practice the kernel does not care about this string so
81 * there is no point maintaining an KVM_ARM_TARGET_* -> string table.
83 ahcc
->dtb_compatible
= "arm,arm-v7";
85 for (i
= 0; i
< ARRAY_SIZE(idregs
); i
++) {
86 ret
= ioctl(fdarray
[2], KVM_GET_ONE_REG
, &idregs
[i
]);
92 kvm_arm_destroy_scratch_host_vcpu(fdarray
);
98 /* Now we've retrieved all the register information we can
99 * set the feature bits based on the ID register fields.
100 * We can assume any KVM supporting CPU is at least a v7
101 * with VFPv3, LPAE and the generic timers; this in turn implies
102 * most of the other feature bits, but a few must be tested.
104 set_feature(&features
, ARM_FEATURE_V7
);
105 set_feature(&features
, ARM_FEATURE_VFP3
);
106 set_feature(&features
, ARM_FEATURE_LPAE
);
107 set_feature(&features
, ARM_FEATURE_GENERIC_TIMER
);
109 switch (extract32(id_isar0
, 24, 4)) {
111 set_feature(&features
, ARM_FEATURE_THUMB_DIV
);
114 set_feature(&features
, ARM_FEATURE_ARM_DIV
);
115 set_feature(&features
, ARM_FEATURE_THUMB_DIV
);
121 if (extract32(id_pfr0
, 12, 4) == 1) {
122 set_feature(&features
, ARM_FEATURE_THUMB2EE
);
124 if (extract32(mvfr1
, 20, 4) == 1) {
125 set_feature(&features
, ARM_FEATURE_VFP_FP16
);
127 if (extract32(mvfr1
, 12, 4) == 1) {
128 set_feature(&features
, ARM_FEATURE_NEON
);
130 if (extract32(mvfr1
, 28, 4) == 1) {
131 /* FMAC support implies VFPv4 */
132 set_feature(&features
, ARM_FEATURE_VFP4
);
135 ahcc
->features
= features
;
140 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx
)
142 /* Return true if the regidx is a register we should synchronize
143 * via the cpreg_tuples array (ie is not a core reg we sync by
144 * hand in kvm_arch_get/put_registers())
146 switch (regidx
& KVM_REG_ARM_COPROC_MASK
) {
147 case KVM_REG_ARM_CORE
:
148 case KVM_REG_ARM_VFP
:
155 typedef struct CPRegStateLevel
{
160 /* All coprocessor registers not listed in the following table are assumed to
161 * be of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
162 * often, you must add it to this table with a state of either
163 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
165 static const CPRegStateLevel non_runtime_cpregs
[] = {
166 { KVM_REG_ARM_TIMER_CNT
, KVM_PUT_FULL_STATE
},
169 int kvm_arm_cpreg_level(uint64_t regidx
)
173 for (i
= 0; i
< ARRAY_SIZE(non_runtime_cpregs
); i
++) {
174 const CPRegStateLevel
*l
= &non_runtime_cpregs
[i
];
175 if (l
->regidx
== regidx
) {
180 return KVM_PUT_RUNTIME_STATE
;
183 #define ARM_CPU_ID_MPIDR 0, 0, 0, 5
185 int kvm_arch_init_vcpu(CPUState
*cs
)
190 struct kvm_one_reg r
;
191 ARMCPU
*cpu
= ARM_CPU(cs
);
193 if (cpu
->kvm_target
== QEMU_KVM_ARM_TARGET_NONE
) {
194 fprintf(stderr
, "KVM is not supported for this guest CPU type\n");
198 /* Determine init features for this CPU */
199 memset(cpu
->kvm_init_features
, 0, sizeof(cpu
->kvm_init_features
));
200 if (cpu
->start_powered_off
) {
201 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_POWER_OFF
;
203 if (kvm_check_extension(cs
->kvm_state
, KVM_CAP_ARM_PSCI_0_2
)) {
204 cpu
->psci_version
= 2;
205 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2
;
208 /* Do KVM_ARM_VCPU_INIT ioctl */
209 ret
= kvm_arm_vcpu_init(cs
);
214 /* Query the kernel to make sure it supports 32 VFP
215 * registers: QEMU's "cortex-a15" CPU is always a
216 * VFP-D32 core. The simplest way to do this is just
217 * to attempt to read register d31.
219 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
| 31;
220 r
.addr
= (uintptr_t)(&v
);
221 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
222 if (ret
== -ENOENT
) {
227 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
228 * Currently KVM has its own idea about MPIDR assignment, so we
229 * override our defaults with what we get from KVM.
231 ret
= kvm_get_one_reg(cs
, ARM_CP15_REG32(ARM_CPU_ID_MPIDR
), &mpidr
);
235 cpu
->mp_affinity
= mpidr
& ARM32_AFFINITY_MASK
;
237 return kvm_arm_init_cpreg_list(cpu
);
245 #define COREREG(KERNELNAME, QEMUFIELD) \
247 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
248 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
249 offsetof(CPUARMState, QEMUFIELD) \
252 #define VFPSYSREG(R) \
254 KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
255 KVM_REG_ARM_VFP_##R, \
256 offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \
259 /* Like COREREG, but handle fields which are in a uint64_t in CPUARMState. */
260 #define COREREG64(KERNELNAME, QEMUFIELD) \
262 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
263 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
264 offsetoflow32(CPUARMState, QEMUFIELD) \
267 static const Reg regs
[] = {
268 /* R0_usr .. R14_usr */
269 COREREG(usr_regs
.uregs
[0], regs
[0]),
270 COREREG(usr_regs
.uregs
[1], regs
[1]),
271 COREREG(usr_regs
.uregs
[2], regs
[2]),
272 COREREG(usr_regs
.uregs
[3], regs
[3]),
273 COREREG(usr_regs
.uregs
[4], regs
[4]),
274 COREREG(usr_regs
.uregs
[5], regs
[5]),
275 COREREG(usr_regs
.uregs
[6], regs
[6]),
276 COREREG(usr_regs
.uregs
[7], regs
[7]),
277 COREREG(usr_regs
.uregs
[8], usr_regs
[0]),
278 COREREG(usr_regs
.uregs
[9], usr_regs
[1]),
279 COREREG(usr_regs
.uregs
[10], usr_regs
[2]),
280 COREREG(usr_regs
.uregs
[11], usr_regs
[3]),
281 COREREG(usr_regs
.uregs
[12], usr_regs
[4]),
282 COREREG(usr_regs
.uregs
[13], banked_r13
[BANK_USRSYS
]),
283 COREREG(usr_regs
.uregs
[14], banked_r14
[BANK_USRSYS
]),
284 /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
285 COREREG(svc_regs
[0], banked_r13
[BANK_SVC
]),
286 COREREG(svc_regs
[1], banked_r14
[BANK_SVC
]),
287 COREREG64(svc_regs
[2], banked_spsr
[BANK_SVC
]),
288 COREREG(abt_regs
[0], banked_r13
[BANK_ABT
]),
289 COREREG(abt_regs
[1], banked_r14
[BANK_ABT
]),
290 COREREG64(abt_regs
[2], banked_spsr
[BANK_ABT
]),
291 COREREG(und_regs
[0], banked_r13
[BANK_UND
]),
292 COREREG(und_regs
[1], banked_r14
[BANK_UND
]),
293 COREREG64(und_regs
[2], banked_spsr
[BANK_UND
]),
294 COREREG(irq_regs
[0], banked_r13
[BANK_IRQ
]),
295 COREREG(irq_regs
[1], banked_r14
[BANK_IRQ
]),
296 COREREG64(irq_regs
[2], banked_spsr
[BANK_IRQ
]),
297 /* R8_fiq .. R14_fiq and SPSR_fiq */
298 COREREG(fiq_regs
[0], fiq_regs
[0]),
299 COREREG(fiq_regs
[1], fiq_regs
[1]),
300 COREREG(fiq_regs
[2], fiq_regs
[2]),
301 COREREG(fiq_regs
[3], fiq_regs
[3]),
302 COREREG(fiq_regs
[4], fiq_regs
[4]),
303 COREREG(fiq_regs
[5], banked_r13
[BANK_FIQ
]),
304 COREREG(fiq_regs
[6], banked_r14
[BANK_FIQ
]),
305 COREREG64(fiq_regs
[7], banked_spsr
[BANK_FIQ
]),
307 COREREG(usr_regs
.uregs
[15], regs
[15]),
308 /* VFP system registers */
317 int kvm_arch_put_registers(CPUState
*cs
, int level
)
319 ARMCPU
*cpu
= ARM_CPU(cs
);
320 CPUARMState
*env
= &cpu
->env
;
321 struct kvm_one_reg r
;
324 uint32_t cpsr
, fpscr
;
326 /* Make sure the banked regs are properly set */
327 mode
= env
->uncached_cpsr
& CPSR_M
;
328 bn
= bank_number(mode
);
329 if (mode
== ARM_CPU_MODE_FIQ
) {
330 memcpy(env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
332 memcpy(env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
334 env
->banked_r13
[bn
] = env
->regs
[13];
335 env
->banked_r14
[bn
] = env
->regs
[14];
336 env
->banked_spsr
[bn
] = env
->spsr
;
338 /* Now we can safely copy stuff down to the kernel */
339 for (i
= 0; i
< ARRAY_SIZE(regs
); i
++) {
341 r
.addr
= (uintptr_t)(env
) + regs
[i
].offset
;
342 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
348 /* Special cases which aren't a single CPUARMState field */
349 cpsr
= cpsr_read(env
);
350 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
|
351 KVM_REG_ARM_CORE
| KVM_REG_ARM_CORE_REG(usr_regs
.ARM_cpsr
);
352 r
.addr
= (uintptr_t)(&cpsr
);
353 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
359 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
;
360 for (i
= 0; i
< 32; i
++) {
361 r
.addr
= (uintptr_t)(&env
->vfp
.regs
[i
]);
362 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
369 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
| KVM_REG_ARM_VFP
|
370 KVM_REG_ARM_VFP_FPSCR
;
371 fpscr
= vfp_get_fpscr(env
);
372 r
.addr
= (uintptr_t)&fpscr
;
373 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
378 /* Note that we do not call write_cpustate_to_list()
379 * here, so we are only writing the tuple list back to
380 * KVM. This is safe because nothing can change the
381 * CPUARMState cp15 fields (in particular gdb accesses cannot)
382 * and so there are no changes to sync. In fact syncing would
383 * be wrong at this point: for a constant register where TCG and
384 * KVM disagree about its value, the preceding write_list_to_cpustate()
385 * would not have had any effect on the CPUARMState value (since the
386 * register is read-only), and a write_cpustate_to_list() here would
387 * then try to write the TCG value back into KVM -- this would either
388 * fail or incorrectly change the value the guest sees.
390 * If we ever want to allow the user to modify cp15 registers via
391 * the gdb stub, we would need to be more clever here (for instance
392 * tracking the set of registers kvm_arch_get_registers() successfully
393 * managed to update the CPUARMState with, and only allowing those
394 * to be written back up into the kernel).
396 if (!write_list_to_kvmstate(cpu
, level
)) {
400 kvm_arm_sync_mpstate_to_kvm(cpu
);
405 int kvm_arch_get_registers(CPUState
*cs
)
407 ARMCPU
*cpu
= ARM_CPU(cs
);
408 CPUARMState
*env
= &cpu
->env
;
409 struct kvm_one_reg r
;
412 uint32_t cpsr
, fpscr
;
414 for (i
= 0; i
< ARRAY_SIZE(regs
); i
++) {
416 r
.addr
= (uintptr_t)(env
) + regs
[i
].offset
;
417 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
423 /* Special cases which aren't a single CPUARMState field */
424 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
|
425 KVM_REG_ARM_CORE
| KVM_REG_ARM_CORE_REG(usr_regs
.ARM_cpsr
);
426 r
.addr
= (uintptr_t)(&cpsr
);
427 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
431 cpsr_write(env
, cpsr
, 0xffffffff, CPSRWriteRaw
);
433 /* Make sure the current mode regs are properly set */
434 mode
= env
->uncached_cpsr
& CPSR_M
;
435 bn
= bank_number(mode
);
436 if (mode
== ARM_CPU_MODE_FIQ
) {
437 memcpy(env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
439 memcpy(env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
441 env
->regs
[13] = env
->banked_r13
[bn
];
442 env
->regs
[14] = env
->banked_r14
[bn
];
443 env
->spsr
= env
->banked_spsr
[bn
];
446 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
;
447 for (i
= 0; i
< 32; i
++) {
448 r
.addr
= (uintptr_t)(&env
->vfp
.regs
[i
]);
449 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
456 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
| KVM_REG_ARM_VFP
|
457 KVM_REG_ARM_VFP_FPSCR
;
458 r
.addr
= (uintptr_t)&fpscr
;
459 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
463 vfp_set_fpscr(env
, fpscr
);
465 if (!write_kvmstate_to_list(cpu
)) {
468 /* Note that it's OK to have registers which aren't in CPUState,
469 * so we can ignore a failure return here.
471 write_list_to_cpustate(cpu
);
473 kvm_arm_sync_mpstate_to_qemu(cpu
);
478 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
480 qemu_log_mask(LOG_UNIMP
, "%s: guest debug not yet implemented\n", __func__
);
484 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
486 qemu_log_mask(LOG_UNIMP
, "%s: guest debug not yet implemented\n", __func__
);
490 bool kvm_arm_handle_debug(CPUState
*cs
, struct kvm_debug_exit_arch
*debug_exit
)
492 qemu_log_mask(LOG_UNIMP
, "%s: guest debug not yet implemented\n", __func__
);
496 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
497 target_ulong len
, int type
)
499 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
503 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
504 target_ulong len
, int type
)
506 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
510 void kvm_arch_remove_all_hw_breakpoints(void)
512 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
515 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch
*ptr
)
517 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
520 bool kvm_arm_hw_debug_active(CPUState
*cs
)
525 void kvm_arm_pmu_set_irq(CPUState
*cs
, int irq
)
527 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
530 void kvm_arm_pmu_init(CPUState
*cs
)
532 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);