2 * TI OMAP general purpose memory controller emulation.
4 * Copyright (C) 2007-2009 Nokia Corporation
5 * Original code written by Andrzej Zaborowski <andrew@openedhand.com>
6 * Enhancements for OMAP3 and NAND support written by Juha Riihimäki
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 or
11 * (at your option) any later version of the License.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 #include "hw/block/flash.h"
23 #include "hw/arm/omap.h"
24 #include "exec/memory.h"
25 #include "exec/address-spaces.h"
27 /* General-Purpose Memory Controller */
41 struct omap_gpmc_cs_file_s
{
44 MemoryRegion container
;
45 MemoryRegion nandiomem
;
53 uint32_t config1
; /* GPMC_PREFETCH_CONFIG1 */
54 uint32_t transfercount
; /* GPMC_PREFETCH_CONFIG2:TRANSFERCOUNT */
55 int startengine
; /* GPMC_PREFETCH_CONTROL:STARTENGINE */
56 int fifopointer
; /* GPMC_PREFETCH_STATUS:FIFOPOINTER */
57 int count
; /* GPMC_PREFETCH_STATUS:COUNTVALUE */
63 #define OMAP_GPMC_8BIT 0
64 #define OMAP_GPMC_16BIT 1
65 #define OMAP_GPMC_NOR 0
66 #define OMAP_GPMC_NAND 2
68 static int omap_gpmc_devtype(struct omap_gpmc_cs_file_s
*f
)
70 return (f
->config
[0] >> 10) & 3;
73 static int omap_gpmc_devsize(struct omap_gpmc_cs_file_s
*f
)
75 /* devsize field is really 2 bits but we ignore the high
76 * bit to ensure consistent behaviour if the guest sets
77 * it (values 2 and 3 are reserved in the TRM)
79 return (f
->config
[0] >> 12) & 1;
82 /* Extract the chip-select value from the prefetch config1 register */
83 static int prefetch_cs(uint32_t config1
)
85 return (config1
>> 24) & 7;
88 static int prefetch_threshold(uint32_t config1
)
90 return (config1
>> 8) & 0x7f;
93 static void omap_gpmc_int_update(struct omap_gpmc_s
*s
)
95 /* The TRM is a bit unclear, but it seems to say that
96 * the TERMINALCOUNTSTATUS bit is set only on the
97 * transition when the prefetch engine goes from
98 * active to inactive, whereas the FIFOEVENTSTATUS
99 * bit is held high as long as the fifo has at
100 * least THRESHOLD bytes available.
101 * So we do the latter here, but TERMINALCOUNTSTATUS
104 if (s
->prefetch
.fifopointer
>= prefetch_threshold(s
->prefetch
.config1
)) {
107 if ((s
->irqen
& s
->irqst
) != s
->lastirq
) {
108 s
->lastirq
= s
->irqen
& s
->irqst
;
109 qemu_set_irq(s
->irq
, s
->lastirq
);
113 static void omap_gpmc_dma_update(struct omap_gpmc_s
*s
, int value
)
115 if (s
->prefetch
.config1
& 4) {
116 qemu_set_irq(s
->drq
, value
);
120 /* Access functions for when a NAND-like device is mapped into memory:
121 * all addresses in the region behave like accesses to the relevant
122 * GPMC_NAND_DATA_i register (which is actually implemented to call these)
124 static uint64_t omap_nand_read(void *opaque
, hwaddr addr
,
127 struct omap_gpmc_cs_file_s
*f
= (struct omap_gpmc_cs_file_s
*)opaque
;
129 nand_setpins(f
->dev
, 0, 0, 0, 1, 0);
130 switch (omap_gpmc_devsize(f
)) {
132 v
= nand_getio(f
->dev
);
136 v
|= (nand_getio(f
->dev
) << 8);
140 v
|= (nand_getio(f
->dev
) << 16);
141 v
|= (nand_getio(f
->dev
) << 24);
143 case OMAP_GPMC_16BIT
:
144 v
= nand_getio(f
->dev
);
146 /* 8 bit read from 16 bit device : probably a guest bug */
152 v
|= (nand_getio(f
->dev
) << 16);
159 static void omap_nand_setio(DeviceState
*dev
, uint64_t value
,
160 int nandsize
, int size
)
162 /* Write the specified value to the NAND device, respecting
163 * both size of the NAND device and size of the write access.
169 nand_setio(dev
, value
& 0xff);
172 nand_setio(dev
, value
& 0xff);
173 nand_setio(dev
, (value
>> 8) & 0xff);
177 nand_setio(dev
, value
& 0xff);
178 nand_setio(dev
, (value
>> 8) & 0xff);
179 nand_setio(dev
, (value
>> 16) & 0xff);
180 nand_setio(dev
, (value
>> 24) & 0xff);
184 case OMAP_GPMC_16BIT
:
187 /* writing to a 16bit device with 8bit access is probably a guest
188 * bug; pass the value through anyway.
191 nand_setio(dev
, value
& 0xffff);
195 nand_setio(dev
, value
& 0xffff);
196 nand_setio(dev
, (value
>> 16) & 0xffff);
203 static void omap_nand_write(void *opaque
, hwaddr addr
,
204 uint64_t value
, unsigned size
)
206 struct omap_gpmc_cs_file_s
*f
= (struct omap_gpmc_cs_file_s
*)opaque
;
207 nand_setpins(f
->dev
, 0, 0, 0, 1, 0);
208 omap_nand_setio(f
->dev
, value
, omap_gpmc_devsize(f
), size
);
211 static const MemoryRegionOps omap_nand_ops
= {
212 .read
= omap_nand_read
,
213 .write
= omap_nand_write
,
214 .endianness
= DEVICE_NATIVE_ENDIAN
,
217 static void fill_prefetch_fifo(struct omap_gpmc_s
*s
)
219 /* Fill the prefetch FIFO by reading data from NAND.
220 * We do this synchronously, unlike the hardware which
221 * will do this asynchronously. We refill when the
222 * FIFO has THRESHOLD bytes free, and we always refill
223 * as much data as possible starting at the top end
225 * (We have to refill at THRESHOLD rather than waiting
226 * for the FIFO to empty to allow for the case where
227 * the FIFO size isn't an exact multiple of THRESHOLD
228 * and we're doing DMA transfers.)
229 * This means we never need to handle wrap-around in
230 * the fifo-reading code, and the next byte of data
231 * to read is always fifo[63 - fifopointer].
234 int cs
= prefetch_cs(s
->prefetch
.config1
);
235 int is16bit
= (((s
->cs_file
[cs
].config
[0] >> 12) & 3) != 0);
237 /* Don't believe the bit of the OMAP TRM that says that COUNTVALUE
238 * and TRANSFERCOUNT are in units of 16 bit words for 16 bit NAND.
239 * Instead believe the bit that says it is always a byte count.
241 bytes
= 64 - s
->prefetch
.fifopointer
;
242 if (bytes
> s
->prefetch
.count
) {
243 bytes
= s
->prefetch
.count
;
249 s
->prefetch
.count
-= bytes
;
250 s
->prefetch
.fifopointer
+= bytes
;
251 fptr
= 64 - s
->prefetch
.fifopointer
;
252 /* Move the existing data in the FIFO so it sits just
253 * before what we're about to read in
255 while (fptr
< (64 - bytes
)) {
256 s
->prefetch
.fifo
[fptr
] = s
->prefetch
.fifo
[fptr
+ bytes
];
261 uint32_t v
= omap_nand_read(&s
->cs_file
[cs
], 0, 2);
262 s
->prefetch
.fifo
[fptr
++] = v
& 0xff;
263 s
->prefetch
.fifo
[fptr
++] = (v
>> 8) & 0xff;
265 s
->prefetch
.fifo
[fptr
++] = omap_nand_read(&s
->cs_file
[cs
], 0, 1);
268 if (s
->prefetch
.startengine
&& (s
->prefetch
.count
== 0)) {
269 /* This was the final transfer: raise TERMINALCOUNTSTATUS */
271 s
->prefetch
.startengine
= 0;
273 /* If there are any bytes in the FIFO at this point then
274 * we must raise a DMA request (either this is a final part
275 * transfer, or we filled the FIFO in which case we certainly
276 * have THRESHOLD bytes available)
278 if (s
->prefetch
.fifopointer
!= 0) {
279 omap_gpmc_dma_update(s
, 1);
281 omap_gpmc_int_update(s
);
284 /* Access functions for a NAND-like device when the prefetch/postwrite
285 * engine is enabled -- all addresses in the region behave alike:
286 * data is read or written to the FIFO.
288 static uint64_t omap_gpmc_prefetch_read(void *opaque
, hwaddr addr
,
291 struct omap_gpmc_s
*s
= (struct omap_gpmc_s
*) opaque
;
293 if (s
->prefetch
.config1
& 1) {
294 /* The TRM doesn't define the behaviour if you read from the
295 * FIFO when the prefetch engine is in write mode. We choose
296 * to always return zero.
300 /* Note that trying to read an empty fifo repeats the last byte */
301 if (s
->prefetch
.fifopointer
) {
302 s
->prefetch
.fifopointer
--;
304 data
= s
->prefetch
.fifo
[63 - s
->prefetch
.fifopointer
];
305 if (s
->prefetch
.fifopointer
==
306 (64 - prefetch_threshold(s
->prefetch
.config1
))) {
307 /* We've drained THRESHOLD bytes now. So deassert the
308 * DMA request, then refill the FIFO (which will probably
311 omap_gpmc_dma_update(s
, 0);
312 fill_prefetch_fifo(s
);
314 omap_gpmc_int_update(s
);
318 static void omap_gpmc_prefetch_write(void *opaque
, hwaddr addr
,
319 uint64_t value
, unsigned size
)
321 struct omap_gpmc_s
*s
= (struct omap_gpmc_s
*) opaque
;
322 int cs
= prefetch_cs(s
->prefetch
.config1
);
323 if ((s
->prefetch
.config1
& 1) == 0) {
324 /* The TRM doesn't define the behaviour of writing to the
325 * FIFO when the prefetch engine is in read mode. We
326 * choose to ignore the write.
330 if (s
->prefetch
.count
== 0) {
331 /* The TRM doesn't define the behaviour of writing to the
332 * FIFO if the transfer is complete. We choose to ignore.
336 /* The only reason we do any data buffering in postwrite
337 * mode is if we are talking to a 16 bit NAND device, in
338 * which case we need to buffer the first byte of the
339 * 16 bit word until the other byte arrives.
341 int is16bit
= (((s
->cs_file
[cs
].config
[0] >> 12) & 3) != 0);
343 /* fifopointer alternates between 64 (waiting for first
344 * byte of word) and 63 (waiting for second byte)
346 if (s
->prefetch
.fifopointer
== 64) {
347 s
->prefetch
.fifo
[0] = value
;
348 s
->prefetch
.fifopointer
--;
350 value
= (value
<< 8) | s
->prefetch
.fifo
[0];
351 omap_nand_write(&s
->cs_file
[cs
], 0, value
, 2);
353 s
->prefetch
.fifopointer
= 64;
356 /* Just write the byte : fifopointer remains 64 at all times */
357 omap_nand_write(&s
->cs_file
[cs
], 0, value
, 1);
360 if (s
->prefetch
.count
== 0) {
361 /* Final transfer: raise TERMINALCOUNTSTATUS */
363 s
->prefetch
.startengine
= 0;
365 omap_gpmc_int_update(s
);
368 static const MemoryRegionOps omap_prefetch_ops
= {
369 .read
= omap_gpmc_prefetch_read
,
370 .write
= omap_gpmc_prefetch_write
,
371 .endianness
= DEVICE_NATIVE_ENDIAN
,
372 .impl
.min_access_size
= 1,
373 .impl
.max_access_size
= 1,
376 static MemoryRegion
*omap_gpmc_cs_memregion(struct omap_gpmc_s
*s
, int cs
)
378 /* Return the MemoryRegion* to map/unmap for this chipselect */
379 struct omap_gpmc_cs_file_s
*f
= &s
->cs_file
[cs
];
380 if (omap_gpmc_devtype(f
) == OMAP_GPMC_NOR
) {
383 if ((s
->prefetch
.config1
& 0x80) &&
384 (prefetch_cs(s
->prefetch
.config1
) == cs
)) {
385 /* The prefetch engine is enabled for this CS: map the FIFO */
386 return &s
->prefetch
.iomem
;
388 return &f
->nandiomem
;
391 static void omap_gpmc_cs_map(struct omap_gpmc_s
*s
, int cs
)
393 struct omap_gpmc_cs_file_s
*f
= &s
->cs_file
[cs
];
394 uint32_t mask
= (f
->config
[6] >> 8) & 0xf;
395 uint32_t base
= f
->config
[6] & 0x3f;
398 if (!f
->iomem
&& !f
->dev
) {
402 if (!(f
->config
[6] & (1 << 6))) {
403 /* Do nothing unless CSVALID */
407 /* TODO: check for overlapping regions and report access errors */
408 if (mask
!= 0x8 && mask
!= 0xc && mask
!= 0xe && mask
!= 0xf
409 && !(s
->accept_256
&& !mask
)) {
410 fprintf(stderr
, "%s: invalid chip-select mask address (0x%x)\n",
415 size
= (0x0fffffff & ~(mask
<< 24)) + 1;
416 /* TODO: rather than setting the size of the mapping (which should be
417 * constant), the mask should cause wrapping of the address space, so
418 * that the same memory becomes accessible at every <i>size</i> bytes
419 * starting from <i>base</i>. */
420 memory_region_init(&f
->container
, NULL
, "omap-gpmc-file", size
);
421 memory_region_add_subregion(&f
->container
, 0,
422 omap_gpmc_cs_memregion(s
, cs
));
423 memory_region_add_subregion(get_system_memory(), base
,
427 static void omap_gpmc_cs_unmap(struct omap_gpmc_s
*s
, int cs
)
429 struct omap_gpmc_cs_file_s
*f
= &s
->cs_file
[cs
];
430 if (!(f
->config
[6] & (1 << 6))) {
431 /* Do nothing unless CSVALID */
434 if (!f
->iomem
&& !f
->dev
) {
437 memory_region_del_subregion(get_system_memory(), &f
->container
);
438 memory_region_del_subregion(&f
->container
, omap_gpmc_cs_memregion(s
, cs
));
439 object_unparent(OBJECT(&f
->container
));
442 void omap_gpmc_reset(struct omap_gpmc_s
*s
)
449 omap_gpmc_int_update(s
);
450 for (i
= 0; i
< 8; i
++) {
451 /* This has to happen before we change any of the config
452 * used to determine which memory regions are mapped or unmapped.
454 omap_gpmc_cs_unmap(s
, i
);
458 s
->prefetch
.config1
= 0x00004000;
459 s
->prefetch
.transfercount
= 0x00000000;
460 s
->prefetch
.startengine
= 0;
461 s
->prefetch
.fifopointer
= 0;
462 s
->prefetch
.count
= 0;
463 for (i
= 0; i
< 8; i
++) {
464 s
->cs_file
[i
].config
[1] = 0x101001;
465 s
->cs_file
[i
].config
[2] = 0x020201;
466 s
->cs_file
[i
].config
[3] = 0x10031003;
467 s
->cs_file
[i
].config
[4] = 0x10f1111;
468 s
->cs_file
[i
].config
[5] = 0;
469 s
->cs_file
[i
].config
[6] = 0xf00;
470 /* In theory we could probe attached devices for some CFG1
471 * bits here, but we just retain them across resets as they
472 * were set initially by omap_gpmc_attach().
475 s
->cs_file
[i
].config
[0] &= 0x00433e00;
476 s
->cs_file
[i
].config
[6] |= 1 << 6; /* CSVALID */
477 omap_gpmc_cs_map(s
, i
);
479 s
->cs_file
[i
].config
[0] &= 0x00403c00;
484 s
->ecc_cfg
= 0x3fcff000;
485 for (i
= 0; i
< 9; i
++)
486 ecc_reset(&s
->ecc
[i
]);
489 static int gpmc_wordaccess_only(hwaddr addr
)
491 /* Return true if the register offset is to a register that
492 * only permits word width accesses.
493 * Non-word accesses are only OK for GPMC_NAND_DATA/ADDRESS/COMMAND
494 * for any chipselect.
496 if (addr
>= 0x60 && addr
<= 0x1d4) {
497 int cs
= (addr
- 0x60) / 0x30;
499 if (addr
>= 0x7c && addr
< 0x88) {
500 /* GPMC_NAND_COMMAND, GPMC_NAND_ADDRESS, GPMC_NAND_DATA */
507 static uint64_t omap_gpmc_read(void *opaque
, hwaddr addr
,
510 struct omap_gpmc_s
*s
= (struct omap_gpmc_s
*) opaque
;
512 struct omap_gpmc_cs_file_s
*f
;
514 if (size
!= 4 && gpmc_wordaccess_only(addr
)) {
515 return omap_badwidth_read32(opaque
, addr
);
519 case 0x000: /* GPMC_REVISION */
522 case 0x010: /* GPMC_SYSCONFIG */
525 case 0x014: /* GPMC_SYSSTATUS */
526 return 1; /* RESETDONE */
528 case 0x018: /* GPMC_IRQSTATUS */
531 case 0x01c: /* GPMC_IRQENABLE */
534 case 0x040: /* GPMC_TIMEOUT_CONTROL */
537 case 0x044: /* GPMC_ERR_ADDRESS */
538 case 0x048: /* GPMC_ERR_TYPE */
541 case 0x050: /* GPMC_CONFIG */
544 case 0x054: /* GPMC_STATUS */
547 case 0x060 ... 0x1d4:
548 cs
= (addr
- 0x060) / 0x30;
552 case 0x60: /* GPMC_CONFIG1 */
554 case 0x64: /* GPMC_CONFIG2 */
556 case 0x68: /* GPMC_CONFIG3 */
558 case 0x6c: /* GPMC_CONFIG4 */
560 case 0x70: /* GPMC_CONFIG5 */
562 case 0x74: /* GPMC_CONFIG6 */
564 case 0x78: /* GPMC_CONFIG7 */
566 case 0x84 ... 0x87: /* GPMC_NAND_DATA */
567 if (omap_gpmc_devtype(f
) == OMAP_GPMC_NAND
) {
568 return omap_nand_read(f
, 0, size
);
574 case 0x1e0: /* GPMC_PREFETCH_CONFIG1 */
575 return s
->prefetch
.config1
;
576 case 0x1e4: /* GPMC_PREFETCH_CONFIG2 */
577 return s
->prefetch
.transfercount
;
578 case 0x1ec: /* GPMC_PREFETCH_CONTROL */
579 return s
->prefetch
.startengine
;
580 case 0x1f0: /* GPMC_PREFETCH_STATUS */
581 /* NB: The OMAP3 TRM is inconsistent about whether the GPMC
582 * FIFOTHRESHOLDSTATUS bit should be set when
583 * FIFOPOINTER > FIFOTHRESHOLD or when it is >= FIFOTHRESHOLD.
584 * Apparently the underlying functional spec from which the TRM was
585 * created states that the behaviour is ">=", and this also
586 * makes more conceptual sense.
588 return (s
->prefetch
.fifopointer
<< 24) |
589 ((s
->prefetch
.fifopointer
>=
590 ((s
->prefetch
.config1
>> 8) & 0x7f) ? 1 : 0) << 16) |
593 case 0x1f4: /* GPMC_ECC_CONFIG */
595 case 0x1f8: /* GPMC_ECC_CONTROL */
597 case 0x1fc: /* GPMC_ECC_SIZE_CONFIG */
599 case 0x200 ... 0x220: /* GPMC_ECC_RESULT */
600 cs
= (addr
& 0x1f) >> 2;
601 /* TODO: check correctness */
603 ((s
->ecc
[cs
].cp
& 0x07) << 0) |
604 ((s
->ecc
[cs
].cp
& 0x38) << 13) |
605 ((s
->ecc
[cs
].lp
[0] & 0x1ff) << 3) |
606 ((s
->ecc
[cs
].lp
[1] & 0x1ff) << 19);
608 case 0x230: /* GPMC_TESTMODE_CTRL */
610 case 0x234: /* GPMC_PSA_LSB */
611 case 0x238: /* GPMC_PSA_MSB */
619 static void omap_gpmc_write(void *opaque
, hwaddr addr
,
620 uint64_t value
, unsigned size
)
622 struct omap_gpmc_s
*s
= (struct omap_gpmc_s
*) opaque
;
624 struct omap_gpmc_cs_file_s
*f
;
626 if (size
!= 4 && gpmc_wordaccess_only(addr
)) {
627 return omap_badwidth_write32(opaque
, addr
, value
);
631 case 0x000: /* GPMC_REVISION */
632 case 0x014: /* GPMC_SYSSTATUS */
633 case 0x054: /* GPMC_STATUS */
634 case 0x1f0: /* GPMC_PREFETCH_STATUS */
635 case 0x200 ... 0x220: /* GPMC_ECC_RESULT */
636 case 0x234: /* GPMC_PSA_LSB */
637 case 0x238: /* GPMC_PSA_MSB */
641 case 0x010: /* GPMC_SYSCONFIG */
642 if ((value
>> 3) == 0x3)
643 fprintf(stderr
, "%s: bad SDRAM idle mode %"PRIi64
"\n",
644 __FUNCTION__
, value
>> 3);
647 s
->sysconfig
= value
& 0x19;
650 case 0x018: /* GPMC_IRQSTATUS */
652 omap_gpmc_int_update(s
);
655 case 0x01c: /* GPMC_IRQENABLE */
656 s
->irqen
= value
& 0xf03;
657 omap_gpmc_int_update(s
);
660 case 0x040: /* GPMC_TIMEOUT_CONTROL */
661 s
->timeout
= value
& 0x1ff1;
664 case 0x044: /* GPMC_ERR_ADDRESS */
665 case 0x048: /* GPMC_ERR_TYPE */
668 case 0x050: /* GPMC_CONFIG */
669 s
->config
= value
& 0xf13;
672 case 0x060 ... 0x1d4:
673 cs
= (addr
- 0x060) / 0x30;
677 case 0x60: /* GPMC_CONFIG1 */
678 f
->config
[0] = value
& 0xffef3e13;
680 case 0x64: /* GPMC_CONFIG2 */
681 f
->config
[1] = value
& 0x001f1f8f;
683 case 0x68: /* GPMC_CONFIG3 */
684 f
->config
[2] = value
& 0x001f1f8f;
686 case 0x6c: /* GPMC_CONFIG4 */
687 f
->config
[3] = value
& 0x1f8f1f8f;
689 case 0x70: /* GPMC_CONFIG5 */
690 f
->config
[4] = value
& 0x0f1f1f1f;
692 case 0x74: /* GPMC_CONFIG6 */
693 f
->config
[5] = value
& 0x00000fcf;
695 case 0x78: /* GPMC_CONFIG7 */
696 if ((f
->config
[6] ^ value
) & 0xf7f) {
697 omap_gpmc_cs_unmap(s
, cs
);
698 f
->config
[6] = value
& 0x00000f7f;
699 omap_gpmc_cs_map(s
, cs
);
702 case 0x7c ... 0x7f: /* GPMC_NAND_COMMAND */
703 if (omap_gpmc_devtype(f
) == OMAP_GPMC_NAND
) {
704 nand_setpins(f
->dev
, 1, 0, 0, 1, 0); /* CLE */
705 omap_nand_setio(f
->dev
, value
, omap_gpmc_devsize(f
), size
);
708 case 0x80 ... 0x83: /* GPMC_NAND_ADDRESS */
709 if (omap_gpmc_devtype(f
) == OMAP_GPMC_NAND
) {
710 nand_setpins(f
->dev
, 0, 1, 0, 1, 0); /* ALE */
711 omap_nand_setio(f
->dev
, value
, omap_gpmc_devsize(f
), size
);
714 case 0x84 ... 0x87: /* GPMC_NAND_DATA */
715 if (omap_gpmc_devtype(f
) == OMAP_GPMC_NAND
) {
716 omap_nand_write(f
, 0, value
, size
);
724 case 0x1e0: /* GPMC_PREFETCH_CONFIG1 */
725 if (!s
->prefetch
.startengine
) {
726 uint32_t newconfig1
= value
& 0x7f8f7fbf;
728 changed
= newconfig1
^ s
->prefetch
.config1
;
729 if (changed
& (0x80 | 0x7000000)) {
730 /* Turning the engine on or off, or mapping it somewhere else.
731 * cs_map() and cs_unmap() check the prefetch config and
732 * overall CSVALID bits, so it is sufficient to unmap-and-map
733 * both the old cs and the new one. Note that we adhere to
734 * the "unmap/change config/map" order (and not unmap twice
735 * if newcs == oldcs), otherwise we'll try to delete the wrong
738 int oldcs
= prefetch_cs(s
->prefetch
.config1
);
739 int newcs
= prefetch_cs(newconfig1
);
740 omap_gpmc_cs_unmap(s
, oldcs
);
741 if (oldcs
!= newcs
) {
742 omap_gpmc_cs_unmap(s
, newcs
);
744 s
->prefetch
.config1
= newconfig1
;
745 omap_gpmc_cs_map(s
, oldcs
);
746 if (oldcs
!= newcs
) {
747 omap_gpmc_cs_map(s
, newcs
);
750 s
->prefetch
.config1
= newconfig1
;
755 case 0x1e4: /* GPMC_PREFETCH_CONFIG2 */
756 if (!s
->prefetch
.startengine
) {
757 s
->prefetch
.transfercount
= value
& 0x3fff;
761 case 0x1ec: /* GPMC_PREFETCH_CONTROL */
762 if (s
->prefetch
.startengine
!= (value
& 1)) {
763 s
->prefetch
.startengine
= value
& 1;
764 if (s
->prefetch
.startengine
) {
765 /* Prefetch engine start */
766 s
->prefetch
.count
= s
->prefetch
.transfercount
;
767 if (s
->prefetch
.config1
& 1) {
769 s
->prefetch
.fifopointer
= 64;
772 s
->prefetch
.fifopointer
= 0;
773 fill_prefetch_fifo(s
);
776 /* Prefetch engine forcibly stopped. The TRM
777 * doesn't define the behaviour if you do this.
778 * We clear the prefetch count, which means that
779 * we permit no more writes, and don't read any
780 * more data from NAND. The CPU can still drain
781 * the FIFO of unread data.
783 s
->prefetch
.count
= 0;
785 omap_gpmc_int_update(s
);
789 case 0x1f4: /* GPMC_ECC_CONFIG */
792 case 0x1f8: /* GPMC_ECC_CONTROL */
793 if (value
& (1 << 8))
794 for (cs
= 0; cs
< 9; cs
++)
795 ecc_reset(&s
->ecc
[cs
]);
796 s
->ecc_ptr
= value
& 0xf;
797 if (s
->ecc_ptr
== 0 || s
->ecc_ptr
> 9) {
802 case 0x1fc: /* GPMC_ECC_SIZE_CONFIG */
803 s
->ecc_cfg
= value
& 0x3fcff1ff;
805 case 0x230: /* GPMC_TESTMODE_CTRL */
807 fprintf(stderr
, "%s: test mode enable attempt\n", __FUNCTION__
);
817 static const MemoryRegionOps omap_gpmc_ops
= {
818 .read
= omap_gpmc_read
,
819 .write
= omap_gpmc_write
,
820 .endianness
= DEVICE_NATIVE_ENDIAN
,
823 struct omap_gpmc_s
*omap_gpmc_init(struct omap_mpu_state_s
*mpu
,
825 qemu_irq irq
, qemu_irq drq
)
828 struct omap_gpmc_s
*s
= (struct omap_gpmc_s
*)
829 g_malloc0(sizeof(struct omap_gpmc_s
));
831 memory_region_init_io(&s
->iomem
, NULL
, &omap_gpmc_ops
, s
, "omap-gpmc", 0x1000);
832 memory_region_add_subregion(get_system_memory(), base
, &s
->iomem
);
836 s
->accept_256
= cpu_is_omap3630(mpu
);
837 s
->revision
= cpu_class_omap3(mpu
) ? 0x50 : 0x20;
841 /* We have to register a different IO memory handler for each
842 * chip select region in case a NAND device is mapped there. We
843 * make the region the worst-case size of 256MB and rely on the
844 * container memory region in cs_map to chop it down to the actual
845 * guest-requested size.
847 for (cs
= 0; cs
< 8; cs
++) {
848 memory_region_init_io(&s
->cs_file
[cs
].nandiomem
, NULL
,
855 memory_region_init_io(&s
->prefetch
.iomem
, NULL
, &omap_prefetch_ops
, s
,
856 "omap-gpmc-prefetch", 256 * 1024 * 1024);
860 void omap_gpmc_attach(struct omap_gpmc_s
*s
, int cs
, MemoryRegion
*iomem
)
862 struct omap_gpmc_cs_file_s
*f
;
865 if (cs
< 0 || cs
>= 8) {
866 fprintf(stderr
, "%s: bad chip-select %i\n", __FUNCTION__
, cs
);
871 omap_gpmc_cs_unmap(s
, cs
);
872 f
->config
[0] &= ~(0xf << 10);
874 omap_gpmc_cs_map(s
, cs
);
877 void omap_gpmc_attach_nand(struct omap_gpmc_s
*s
, int cs
, DeviceState
*nand
)
879 struct omap_gpmc_cs_file_s
*f
;
882 if (cs
< 0 || cs
>= 8) {
883 fprintf(stderr
, "%s: bad chip-select %i\n", __func__
, cs
);
888 omap_gpmc_cs_unmap(s
, cs
);
889 f
->config
[0] &= ~(0xf << 10);
890 f
->config
[0] |= (OMAP_GPMC_NAND
<< 10);
892 if (nand_getbuswidth(f
->dev
) == 16) {
893 f
->config
[0] |= OMAP_GPMC_16BIT
<< 12;
895 omap_gpmc_cs_map(s
, cs
);